Abstract:
In this study the heat transfer and hydrodynamic parameters were experimentally investigated for a single microchannel housed in a stainless steel solid base material for different aspect ratios in the laminar regime with water as the working fluid. The stainless steel base material had a low thermal conductivity (15.1 W / mK) which magnified the conjugative effects in order to better understand the heat transfer. Rectangular microchannels with a height and width of 0.64 mm x 0.41 mm for Test Section 1, 0.5 mm x 0.5 mm for Test Section 2 and 0.43 mm x 0.58 mm for Test Section 3 were considered. The overall width of the solid substrate was 1.5 mm and the length was 50 mm for all of the test sections. The aspect ratio of the channel and the solid substrate was kept equal. A constant heat flux of 10 W / cm2 was applied to the bottom outer wall of the test section. A sudden contraction inlet and a sudden expansion outlet manifold contained pressure ports, to measure the pressure drop across the test sections, and thermocouples measured the mean inlet and outlet fluid temperatures. Thermocouples were used to measure the outer top and side wall temperatures at four equally spaced positions along the axial direction. The amount of axial heat conduction was below 0.6 % for all of the test sections and therefore warranted the use of a two-dimensional conduction model to determine the heat transfer parameters at the fluid to solid interface based on the outer measured wall temperatures. The local Nusselt number decreased, along the axial direction but increased towards the exit for all of the test sections. The average Nusselt number increased with the flow rate and the critical Reynolds number for fully turbulent flow Test Section 1 was 1950, for Test Section 2 was 2250 and for Test Section 3 was 1650. The average Nusselt number was directly related to the perimeter of the microchannels two side walls and the bottom wall (not the top wall), and thus decreased as the aspect ratio of the channel increased. The experimentally determined Nusselt numbers were larger for all three test sections when compared to common acceptable correlations. The friction factor decreased with the flow rate and was smaller in magnitude when compared to conventional theories. The diabatic friction factor magnitudes were smaller than the adiabatic friction factors. The friction factor decreased as the aspect ratio decreased, where the aspect ratio was calculated by taking the maximum of the microchannels width or height, divided by the minimum of the two. The possibility of a relationship could exist between the Colburn j-factor and the friction factor when considering the results for Test Section 1 and Test Section 2 but the results for Test Section 3 were significantly different.