Abstract:
Whole grain and bran samples of two Malawian sorghums, Phatafuli, (a brown-coloured condensed tannin variety) and Shabalala, (a white-coloured condensed tannin-free variety) were analysed for their content of total phenols, condensed tannins and antioxidant activities. The effect of oxidizing conditions during extraction, and the storage stability of a freeze-dried crude phenolic extract (CPE) from the condensed tannin sorghum bran as influenced by packaging, storage temperature and length of storage, in relation to its content of total phenols, condensed tannins and antioxidant activity was also investigated. Antioxidant activity of the CPE, in comparison with tertiary butyl hydroquinone (TBHQ), was then evaluated in sunflower oil at concentrations of 1000, 1500 and 2000 ppm in the absence or presence of ferric ions at 2.2 and 4.4 ppm in the dark at 65oC.Progression of oxidation was monitored by measurement of peroxide values (PV) and anisidine values (AV) during a 14-day storage period. Phatafuli contained higher content of total phenols and antioxidant activity than Shabalala both in the whole grain and the bran, probably due to the presence of condensed tannins in Phatafuli sorghum, which were not detected in Shabalala sorghum. For both sorghum varieties, the bran contained higher levels of total phenols and antioxidant activity than the whole grain, confirming that phenolic compounds in sorghum are largely concentrated in the bran. Antioxidant activities of the sorghum varieties correlated highly with their total phenol and condensed tannin contents, suggesting that the phenolic compounds were largely responsible for the antioxidant activities of the sorghum grains. Bubbling of oxygen into the liquid crude phenolic extract did not have any significant effect on the parameters tested. Similarly, vacuum-packed samples did not differ significantly in the parameters tested from the samples that were not vacuum-packed. CPE samples stored at –20oC had significantly higher levels of total phenols, condensed tannins and antioxidant activity than those stored at 25oC during some days of storage. Storage time was however the major factor influencing the levels of total phenols, condensed tannins and antioxidant activity of the CPE from Phatafuli sorghum during storage, which suggested that CPE from condensed tannin sorghum bran might need to be used shortly after extraction to ensure optimum antioxidant activity. There was an insignificant correlation between the antioxidant activities of the CPE and their phenolic contents during storage, which could have been due to the formation of new compounds with a lower antioxidant capacity. The CPE inhibited oxidation of sunflower oil as shown by lower peroxide values and anisidine values compared to control samples. The CPE was however less effective in reducing peroxide values compared to TBHQ, but was similar to TBHQ in reducing anisidine values. In the presence of ferric ions, the CPE appeared to be less effective in reducing peroxide values compared to TBHQ, but appeared to be more effective than TBHQ in reducing anisidine values. The results showed that the tannin sorghum bran CPE appeared to act as both lipid radical scavengers and metal chelators. The CPE however imparted colour to the sunflower oil, which could limit its application as a natural antioxidant in edible oils.