Enhancing LS-PIE’s optimal latent dimensional identification : latent expansion and latent condensation

Show simple item record

dc.contributor.author Stevens, Jesse
dc.contributor.author Wilke, Daniel Nicolas
dc.contributor.author Setshedi, I.I. (Isaac)
dc.date.accessioned 2025-02-05T11:58:38Z
dc.date.available 2025-02-05T11:58:38Z
dc.date.issued 2024-08-16
dc.description DATA AVAILABILITY STATEMENT : Original data presented in the study are openly available in a GitHub repository at https://github.com/Greeen16/SoftwareX-Paper. The combined heartbeat dataset is available from Kaggle at https://www.kaggle.com/datasets/shayanfazeli/heartbeat. The two constituent datasets can be found at https://www.physionet.org/content/ptbdb/1.0.0/ and at https: //www.physionet.org/content/mitdb/1.0.0/. en_US
dc.description.abstract The Latent Space Perspicacity and Interpretation Enhancement (LS-PIE) framework enhances dimensionality reduction methods for linear latent variable models (LVMs). This paper extends LS-PIE by introducing an optimal latent discovery strategy to automate identifying optimal latent dimensions and projections based on user-defined metrics. The latent condensing (LCON) method clusters and condenses an extensive latent space into a compact form. A new approach, latent expansion (LEXP), incrementally increases latent dimensions using a linear LVM to find an optimal compact space. This study compares these methods across multiple datasets, including a simple toy problem, mixed signals, ECG data, and simulated vibrational data. LEXP can accelerate the discovery of optimal latent spaces and may yield different compact spaces from LCON, depending on the LVM. This paper highlights the LS-PIE algorithm’s applications and compares LCON and LEXP in organising, ranking, and scoring latent components akin to principal component analysis or singular value decomposition. This paper shows clear improvements in the interpretability of the resulting latent representations allowing for clearer and more focused analysis. en_US
dc.description.department Mechanical and Aeronautical Engineering en_US
dc.description.librarian am2024 en_US
dc.description.sdg SDG-09: Industry, innovation and infrastructure en_US
dc.description.uri https://www.mdpi.com/journal/mca en_US
dc.identifier.citation Stevens, J., Wilke, D.N. & Setshedi, I.I. Enhancing LS-PIE’s Optimal Latent Dimensional Identification: Latent Expansion and Latent Condensation. Mathematical and Computational Applications 2024, 29, 65. https://DOI.org/10.3390/mca29040065. en_US
dc.identifier.issn 1300-686X (print)
dc.identifier.issn 2297-8747 (online)
dc.identifier.other 10.3390/mca29040065
dc.identifier.uri http://hdl.handle.net/2263/100544
dc.language.iso en en_US
dc.publisher MDPI en_US
dc.rights © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. en_US
dc.subject Latent space en_US
dc.subject Interpretation en_US
dc.subject Condensing en_US
dc.subject Latent variable models en_US
dc.subject Encoding en_US
dc.subject Latent space perspicacity and interpretation enhancement (LS-PIE) en_US
dc.subject Linear latent variable model (LLVM) en_US
dc.subject Latent condensing (LCON) en_US
dc.subject Latent expansion (LEXP) en_US
dc.subject SDG-09: Industry, innovation and infrastructure en_US
dc.title Enhancing LS-PIE’s optimal latent dimensional identification : latent expansion and latent condensation en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record