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Abstract

Passive acoustic recorders have emerged as powerful tools for ecological moni-

toring. However, effective monitoring is not simply an act of recording sounds.

To have meaning for conservation and management, acoustic monitoring

needs to be properly planned and analyzed to yield high quality information.

Here, we provide a set of considerations for the design of an effective acoustic

monitoring program. We argue that such a program, has the following attri-

butes: (1) has established appropriate partnerships with landowners, Tradi-

tional Owners, researchers, or other relevant stakeholders, (2) is based on clear

objectives and questions, (3) is explicit in its target sound signals, (4) has con-

sidered in-field sensor placement for a range of factors, including experimental

design, statistical power, background noise, and potential impacts on human

privacy and animal disturbance, (5) has a justified recording schedule and peri-

odicity, (6) has methods to process sound data in line with objectives, and

(7) has protocols for permanent data storage and access. Acoustic monitoring

is increasingly used in large-scale programs and will be important in addres-

sing global biodiversity targets and new biodiversity markets. It is critical that

new monitoring programs are designed to effectively and efficiently capture

data that address pertinent and emerging issues in conservation.
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1 | INTRODUCTION

Natural soundscapes contain rich ecological information.
Acoustic communication is widespread among animals
and these biological sounds, together with abiotic and
anthropogenic sounds, offer vast insights into the states
of ecosystems. The recent advent of portable autonomous

sound recorders has created a new way for ecological
data to be acquired at scale, without many of the biases
associated with human observers (Servick, 2014). Conse-
quently, monitoring with passive acoustic recorders has
garnered much attention and ecologists have been quick
to embrace the technology (Burivalova et al., 2019;
Oswald et al., 2022; Sugai et al., 2019). However, effective
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ecological monitoring using acoustic technology is more
than just recording sound. Without proper planning and
experimental design, acoustic monitoring can amass
huge volumes of data that are difficult to analyze and
may not be informative for conservation or management.
To ensure acoustic monitoring is effective, we need
methods and processes for implementation that align
with a priori objectives and questions. Ensuring that the
hype of the technology and the promise of big data does
not overshadow the importance of well-designed moni-
toring programs will help to realize the wide-ranging
benefits that acoustic recorders can offer ecological moni-
toring (Bayraktarov et al., 2019).

Effective ecological monitoring collects data that are
useful in conservation planning or decision-making.
Unfortunately, there are many examples of monitoring
programs that have failed to inform management. The
reasons for this are many but include poorly defined
questions and experimental designs, monitoring many
species inadequately instead of fewer species sufficiently,
lack of ground-truthing, disruptions to the integrity of
long-term data, and inappropriate data management
(Lindenmayer & Likens, 2010). These issues can lead to
wasted time and money, poor conservation decisions,
and the degradation of people's trust in ecological data
(Lindenmayer & Likens, 2010; McDonald-Madden
et al., 2010). To avoid these problems, new monitoring
programs should undergo a thorough planning process
with appropriate project partners where conceptual
models, objectives and questions are defined before other

details (e.g., monitoring methods, specific metrics) are
decided upon. In this early stage, practitioners should
clearly define their reasons for monitoring, which species
or threats will be monitored and why, and any relevant
trade-offs (Wintle, 2018). Where appropriate, these
should be framed in a management context that clearly
links monitoring and management actions (Robinson
et al., 2018). These steps will help to identify key partners
and stakeholders, and the suitable processes and time-
frames for evaluation and reporting.

In this paper, we discuss key concepts of effective eco-
logical monitoring as they relate to acoustic programs
and provide recommendations for practitioners
(Figure 1). The most fundamental considerations are
whether monitoring is needed at all (McDonald-Madden
et al., 2010) and, if so, whether acoustic methods are
appropriate relative to alternative survey methods. A
detailed treatment of these questions is beyond the scope
of this paper; we assume that monitoring is needed, and
that acoustics has been chosen as the likely best option,
whether by itself or in conjunction with other methods.
The recommendations we provide are not intended to be
overly prescriptive, but instead suggest general consider-
ations for planning an effective acoustic monitoring pro-
gram. Furthermore, our recommendations are likely
transferable to many technologies that are applied, often
at large scales, to monitor species and ecosystems. While
acoustics has a wide range of potential uses, such as gen-
eral surveillance monitoring, as a tool of discovery, and
to create sonic time-capsules of places (Deichmann

FIGURE 1 Flowchart of recommendations for the development of an effective monitoring program using passive acoustic recorders.
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et al., 2018; Desjonquères et al., 2020; Penar et al., 2020;
Roe et al., 2021), the focus of this paper is targeted moni-
toring of species and ecosystems in terrestrial and aquatic
environments using passive acoustic sensors. To this end,
we draw on the literature and our collective experiences
to frame the key considerations as such:

1. Coordination and partnerships: who will be involved in
the program's setup, implementation and oversight?

2. Monitoring objectives and questions: what do you
want to know?

3. Acoustic measurement entities: what sounds will you
measure?

4. Field survey design: where and how will you deploy
passive acoustic sensors? Do you need to collect any
additional (non-acoustic) data? Will sensor placement
have any unintentional impact on fauna or people?

5. Recording schedules and periodicity: how often and
for how long will you record sound?

6. Sound data processing: how will you analyze the col-
lected sound data?

7. Data storage and availability: where will you store
your sound data and will it be publicly accessible?

2 | KEY CONSIDERATIONS FOR
EFFECTIVE ACOUSTIC
MONITORING

2.1 | Coordination and partnerships

Effective monitoring begins with establishing an appro-
priate project team and partnerships. In addition to a
core team of people who will lead the implementation of
a program, partnerships with stakeholders, such as Tradi-
tional Owners, other landowners, and researchers,
should be established early to ensure an inclusive co-
design process. Resilient partnerships consider matters of
trust, identity, and power (Dietsch et al., 2021) and, by
appropriately addressing these dynamics, avoid perverse
outcomes for biodiversity and people alike. Partnerships
improve success in monitoring and conservation (Garnett
et al., 2018; Lacher et al., 2012). By working toward com-
mon goals, partnerships ensure that programs address
knowledge gaps that are important to all entities and,
where relevant, contribute to policy or management deci-
sions (Lindenmayer & Likens, 2018). Partners can also
help determine whether similar or larger monitoring pro-
grams already exist, which may influence the design of
the new program (e.g., collection of standard metadata
that a larger program requires). For some programs, a
small core team may be sufficient, but larger partnerships

are increasingly needed as large-scale, long-term pro-
grams become more feasible.

The Australian Acoustic Observatory is a good exam-
ple of the importance of partnerships in large monitoring
programs (Roe et al., 2021). The program currently moni-
tors 90 sites (four solar-powered sensors per site; www.
frontierlabs.com.au) across state land and private conser-
vation properties. The program is led by the Queensland
University of Technology but relies on partnerships with
other universities, government agencies, Traditional
Owners, and non-governmental organizations (NGOs).
Project partners contributed to the program's design, and
they continue to be vital for collecting site metadata,
coordinating sensor maintenance, changing memory
cards and batteries, and ensuring that data are trans-
ferred to the Observatory's repository for permanent stor-
age. Moreover, because of these partnerships, the data
will be valuable not only as part of large multi-region
datasets, but also in the context of any site-specific moni-
toring programs led by partners or other organizations.
Notwithstanding, in establishing new monitoring pro-
grams, the locations of sensors requires careful consider-
ation to ensure data quality (see section Field survey
design), and these issues should be discussed with part-
ners early during planning.

2.2 | Monitoring objectives and
questions

Clear objectives and good questions are the foundation of
effective ecological monitoring (Lindenmayer et al., 2022;
Lindenmayer & Likens, 2018). Objectives may be rela-
tively simple (e.g., create a species list of vocal animals)
or they may be more complex, based on a conceptual
model of the system and related a priori hypotheses
(e.g., monitor population trend for a species in response
to management). Defining objectives early can help to
ensure that all aspects of a monitoring program are fit-
for-purpose and understood by the entire project team.
Failing to do so can result in large amounts of data being
collected with negligible benefit to conservation and any
proposed management (Lindenmayer et al., 2013). This is
a risk with acoustic monitoring because it is relatively
easy to deploy sensors and record sound. Problems can
arise where sound recorders are deployed before resolv-
ing how the sound data will be used, since this impacts
decisions like choice of sensors, recording schedules, and
spatial coverage. Consequently, data may be inappropri-
ate for questions developed afterwards. Good questions
should always guide the design of targeted acoustic moni-
toring programs and, in so far as possible, we should
avoid retrofitting questions to sound data after collection.

TEIXEIRA ET AL. 3 of 15
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Ecological monitoring, especially ongoing or long-term
monitoring, can provide information to track changes in
the environment through time. Targeted ecological moni-
toring is usually done to answer questions about the trajec-
tory of a species or ecosystem, ideally in a design that
guides management decisions. Good monitoring questions
are necessarily specific. Good questions are also evolving
questions (Lindenmayer & Likens, 2010). As more is under-
stood about a system, questions should be reviewed and
revised to ensure that data continue to address the objec-
tives. Questions can be modified, or new questions can be
added to a program (although the integrity of the long-term
dataset must be considered; Lindenmayer et al., 2022). For
instance, if management is enacted or changed in response
to the results of monitoring, questions and survey methods
should be revised to ensure that the impacts of new man-
agement actions are properly captured. This “learning by
doing” approach is foundational to adaptive management
(Hauser et al., 2019; Lindenmayer & Likens, 2009; Lyons
et al., 2008) and highlights the importance of reviewing
monitoring data early and often, especially when some-
thing in the system being monitored is changed.

Generally, there is little that is unique about a good
monitoring question using acoustics versus other survey
methods; the method is not the question. However,
acoustic signals and their dynamics (see section Acoustic
measurement entities) should be captured in hypotheses,
where the knowledge exists to do so. For example,
Bradfer-Lawrence et al. (2020) demonstrated that sound-
scape evenness (one of many acoustic indices) follows a
U-shaped curve whereby it most strongly indicates bird
species richness and abundance at intermediate levels of
energy. This knowledge could be built into a priori
hypotheses about how soundscapes are expected to
reflect bird assemblages which, in turn, reflect habitat
condition. However, as acoustics is still a young disci-
pline, many of these ecosystem-sound relationships are
yet to be resolved (Bateman & Uzal, 2021) which limits
their incorporation into hypotheses. This reflects the cur-
rent state of acoustics: the technology is being applied in
monitoring while foundational theories and relationships
are still being determined (Stowell & Sueur, 2020). Moni-
toring data may help clarify some of these theories and,
where feasible, a program could incorporate a pre-survey
investigation to resolve these relationships. However, tar-
geted monitoring should mostly rely on existing acoustic
knowledge to ensure that it is fit-for-purpose. Concurrent
on-ground data, collected using conventional methods,
are almost always required to validate acoustic measure-
ments and infer accurate meaning from acoustic data, at
least until predicted relationships are established.

As knowledge advances, monitoring questions can
evolve to incorporate new approaches if they help meet

objectives. For instance, species abundance is difficult to
monitor using acoustics (but see Borker et al., 2014;
Lambert & McDonald, 2014; Marques et al., 2013; Pérez-
Granados & Traba, 2021; Simmons et al., 2022). Cur-
rently, other approaches like the acoustic abundance
index (Krishnan, 2019) and species occupancy
(Balantic & Donovan, 2019; Law et al., 2022; Wood &
Peery, 2022) can be used to answer questions about rela-
tive abundance and population change. However, as
abundance data can be very informative for conservation,
if methods to acoustically measure abundance were
developed, monitoring questions could evolve to incorpo-
rate such data. These may be relatively simple for species
whose calling behavior is understood (Lambert &
McDonald, 2014), however more complex or unknown
signaling systems may require further research before
extrapolation to density from recordings is possible. This
reiterates the importance of reviewing and revising moni-
toring questions in line with the best available
knowledge.

2.3 | Acoustic measurement entities

Once monitoring objectives and questions are defined,
we need to consider measurement entities: what will you
measure to answer your questions? For acoustics, this
means selecting sound events that signal the biotic or abi-
otic states relevant to your monitoring objectives. This
may be self-evident, but acoustic studies often fail to jus-
tify, or even describe the specific vocalizations or other
sound signals that are targeted in the study or monitoring
program. Programs should either describe and justify the
specific sounds targeted or, as is likely the case for
generic monitoring, the sounds that are expected within
the recording period. For example, if a program seeks to
monitor a bird species' use of feeding habitat, it should
target calls or calling behaviors that are associated with
feeding events (c.f. non-feeding, such as a flight call given
during flyover), and these should be described. If a pro-
gram seeks to monitor all bird species present in a dawn
chorus, it should justify why this time is targeted (what
will it capture or not capture relative to other times of
day?) and explain what calling behaviors (e.g., territorial
displays) are expected.

In some cases, such as programs that aim to quantify
species detection/non-detection, a species' most common
or conspicuous call may be the appropriate measurement
entity. General knowledge about a species' calls may be
sufficient to establish an acoustic monitoring program.
However, for programs that aim to measure specific
behavioral contexts or demographic parameters, detailed
knowledge of the species' vocal behavior is required. If
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this is not already known, studies of the species' vocal
behavior may be necessary before a monitoring program
begins in earnest (e.g., see Teixeira et al., 2020, 2021). An
additional layer of complexity is that some species have
multiple components to their vocalizations, in which case
the practitioner must decide which components should
be targeted. Some components may be highly stereotypi-
cal, while others are not. For example, recent research on
the vocal culture of Albert's lyrebird Menura alberti
reveals that, of the three components present in the male
‘whistle’ song, the final component is more stable across
geographic distance than the introductory or body com-
ponents (Backhouse et al., 2021). Such differences may
affect a monitoring program by impacting the perfor-
mance of machine learning tools (can an algorithm
detect all variations of a call type?) or quantitative call
metrics like pulse or beat rate.

An alternative approach to measuring species-specific
calls is the use of acoustic indices, which are mathemati-
cal summaries of soundscape elements (Farina, 2019).
Acoustic indices can be used to reveal large spatiotempo-
ral trends in soundscapes and, potentially ecological con-
dition or species diversity (Fuller et al., 2015; Tucker
et al., 2014). For monitoring programs that aim to mea-
sure acoustic indices as proxies of biodiversity, the chosen
measurement entities will necessarily be broad. They
may comprise the overall soundscape in a defined unit of
time or frequency band. In any case, the chosen measure-
ment entities should be described and justified with refer-
ence, where possible, to species' vocal behaviors or
underlying assumptions linking sound to ecological con-
dition. In any monitoring context, poor survey design
and reliance on unverified indices can create erroneous
and apparently contradictory results (Alcocer et al., 2022;
Hayward et al., 2015). To avoid these problems in acous-
tic surveys, the choice of acoustic measurement
entities—whether specific calls or acoustic indices—is a
critically important step in program design.

2.4 | Field survey design

Acoustic field surveys must be designed to appropriately
capture the measurement entities to answer the defined
objectives and questions. This must consider the sensor
type, the sampling locations (hereafter, “sites”), including
spatial coverage and representativeness, the number of
sensors deployed per site, and the location of sensors
within sites. All sensor types have their pros and cons, and
these should be explicitly considered in the survey design.
The emergence of low-cost sensors, such as the Audio-
Moth and HydroMoth (https://www.openacousticdevices.
info/), has certainly improved the accessibility and

affordability of acoustic monitoring (Hill et al., 2018;
Lamont et al., 2022). However, these sensors come with
trade-offs like shorter battery life and less sensitive micro-
phones. For some projects, these trade-offs will be accept-
able and will not outweigh the benefits of lower costs and
higher spatial resolution by maximizing the number of
deployed sensors. In other cases, it will be necessary to use
sensors that are higher quality and have additional fea-
tures but are more costly. The characteristics of the spe-
cific sound events (e.g., sound pressure level, amplitude,
rarity in a soundscape) targeted in a program are central
to these choices; if faint or infrequent calls are targeted,
sensors with more sensitive microphones are likely
needed.

A critical yet overlooked issue is that different sensors
create different quality recordings. For instance, less-
sensitive microphones can produce ‘quieter’ recordings
with less information (i.e., lower signal-to-noise ratio)
which can affect both species' detection probabilities and
calculations of acoustic indices (see section Sound data
processing). Darras et al. (2020) tested 12 microphone
models and found considerable differences between
models in signal-to-noise ratio, sound detection space
and, consequently, the detectability of birds and bats in
the field. Likewise, for underwater recording, Lamont
et al. (2022) showed that the HydroMoth device had
lower signal-to-noise ratio relative to the more costly
SoundTrap sensors (https://www.oceaninstruments.co.
nz/), which impacted the detectability of high-frequency
animal sounds (e.g., echolocation clicks of marine mam-
mals). Even where sensor types are consistent, the deteri-
oration in microphone performance over time could lead
to inconsistent recording qualities and, consequently,
sound data outputs (Darras et al., 2020). These issues can
significantly impact data compatibility across space and
time, which is a key consideration for any long-term
monitoring program. These issues are not always easily
addressed and, as sensor hardware advances, monitoring
programs will inevitably improve in the quality of their
sound recordings. Nonetheless, wherever possible, we
recommend that programs use the same sensors across
sites and through time, and regularly replace or at least
test microphones. If different sensor types are used in a
program, it is important to measure how these compare
in signal-to-noise ratio and detection space for sounds of
a given pressure level, so that estimates can be adjusted
post-hoc to account for factors such as different levels of
sampling sensitivity.

The location of survey sites should comprehensively
cover the geographic range relevant to objectives; in some
cases, this may be a species' entire known distribution
(Woinarski, 2018). When targeting specific species, such
as in occupancy surveys, sensors can be deployed
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randomly across a species' expected distribution (ran-
domized sampling) or at locations known to have biologi-
cal importance to the species (preferential sampling)
(Wood & Peery, 2022). For example, randomized sam-
pling could involve the random selection of survey sites
from a grid overlaid on mapped habitat for a species. In
preferential sampling, sites could be selected from a data
frame of known nesting sites or animal home ranges. Both
approaches are valid and deciding between them is a mat-
ter of the monitoring aims and questions, as well as the
extent of a priori knowledge of species' space use (Wood &
Peery, 2022). For generic biodiversity surveys, sites may be
sampled randomly within habitat types or preferentially
according to habitat features (e.g., waterbodies). In any
program, if monitoring questions relate to the impact of
management or other environmental factors, sites should
be stratified to properly represent these and, where possi-
ble, a before-after control-impact (BACI) design should be
utilized (Christie et al., 2019).

The positioning of sensors within sites and number of
sensors per site are also important considerations. Sensors
should be positioned to best capture the targeted sound
events (measurement entities). In some cases, this will be
broad (e.g., anywhere within a habitat patch) but in other
cases specific locations will need to be selected (e.g., at
nests, in the canopy). Sensor position should also consider
potential ambient noise. For instance, geophony, such as
running water, and anthrophony, such as vehicle noise,
can mask target sounds, making data processing difficult
and results erroneous. Protection of the sensors from dam-
age may also influence within-site location, such as if sen-
sors need to be at a height to prevent interference from
humans or non-arboreal animals. Additionally, it is impor-
tant to consider the potential for unintended impacts on
people (e.g., privacy concerns from recording human
voices, Traditional Owner sovereignty) and animals
(e.g., neophobia) (Sandbrook et al., 2021).

For many programs, a single sensor representing a
sampling unit will be appropriate (i.e., one sensor equals
one site), but in other cases where within-site spatial cov-
erage or detection space needs to be large, more sensors
would be required (Sugai et al., 2019, 2020). In the latter
case, sensors should be sufficiently distant from one
another to ensure that they do not overlap in their detec-
tion space. Alternatively, some programs may use an
array of multiple sensors whose detection spaces overlap
to triangulate and count individual animals (Stevenson
et al., 2015). Measuring detection space directly
(e.g., through playback experiments) is necessary where
spatial information is required (Sugai et al., 2020), but it
is important to realize that detection space is not static.
It will vary with different levels of background noise, the
amplitude of species' calls, and the physical environment.

For hypothesis-driven programs, practitioners must
ensure that the study design has sufficient statistical
power to answer the monitoring questions (Lindenmayer
et al., 2022). Where possible, a power analysis should be
conducted before a program commences (or soon thereaf-
ter, using early empirical data) to help plan an appropri-
ate sample size of sites, sensors within sites, and
durations of recordings. An optimal study design targets
the smallest sample sizes necessary to reliably reject the
null hypothesis. Acoustic monitoring programs often col-
lect repeated data from each site; for example, many sam-
ples (e.g., species detections, index values) can be taken
from a single recording, but these will not be indepen-
dent. This can artificially increase sample sizes (pseudor-
eplication) and, if not dealt with in analysis, the risk of
type I errors (i.e., falsely concluding that there is a signifi-
cant effect) (Alcocer et al., 2022). Notwithstanding, some
methods, such as occupancy modeling, require repeated
data, which acoustic monitoring can efficiently acquire.
Acoustic monitoring can also be prone to type II errors
(i.e., falsely concluding there is no effect) because the
costs of equipment and fieldwork, as well as uncontrolla-
ble environmental events, can limit the number of inde-
pendent sites sampled per treatment. Particularly for rare
species, when assessing occupancy it is usually preferable
to sample more sites in lieu of within-site effort, but opti-
mizing this depends on species detectability
(MacKenzie & Royle, 2005). If empirical data are avail-
able, these can be used to investigate statistical power,
ideally in the early phases of a monitoring program
(Southwell et al., 2019; Wood et al., 2019). Ecologically-
informed hypothetical data can also be used to investi-
gate power (Smart et al., 2022; Wood, 2022), and these
are especially useful when designing larger, multi-species
programs. There are various options for implementing
power analyses, including several packages and tutorials
in R (Banner et al., 2019; Green & MacLeod, 2016; Lu
et al., 2017; Wood et al., 2019).

Lastly, field surveys should consider what, if any,
additional on-ground data should be collected. This may
include data on weather conditions (e.g., rainfall
may influence anuran calling activity; Heard et al., 2015),
vegetation (e.g., structure may influence sound attenua-
tion as well as faunal community composition; Scarpelli
et al., 2023), aquatic habitat condition (e.g., soniferous
aquatic insects are mainly found in sites of intermediate
disturbance, with mild nutrient enrichment; Linke
et al., 2022), and so on. Phenological data on flowering
and fruiting are particularly relevant for acoustic surveys
of birds and may positively or negatively impact the suc-
cess of a monitoring program. For example, flowering
trees may attract your target species to the site and
enhance detection probability, but if large flocks of birds
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are drawn to the site, the resulting cacophony may mask
detection of target calls. If monitoring questions relate to
management, additional data relevant to management
activities would likely be informative. Such information
can contribute to a more comprehensive and informative
monitoring program and may be vital to interpreting
acoustic data. As with acoustic entities, any additional
entities measured should be properly considered upfront
based on the monitoring objectives and existing knowl-
edge of the species or ecosystem.

2.5 | Recording schedules and
periodicity

Recording schedules define the recording times, sample
rates, durations, and repetitions of all recordings in a pro-
gram. Designing efficient recording schedules is critical
to the success of acoustic monitoring programs. Where
possible, this should consider the statistical power needed
to answer your monitoring questions. Given the diversity
of monitoring objectives and questions, it is difficult to
provide general recommendations for recording sched-
ules, but studies in various ecosystems provide some
insight. For example, from simulations and two empirical
datasets of bird species richness in North America, Wood
et al. (2021) found that increasing sampling effort on
fewer days performed better than distributing effort over
more days. Franklin et al. (2021) compared four post-
dawn survey schedules for assessing bird assemblages in
an Australian montane dry sclerophyll forest, and found
the optimal method comprised five 20-min samples from
each of two survey days. In the eastern Brazilian Ama-
zon, Metcalf, Barlow, et al. (2022) found that increasing
temporal coverage and decreasing sample length
improved predictions of bird alpha and gamma diversity.
Likewise, Francomano et al. (2021) assessed temporal
soundscape variability at eight sites from four continents
and found that the representativeness of acoustic indices
was improved more by increasing the number of subsam-
ples analyzed than by increasing subsample duration.
This also holds true for underwater sounds (Linke
et al., 2020). Studies like these emphasize that all record-
ing schedules are not equal, and their configurations
need to be explicitly considered in line with monitoring
questions. Where the acoustic dynamics of your study
system are not understood, some acoustic data should be
analyzed early (e.g., after one season) alongside concur-
rent on-ground data to inform an ongoing optimal
schedule.

Importantly, recording time and duration should be
sufficient to maximize species detection probability,
which should be informed by existing data, pilot data or,

at least, expert knowledge. For example, many bird sur-
veys are undertaken during the dawn chorus which is
appropriate for species that are active at that time, and
for most inventory-type surveys. However, a drawback is
that this time of day can be very noisy, which makes data
processing more difficult. If target species vocalize
equally or more at other times of the day, it may be better
to record outside of the dawn chorus (e.g., dusk recording
for black-cockatoo Calyptorhynchus sp. nest monitoring;
Teixeira et al., 2022). Clearly, if target vocalizations are
given at specific times of day only (e.g., nocturnal calls),
that would define the recording time.

In addition to the within-day schedule, it is important
to consider sampling periodicity within and between sur-
vey seasons (Woinarski, 2018). How many days, weeks,
or months do you need to sample to address your moni-
toring objective? Does the survey need to be repeated
and, if so, how often? Again, these considerations must
be guided by the monitoring objectives and questions,
but logistical constraints are also critical. A highly inten-
sive survey may provide comprehensive within-season
data, but it may not be feasible to implement every year
and, therefore, long-term data are unlikely. If longevity is
important (e.g., for monitoring species' population
trends), then the feasibility of repeated site access and the
ongoing increases in data storage and processing costs
must be carefully considered. This may also influence the
choice of sensor as some programs may require longer
(or continuous) deployments of sensors with advanced
capabilities, such as solar power.

Recording schedules influence the total run time for a
sensor, which impacts how frequently batteries and
memory cards need to be serviced (Sugai et al., 2020). As
such, it is usually necessary for practitioners to predict
run time before deploying sensors. Fortunately, most sen-
sors can be programmed via software that predicts daily
memory and battery requirements or expiration dates,
allowing practitioners to easily examine various sched-
ules. Memory usage is a product of recording duration,
bit depth (typically 16-bits for commercial recorders), and
sample rate. Sample rate, or sampling frequency, defines
the number of digital samples taken per second, which in
turn determines the frequency range able to be recorded.
Higher sample rates capture greater frequency ranges
and, therefore, species, but they have greater memory
and battery requirements. For example, a sample rate of
22.05 kHz will capture most birds while using half the
data (for a given bit depth and duration) and significantly
less power than a sample rate of 44.1 kHz. However, the
higher-frequency sounds of most insects will be missed.
To survey species with ultrasonic calls (i.e., >20 kHz),
such as most bats, specialized microphones capable of
recording at very high sample rates are usually required,
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but these come with high memory and power require-
ments. It is necessary to record at a sample rate that is at
least twice the frequency of the target species' vocaliza-
tions, since digital sensors cannot properly record at fre-
quencies above half the sample rate (termed the Nyquist
frequency).

Sensor run time is also influenced by file type and the
number of channels used. Most commercial sensors
record in uncompressed wav format, but some newer
models (e.g., Frontier Labs BAR-LT) can also record in a
variety of lossless compressed formats (e.g., FLAC).
While these reduce memory requirements, they may also
require conversion to another format prior to analysis
which adds additional processing steps to workflows.
Recording to more than one channel (i.e., stereo record-
ing) will increase memory and battery requirements.
Every recording schedule and setup has trade-offs in the
species captured and the memory and battery used, and
decisions should be guided by the monitoring objectives,
the serviceability of the sensors once deployed, and data
storage options. While it is relatively easy to record a lot
of data, we recommend that practitioners at least con-
sider how much data is enough to address their monitor-
ing objectives (Francomano et al., 2021). Excess data may
lead to unexpected insights or may simply add to moni-
toring and storage costs. Surveys should, in the first
place, be defined to address objectives, but additional
data can be collected within the scope of the survey pro-
gram if memory and power allow.

2.6 | Sound data processing

Acoustic monitoring begins with field deployment of sen-
sors, but data collection does not end there. Quantifying
sound events requires methods to extract, or collect, rele-
vant data from sound recordings. These methods should
be defined during survey planning. Some projects may
rely on manual listening or viewing spectrograms to
detect target sound events. This approach can be accurate
(Joshi et al., 2017; Rocha et al., 2015) and, despite being
labor-intensive, can still render acoustic methods an effi-
cient tool for data collection (Joshi et al., 2017; Wimmer
et al., 2013). However, acoustics is increasingly applied at
scales that make manual methods impractical (Sugai
et al., 2019). For larger projects, some form of automation
will likely be required. Machine learning methods to
detect sounds of interest are becoming highly sophisti-
cated (Kahl et al., 2021; Lauha et al., 2022; Liu
et al., 2022) and their development can be considered as
a sub-discipline of acoustics, the breadth of which is
beyond the scope of this paper. Practitioners implement-
ing an acoustic monitoring program may build a custom
recognition algorithm, possibly in collaboration with

computer scientists, or use commercial software like
Kaleidoscope Pro (https://www.wildlifeacoustics.com/
products/kaleidoscope-pro) or open-source packages like
monitoR and soundClass in R statistical language
(Hafner & Katz, 2018; Katz et al., 2016; Silva et al., 2022).
Selecting an appropriate call recognizer for a program
depends on many factors, including recognizer perfor-
mance, programming expertise of the project team, avail-
ability of training datasets, access to high-performance
computers, and cost.

Importantly, performance can vary substantially
between recognizer types (Brooker et al., 2020; Lemen
et al., 2015; Marchal et al., 2021; Russo & Voigt, 2016),
with consequences for acoustic data outputs and compat-
ibility across datasets. As such, practitioners should
understand how detectable a species is with a given rec-
ognizer, which can be calculated by comparing a recog-
nizer's outputs to manually labeled data. All recognizers
will incur a degree of error (false positives and false nega-
tives) and it is important to decide whether precision
(proportion of detections that are correct) or recall (pro-
portion of species' calls that are detected) is more impor-
tant for a given program because these are usually a
trade-off. Accordingly, if the chosen recognizer software
assigns a confidence score to each detection, practitioners
can set a confidence level (i.e., a threshold below which
detections are not accepted) that optimizes the trade-off
between precision and recall. For a more in-depth treat-
ment of detector metrics, see Knight et al. (2017).

Where a program aims to measure a species' detec-
tion/non-detection (e.g., occupancy surveys), precision is
usually favored over recall because the total number of
detections within a given period is not relevant. High pre-
cision reduces the likelihood of false detections and can
reduce the need for extensive verification of detections.
Conversely, where a program aims to detect a rare or
highly cryptic species, high recall is often required to
minimize the risk of missing the species. High recall
often comes with a higher rate of false positives and, con-
sequently, a need for thorough manual verification. In
any case, recognizer outputs usually require some man-
ual verification to quantify performance and minimize
errors (Sugai et al., 2019). This may be as simple as vali-
dating a subset of outputs as true or false positives
(to measure precision), or it may require substantial pro-
cessing to identify false negatives (to measure recall).
Some projects involve citizen scientists in validation tasks
(Snyder et al., 2022) but others require expert input (Liu
et al., 2022).

Arguably, the most exciting developments for species
detection are new tools that can implement advanced
deep learning neural networks in a user-friendly way.
These networks offer very high performance, but until
recently they were largely inaccessible to practitioners
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and others outside of universities. Today, however, the
realm of possibility is rapidly expanding with deep learn-
ing tools like BirdNET becoming available (Kahl
et al., 2021; Manzano-Rubio et al., 2022). BirdNET can
provide high-precision detections for hundreds of north-
ern hemisphere bird species (Kahl et al., 2021), and it has
recently been extended to monitor anurans and an
endangered primate (Wood, Barceinas Cruz, &
Kahl, 2023; Wood, Kahl, et al., 2023). In addition to pre-
trained models, users can train custom recognizers using
BirdNET's embeddings, which expands its potential
applications. Although in some cases, such as for chorus-
ing species, there may be limitations to off-the-shelf soft-
ware and programs will still require highly trained
custom recognizers, tools like BirdNET, which allow
practitioners to easily implement deep learning methods,
will undoubtedly revolutionize acoustic monitoring.

Beyond recognizers, acoustic projects that interrogate
whole soundscapes, or parts thereof, may use indices-
based methods to process sound recordings. Indices are
usually not used for species recognition (but see Brodie
et al., 2020; Znidersic et al., 2020); rather, they mathemat-
ically summarize large patterns in soundscape composi-
tion to describe, for example, temporal dynamics in biotic
and abiotic sounds. Generally, the use of acoustic indices
implies a correlation between acoustic complexity and
biological diversity. However, despite many acoustic indi-
ces being tested for correlations to ecological variables
(Allen-Ankins et al., 2023; Barbaro et al., 2022; Buxton
et al., 2018; Dröge et al., 2021; Flowers et al., 2021; Fuller
et al., 2015; Minello et al., 2021) results are, at best,
mixed. In a recent meta-analysis, Alcocer et al. (2022)
found that a small number of indices show a moderately
positive association to some metrics of biological diver-
sity, but their performance is highly variable within and
between studies and effect sizes (i.e., strength of the rela-
tionships) have declined over time. For example, in a
review, Bateman and Uzal (2021) identified a positive
relationship between bird species richness and the
Acoustic Complexity Indices (ACI) in six studies and no
relationship in seven studies. They report seven studies
that found a positive relationship between ACI and other
environmental factors (e.g., vegetation diversity), two that
found a negative relationship, and two that found no cor-
relation. In a large study of over 8000 recordings with
paired on-ground data from four countries, Sethi et al.
(2023) found that indices did not reliably predict bird spe-
cies richness across datasets, concluding that “there are
no common features of biodiverse soundscapes.” Of con-
cern, there is an increasing trend of using indices without
validation (Alcocer et al., 2022). As such, results from
studies relying on indices should be interpreted
cautiously.

Because acoustic indices summarize all components
of a soundscape within defined time and frequency
parameters, they are influenced by all biotic and abiotic
sounds. As such, attempting to correlate single indices to
single biodiversity metrics can be problematic. Unfortu-
nately, to date, most tests of acoustic indices have focused
on a handful of common indices and their relationships
to terrestrial bird species richness in particular, while
relationships to other vocal fauna, including mammals,
anurans, and insects, are largely unstudied (Alcocer
et al., 2022). A recent study in Australia attempted to
address this issue by testing 13 indices for correlations
with all vertebrate fauna richness measured using con-
ventional on-ground surveys (Allen-Ankins et al., 2023).
Their results show some positive correlations with bird
diversity, but poor correlations with anuran and other
non-avian diversity. Moreover, correlations were stron-
gest for less-common indices (e.g., spectral density) and
weakest for common ones (e.g., ACI), and multiple indi-
ces together were more reliable than individual indices.

Like other authors (e.g., Allen-Ankins et al., 2023;
Sethi et al., 2023), we recommend that indices be tested
and ground-truthed using data from conventional survey
methods, as the weight of evidence indicates that the
relationships of acoustic indices to biodiversity are cur-
rently unresolved for most ecosystems (Alcocer
et al., 2022; Bateman & Uzal, 2021; Fuller et al., 2015;
Gibb et al., 2019). Some authors have proposed a frame-
work to guide the use of acoustic indices (Bradfer-
Lawrence et al., 2019) but even if predictions can be
made for a given metric in a given system, the limited
transferability of these to other datasets reduces the
potential of indices in applied monitoring today. Practi-
tioners wishing to use acoustic indices will need to
ensure that their patterns in the given system are under-
stood and calibrated. This may require additional work
before or alongside the monitoring program. Other
indices-based tools like false color spectrograms (Towsey
et al., 2014) and multi-index motifs (Scarpelli et al., 2021)
can be powerful methods to summarize acoustic data for
major sound patterns, however substantial theoretical
research is still required to advance the application of
acoustic indices (Alcocer et al., 2022; Farina et al., 2021).
Until then, we recommend that in targeted monitoring
programs other methods be considered instead of, or in
tandem with, acoustic indices.

2.7 | Data storage and availability

Storing raw recordings is a significant, ongoing challenge
for acoustic monitoring programs. While some monitor-
ing programs rely on local storage (e.g., external hard
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drives), these options can become unmanageable for
large monitoring programs, especially because a mini-
mum of two data copies are recommended (Metcalf,
Abrahams, et al., 2022). Where available, servers or
cloud-based options are preferred as these ensure data
safety. Recently, there have been calls for permanent,
sharable data repositories for both terrestrial and under-
water sounds (Parsons et al., 2022; Vella et al., 2022). Not
only would such repositories securely archive data, but
they would also help to align different acoustic programs,
improve data sharing (including labeled data, which can
aid development of call recognizers and other tools), and
allow for additional or independent verification and re-
use of sound recordings. However, because acoustic data-
sets can be very large, there are currently few options of
this nature (Sugai et al., 2019).

In addition to data storage, data availability is an
important consideration. Who will be able to access a
program's data, and when? Generally, we support an
open science approach; that is, where appropriate, data
should be available to others involved in research and
decision-making (Woinarski, 2018). However, to ensure
data use is equitable, especially for early career
researchers and people from marginalized backgrounds,
the processes and timing of data sharing need to be care-
fully considered. For instance, data may be withheld
from public repositories until formal publications have
been finalized. Alternatively, raw sound recordings may
be shared but outputs from analyses (e.g., species detec-
tions) may not be. These decisions should rest with the
original researchers. In publications, authors may opt to
include a statement of data availability which directs
readers to contact the authors with any inquiries about
accessing data. Where data are publicly shared, sound
recordings, metadata, call recognizers and other products
could be citable by a persistent identifier like a digital
object identifier (DOI) to ensure formal recognition of
the original authors.

3 | CONCLUSION

In this paper, we have focused on seven principles of
effective acoustic monitoring as they apply to programs
that target specific species or ecosystem features
(Figure 1). These targeted programs are becoming
increasingly important as global biodiversity targets are
renewed and market-based initiatives like natural capital
accounting emerge (Convention on Biological
Diversity, n.d.; Mace, 2019; Mace et al., 2018). Conserva-
tion technologies like passive acoustic recorders will
undoubtedly be an important part of large-scale programs
to measure and report on the state of biodiversity.

However, whether acoustic data are truly informative for
decision-making is not only determined by technological
capabilities. Indeed, amassing enormous volumes of
sound data—which is increasingly easy to do as recorders
become smaller and cheaper—can mask underlying inad-
equacies in data quality and relevance to management.
Monitoring programs can appear to be comprehensive
when they are not. To ensure the utility of acoustic data,
monitoring programs should be well-designed and imple-
mented in line with a clear question-driven program for
data collection, analysis, and reporting.

More broadly, we see the need not only for targeted
monitoring programs that answer clearly defined ques-
tions, but also generic surveillance programs that keep a
finger on the pulse of biodiversity. We must embrace the
capacities of technology to scale-up monitoring, acknowl-
edging that discoveries made by sound data collected
today may be delayed until machine learning methods
and sound-ecosystem theories are sufficiently advanced.
Nonetheless, targeted question-driven monitoring is the
bedrock of evidence-based decision-making, and to this
end acoustic monitoring programs must look to the prin-
ciples of effective ecological monitoring. Alongside gen-
eral surveillance monitoring, well-designed targeted
acoustic monitoring can enable an effective evidence-
base for conservation decision-making now and in the
future.
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