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Gonadal hormones play a central role in reproductive function and success. As such, quantifying reproductive hormones non-
invasively in threatened, vulnerable and endangered wildlife species offers an ideal tool for assessing general and individual
reproductive patterns in situ. Whilst the use of faeces as a hormone matrix is often preferred in these cases, the required enzyme
immunoassays (EIAs) for measuring faecal androgen (fAM), oestrogen (fEM) and progestagen metabolite (fPM) concentrations
must first be validated if a species gets investigated for the first time to ensure biologically relevant patterns can be observed. In
this study we aimed to biologically validate the EIAs for monitoring fAM, fEM and fPM concentrations in Temminck’s pangolin,
Smutsia temminckii. Hormone metabolite concentrations derived from each EIA tested were compared between different
age and sex classes. An epiandrosterone EIA effectively measured androgen levels in males, distinguishing between adult
and juvenile individuals, as well as both female age classes. Similarly, the tested oestrogen EIA successfully distinguished
between adult and juvenile female fEM concentrations, and both tested progestagen EIAs demonstrated adequate differences
between fPM concentrations of adult and juvenile females. The now-validated EIAs offer robust tools for a non-invasive
monitoring of reproductive activity in Temminck’s pangolin. The development of such techniques will allow researchers to
assess reproductive hormone patterns of the species in situ, whilst also paving the way for further studies in this field. Despite
the small sample size due to the species’ conservation status, the study provides a foundation for future research using a
robust, validated, non-invasive monitoring tool. The latter can now be implemented in long-term monitoring with larger
sample sizes to yield more comprehensive data, aiding in the conservation of Temminck’s pangolin.

Lay summary: Gonadal hormones are crucial for mammalian reproduction. Monitoring these hormones non-invasively in
vulnerable species like Temminck’s pangolin will enhance our understanding of in situ reproductive patterns of pangolin. This
study validated methods to non-invasively measure hormone levels in male and female pangolin faeces.
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Introduction
Hormone monitoring has emerged as an important tech-
nique in the field of wildlife conservation, offering invaluable
insights into stress and reproductive physiology in wildlife
species (Möstl and Palme, 2002; Hodges et al., 2010; Sheriff
et al., 2011). This has enabled researchers to gain a bet-
ter understanding of animal behaviour, reproductive status,
population dynamics, survival and health (Lipschitz, 1997;
Schwarzenberger and Brown, 2013; Cain and Cidlowski,
2017). In terms of reproduction, it is the hypothalamic–
pituitary–gonadal (HPG) axis that is responsible for initiating,
regulating and coordinating most of the reproductive func-
tions in vertebrate species (Saltzman et al., 2011). In many
free-roaming species a change in specific seasonal parameters,
such as temperature or rainfall, act as indicators of the
approaching breeding season and triggers breeding activity,
both on a behavioural and physiological level (Bronson and
Heideman, 1994; Bronson, 2009). Monitoring the reproduc-
tive physiology of a species enables researchers to decipher
the complex mechanisms that underlie courtship, mating
and other reproductive behaviours (Christensen et al., 2012;
Watts, 2020). Here, researchers often monitor the so-called
‘male (androgen) and female (oestrogen and progestagen)’
reproductive hormones, which are important for the devel-
opment of secondary sexual characteristics, the activation of
reproductive behaviours, sperm production in males as well
as cyclicity and pregnancy maintenance in females (Beehner
et al., 2006a; Beehner et al., 2006b; Muller, 2017).

Although blood collection and analyses are often regarded
as the gold standard of reproductive endocrine monitoring,
providing real-time gonadal hormone concentrations (Kumar
and Umapathy, 2019), the method requires researchers to trap
and restrain individuals for extended periods of time. Not
only can this result in animal and/or researcher injuries, but
prolonged stressful events to the individual can also impact on
reproductive processes and foetal development, should such
events occur regularly (Wu et al., 2020; Fogel et al., 2023).
Due to the invasive nature of endocrine monitoring using
blood, this technique has fallen out of favour with many mem-
bers of the research community, especially those working on
threatened species (Kersey and Dehnhard, 2014). This is espe-
cially relevant to pangolin species, who roll into a tight ball as
part of its defensive behaviour; as a result of this, individuals
must be anaesthetised (Hooijberg et al., 2021), which is not
only invasive but leads to extended handling and recovery
times. Considering these difficulties, many researchers have
opted for examining endocrine patterns using non-invasive
monitoring techniques. Reproductive steroid hormones are
predominantly secreted by the HPG axis into the bloodstream
and are metabolized by the liver and excreted as conju-
gates in bile and ultimately faeces (Grow, 2002; Rhyu and
Yu, 2021). As such, monitoring steroid hormone metabo-
lite concentrations in faeces can provide a robust proxy of
gonadal function in an organism (Schwarzenberger, 2007;
Hodges et al., 2010).

Despite the numerous advantages of using non-invasive
endocrine metabolite monitoring, hormone secretion,
metabolism and excretion are species- and sex-specific
(Goymann, 2005; Goymann, 2012). As a result of this, any
enzyme immunoassay (EIA) hormone matrix combination,
employed to monitor the reproductive physiology in a species
for the first time, must be validated to ensure a reliable
quantification of respective male and female reproductive
biomarkers (Touma and Palme, 2005; Palme, 2019). Such EIA
validations can be conducted via physiological or biological
means. Physiological validations include the injection of a
substance to hyperactivate the HPG axis; faecal samples are
collected prior to and following the injection and analysed
with specifically chosen EIAs for each hormone class in order
to determine which assays can reliably detect biologically
relevant changes in faecal hormone metabolite concentrations
(Pribbenow et al., 2016; Scheun et al., 2018). However,
due to its invasive nature, it is not always possible to
implement a physiological validation, especially in threatened
species (Touma and Palme, 2005; Eckardt et al., 2016).
In these instances, a biological validation can be used to
successfully validate an appropriate EIA system for measuring
the reproductive physiology in a species. Here, sex- and age-
specific differences in hormone metabolite concentrations
can be used to validate EIAs for monitoring reproductive
endocrine patterns in a species (Wielebnowski and Watters,
2007). Generally, adult and pregnant females have higher
faecal oestrogen (fEM) and progestagen metabolite (fPM)
concentrations than juvenile and adult non-pregnant females
or males of any age class; similarly, adult males have
higher faecal androgen metabolite (fAM) concentrations than
juvenile males or any female age class (Pineda-Galindo et al.,
2017; Scheun et al., 2017).

Once respective monitoring systems are in place, they can
be used to enhance our understanding and drive further
research into the reproductive biology of the species in situ,
specifically by determining the reproductive status and sex
determination in the field (Tubbs et al., 2014; Scheun et al.,
2016; Brown, 2018). Importantly, endocrine metabolite mon-
itoring can be used as a key indicator of the ability of a species
to reproduce and/or adapt to changing environmental condi-
tions. Non-invasive endocrine monitoring offers an easy-to-
use technique to assist in the management and conservation
of endangered and vulnerable wildlif species.

Temminck’s pangolin (Smutsia temminckii), is listed as
globally vulnerable by the International Union for Conserva-
tion of Nature (Pietersen et al., 2019). The species is facing
several anthropogenically driven threats, including the illegal
wildlife and medicine trade, habitat loss, electrical fences
and overutilization (Pietersen et al., 2014a). In addition to
these threats, individuals retrieved from the wildlife trade
go through prolonged rehabilitation and release processes
(Wright and Jimerson, 2020). Despite the often-prolonged
rehabilitation processes, no information has been gathered on
reproductive physiology in the species. Rehabilitation efforts,
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coupled with direct monitoring of populations, are critical to
understanding and enhancing their survival prospects (Chal-
lender et al., 2019). These initiatives help bridge gaps in
our understanding of their ecological needs and reproductive
cycles, crucial for formulating effective conservation strate-
gies such as conducting a Population Viability Analysis. To
assist in this regard, it is important that new methods for
determining the reproductive status sex determination be
developed. As such, the aim of this study was to validate EIAs
for a reliable monitoring of fAM, fEM and fPM concentra-
tions in Temminck’s pangolin.

Materials and Methods
Study animals
Due to the conservation status and pattern of population
decline throughout the species’ distribution range, it is not
possible to capture and/or hold Temminck’s pangolin for
extended periods of time in order to conduct research. Fur-
thermore, as pangolins are highly susceptible to stress (Wicker
et al., 2020), long-term housing for research purposes may
lead to a decrease in health and reproductive function in
captive individuals (Dobson and Smith, 2000).

Owing to their low population densities, low detection
rates and the inability to maintain them in full captivity for
any length of time, there is a dearth in physiological data.
As such, we depended on opportunistic samples collected at
various facilities involved in the rehabilitation and release
of confiscated individuals. Though this provided us with an
opportunity to collect faecal samples from several male and
female adult and juvenile individuals, it should be noted
that the rehabilitation process puts an emphasis on limiting
any human–pangolin interaction. As such, long-term sample
collection from individuals was not possible. A trained vet-
erinarian ensured individual health and welfare of all individ-
uals used in this study. In addition to this, pregnancy status
was also determined by the veterinarian through abdominal
palpation and abdominal sonar.

Participating facilities and animal care

The Johannesburg Wildlife Veterinary Hospital, Loskop Dam
Nature Reserve and The Munywana Conservancy all con-
tributed samples to this study. Temminck’s pangolins are not
held at these facilities but at an offsite location for the safety
of the individuals and staff members. Pangolin are kept in
large individual pens (>8 m2) and all care, including daily
walks ranging from 2 to 6 h per individual, as well as feeding
are conducted by facility staff as per established pangolin
rehabilitation and care protocols.

Ethical clearance

The study was performed with the approval of the Univer-
sity of South Africa’s Animal Research Ethics Committee
(2020/CAES_AREC/109).

Biological validation process
Due to restrictions on retaining individuals for research pur-
poses, and the impracticality of conducting physiological
validations, we chose to employ biological validations for
determining the most suitable EIAs to monitor reproductive
physiology in Temminck’s pangolin.

To biologically validate the most appropriate EIAs
for monitoring fEM, fPM and fAM concentrations in
Temminck’s pangolin, we compared the respective median
metabolite concentrations between adult (>6 kg) and juvenile
(<6 kg) male and female individuals (Pietersen et al., 2014b).
A total of three samples were collected from each of the 10
study animals, resulting in a total of 30 samples (five females
(two adults, three juveniles) and five males (three adults
and two juveniles)). Sample collection occurred over a year
period. As Temminck’s pangolin are not seasonal breeders
(Pietersen et al., 2014b), this span should not influence
observed endocrine patterns over this period. A single faecal
sample was collected from a pregnant female (as determined
by the veterinarian). All fresh faecal samples were placed into
individual sample collection bags, sealed and stored at −20◦C
until transported to the SANBI Biobank.

Faecal sample extraction and analysis
All frozen faecal samples were extracted at the SANBI
Wildlife Biobank following the methods used by Long et al.
(2021). Faecal samples were lyophilized, pulverized and
sieved through a thin mesh to remove any non-faecal matter
that might be present. Subsequently, 1.5 ml of 80% ethanol
was added to 0.050–0.055 g of faecal powder and vortexed
for 15 min, before centrifuging the samples at 1500 × g
for 10 min. The supernatant was then transferred to clean,
clearly marked 2.5-ml microcentrifuge tubes, sealed and
stored at −20◦C until EIA analyses at the Endocrine Research
Laboratory (ERL), University of Pretoria, South Africa. EIA
analyses occurred within 3 months post-extraction.

All faecal extracts were measured for immunoreactive
fEM, fPM and fAM concentrations, using an (i) oestrogen
EIA, two progestagen EIAs ((ii) progesterone and (iii) 5α-
progesterone) and two androgen EIAs ((iv) epiandrosterone,
(v) testosterone). Details of the assays, including cross-
reactivities of the antibodies, are described by Palme and
Möstl (1993) for oestrogen, testosterone and epiandros-
terone, Schwarzenberger et al. (1996b) for progesterone
and Dehnhard et al. (2010) for 5α-progesterone. Antibody,
conjugate and standard for the 5α-Progesterone EIA were
purchased from Leibniz-Institute for Zoo Biology and
Wildlife Research, PF 601103, D-10252 Berlin, Germany.
Antibodies, conjugates and standards for the remaining EIAs
(Oestrogen, Testosterone, Epiandrosterone and Progesterone)
were purchased from the Department of Biomedical Sciences/
Physiology, University of Veterinary Medicine, Veterinärplatz
1, A-1210 Vienna, Austria (contact: Associate Prof. Dr R.
Palme, Rupert.Palme@vetmeduni.ac.at). Information on the
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Table 1: The intra- and inter-assay CV, assay sensitivity, as well as parallelism test results and dilution ranges for the faecal oestrogen,
progestogen and androgen metabolite enzyme immunoassays

Enzyme
immunoassay

Intra-assay CV Inter-assay CV Assay sensitivity ng/g
faecal dry mass

Parallelism test Dilution ranges used in
the parallelism test

Testosterone 6.58 and 7.59% 8.02 and 14.93% 0.4 <4% 1/20–1/8000

Epiandrosterone 4.96 and 5.09% 6.89 and 9.67% 2.4 <4% 1/50–1/8000

Oestrogen 5.85 and 6.27% 6.65 and 13.20% 0.1 <5% 1/50–1/2000

Progesterone 5.55 and 5.73% 9.12 and 10.76% 3.2 <5% 1/50–1/2000

5α-progesterone 5.32 and 6.36% 5.03 and 6.99% 2 <5% 1/50–1/8000

Sample pools and individual samples were used for the parallelism tests depending on concentrations and volumes of the individual samples

conjugates is available in the cited publications. Plates were
coated (Corning Product Number 9018) with AR-IgG (Arbor
Assays, USA) using a standard procedure. Serial dilutions of
extracted samples gave displacement curves that were parallel
to the respective standard curves in all assays (Table 1). The
intra- and inter-assay coefficient of variance (CV), determined
by repeated measurements of high- and low-value quality
controls, as well as assay sensitivities are shown in Table 1.
Concentrations measurements in the faecal extracts were
carried out in different dilutions, all within the parallel ranges
of the respective EIAs. Diluted Standards were used as quality
controls, at 20 and 80% binding for the respective EIAs. The
standards can be provided by the suppliers of the antibodies
and conjugates. As the faecal extract dilutions could be
increased, no maximum detection value was reported.

Data analysis
No analytical statistics were conducted due to the limited
number of samples collected. The median value for each
individual was calculated and compared with the different
age and sex classes across the fPM, fEM and fAM results.
Similarly, sex+age group median values were calculated and
compared when possible. For the fAM assay validation adult
males should have higher fAM values than juvenile males,
whilst both male age classes should have higher fAM values
than females. For the fEM and fPM assay validations, adult
females should have higher fEM and fPM values than juvenile
females, whilst both female age classes should have higher
values than either male age class. Similarly, fPM and fEM of
the pregnant female should be higher than all other female
and male age classes. All values are presented as median and
interquartile range (IQR). The IQR provides a robust measure
of variability that is less sensitive to extreme values than the
range or standard deviation.

Results
Faecal androgen metabolite measurements
The testosterone EIA only detected low fAM levels in both
male and female individuals across all age groups. Addition-

ally, testosterone metabolite concentrations in males (range:
0.05–0.98 ng/g dry weight (DW)) and females (range: 0.02–
0.79 ng/g DW) exhibited significant overlap, with just one
male sample exceeding the highest female sample (1.98 vs
0.79 ng/g DW). Therefore, the assay was deemed inadequate
for detecting biologically relevant differences in fAM levels
between sexes. In contrast, the epiandrosterone EIA revealed
a substantial difference in fAM ranges between males (7.17–
43.34 ng/g DW) and females (0.80–13.14 ng/g DW) in this
study. Median epiandrosterone concentrations were notably
higher in adult males compared to juvenile males, and both
male age groups had higher median fAM levels than adult
and juvenile females (Table 2).

Faecal oestrogen metabolite measurements
Male fEM levels were at or below the detection limit of
the oestrogen EIA, ranging from 0.01 to 0.02 ng/g DW. In
contrast, female fEM levels were distinctly higher, ranging
between 0.02 and 0.62 ng/g DW. Median fEM levels for
individual adult females were notably higher than those of
juvenile females (Table 3). Similarly, the fEM levels were
considerably higher for the pregnant female sample than all
other age and sex classes (Table 3).

Faecal progestagen metabolite
measurements
Both progestagen EIAs effectively measured adequate fPM
levels in Temminck’s pangolin. In both assays, fPM ranges
were significantly higher in females (Progesterone EIA range:
1.51–12.64 ng/g DW; 5α-progesterone EIA range: 1.12–
19.03 ng/g DW) compared to males (Progesterone EIA
range: 0.95–2.42 ng/g DW; 5α-progesterone EIA range: 0.74–
3.09 ng/g DW). Across both assays, median fPM levels for
individual adult females were higher than those of juvenile
females, and both adult and juvenile females had median fPM
levels distinctly higher than all male study animals (Table 4).
Finally, group-specific median fPM levels were higher in adult
females compared to juvenile females, whilst both female
groups had higher median values than adult and juvenile
males. The pregnant female had an fPM level higher than all
other age and sex classes (Table 4).
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Table 2: The median and range values for faecal testosterone and epiandrosterone metabolite concentrations between all age and sex classes

ID Assay Median (ug/g DW) Range (ug/g DW)

Adult female 1 Testosterone
Epiandrosterone

0.33
4.80

0.15–0.44
2.30–9.30

Adult female 2 Testosterone
Epiandrosterone

0.06
8.72

0.05–0.15
6.44–13.14

Juvenile female 1 Testosterone
Epiandrosterone

0.03
1.02

0.02–0.03
0.80–1.24

Juvenile female 2 Testosterone
Epiandrosterone

0.72
1.52

0.56–0.79
0.80–1.95

Juvenile female 3 Testosterone
Epiandrosterone

0.51
3.07

0.31–0.66
1.57–3.77

Adult male 1 Testosterone
Epiandrosterone

0.58
21.47

0.43–1.98
19.86–43.34

Adult male 2 Testosterone
Epiandrosterone

0.11
24.72

0.08–0.13
12.92–24.92

Adult male 3 Testosterone
Epiandrosterone

0.38
19.85

0.10–0.71
12.07–24.94

Juvenile male 1 Testosterone
Epiandrosterone

0.13
9.94

0.05–0.24
7.17–22.07

Juvenile male 2 Testosterone
Epiandrosterone

0.11
14.45

0.08–0.29
7.37–21.24

Table 3: The median and range values for faecal oestrogen metabolite
concentrations between adult and juvenile females as well as the
pregnant female. All adult and juvenile male values were <0.02 and
thus excluded from this table

ID Median (ug/g DW) Range (ug/g DW)

Adult female 1 0.42 0.42–0.62

Adult female 2 0.33 0.19–0.36

Juvenile female 1 0.12 0.03–0.48

Juvenile female 2 0.09 0.02–0.24

Juvenile female 3 0.07 0.04–0.14

Pregnant female 0.83 N/A

Discussion
This is the first study to validate EIAs for a reliable determi-
nation of gonadal endocrine patterns using faeces as a matrix
in Temminck’s pangolin. The use of a biological validation
process was sufficient to validate the respective EIAs. Repro-
ductive activity can now be monitored in male and female
Temminck’s pangolin via non-invasive endocrine monitoring.

The epiandrosterone EIA was successfully validated for
measuring fAM concentrations in the Temminck’s pangolin.
This finding confirms the applicability of this EIA for moni-
toring reproductive function in pangolins, as it has also been

deemed suitable for quantifying fAMs in the Taiwanese pan-
golin (Manis pentadactyla pentadactyla; Arora et al., 2020).
Adult male Temminck’s pangolin had considerably higher
fAM levels than juvenile males, highlighting the ability of
the epiandrosterone EIA to discriminate between different
maturation stages in males of this species. Similarly, the
epiandrosterone EIA exhibited the capability to distinguish
between male and female individuals across all age classes,
revealing only a minimal overlap observed between juvenile
males and adult females. The detection of such fAM differ-
ences has been observed and utilized as a biological validation
tool in various mammalian species (Pineda-Galindo et al.,
2017; Scheun et al., 2017), further affirming the reliability
of employing this assay in Temminck’s pangolin.

The tested total oestrogen EIA was also successfully vali-
dated for quantifying fEMs in Temminck’s pangolin. As the
assay can measure various oestrogens, such as estrone (E1),
estradiol (E2) and estriol (E3) (Denver et al., 2019), to name a
few. As such, the antibody of the applied assay shows a recog-
nizable cross-reactivity with a number of common oestrogens.
However, Arora et al. (2020) suggested that estradiol-17β

might be one of the primary oestrogens present in the faeces of
pangolins. Whether this is the case for Temminck’s pangolin
remains to be determined. Much like the discerning ability
of fAM levels in males, the oestrogen EIA demonstrated its
effectiveness in distinguishing between different age classes in
females, affirming its ability to differentiate between various
maturation stages in Temminck’s pangolin. Consistent with
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Table 4: The median and range values for faecal progesterone and 5α progesterone metabolite
concentrations between all age and sex classes including the pregnant female

ID Assay Median (ug/g DW) Range (ug/g DW)

Adult female 1 Progesterone 9.39 2.40–10.73

5α Progesterone 9.60 3.08–13.92

Adult female 2 Progesterone 7.49 1.51–12.64

5α Progesterone 9.19 2.05–19.03

Juvenile female 1 Progesterone 3.11 2.32–6.08

5α Progesterone 4.69 3.34–9.49

Juvenile female 2 Progesterone 3.82 3.18–5.18

5α Progesterone 4.07 3.11–4.28

Juvenile female 3 Progesterone 3.32 1.98–3.84

5α Progesterone 1.45 1.12–2.56

Pregnant female Progesterone 165.36 N/A

5α Progesterone 233.44 N/A

Adult male 1 Progesterone 2.04 1.54–2.42

5α Progesterone 1.98 0.94–1.98

Adult male 2 Progesterone 1.29 1.11–2.30

5α Progesterone 1.56 1.55–3.09

Adult male 3 Progesterone 1.80 1.32–2.16

5α Progesterone 1.58 1.26–1.59

Juvenile male 1 Progesterone 0.95 0.92–1.10

5α Progesterone 0.94 0.74–0.95

Juvenile male 2 Progesterone 0.93 0.84–1.25

5α Progesterone 1.14 0.94–1.50

the outcomes of this study, previous research has also noted
variations in female oestrogen levels associated with age
(Kanematsu et al., 2006; Musey et al., 1987). Furthermore,
fEM levels in male Temminck’s pangolin, when measured
with the oestrogen EIA, were below the measurement thresh-
old of the tested oestrogen EIA, indicating the ability of the
EIA to differentiate between the sexes. Several studies have
shown that males have lower oestrogen levels than their
female counterparts (Barbosa-Moyano et al., 2024; Gesquiere
et al., 2014). Therefore, the applicability of the oestrogen
EIA in monitoring fEM concentrations in female Temminck’s
pangolin was confirmed, demonstrated by its capability to
distinguish not only between female age classes but also
between male and females.

Both progestagen EIAs successfully discriminated between
different age and sex classes; in addition to this, both EIAs
also allowed for the determination of pregnancy. As a result,
both progestogen EIAs are equally suitable to quantify fPMs
in Temminck’s pangolin. Arora et al. (2020) reported com-
parable findings in the context of the Taiwanese pangolin,

highlighting the prevalence of the 5α-configuration within
the observed pregnane series. In this study, however, both
assays demonstrated an ability to distinguish between adult
females and their younger counterparts (i.e. able to differen-
tiate between maturation stages). This ability is crucial when
validating an EIA through biological means. Such differences
in fPM levels between different age classes have been observed
in previous research (Greenberg et al., 2022) and supports the
findings of this study. Finally, there were clear differences in
fPM concentrations between females and males, with minimal
overlap between juvenile females and adult males. This pat-
tern has been observed in previous studies (Pineda-Galindo
et al., 2017) and support the validity of using either EIA to
monitor fPM concentrations in Temminck’s pangolin.

Finally, although only one sample was available, both the
fEM and fPM concentrations of the confirmed pregnant
female Temminck’s pangolin were considerably higher
than these metabolite concentrations in all other age and
sex classes. An elevation in fPM and fEM concentrations
during pregnancy has been observed in numerous species
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(Schwarzenberger et al., 1996a; Nagl et al., 2015; Scheun
et al., 2016) and used to validate the most appropriate
EIAs for monitoring fEM and fPM levels in several species
(Dehnhard et al., 2008; Knott et al., 2013; Mithileshwari
et al., 2016; Bleke et al., 2021). This lends further support to
our biological validations performed for both the fEM and
fPM assays in Temminck’s pangolin.

Conclusion
The EIAs validated in this study offer a powerful tool set for
understanding the species’ reproductive patterns whilst also
allowing for sex determination. In addition to this, informa-
tion gathered can provide necessary parameters required to
perform a robust Population Viability Analysis, which will be
useful at present. Future research should focus on using these
EIAs to determine female cyclicity and explore the connection
between gonadal hormones and breeding behaviour. One
limitation of the current study is the small sample size, a
constraint due to the species’ conservation status as well as
general ecology. Increasing the number of animals in future
studies, along with long-term monitoring, would contribute
significantly to our understanding of the reproductive pat-
terns of this species.
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