Abstract:
Several recent studies have indicated that radiofrequency electromagnetic fields (RFEMF) have an adverse effect on human sperm quality, which could translate to an effect on fertilization potential. The present study evaluated the effect of RF-EMF on spermspecific characteristics in order to assess the fertilizing competence of sperm. Highly motile human spermatozoa, were exposed for one hour to 900 MHz mobile phone radiation at a specific absorption rate (SAR) of 2.0 W/kg and examined at various times
after exposure. The acrosome reaction was evaluated using flow cytometry. The radiation did not affect sperm propensity for the acrosome reaction. Morphometric parameters were assessed by computer assisted sperm analysis (CASA). Significant reduction in
sperm head area (9.2 ± 0.7 μm2 vs. 18.8 ± 1.4 μm2) and acrosome percentage of the head area (21.5 ± 4% vs. 35.5 ± 11.4%) were reported among exposed sperm compared with unexposed controls. Sperm–zona binding was assessed directly after exposure using the
hemizona assay (HZA). The mean number of zona-bound sperm of the test hemizona and controls was 22.8 ± 12.4 and 31.8 ± 12.8 (p<0.05), respectively. This study concludes that while RF-EMF exposure did not adversely affect the acrosome reaction, it had a significant effect on sperm morphometry. In addition a significant decrease in sperm
binding to the hemizona was observed. These results could indicate a significant effect of Several recent studies have indicated that radiofrequency electromagnetic fields (RFEMF) have an adverse effect on human sperm quality, which could translate to an effect
on fertilization potential. The present study evaluated the effect of RF-EMF on spermspecific characteristics in order to assess the fertilizing competence of sperm. Highly motile human spermatozoa, were exposed for one hour to 900 MHz mobile phone radiation at a specific absorption rate (SAR) of 2.0 W/kg and examined at various times
after exposure. The acrosome reaction was evaluated using flow cytometry. The radiation did not affect sperm propensity for the acrosome reaction. Morphometric parameters were assessed by computer assisted sperm analysis (CASA). Significant reduction in
sperm head area (9.2 ± 0.7 μm2 vs. 18.8 ± 1.4 μm2) and acrosome percentage of the head area (21.5 ± 4% vs. 35.5 ± 11.4%) were reported among exposed sperm compared with unexposed controls. Sperm–zona binding was assessed directly after exposure using the
hemizona assay (HZA). The mean number of zona-bound sperm of the test hemizona and controls was 22.8 ± 12.4 and 31.8 ± 12.8 (p<0.05), respectively. This study concludes that while RF-EMF exposure did not adversely affect the acrosome reaction, it had a significant effect on sperm morphometry. In addition a significant decrease in sperm
binding to the hemizona was observed. These results could indicate a significant effect of RF-EMF on sperm fertilisation potential.