The division theorem for smooth functions

Show simple item record

dc.contributor.advisor Fouche, W.L. en
dc.contributor.postgraduate De Wet, P.O. (Pieter Oloff) en
dc.date.accessioned 2013-09-07T06:26:46Z
dc.date.available 2005-07-26 en
dc.date.available 2013-09-07T06:26:46Z
dc.date.created 2003-04-01 en
dc.date.issued 2006-07-26 en
dc.date.submitted 2005-07-22 en
dc.description Dissertation (MSc (Mathematics))--University of Pretoria, 2006. en
dc.description.abstract We discuss Lojasiewicz's beautiful proof of the division theorem for smooth functions. The standard proofs are based on the Weierstrass preparation theorem for analytic functions and use techniques from the theory of partial differential equations. Lojasiewicz's approach is more geometric and syn¬thetic. In the appendices appear new proofs of results which are required for the theorem. en
dc.description.availability unrestricted en
dc.description.department Mathematics and Applied Mathematics en
dc.identifier.citation De Wet, PO 2002, The division theorem for smooth functions, MSc dissertation, University of Pretoria, Pretoria, viewed yymmdd < http://hdl.handle.net/2263/26530 > en
dc.identifier.other H735/ag en
dc.identifier.upetdurl http://upetd.up.ac.za/thesis/available/etd-07222005-122154/ en
dc.identifier.uri http://hdl.handle.net/2263/26530
dc.language.iso en
dc.publisher University of Pretoria en_ZA
dc.rights © 2002, University of Pretoria. All rights reserved. The copyright in this work vests in the University of Pretoria. No part of this work may be reproduced or transmitted in any form or by any means, without the prior written permission of the University of Pretoria. en
dc.subject Differential equations partial en
dc.subject Analytic functions en
dc.subject Commutative algebra en
dc.subject Smoothness of functions en
dc.subject UCTD en_US
dc.title The division theorem for smooth functions en
dc.type Dissertation en


Files in this item

This item appears in the following Collection(s)

Show simple item record