The impact of past and current district-level climatic shifts on maize production and the implications for South African farmers

Show simple item record

dc.contributor.author Mangani, Robert
dc.contributor.author Mazarura, Jocelyn
dc.contributor.author Matlou, Solly
dc.contributor.author Marquart, Arnim
dc.contributor.author Archer, Emma Rosa Mary
dc.contributor.author Creux, Nicky
dc.date.accessioned 2025-03-27T12:26:53Z
dc.date.available 2025-03-27T12:26:53Z
dc.date.issued 2025-02
dc.description DATA AVAILABILITY : No datasets were generated or analysed during the current study. en_US
dc.description.abstract South Africa’s climate studies generally focus on coarser provincial levels, which aid policy recommendations, but have limited application at the farm level. District level climate studies are essential for farmer participation in climate change mitigation strategies and management. Our study aimed to investigate historical climate data for trends and their influence on maize yields at the magisterial level. Six sites were selected from three major maize-producing provinces in South Africa: Mpumalanga, Northwest, and Free State. Magisterial districts in each province were selected from different Köppen-Geiger climate zones. The climate variables assessed by the Mann–Kendall trend test included maximum or minimum temperature, rainfall, number of extreme high-temperature days, rainfall onset and cessation from 1986 to 2016. The average maximum temperatures were observed to have significant upward trends in most locations, except for Schweizer-Reneke and Bethlehem. The fastest rate of change was observed at Klerksdorp (0.1 °C per 30 years of study), while the Schweizer-Reneke district was the slowest (0.05 °C per 30 years of study). No significant changes were observed in rainfall onset, cessation, or total rainfall in Schweizer-Reneke, Standerton, and Bethlehem, which are scattered across the different provinces. The other districts in each province showed significant changes in these parameters. Rainfall accounted for the significant variation in maize yields over the study period, explaining between 18 and 40% of the variation in the North West, and between 1 and 17% in the Free State. These findings highlight the importance of understanding location-specific changes at a finer scale, which can help farming communities adjust agronomic practices and adapt to local climate shifts. en_US
dc.description.department Forestry and Agricultural Biotechnology Institute (FABI) en_US
dc.description.department Geography, Geoinformatics and Meteorology en_US
dc.description.department Plant Production and Soil Science en_US
dc.description.department Statistics en_US
dc.description.librarian hj2024 en_US
dc.description.sdg SDG-02:Zero Hunger en_US
dc.description.sdg SDG-13:Climate action en_US
dc.description.sponsorship The University of Pretoria for postdoctoral funding, the Technology Innovation Agency (TIA), the South African Department of Science and Innovation (DSI), as well as the Maize Trust under the coordination of GrainSA (Grain South Africa) through the climate resilience consortium. Open access funding provided by University of Pretoria. en_US
dc.description.uri https://link.springer.com/journal/704 en_US
dc.identifier.citation Mangani, R., Mazarura, J., Matlou, S. et al. The impact of past and current district-level climatic shifts on maize production and the implications for South African farmers. Theoretical and Applied Climatology 156, 109 (2025). https://doi.org/10.1007/s00704-024-05334-6. en_US
dc.identifier.issn 0177-798X (print)
dc.identifier.issn 1434-4483 (online)
dc.identifier.other 10.1007/s00704-024-05334-6
dc.identifier.uri http://hdl.handle.net/2263/101764
dc.language.iso en en_US
dc.publisher Springer en_US
dc.rights © The Author(s) 2025. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License. en_US
dc.subject Agroclimatic parameters en_US
dc.subject Climate change en_US
dc.subject Seasonal variability en_US
dc.subject Drought en_US
dc.subject Heat stress en_US
dc.subject Corn yield en_US
dc.subject SDG-02: Zero hunger en_US
dc.subject SDG-13: Climate action en_US
dc.title The impact of past and current district-level climatic shifts on maize production and the implications for South African farmers en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record