Abstract:
Abstract
The reinforcement of concrete with steel fibres changes the failure of the composite material from catastrophic brittle failure to pseudo-ductile behaviour as a result of crack-bridging by the fibres, and the additional work which is absorbed by fibre pull-out. A good understanding of the properties of the fibre-reinforced concrete depends on an understanding of the fibre pull-out process. The main aim of the current study is to investigate, both experimentally and numerically, the pull-out behaviour of a single hooked end steel fibre from epoxy matrix, where epoxy was chosen to replace concrete in order to enable visualisation of the pull-out process. The experimental and numerical results both contribute to the development of a physical understanding of the mechanism of pull-out.
Experimental studies included the evaluation of the mechanical properties of hooked end steel fibre and epoxy matrix by means of tensile tests, the manufacturing of pull-out specimens consisting of a single hooked end steel fibre embedded in epoxy matrix, and the experimental characterisation of the fibre pull-out. The significant features (peaks and minima) of the load vs. displacement graph were correlated to stills taken from a video of the pull-out process, in which the plastic deformation of the fibre is evident. Small deformations (spalling) were also observed in the matrix. A model is proposed for the mechanisms which interact during the pull-out process.