Abstract:
This thesis presents a robust nonlinear model predictive controller (RNMPC), nominal nonlinear model predictive controller (NMPC) and single-loop proportional-integral-derivative (PID) controllers that are applied to a nonlinear model of a run-of-mine (ROM) ore milling circuit. The model consists of nonlinear modules for the individual process units of the milling circuit (such as the mill, sump and cyclone), which allow arbitrary milling circuit configurations to be modelled easily. This study aims to cast a complex problem of a ROM ore milling circuit into an RNMPC framework without losing the flexibility of the modularised nonlinear model and implement the RNMPC using open-source software modules. The three controllers are compared in a simulations study to determine the performance of the controllers subject to severe disturbances and model parameter variations. The disturbances include changes to the feed ore hardness, changes in the feed ore size distributions and spillage water being added to the sump. The simulations show that the RNMPC and NMPC perform better than the PID controllers with regard to the economic objectives, assuming full-state feedback is available, especially when actuator constraints become active. The execution time of the RNMPC, however, is much too long for real-time implementation and would require further research to improve the efficiency of the implementation.