Phenology-based winter wheat classification for crop growth monitoring using multi-temporal sentinel-2 satellite data

Show simple item record

dc.contributor.author Newete, Solomon W.
dc.contributor.author Abutaleb, Khaled
dc.contributor.author Chirima, Johannes George
dc.contributor.author Dabrowska-Zielinska, Katarzyna
dc.contributor.author Gurdak, Radoslaw
dc.date.accessioned 2025-01-17T11:14:22Z
dc.date.available 2025-01-17T11:14:22Z
dc.date.issued 2024-12
dc.description.abstract Wheat is one of the most important staple crops consumed by more than four billion people in the world. However, its production is challenged by the impact of climate change which accounts for a 5.5 % reduction in wheat yield and it is predicted to dwindle further by about 30 % in 2050, due to trends in temperature, precipitation, and carbon dioxide. An effective annual crop estimate is necessary not only to inform governments the status of national food security, but also to determine the benchmark on which agricultural commodities are priced in the market. Thus, annual crop monitoring and yield estimate is paramount to determine the amount of wheat imports required to make up for the shortfalls in the national wheat production in South Africa, which has been a net importer of wheat since 1998. This study aimed at investigating the most distinguishable crop phenology for accurate winter wheat classification during the growing season from August – December 2020 using Sentinel-2 imageries and Random Forest algorithm. The winter wheat crop was more accurately identified during the crop ‘heading’ stage in October yielding the highest user’s (75.56 %) and producer’s (92.52 %) accuracies, despite the relatively lower overall accuracy (78.14 %) compared to that of December with overall accuracy of 83.58 % obtained during the maturity stage. This study, therefore, found that the extraction of NDVI values of the winter wheat crop over the period of the growing season using the Sentinel-2 NDVI series method and grouping these values into distinct classes using the K-means unsupervised clustering techniques assist to identify the different crop phenologies based on which the winter wheat crop could be detected and mapped accurately. The phenology-based classification of the winter wheat crop during the heading stage, reduce the ambiguity of spectral confusion created with surrounding grass and maize crops. en_US
dc.description.department Geography, Geoinformatics and Meteorology en_US
dc.description.sdg SDG-02:Zero Hunger en_US
dc.description.sdg SDG-13:Climate action en_US
dc.description.uri https://www.journals.elsevier.com/the-egyptian-journal-of-remote-sensing-and-space-sciences en_US
dc.identifier.citation Newete, S.W., Abutaleb, K., Chirima, G.J. et al. 2024, 'Phenology-based winter wheat classification for crop growth monitoring using multi-temporal sentinel-2 satellite data', The Egyptian Journal of Remote Sensing and Space Sciences, vol. 27, no. 4, pp. 695-704, https://doi.org/10.1016/j.ejrs.2024.10.001. en_US
dc.identifier.issn 1110-9823 (print)
dc.identifier.other 10.1016/j.ejrs.2024.10.001
dc.identifier.uri http://hdl.handle.net/2263/100146
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.rights © 2024 National Authority of Remote Sensing & Space Science. Published by Elsevier B.V. This is an Open Access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). en_US
dc.subject Tillering en_US
dc.subject Random forest en_US
dc.subject Crop type en_US
dc.subject K-means Unsupervised Clustering en_US
dc.subject SDG-02: Zero hunger en_US
dc.subject SDG-13: Climate action en_US
dc.title Phenology-based winter wheat classification for crop growth monitoring using multi-temporal sentinel-2 satellite data en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record