dc.contributor.author |
Ntumba, Patrice P.
|
|
dc.contributor.author |
Anyaegbunam, Adaeze Christiana
|
|
dc.date.accessioned |
2011-04-18T06:33:56Z |
|
dc.date.available |
2011-04-18T06:33:56Z |
|
dc.date.issued |
2011 |
|
dc.description.abstract |
Building on prior joint work by Mallios and Ntumba, we study
transvections (J. Dieudonn´e), a theme already important from the classical
theory, in the realm of Abstract Geometric Algebra, referring herewith
to symplectic A-modules. A characterization of A-transvections, in terms
of A-hyperplanes (Theorem 1.4), is given together with the associated
matrix definition (Corollary 1.5). By taking the domain of coefficients A
to be a PID-algebra sheaf, we also consider the analogue of a form of the
classical Witt’s extension theorem, concerning A-symplectomorphisms
defined on appropriate Lagrangian sub-A-modules (Theorem 2.3 and
2.4). |
en |
dc.identifier.citation |
Ntumba, PP & Anyaegbunam, AC 2011, 'A-transvections and Witt’s theorem in symplectic A-modules', Mediterranean Journal of Mathematics, doi:10.1007/s00009-010-0102-8. [http://www.springer.com/birkhauser/mathematics/journal/9] |
en |
dc.identifier.issn |
1660-5446 (print) |
|
dc.identifier.other |
1660-5454 (online) |
|
dc.identifier.other |
10.1007/s00009-010-0102-8 |
|
dc.identifier.uri |
http://hdl.handle.net/2263/16309 |
|
dc.language.iso |
en |
en_US |
dc.publisher |
Springer |
en_US |
dc.rights |
© Springer-Verlag 2010. The original publication is available at www.springerlink.com. |
en_US |
dc.subject |
A-homothecy |
en |
dc.subject |
A-hyperplane |
en |
dc.subject |
A-transvection |
en |
dc.subject |
A-transvection of classical type |
en |
dc.subject |
Transvection matrix |
en |
dc.subject |
Symplectic A-module |
en |
dc.subject |
PID-algebra sheaf |
en |
dc.subject |
Orthogonally convenient pairing |
en |
dc.subject.lcsh |
Orthogonalization methods |
en |
dc.title |
A-transvections and Witt’s theorem in symplectic A-modules |
en |
dc.type |
Postprint Article |
en |