A-transvections and Witt’s theorem in symplectic A-modules

Show simple item record

dc.contributor.author Ntumba, Patrice P.
dc.contributor.author Anyaegbunam, Adaeze Christiana
dc.date.accessioned 2011-04-18T06:33:56Z
dc.date.available 2011-04-18T06:33:56Z
dc.date.issued 2011
dc.description.abstract Building on prior joint work by Mallios and Ntumba, we study transvections (J. Dieudonn´e), a theme already important from the classical theory, in the realm of Abstract Geometric Algebra, referring herewith to symplectic A-modules. A characterization of A-transvections, in terms of A-hyperplanes (Theorem 1.4), is given together with the associated matrix definition (Corollary 1.5). By taking the domain of coefficients A to be a PID-algebra sheaf, we also consider the analogue of a form of the classical Witt’s extension theorem, concerning A-symplectomorphisms defined on appropriate Lagrangian sub-A-modules (Theorem 2.3 and 2.4). en
dc.identifier.citation Ntumba, PP & Anyaegbunam, AC 2011, 'A-transvections and Witt’s theorem in symplectic A-modules', Mediterranean Journal of Mathematics, doi:10.1007/s00009-010-0102-8. [http://www.springer.com/birkhauser/mathematics/journal/9] en
dc.identifier.issn 1660-5446 (print)
dc.identifier.other 1660-5454 (online)
dc.identifier.other 10.1007/s00009-010-0102-8
dc.identifier.uri http://hdl.handle.net/2263/16309
dc.language.iso en en_US
dc.publisher Springer en_US
dc.rights © Springer-Verlag 2010. The original publication is available at www.springerlink.com. en_US
dc.subject A-homothecy en
dc.subject A-hyperplane en
dc.subject A-transvection en
dc.subject A-transvection of classical type en
dc.subject Transvection matrix en
dc.subject Symplectic A-module en
dc.subject PID-algebra sheaf en
dc.subject Orthogonally convenient pairing en
dc.subject.lcsh Orthogonalization methods en
dc.title A-transvections and Witt’s theorem in symplectic A-modules en
dc.type Postprint Article en


Files in this item

This item appears in the following Collection(s)

Show simple item record