Abstract:
Improvement in the water stability and other related functional properties of thin (<50 µm) karirin protein films was investigated. Thin conventional kafirin films and kafirin microparticle films were prepared by casting in acetic acid solution. Thin kafirin films cast from microparticles were more stable in water than conventional cast kafirin films. Treatment of kafirin microparticles with heat and transglutaminase resulted in slightly thicker films with reduced tensile strength. In contrast, glutaraldehyde treatment resulted in up to a 43% increase in film tensile strength. The films prepared from microparticles treated with glutaraldehyde treatment were quite stable in ambient temperature water, despite the loss of plasticizer. This was probably due to the formation of convalent crosslinking between free amino groups if the kafirin polypeptides and carbonyl groups of the aldehyde. Thus, such thin glutaraldehyde-treated kafirin microparticle films appear to have good potential for use as biomaterials in aqueous applications.