Abstract:
Traditional implementations of optical receivers are designed to operate with external photodetectors or require integration in a hybrid technology. By integrating a CMOS photodetector monolithically with an optical receiver, it can lead to the advantage of speed performance and cost. This dissertation describes the implementation of a photodetector in CMOS technology and the design of an optical receiver front-end and a clock and data recovery system. The CMOS detector converts the light input into an electrical signal, which is then amplified by the receiver front-end. The recovery system subsequently processes the amplified signal to extract the clock signal and retime the data. An inductive peaking methodology has been used extensively in the front-end. It allows the accomplishment of a necessary gain to compensate for an underperformed responsivity from the photodetector. The recovery circuits based on a nonlinear circuit technique were designed to detect the timing information contained in the data input. The clock and data recovery system consists of two units viz. a frequency-locked loop and a phase-locked loop. The frequency-locked loop adjusts the oscillator’s frequency to the vicinity of data rate before phase locking takes place. The phase-locked loop detects the relative locations between the data transition and the clock edge. It then synchronises the input data to the clock signal generated by the oscillator. A system level simulation was performed and it was found to function correctly and to comply with the gigabit fibre channel specification.