Electricity load forecasting with artificial neural networks

Show simple item record

dc.contributor.author Boraine, H.
dc.contributor.author Yadavalli, Venkata S. Sarma
dc.date.accessioned 2012-11-26T10:59:37Z
dc.date.available 2012-11-26T10:59:37Z
dc.date.issued 2003
dc.description.abstract Artificial neural networks are powerful tools for time series forecasting. The problem addressed in this article is to do multi-step prediction of a stationary time series, and to find the associated prediction limits. Artificial neural network models for time series are non-linear. However, results that are applicable to linear models are sometimes mistakenly applied to non-linear models. One example where this is observed is in multi-step forecasting. A bootstrap method is proposed to calculate one- and multi-step predictions and prediction limits. The results are applied to an electricity load time series as well as to a pure autoregressive time series. en_US
dc.description.abstract Kunsmatige neurale netwerke is kragtige instrumente vir tydreeksvoorspelling. In hierdie artikel word multistap-vooruitberaming van ‘n stasionêre tydreeks en die gepaardgaande vertroueinterval behandel. Resultate wat slegs geldig is vir lineêre modelle word soms verkeerdelik op neurale netwerkmodelle toegepas. ‘n Voorbeeld hiervan kom in multistap-voorspelling voor. ‘n Skoenlusmetode, word voorgestel waarvolgens eenstap- en multistap- voorspellings en vertroueintervalle bereken kan word. Die resultate word op ‘n elektrisiteitslastydreeks en op ‘n suiwer outoregressiewe tydreeks toegepas. en_US
dc.description.uri http://sajie.journals.ac.za en_US
dc.format.extent 14 pages en_US
dc.format.medium PDF en_US
dc.identifier.citation Boraine, H & Yadavalli, VSS 2003, 'Electricity load forecasting with artificial neural networks', The South African Journal of Industrial Engineering, vol. 14, no. 2, pp. 23-35. [http://sajie.journals.ac.za] en_US
dc.identifier.issn 1012-277X (print)
dc.identifier.issn 2224-7890 (online)
dc.identifier.uri http://hdl.handle.net/2263/20490
dc.language.iso en en_US
dc.publisher Southern African Institute for Industrial Engineering en_US
dc.rights Southern African Institute for Industrial Engineering en_US
dc.subject Artificial neural networks en_US
dc.subject Linear models en_US
dc.subject Non-linear models en_US
dc.subject Forecasting en_US
dc.title Electricity load forecasting with artificial neural networks en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record