dc.contributor.author |
Balarabe, Bachir Yaou
|
|
dc.contributor.author |
Bomokayi, Primerose
|
|
dc.contributor.author |
Adjama, Iredon
|
|
dc.contributor.author |
Mahamane, Abdoulkadri Ayouba
|
|
dc.contributor.author |
Daramola, Michael Olawale
|
|
dc.contributor.author |
Iwarere, Samuel Ayodele
|
|
dc.date.accessioned |
2025-02-24T11:10:19Z |
|
dc.date.available |
2025-02-24T11:10:19Z |
|
dc.date.issued |
2024-06 |
|
dc.description |
DATA AVAILABILITY : All data are included in the article. |
en_US |
dc.description.abstract |
The study optimized the chromium removal capacity of Fe2O3
nanoparticles through the infusion of cobalt using a singlestep
synthesis method. This approach not only enhanced their magnetic properties but also employs less-chemical synthesis
techniques, ultimately yielding highly magnetic CoFe2O4
nanoparticles and less impurities. The prepared materials underwent
comprehensive testing, encompassing examinations of their optical properties, structure, chemical composition, and
surface characteristics using various analyticals methods. In a span of 90 min under visible light exposure, CoFe2O4
nanoparticles
exhibit the ability to remove more that 90% of chromium. This was corroborated through analysis using Inductively
Coupled Plasma-Optical Emission Spectroscopy (ICP-OES). Moreover, the study illustrates that increased temperatures
amplify the endothermic process of chromium adsorption. Positive ΔH°, negative ΔS°, and heightened Cr(IV) adsorption
are linked to the temperature effects on solubility, mobility, and dissolved oxygen. Both Langmuir (
R2 = 0.95, RL
= 0.055)
and Freundlich models (
R2 = 0.98, n = 0.69) suggest favorable adsorption. The efficient Cr(IV) adsorption by CoFe2O4
nanocomposite is attributed to a rapid reaction rate and substantial capacity, following pseudo-second order kinetics (rate
constant 0.01 g mg−
1 min−
1, R2
= 0.99). |
en_US |
dc.description.department |
Chemical Engineering |
en_US |
dc.description.librarian |
am2024 |
en_US |
dc.description.sdg |
SDG-09: Industry, innovation and infrastructure |
en_US |
dc.description.sponsorship |
Open access funding provided by University of Pretoria. |
en_US |
dc.description.uri |
https://link.springer.com/journal/41204 |
en_US |
dc.identifier.citation |
Malarabe, B.Y., Bomokayi, P., Adjama, I. et al. 2024, 'Unlocking the magnetic potential of Fe2O3 nanoparticles by single-step synthesis of cobalt-infused nanomaterials for chromium removal', Nanotechnology for Environmental Engineering, vol. 9, pp. 239-253. https://DOI.org/10.1007/s41204-024-00366-9. |
en_US |
dc.identifier.issn |
2365-6379 (print) |
|
dc.identifier.issn |
2365-6387 (online) |
|
dc.identifier.other |
10.1007/s41204-024-00366-9 |
|
dc.identifier.uri |
http://hdl.handle.net/2263/101187 |
|
dc.language.iso |
en |
en_US |
dc.publisher |
Springer |
en_US |
dc.rights |
© The Author(s) 2024. Open access. This article is licensed under a Creative Commons Attribution
4.0 International License. |
en_US |
dc.subject |
Analysis |
en_US |
dc.subject |
Rapid reaction rate |
en_US |
dc.subject |
Inductively coupled plasma-optical emission spectroscopy (ICP-OES) |
en_US |
dc.subject |
Fe2O3 nanoparticles |
en_US |
dc.subject |
SDG-09: Industry, innovation and infrastructure |
en_US |
dc.title |
Unlocking the magnetic potential of Fe2O3 nanoparticles by single-step synthesis of cobalt-infused nanomaterials for chromium removal |
en_US |
dc.type |
Article |
en_US |