dc.contributor.author |
Oberlack, M.
|
|
dc.contributor.author |
Rosteck, A.
|
|
dc.contributor.author |
Avsarkisov, V.
|
|
dc.date.accessioned |
2015-04-23T07:44:35Z |
|
dc.date.available |
2015-04-23T07:44:35Z |
|
dc.date.issued |
2014 |
|
dc.description.abstract |
Paper presented to the 10th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Florida, 14-16 July 2014. |
en_ZA |
dc.description.abstract |
Text-book knowledge proclaims that Lie symmetries such as Galilean transformation lie at the heart of fluid dynamics. These important properties also carry over to the statistical description of turbulence, i.e. to the Reynolds stress transport equations and its generalisation, the multi-point correlation equations (MPCE). Interesting enough, the MPCE admit a much larger set of symmetries, in fact infinite dimensional, subsequently named statistical symmetries. Most important, theses new symmetries have important consequences for our understanding of turbulent scaling laws. The symmetries form the essential foundation to construct exact solutions to the infinite set of MPCE, which in turn are identified as classical and new turbulent scaling laws. Examples on various classical and new shear flow scaling laws including higher order moments will be presented. Even new scaling have been forecasted from these symmetries and in turn validated by DNS. Turbulence modellers have implicitly recognised at least one of the statistical symmetries as this is the basis for the usual loglaw which has been employed for calibrating essentially all engineering turbulence models. An obvious conclusion is to generally make turbulence models consistent with the new statistical symmetries. |
en_ZA |
dc.description.librarian |
cf2015 |
en_ZA |
dc.format.medium |
PDF |
en_ZA |
dc.identifier.citation |
Oberlack, M, Rosteck, A, Avsarkisov, V 2014, 'Can we obtain first principle results for turbulence statistics', Paper presented to the 10th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Florida, 14-16 July 2014. |
en_ZA |
dc.identifier.isbn |
97817759206873 |
|
dc.identifier.uri |
http://hdl.handle.net/2263/44509 |
|
dc.publisher |
International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics |
en_ZA |
dc.rights |
© 2014 University of Pretoria. All rights reserved. The copyright in this work vests in the University of Pretoria. No part of this work may be reproduced or transmitted in any form or by any means, without the prior written permission of the University of Pretoria. |
en_ZA |
dc.subject |
Turbulence statistics |
en_ZA |
dc.subject |
Fluid dynamics |
en_ZA |
dc.subject |
Multi-point correlation equations |
en_ZA |
dc.subject |
Statistical symmetries |
en_ZA |
dc.subject |
Scaling laws |
en_ZA |
dc.subject |
Near-wall turbulent shear flows |
en_ZA |
dc.subject |
Non-rotating and rotating channel flow |
en_ZA |
dc.title |
Can we obtain first principle results for turbulence statistics |
en_ZA |
dc.type |
Presentation |
en_ZA |