English: The travelling wave encodes acoustic information by stimulating the auditory nerve fibres.
Understanding the travelling wave and its process is important for the development of
cochlear implants speech processors. The development of a normal hearing auditory
model, using a hydrodynamic model of the travelling wave to predict the nerve fibre
spiking diagrams, marked the first stage of this study. This study then proceeded to look at
the development of a travelling wave speech processing algorithm and model the electrical
response due to the stimulation from the vocoder speech processor, and the travelling wave
speech processor. The final stage was to predict whether temporal encoding occurred
during cochlear implant stimulation for the vocoder speech processor and the travelling
wave speech processor.
The results showed that the travelling wave normal hearing model was able to predict the
nerve fibre characteristics seen in measurements from literature. This showed that the
mechanical encoding performed by the travelling wave is vital to the encoding of
information in auditory nerve fibres. The travelling wave speech processor was able to
encode temporal cues for pitch up to 1060 Hz, where the results for the vocoder speech
processor showed the 300 Hz limit seen in other literature of phase locking. Mimicking the
travelling wave in cochlear implant speech processors may potentially benefit the delivery
of information to the auditory cortex for cochlear implant users. However, these results
must be legitimised using animal models and psychoacoustic experiments.
Afrikaans: Die loopgolf enkodeer akoestiese inligting deur stimulasie van die gehoorsenuwees. 'n
Begrip van die loopgolf is belangrik vir die ontwikkeling van kogleêre inplanting
spraakverwerkers. Die eerste fase van hierdie studie was die ontwikkeling van 'n ouditiewe
model van normale gehoor. Hierdie model maak gebruik van 'n hidrodinamiese model van
die loopgolf om senuweevuurpatrone te voorspel. Verder het die studie die ontwikkeling
van 'n loopgolf spraakverwerkingsalgoritme ondersoek, en het die elektriese respons in
reaksie op stimulasie van vokoder- en loopgolfspraakverwerkers gemodelleer. Die finale
fase was om te voorspel of temporale enkodering ontlok is tydens kogleêre inplanting
stimulasie met die vokoder- en loopgolfspraakverwerkers.
Die resultate toon dat die loopgolfmodel vir normale gehoor in staat is om die senuweeeienskappe
van gepubliseerde metings te voorspel. Dit wys dat meganiese enkodering deur
die loopgolf van kardinale belang is in die enkodering van inligting in die gehoorsenuwee.
Die loopgolfspraakverwerker is in staat om temporale leidrade vir toonhoogte te enkodeer
tot en met 1060 Hz, terwyl die vokoderspraakverwerker die 300 Hz limiet gedemonstreer
het wat ook in ander literatuur oor fasesluiting gevind word. Om die loopgolf na te boots in
kogleêre inplanting spraakverwerkers mag potensieel voordele inhou vir die aanbied van
inligting aan die ouditiewe korteks van kogleêre inplantinggebruikers. Hierdie resultate
moet wel bevestig word deur gebruik van diermodelle en psigo-akoestiese eksperimente.