Abstract:
The Vehicle Routing Problem has been around for more than 50 years and has been of major interest to the operations research community. The VRP pose a complex problem with major benefits for the industry. In every supply chain transportation occurs between customers and suppliers. In this thesis, we analyze the use of a multiple pheromone trial in using Ant Systems to solve the VRP. The goal is to find a reasonable solution for data environments of derivatives of the basic VRP. An adaptive object model approach is followed to allow for additional constraints and customizable cost functions. A parallel method is used to improve speed and traversing the solution space. The Ant System is applied to the local search operations as well as the data objects. The Tabu Search method is used in the local search part of the solution. The study succeeds in allowing for all of the key performance indicators, i.e. efficiency, effectiveness, alignment, agility and integration for an IT system, where the traditional research on a VRP algorithm only focuses on the first two.