dc.contributor.author |
Swanepoel, Konrad Johann
|
|
dc.contributor.author |
Pretorius, Lou M. (Lourens Martin)
|
|
dc.date.accessioned |
2007-06-21T06:19:40Z |
|
dc.date.available |
2007-06-21T06:19:40Z |
|
dc.date.issued |
2007-03 |
|
dc.description.abstract |
Ons gee 'n algoritmiese bewys vir die kontrapositief van die volgende stelling wat onlangs deur die outeurs bewys is:
Laat S 'n eindige versameling van punte in die vlak wees, met elke punt rooi, blou of met beide kleure gekleur. Veronderstel dat daar vir enige twee verskillende punte A en B in S wat 'n kleur k deel, 'n derde punt in S is wat (o.a.) die kleur anders as k het en wat saamlynig met A en B is. Dan is al die punte in S saamlynig. Hierdie stelling is 'n gemeenskaplike veralgemening van die Sylvester-Gallai Stelling en die Motzkin-Rabin Stelling. ENGLISH: We give an algorithmic proof for the contrapositive of the following theorem that has recently been proved by the authors: Let S be a finite set of points in the plane, with each point coloured red, blue or with both colours. Suppose that for any two distinct points A and B in S sharing a colour k, there is a third point in S which has (inter alia) the colour different from k and is collinear with A and B. Then all the points in S are collinear. This theorem is a generalization of both the Sylvester-Gallai Theorem and the Motzkin-Rabin Theorem. |
afr & en |
dc.format.extent |
81720 bytes |
|
dc.format.mimetype |
application/pdf |
|
dc.identifier.citation |
Swanepoel, KJ & Pretorius, LM 2007, ''n Veralgemeende Sylvester-Gallai Stelling', Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie, vol. 26, no. 1, pp. 8-13. [http://www.journals.co.za/ej/ejour_aknat.html] |
afr |
dc.identifier.issn |
0254-3486 |
|
dc.identifier.uri |
http://hdl.handle.net/2263/2791 |
|
dc.language.iso |
Afrikaans |
afr |
dc.publisher |
Suid Afrikaanse Akademie vir Wetenskap & Kuns |
afr |
dc.rights |
Suid Afrikaanse Akademie vir Wetenskap & Kuns |
afr |
dc.subject |
Sylvester-Gallai Theorem |
en |
dc.subject |
Motzkin-Rabin Theorem |
en |
dc.subject.lcsh |
Algorithms |
|
dc.title |
Veralgemeende Sylvester-Gallai Stelling |
en |
dc.type |
Article |
afr |