dc.contributor.author |
Prins, Anneke
|
|
dc.contributor.author |
Mukubi, Josephine Muchwesi
|
|
dc.contributor.author |
Pellny, Till K.
|
|
dc.contributor.author |
Verrier, Paul J.
|
|
dc.contributor.author |
Beyene, Getu
|
|
dc.contributor.author |
Lopes, Marta Silva
|
|
dc.contributor.author |
Emami, Kaveh
|
|
dc.contributor.author |
Treumann, Achim
|
|
dc.contributor.author |
Lelarge-Trouverie, Caroline
|
|
dc.contributor.author |
Noctor, Graham
|
|
dc.contributor.author |
Kunert, Karl J.
|
|
dc.contributor.author |
Kerchev, Pavel
|
|
dc.contributor.author |
Foyer, Christine H.
|
|
dc.date.accessioned |
2011-02-22T09:34:27Z |
|
dc.date.available |
2011-02-22T09:34:27Z |
|
dc.date.issued |
2011-02 |
|
dc.description.abstract |
The responses of C3 plants to rising atmospheric CO2 levels are considered to be largely dependent on effects exerted through altered photosynthesis. In contrast, the nature of the responses of C4 plants to high CO2 remains controversial because of the absence of CO2-dependent effects on photosynthesis. In this study, the effects of atmospheric CO2
availability on the transcriptome, proteome and metabolome profiles of two ranks of source leaves in maize (Zeamays L.) were studied in plants grown under ambient CO2 conditions (350 +/- 20 mL L-1 CO2) or with CO2 enrichment (700 +/- 20 mL L-1 CO2). Growth at high CO2 had no effect on photosynthesis, photorespiration, leaf C/N ratios or anthocyanin contents. However, leaf transpiration rates, carbohydrate metabolism and protein carbonyl accumulation were altered at high CO2 in a leaf-rank specific manner. Although no significant CO2-dependent changes in the leaf
transcriptome were observed, qPCR analysis revealed that the abundance of transcripts encoding a Bowman–Birk protease inhibitor and a serpin were changed by the growth CO2 level in a leaf rank specific manner. Moreover, CO2-dependent changes in the leaf proteome were most evident in the oldest source leaves. Small changes in water status may be responsible for the observed responses to high CO2, particularly in the older leaf ranks. |
en |
dc.description.sponsorship |
This work was funded by a Royal Society (UK)-National
Research Foundation (South Africa) joint project (GUN 2068793). |
en_US |
dc.identifier.citation |
Prins, A, Mukubi, JM, Verrier, PJ, Beyene, G, Lopes, MS, Emami, K, Treumann, A, Lelarge-Trouverie, C, Noctor, G, Kunert, KJ, Kerchev, P & Foyer, CH 2011, 'Acclimation to high CO2 in maize is related to water status and dependent on leaf rank', Plant, Cell and Environment, vol. 34 , no. 2, pp. 314-331. [http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1365-3040] |
en |
dc.identifier.issn |
0140-7791 |
|
dc.identifier.other |
10.1111/j.1365-3040.2010.02245.x |
|
dc.identifier.uri |
http://hdl.handle.net/2263/15913 |
|
dc.language.iso |
en |
en_US |
dc.publisher |
Wiley-Blackwell |
en_US |
dc.rights |
© 2010 Blackwell Publishing Ltd. The definite version is available at www.blackwell-synergy.com. |
en_US |
dc.subject |
CO2 assimilation |
en |
dc.subject |
CO2 enrichment |
en |
dc.subject |
Protease inhibitors |
en |
dc.subject |
Redox regulation |
en |
dc.subject |
Sugar signalling |
en |
dc.subject.lcsh |
Photosynthesis |
en |
dc.subject.lcsh |
Corn -- Effect of atmospheric deposition on |
en |
dc.subject.lcsh |
Corn -- Climatic factors |
en |
dc.title |
Acclimation to high CO2 in maize is related to water status and dependent on leaf rank |
en |
dc.type |
Postprint Article |
en |