Abstract:
Large quantities of tailings are produced during gold and coal mining activities. These tailings consist of ash dumps, waste rock dumps, in-pit deposits and any other heap, pile or accumulation of residue in the tailings or slimes dams. It has been reported that these tailings can have a significant impact on water quality in the vicinity of gold and coal residues in South Africa. Water quality deterioration in the vicinity of gold and coal mines in the Johannesburg and other areas has been reported. However, little information is available on the potential impact of residues on water quality near Roodepoort and Newcastle where gold and coal, respectively, are mined. The objective of this investigation was therefore to determine the potential impact of gold and coal mine residues on the environment in the vicinity of Roodepoort and Newcastle. Secondary objectives were to identify the metal constituents of gold and coal mine residues, to evaluate and define the current knowledge with regard to the short-term water quality impact of gold and coal residues in terms of concentration of metals leaching from the residues, to assess the potential impact of gold and coal tailings on the water environment within the study areas and to suggest methods to prevent pollution from taking place. Acid Base Accounting (ABA), Toxicity Characteristics Leaching (TCLP), Acid Rain Leaching Procedure (ARLP) and Inductively Plasma Coupled – Mass Spectrometry (IPC-MS) were used as tools to determine the potential impact of gold and coal tailings on the environment. Acid Base Accounting comprises two components that show the potential of the mine residue to produce acid mine drainage, that is, the total sulphur and the net neutralisation potential (NNP). It has been reported that any pyrite mine residue containing more than 0.5% total sulphur may generate acid mine drainage. Mine residues with a net neutralisation potential of less than zero ppt CaCO3 produce acid drainage. The acid base accounting results show that the gold and coal mine residues contain sulphur which has the potential to produce acid mine drainage. Lithium (Li), sodium (Na) magnesium (Mg), aluminium (Al), potassium (K), calcium (Ca), iron (Fe), manganese (Mn) and nickel (Ni) were identified to be present in the gold mine residue. The concentrations of some of the metals that leached from the gold residue according to the TCLP tests were as follows: Al (22 mg/L); Ca (242 mg/L); Fe (29 mg/L); Mn (88 mg/L) and Ni (87 mg/L). The metals that leached from the gold residue according to the ARLP results were as follows: Na (43 mg/L); Al (169 mg/L); Ca (246 mg/L); Fe (771 mg/L); Mn (16 mg/L) and Ni (11 mg/L). Higher concentrations of metals generally leached from the gold residue with the ARLP test than with the TCLP test. The sulphate concentration up-stream of the gold residue was determined at 225 mg/L. This concentration increased to 3 490 mg/L at the decanting point and to 11 577 mg/L downstream of the decanting point. The surface and possibly groundwater are therefore polluted with sulphates. Lithium (Li), sodium (Na), magnesium (Mg), aluminium (Al), potassium (K), calcium (Ca), iron (Fe), manganese (Mn) and nickel (Ni) were identified to be present in the coal mine residue. The concentrations of some of the metals that leached from the coal residue according to the TCLP tests were as follows: Al (3 mg/L); Ca (56 mg/L); Fe (0.21 mg/L); Mn (1 mg/L) and Ni (0.082 mg/L). The metals that leached from the coal residue according to the ARLP test results were as follows: Na (3 mg/L); Al (15 mg/L); Ca (136 mg/L); Fe (0.91 mg/L); Mn (1 mg/L) and Ni (0.07 mg/L). Higher concentrations of metals generally leached from the coal residue with ARLP test than with the TCLP test. The sulphate concentration up-stream of the coal residue was determined at 26 mg/L. This concentration increased to 3 615 mg/L at the decanting point and to 6 509 mg/L downstream of the decanting point. The surface and possibly groundwater are therefore polluted with sulphate. The upstream Na (26 mg/L), Ca (41 mg/L), Fe (0,02 mg/L), Mn (3 mg/L) and Ni (0.065 mg/L) concentrations were low in the case of the gold residues. These concentrations at the decanting point were: Na (289 mg/L); Ca (266 mg/L); Fe (0.2 mg/L); Mn (0.01 mg/L) and Ni (2 mg/L). Fifty metres downstream these concentrations were: Na (140 mg/L); Ca (389 mg/L); Fe (722 mg/L); Mn (395 mg/L) and Ni (15 mg/L). There was a significant increase in the metal concentration from up-stream of the gold residue, to the decanting point and further downstream of the gold residue. The surface and possibly ground water are therefore polluted by the metals leaching from the gold residue. The upstream Na (5 mg/L), Ca (8 mg/L), Fe (0,12 mg/L), Mn (0.015 mg/L) and Ni (0.05 mg/L) concentrations were low in the case of the coal residues. These concentrations at the decanting point were: Na (189 mg/L); Ca (337 mg/L); Fe (68 mg/L); Mn (13 mg/L) and Ni (0.06 mg/L). Fifty metres downstream these concentrations were: Na (65 mg/L); Ca (129 mg/L); Fe (0.48 mg/L); Mn (5 mg/L) and Ni (0.06 mg/L). There was a significant increase in the metal concentration from up-stream of the coal residue, to the decanting point and further downstream of the coal residue. The surface and possibly ground water are therefore polluted by the metals leaching from the coal residue. The gold and coal mine residues are polluting the surface and possibly ground water. Therefore, in order to ameliorate the current status within the Roodepoort and Newcastle catchments, mitigation and management measures such as that the residues should be covered and capped with soil material that would prevent infiltration of the oxygen and rain water into the soil, are recommended. A more comprehensive water quality analysis of the surroundings of the residues is also suggested to be able to better quantify the extent of the problem. Copyright