Generalizations of the Diffie-Hellman protocol : exposition and implementation

Show simple item record

dc.contributor.advisor Pretorius, Lou M. (Lourens Martin) en
dc.contributor.postgraduate Van der Berg, J.S. en
dc.date.accessioned 2013-09-06T16:32:57Z
dc.date.available 2008-04-24 en
dc.date.available 2013-09-06T16:32:57Z
dc.date.created 2007-09-06 en
dc.date.issued 2007 en
dc.date.submitted 2008-04-21 en
dc.description Dissertation (MSc (Applied Mathematics))--University of Pretoria, 2007. en
dc.description.abstract A generalisation of the Diffie-Hellman protocol is studied in this dissertation. In the generalisation polynomials are used to reduce the representation size of a public key and linear shift registers for more efficient computations. These changes are important for the implementation of the protocol in con- strained environments. The security of the Diffie-Hellman protocol and its generalisation is based on the same computations problems. Lastly three examples of the generalisation and their implementation are discussed. For two of the protocols, models are given to predict the execution time and it is determined how well these model predictions are. en
dc.description.availability unrestricted en
dc.description.degree MSc
dc.description.department Mathematics and Applied Mathematics en
dc.identifier.citation Van der Berg, JS 2007, Generalizations of the Diffie-Hellman protocol : exposition and implementation, MSc Dissertation, University of Pretoria, Pretoria, viewed yymmdd <http://hdl.handle.net/2263/24053>
dc.identifier.other Pretoria en
dc.identifier.upetdurl http://upetd.up.ac.za/thesis/available/etd-04212008-142906/ en
dc.identifier.uri http://hdl.handle.net/2263/24053
dc.language.iso en
dc.publisher University of Pretoria en_ZA
dc.rights © University of Pretor en
dc.subject Diffie-hellman protocol en
dc.subject Polynomials en
dc.subject Model predictions en
dc.subject UCTD en_US
dc.title Generalizations of the Diffie-Hellman protocol : exposition and implementation en
dc.type Dissertation en


Files in this item

This item appears in the following Collection(s)

Show simple item record