Abstract:
The hot ductility of in situ melted tensile specimens of microalloyed steels having C contents in the range 0.12–0.17% (mass %) have been examined over the 700–1000°C temperature range. An improved testing method for simulating the continuous casting process was used, which takes into account both primary and secondary cooling conditions. Increasing the N content to electric arc furnace levels (0.01% N) was found to cause a serious deterioration in ductility. V-N steel gave better ductility than Nbcontaining steels due to less precipitation. From a cracking perspective, low- N steels are generally recommended but, when not feasible, a combination of Nb and V gives even better ductility. However, to be sure of avoiding transverse cracking in higher N steels a small addition of Ti is required. This resulted in a decrease in the fraction of fine particles and in accord with this better ductility. Transverse cracking of industrial slabs was then avoided.