dc.contributor.author |
Anguelov, Roumen
|
|
dc.contributor.author |
Rohwer, Carl (Carl H.)
|
|
dc.date.accessioned |
2010-07-15T06:30:08Z |
|
dc.date.available |
2010-07-15T06:30:08Z |
|
dc.date.issued |
2009 |
|
dc.description.abstract |
The LULU operators, well known in the nonlinear multiresolution analysis of sequences, are extended to functions defined on a continuous domain, namely, a real interval. We show that the extended operators replicate the essential properties of their discrete counterparts. More precisely, they form a fully ordered semi-group of four elements, preserve the local trend and the total variation. |
en |
dc.identifier.citation |
Anguelov, R & Rohwer, C 2009, 'LULU operators for functions of continuous argument', Quaestiones Mathematicae, vol. 32, pp. 1-21. [http://www.nisc.co.za/journals?id=7] |
en |
dc.identifier.issn |
1607-3606 |
|
dc.identifier.uri |
http://hdl.handle.net/2263/14456 |
|
dc.language.iso |
en |
en_US |
dc.publisher |
NISC |
en_US |
dc.rights |
NISC |
en_US |
dc.subject |
Nonlinear smoothing |
en |
dc.subject |
LULU operators |
en |
dc.subject |
Variation preservation |
en |
dc.subject.lcsh |
Smoothing (Numerical analysis) |
en |
dc.subject.lcsh |
Image processing |
en |
dc.title |
LULU operators for functions of continuous argument |
en |
dc.type |
Postprint Article |
en |