dc.contributor.author |
Saleem, N.
|
|
dc.contributor.author |
Abbas, Mujahid
|
|
dc.contributor.author |
Raza, Z.
|
|
dc.date.accessioned |
2016-08-11T13:47:46Z |
|
dc.date.available |
2016-08-11T13:47:46Z |
|
dc.date.issued |
2016 |
|
dc.description.abstract |
In this paper, we introduce the concept of best proximal contraction theorems in non-Archimedean fuzzy metric space for two mappings and
prove some proximal theorems. As a consequence, it provides the existence of
an optimal approximate solution to some equations which contains no solution. The obtained results extend further the recently development proximal
contractions in non-Archimedean fuzzy metric spaces and famous Banach contraction principle. |
en_ZA |
dc.description.department |
Mathematics and Applied Mathematics |
en_ZA |
dc.description.librarian |
am2016 |
en_ZA |
dc.description.uri |
http://ijfs.usb.ac.ir |
en_ZA |
dc.identifier.citation |
Salkeem, N, Abbas, M & Raza, Z 2016, 'Optimal coincidence best approximation solution in non-Archimedean fuzzy metric spaces', Iranian Journal of Fuzzy Systems, vol. 13, no. 3, pp. 113-124. |
en_ZA |
dc.identifier.issn |
1735-0654 |
|
dc.identifier.uri |
http://hdl.handle.net/2263/56282 |
|
dc.language.iso |
en_US |
en_ZA |
dc.publisher |
University of Sistan and Baluchestan |
en_ZA |
dc.rights |
University of Sistan and Baluchestan |
en_ZA |
dc.subject |
Fuzzy metric space |
en_ZA |
dc.subject |
Optimal approximate solution |
en_ZA |
dc.subject |
Fuzzy proximal contraction |
en_ZA |
dc.subject |
Fuzzy expansive |
en_ZA |
dc.subject |
Fuzzy isometry |
en_ZA |
dc.subject |
s-Increasing sequence |
en_ZA |
dc.subject |
t-Norm |
en_ZA |
dc.title |
Optimal coincidence best approximation solution in non-Archimedean fuzzy metric spaces |
en_ZA |
dc.type |
Article |
en_ZA |