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Abstract: Horizontally curved steel I-beams exhibit a complicated mechanical response as they
experience a combination of bending, shear, and torsion, which varies based on the geometry of the
beam at hand. The behaviour of these beams is therefore quite difficult to predict, as they can fail
due to either flexure, shear, torsion, lateral torsional buckling, or a combination of these types of
failure. This therefore necessitates the usage of complicated nonlinear analyses in order to accurately
model their behaviour. Currently, little guidance is provided by international design standards in
consideration of the serviceability limit states of horizontally curved steel I-beams. In this research, an
experimentally validated dataset was created and was used to train numerous machine learning (ML)
algorithms for predicting the midspan deflection at failure as well as the failure load of numerous
horizontally curved steel I-beams. According to the experimental and numerical investigation, the
deep artificial neural network model was found to be the most accurate when used to predict the
validation dataset, where a mean absolute error of 6.4 mm (16.20%) was observed. This accuracy far
surpassed that of Castigliano’s second theorem, where the mean absolute error was found to be equal
to 49.84 mm (126%). The deep artificial neural network was also capable of estimating the failure
load with a mean absolute error of 30.43 kN (22.42%). This predictive model, which is the first of its
kind in the international literature, can be used by professional engineers for the design of curved
steel I-beams since it is currently the most accurate model ever developed.

Keywords: structural engineering; structural steel; curved beams; machine learning; finite element
modelling

1. Introduction

Although curved beams have been in existence for centuries, minimal guidance has
been available on the design of curved steel elements. The fabrication of curved steel beams
began in the 19th century when steel members were cast in a curved profile or built up
from components into a curved profile. Fabrication advanced, utilising three-roll pressing
or induction bending in situations where residual stresses were particularly significant
or smaller radii were required [1]. However, the majority of steel used for construction is
formed through the use of roller bending, which is a cold process. When curving open
sections using cold processes, the flanges exert a significant force on the web, which could
lead to local buckling. Therefore, additional rolls are provided inside the tension flange for
sections that are susceptible to local buckling (Figure 1).

Horizontally curved beams experience significant residual stresses due to the manner
in which they are formed. A steel member rolled at room temperature experiences me-
chanical residual stresses (compressive and tensile) that reduce the ultimate strength of
the member by increasing its flexibility, which subsequently causes a decrease in buckling
strength [2]. Tensile residual stresses are particularly detrimental as they are often the cause

Computation 2024, 12, 151. https://doi.org/10.3390/computation12080151 https://www.mdpi.com/journal/computation

https://doi.org/10.3390/computation12080151
https://doi.org/10.3390/computation12080151
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computation
https://www.mdpi.com
https://orcid.org/0000-0002-6891-7064
https://doi.org/10.3390/computation12080151
https://www.mdpi.com/journal/computation
https://www.mdpi.com/article/10.3390/computation12080151?type=check_update&version=1


Computation 2024, 12, 151 2 of 29

of fatigue failure and stress corrosion cracking, whereas compressive residual stresses can
be somewhat beneficial as they can mitigate the origination and propagation of cracks [3].
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both sides and a point load is applied at the centre point. Dahlberg [9] created various 
equations that can be used for various boundary and load conditions. However, these 
equations are quite difficult to implement and are therefore rarely used in practice. 
Furthermore, Dahlberg [9] did not compare the formula with experimental or finite 
element results. 
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The main challenge encountered with horizontally curved beams is that due to the
geometry of the beam when normal loads are applied, the beam experiences a complex
combination of bending, shear, and torsion simultaneously. Torsional moments can be
visualised from the deflected shape as the compression flange tends to deflect laterally
away from the centre of curvature [5]. When bending and torsional moments are applied
simultaneously to a beam, the coupling of these forces tends to reduce the carrying capacity
of the member. Research has found that the behaviour of horizontally curved beams is
dependent on the R/L ratio, which can also be represented as the span angle. It has been
noted that when the span angle is less than 1◦, the beam responds similarly to a straight
beam and is dominated by flexure (bending). When the span angle is larger than 20◦, the
beam behaviour of the beam is primarily dominated by torsion. When the span angle is
between 1◦ and 20◦, both bending and torsion significantly impact the behaviour of the
beam [6].

In straight I-beams, lateral torsional buckling is easily observable through the lateral
displacement and rotation of the member. In curved I-beams, however, this behaviour is
always present due to the torsional moments experienced. This behaviour was termed
lateral–torsional–vertical behaviour by Lee, et al. [7]. Therefore, due to initial curvature,
similar to initial out-of-straightness in columns, bifurcation-type lateral torsional buckling
may not be observed in curved steel I-beams. However, it has been noted that, as seen
with straight beams, the flexural strength of curved beams decreases for members that
are susceptible to lateral torsional buckling [6]. The effect of lateral torsional buckling
is negligible when the angle between torsional restraints is less than 22.5◦. Should this
angle be larger than 22.5◦, the American Institute of Steel Construction (AISC) recommends
that the beam be handled as a straight beam with an adjusted lateral–torsional buckling
modification factor that accounts for the curvature.

Over the years, numerous researchers have attempted to provide analytical formulae
for horizontally curved members; however, very few have focused on equations regarding
deflection and rotation. Wong [8] modified Castigliano’s second theorem, which was origi-
nally developed for straight beams, and made it applicable to horizontally curved beams.
Castigliano’s second theorem is a strain energy method that is used to calculate deflection.
The equation generated can be seen in Equation (1). Cd can be calculated from Figure 2. It
is important to note here that Equation (1) is limited to beams that are fixed on both sides
and a point load is applied at the centre point. Dahlberg [9] created various equations that
can be used for various boundary and load conditions. However, these equations are quite
difficult to implement and are therefore rarely used in practice. Furthermore, Dahlberg [9]
did not compare the formula with experimental or finite element results.

∆0.5θ =
Pr3

EI
Cd (1)
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concentrated load [8].

Castigliano’s second theorem can also be applied to determine the rotation of curved
beams; however, this is often even more tedious than the equations necessary for deflec-
tion. However, a simplified equation is provided by AISC (Equation (2)). The symbol h0
represents the height of the member and ∆max represents the maximum displacement of
the member [6].

This equation is derived using the M/R method, which is used extensively in the
design of horizontally curved beams, where the curved beam is modelled as a straight
beam with a length equal to the curved member length. The torsional moment is then
accounted for by a separate equation:

θmax = tan−1
(

2∆max

h0

)
(2)

Various assumptions have been during the derivation of this formula, including that
the thickness of each plate element is small relative to the width, which is, in turn, small
relative to the span. The stresses due to warping are assumed to be negligible.

Modelling curved beams in FEM causes further complexities. The majority of com-
mercially available software applications model curved beams as a series of straight beams,
which provides sufficient accuracy for most design purposes. If the model experiences
significant nonlinear behaviour, a convergence study is required in order to optimise the
number of elements required, while the development of torsion further complicates the
analysis process. Conventional beam finite elements (FEs) cannot be used to model horizon-
tally curved steel I-beams that experience torsion, due to the existence of warping torsion.
Conventional beam FEs account only for St Venant stiffness, which causes numerical er-
ror regarding computing the torsional deformation. Current beam FEs that incorporate
warping stiffness are available; however, these are rarely incorporated in commercially
available software and also tend to be less accurate. Three-dimensional FEs such as shell or
solid elements are commonly used by researchers attempting to model the behaviour of
curved beams. These elements accurately represent torsional behaviour without the need
for numerous torsional constants. Previous researchers found that using solid FEs paired
with nonlinear analyses led to accurate estimates of experimental results for both ultimate
load and midspan deflection ([10–13]).
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The combination of bending and shear as well as displacements and twisting rotations
causes second-order bending actions in the plane of a curved I-beam. With an increase in
load, these interactions grow rapidly and may ultimately cause early nonlinear behaviour
and yielding, leading to reductions in the ultimate load-carrying capacity of the beam. This
therefore necessitates the usage of nonlinear analyses when analysing horizontally curved
beams, as opposed to general static (linear) analysis. Given the complexity of the problem,
the use of FEs that are integrated with 3D numerical material models is also recommended,
as in this research work.

2. Machine Learning Algorithms

This section briefly presents the various ways machine learning (ML) has been used
to develop formulae that allow the design or mechanical investigation of civil engineer-
ing structures. ML and artificial intelligence (AI) have been implemented over recent
decades in different fields as efficient tools used to predict analysis outputs for engineering
problems that are deemed computationally demanding and highly complicated to solve
analytically. The use of ML has largely eliminated the need for large numerical analysis,
as it contains the ability to provide adequate estimates of the desired outputs. The main
issue at hand, however, is that to train an ML algorithm, a large enough dataset is required.
Therefore, the primary task of the majority of research work at this stage is the generation
of datasets for various reinforced concrete and steel-related problems using either physical
or validated numerical experiments. A meta-analysis of various case studies was pre-
sented by Markou, et al. [14]; however, the current paper focused on a single mechanical
response problem in an attempt to provide a solution to a problem that has never been
solved in the past. It is important to note that all ML algorithms that were used to perform
the training, testing, and validation for the needs of this research work can be found on
GitHub (https://github.com/nbakas/nbml/, accessed on 21 June 2023), through down-
loading nbml freeware. Furthermore, the datasets that were developed for the needs of
this research work can be found through the following link (https://github.com/nbakas/
nbml/tree/a0d27c94dd590688815180ebf6428963a24ca245/datasets, accessed on 1 July
2024), whereas the proposed models can be developed directly by the reader.

Various ML algorithms were used in this research, namely linear regression (LR),
polynomial regression with hyperparameter tuning (POLYREG-HYT), hyperparameter tun-
ing of extreme gradient boosting (XGBoost-HYT-CV), and parallel deep learning artificial
neural networks with hyperparameter tuning (DANN-MPIH-HYT). The LR method was
used as a point of comparison for the other ML algorithms (Markou, Bakas, Papadrakakis,
and Chatzichristofis [14]).

POLYREG-HYT is useful for generating relatively accurate closed-form formulae and
is applied to develop predictive models in higher-order classes. This relatively simplistic
method provides a formula based on the nonlinear combination of all independent vari-
ables [14]. This model is based on the creation of nonlinear terms that are based on the
independent variables up to the third degree. The algorithm then selects the nonlinear
features that correspond to the minimum error. Originally, this methodology was utilised
by Gravett, et al. [15], who made use of a simplistic approach in determining the number
of features to use during training. Thereafter, that algorithm was improved and the use of
hyperparameter tuning was introduced, as shown in Markou, Bakas, Papadrakakis, and
Chatzichristofis [14], showcasing the proposed ML algorithm that has been used for the
needs of this research work. The improved algorithm is outlined in Algorithm 1.

XGBoost-HYT-CV is a modification to the currently open-source extreme gradient
boosting algorithm. The original XGBoost is a gradient-boosting library for ML problems
such as classifying and regressing. The algorithm implements the gradient boosting frame-
work, which is designed to be fast and scalable, making it suitable for large datasets [14].
For improving the current XGBoost algorithm, hyperparameter tuning was used. This
tuning was found to exhibit accurate results compared to those of deep learning and require

https://github.com/nbakas/nbml/
https://github.com/nbakas/nbml/tree/a0d27c94dd590688815180ebf6428963a24ca245/datasets
https://github.com/nbakas/nbml/tree/a0d27c94dd590688815180ebf6428963a24ca245/datasets
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less computing demand [14]. One benefit of this algorithm is its ability to locate and replace
missing values in the training and testing datasets.

Algorithm 1: Feature selection algorithm for polynomial regression [14]

Knowledge 2024, 4 1

Algorithm 1: Feature selection algorithm for polynomial regression [14]
Data: X, y, m f (maximum number of features)
Result: Initialize [o] = 1 with the constant term ∈ [p]
Solve Linear System X′ × a = y, where X′ ⊂ X, with [o] columns.
Compute regression errors e1.
Set as optimal error ê← e1.
Set as optimal indices [ô]← [o].
for i ∈ [1, 2, . . . , l] do

repeat
Select an index d ∈ [p] randomly.
if d ∈ [o] then

r ← U (0, 1)
if r < 1

2 then
Select randomly od ∈ [p] : od ̸∈ [o]
[o]← ([o] \ d) ∪ od;

else
[o]← [o] \ d;

end
else

if o < m f then
[o]← [o] ∪ d;

else
Select randomly od ∈ [o]
[o]← ([o] \ od) ∪ d;

end
end

until rank(X′) ≡ o;
Solve Linear System X′ × a = y.
Compute regression error ei.
if ei < ê then

ê← ei
[ô]← [o]

else
[o]← [ô]

end
end

The final algorithm to be engaged was DANN-MPIH-HYT, which has the ability to
train on both small and large datasets through the use of parallel processing. The algorithm
was programmed to train on both computer processing units (CPUs) and graphics pro-
cessing units (GPUs) and the use of distributed computations was also provided. This led
to faster training and testing times when using the algorithm, as deep learning is known
to be particularly slow when dealing with training processes, especially in cases where
large datasets are used [14]. A combination of Horovod with MPI was used to optimise
the numerical procedure. The Horovod library was implemented for multi-GPU training.
Using Horovod, one is able to take a single GPU training script and run it across numerous
GPUs in parallel. Through the use of message-passing interface (MPI) commands, each
process is initialised and assigned its MPI rank in a straightforward manner, which is
achieved in fewer code changes compared with other approaches. Various experimental
algorithms were tested by Markou, Bakas, Papadrakakis and Chatzichristofis [14] on the
Cyclone Supercomputer, utilising PyTorch for computer vision as well as regression tasks,
highlighting the efficiency of data parallelism.
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ML combined with FEM modelling has been used to create accurate formulae for
various engineering applications in recent years. Markou and Bakas [16] created formulae
to determine the shear capacity of concrete slender beams without stirrups. In their research
work, a total of 35,849 beams were created and four ML algorithms were used, namely
linear regression, polynomial regression, XGBoost, and deep learning neural networks. In
that study, it was noted that the XGBoost algorithm was the most accurate, boasting an
error of 5.82%. A similar methodology was followed by [17–20], where design formulae
and predictive models were developed in relation to RC and steel structural problems.
In this context, the current research work validates numerical models through the use
of results from experiments conducted on curved steel I-beams at the laboratories of the
University of Pretoria, and thereafter, the development of a relatively large dataset through
nonlinear analyses is described. The next step will involve the development of the proposed
predictive models that are validated and presented in the present paper.

3. Experimental Investigation

Experimental studies were performed in order to validate the finite element models
that were used to develop the datasets for the needs of this research work. Experiments
were also used to determine the appropriate finite element type that would yield the most
accurate results regarding the deflection and rotation of the I-beam. The experiments
involved the investigation of a horizontally curved steel I-beam (IPE 100) where the two
ends were fully fixed and a vertically upward load was applied at the midspan. The results
measured were vertical deflection at the midspan, rotation at the midspan and quarter
points, and strains at the midspan and the support.

The beam that was analysed was a 3.5 m long IPE100 beam. This beam was selected to
minimise the applied forces in order to maintain a safe working environment. A simplified
schematic outlining how the beam was supported and loaded can be seen in Figure 3.
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Figure 3. Basic schematic of the curved beam experimental setup (all dimensions are in millimetres).

To create a fully fixed support, the cross-section of the IPE 100 beam was welded onto
two 12 mm thick plates. These 12 mm thick plates were then welded onto a stiff beam, which
was then bolted onto the test floor using M24 Gr8.8 bolts. The entire system was assumed
rigid and minimal deflections and rotations were expected at this point. Additional linear
variable differential transformers (LVDTs) were placed at the supports. A schematic of the
support conditions as well as a photograph can be seen in Figures 4 and 5, respectively.
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Figure 5. Experiment with fixed support.

A simple load application mechanism was used, which allowed a quicker and easier
test set-up. The beam was loaded with a 40 mm steel bar that had a flat edge. This flat
edge was loaded onto the beam using an overhead crane. The load cell then calculated the
load experienced by the beam every 100 milliseconds, which was seen to provide sufficient
data for analysis purposes. The loading equipment had a capacity of 50 tonnes, which was
sufficient for the expected failure load of the beam. The steel bar also allowed the beam to
rotate freely at the point of load application, which was required given the large expected
rotations of this horizontally curved beam.

LVDTs were used to measure beam deflection only in the vertical direction. Two
different LVDT types were used, one with a 250 mm range, which was placed at the
supports and the other with a 1000 mm range, which was placed at the midspan. The
LVDT at the midspan was placed 160 mm away from the point of load application so
measurements could be taken at the same position as the strain gauges. The strain gauges
were offset in order to not be influenced by the applied point load. LVDTs were used due
to their high accuracy and good long-term stability as opposed to potentiometers, which
have lower accuracy and precision but are typically more versatile. A schematic of the
placement of LVDTs can be seen in Figure 6.

Inclinometers were used to measure the rotation along the beam as well as across the
beam. Two dual-axis inclinometers were used. The inclinometers used made use of an
electrolytic level which was capable of measuring inclination along two axes (pitch and
roll). One inclinometer was placed 100 mm from the point of load application but on the
opposite half of the beam from where the LVDT and strain gauges were placed, and the
other was placed at the quarter point of the same half. A schematic outlining the position
of the inclinometers can be seen in Figure 7.
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The majority of the setup of the instrumentation involved accurately placing the strain
gauges. Strain gauges are very sensitive. Therefore, the surface where a strain gauge is
applied is required to be extremely smooth and free of all impurities prior to the placement
of the strain gauge. The placement of these strain gauges was critical so that comparison
between the strain gauge and the FE analysis could be as accurate as possible. This was
particularly true for the strain gauges placed at 45◦, which were required to accurately
measure torsional strain within the beam. A total of 16 strain gauges were used to measure
the strain at various points on one half of the beam. At the midspan, only longitudinal
strain gauges were provided at the top and the bottom flange. These longitudinal flanges
were placed at the far edge of the beam to read the maximum longitudinal strain at
the midspan. The same setup was followed at the support, which led to another four
longitudinally placed strain gauges being placed at this point. Two strain gauges were also
placed transversely at the top and bottom flanges to investigate the shear flow in the beam.
A further two vertical strain gauges were placed on either side of the web to measure the
shear flow of the beam across the web. Four diagonal strain gauges were placed to measure
the torsional stresses experienced at these points. A schematic outlining the position of the
strain gauges can be seen in Figure 8.

All instrumentation was connected to an HBX Quantum logger. This logger allowed
conversion from voltage to the appropriate units for the various instrumentation after
calibration (e.g., millimetres for the LVDT, kilonewtons for the load cell, and microme-
tres/metres for the strain gauges). During the experiment, the load was applied to the
beam in increments up to the final failure load past the point of yielding. During loading, a
video was taken to record the experiment, which was used for verification when analysing
the results. Photos were then also taken after the final load was applied and yielding had
been experienced for further analysis (Figure 9).
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4. Analysis of Experimental Results

During testing, a total of five variables were measured. These variables were the
load applied at the midspan, the displacement, the tilt/rotation, and the strain. The initial
readings prior to the load application were taken as a reference point for all future readings.
As previously mentioned, the load was applied incrementally in steps of 3 kN. This was
carried out so it could be accurately determined at what load yielding occurred (through
measuring permanent deformation). It was noted that after the 12 kN load was removed,
permanent deformation occurred at the midpoint of the beam. The deflection for this load
was approximately 55 mm.
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The deflection measured at the supports was negligible, reaching up to 0.07 mm
(upwards). This was seen as negligible and therefore was not factored into the calculations
of the midspan deflection. Figure 10 shows the load–deflection curve of the beam. Results
showed that the beam deflected linearly up to 55.05 mm at a load of 12.42 kN. The experi-
ment was stopped right at the point of yielding; therefore, a plateau is not indicated in this
graph, which would be a further indication that yielding had occurred.
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Figure 10. Experimental beam load–deflection curve (midspan).

When investigating the tilt results, errors were noted. The results showed that tilt
did not consistently increase as load increased. At some points, a decrease in tilt was
measured with an increase in load. This can be seen in Figure 11, where it can be seen that
as the load increased from 2 kN to 4 kN, the tilt was measured to have decreased slightly.
Practically, this is not possible. It is believed that this error was due to incorrect use of
the measuring apparatus. The apparatus used to measure tilt made use of an electrolytic
level. Electrolytic levels are typically poor when it comes to dynamic/cyclical loading,
due to the conductive fluid found within the sealed glass. These results can therefore be
used to obtain a rough estimate of how tilt increases as the load increases; however, these
results cannot be used to determine the accuracy of FE models or analytical formulae. A
line of best fit has been included in Figure 11 for further interpretation, which shows that
tilt increased as load increased.
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The strain results were quite interesting and showed the implication of the support
conditions utilised. The support was intended to be fully fixed; however, practically,
the support behaved in a way between that of a fully fixed connection and a torsionally
pinned connection, as was seen with the strain gauge results. The strain gauge pattern was
symmetrical with the cross section (both vertically and horizontally); however, the results
were not seen to be perfectly symmetrical. The major reason for the discrepancies was most
likely to have been due to inaccuracies during the setting out of the strain gauges. Material
and geometric imperfections also played a role. The strain gauge results can be seen from
Figures 12–14.
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Figure 13. Graphical summary of experimental beam flange transverse strain gauge results.
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5. Comparison of Experimental Data with Finite Element Analysis Results

Various FE models were used and compared to determine which model most accu-
rately represented the behaviour of the experimental beam. The focus was to determine the
optimum FE model to be used for the development of the datasets. The datasets were used
to train various ML algorithms for the development of the proposed predictive models
related to the calculation of the ultimate strength of curved steel I-beams that are fixed at
their ends and the respective deflection.

CivilFEM 2021 was used to develop the numerous FE meshes that were used to
construct the dataset. This software was selected due to its interface, which allowed the
creation of curved steel I-beam meshes in an automated manner. Solid and shell FEs were
considered in this research work, where the mesh size was determined based on a previous
research study where a mesh sensitivity analysis was conducted by the authors [21]. Linear
and quadratic elements were also considered for each of the FEs used to reproduce the
experimental results. It is important to note at this stage that [21] used experimental results
found in the literature to calibrate their model that involved steel I-beams with a different
support system compared with the fixed-end beams that are investigated herein. That
pilot project showed that hexahedral isoparametric FEs were able to accurately reproduce
experimental results [21].

Therefore, a total of four models were created for the needs of this research work,
namely, a linear solid element, a quadratic solid element, a linear shell element, and a
quadratic shell element. All material-related parameters were kept constant between the
four models to maintain consistency. A typical nonlinear material model with anticipated
bilinear behaviour was assumed. The hardening type selected was isotropic, indicating
that yielding occurred when the effective or equivalent stress was equal to the specified
yield stress. This selected yielding criterion was set to be that of von Mises. Furthermore,
the material properties were assumed to be that of an S355 steel material (355 MPa yield
stress, 210 GPa elastic modulus, a Poisson ratio of 0.3, and a density of 7850 kg/m3). The
experimental deflection and rotation at the midspan were then compared with the midspan
deflection and rotation calculated using the various FE models. Analytical formulae were
also included for comparative purposes.

Figure 15 shows that the linear solid FE derived the worst prediction when estimating
midspan deflection. The analytical method, Castigliano’s second theorem, was also unable
to accurately represent the behaviour of the beam and performed quite poorly compared
with the more advanced FE models. The quadratic solid model most accurately calculated
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the midspan deflection, with an average error of only 1.83 mm. A summary of the computed
mean absolute error (MAE) can be seen in Table 1.
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Table 1. Mean absolute error of the FEM deflection estimate and Castigliano’s theorem compared
with the experimental data.

Deflection Estimation Method MAE

Linear solid finite element model 18.64 mm

Quadratic solid finite element model 1.83 mm

Linear shell finite element model 2.12 mm

Quadratic shell finite element model 2.33 mm

Castigliano’s theorem 9.91 mm

Furthermore, the resulting section rotations can be seen in Figure 16. Similar to
the deflection results, experimental data and the results derived from FE analyses were
compared with those of a commonly used analytical method, as discussed previously
(Equation (2)). The experimental deflection was used as an input to achieve the highest
accuracy possible when implementing the analytical method. Due to the fact that solid
FEs do not contain rotational degrees of freedom, the rotation was calculated from first
principles through making use of the vertical deflection at opposite ends of the bottom
flange and using trigonometry to calculate the rotation. This method only holds given that
the cross-section does not warp significantly. From the graphic, it was noted that the linear
solid FEs provided the least accuracy, underestimating the midspan tilt quite significantly.

The M/R performed slightly better compared with the linear solid Fes; however,
these results were still exceedingly conservative compared with the more advanced FE
models. The more advanced FE models correlated well with the line of best fit of the
experimental data. However, it seems the quadratic shell model was more accurate up
until approximately 10 kN. From 10 kN to failure, the linear shell and the quadratic solid
models both displayed lower errors compared with the experimental data. A summary of
error metrics (MAE) can be seen in Table 2.
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Table 2. Mean absolute error of FEM rotation estimate and the analytical formula for experimen-
tal data.

Rotation Estimation Method MAE

Linear solid finite element model 4.98◦

Quadratic solid finite element model 1.31◦

Linear shell finite element model 1.52◦

Quadratic shell finite element model 1.33◦

M/R method 2.31◦

It is therefore concluded that FE models with the numerical modelling technique as
outlined in this section are capable of accurately representing the behaviour of horizontally
curved steel I-beams. These models have also been shown to outperform quite significantly
the existing analytical formulae for estimating both deflection and rotation. It was noted
that of all the FE models, the quadratic solid FE performed best in both estimating deflection
and rotation. Therefore, the numerical modelling technique outlined in this section was
utilised in developing a large dataset as described in the subsequent sections.

6. Numerical Campaign

A relatively large dataset consisting of 864 models was created through the use of
CivilFEM. A total of six sections were considered, namely, IPE100, IPE200, IPE300, IPE400,
IPE500, and IPE600. This was done to encompass the entire IPE section list according to
European standards. The variables considered were the moment of inertia around the x
axis (Ixx), the moment of inertia around the y axis (Iyy), polar moment of inertia (J), section
height (h), section width (b), section area (A), beam curved length (L), beam radius of
curvature (R), material yield strength (fy), material Young’s modulus (E), material Poisson
ratio (v), and material shear modulus (G). For each section considered, three yield strengths
were assumed (235 MPa, 275 MPa, and 355 MPa), to account for the various structural steel
strengths commercially available in South Africa. Three Young’s moduli were considered,
namely, 190 GPa, 200 GPa, and 210 GPa, to account for variances in material stiffness. The
Poisson ratio was fixed at 0.28 and the equation of G was calculated based on E and v. Four
lengths and four radii were considered per section in order to cover the broad range of
geometries that the proposed predictive models will be applicable for. Given that R/L ratios
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have been found to control the behaviour of curved beams, four specific R/L ratios were
considered on all beams, namely, R/L = 1, 2, 4, and 8. All the beams were fully fixed on both
ends and a load was applied normally downwards at the midspan.

To maintain consistency, the models were automatically generated using a Python
script within CivilFEM. This ensured all material and geometrical properties were main-
tained and only a single variable was modified, allowing automatic mesh generation. A
Python script was developed and optimised to ensure consistency and minimise running
time through decreasing the number of variables and the overall performance of the code.
The models all made use of quadratic solid elements with a mesh size of up to 50 mm. A
typical nonlinear material model with predicted bilinear behaviour was assumed. The
hardening type selected was isotropic, which indicates that yielding occurred when the
effective or equivalent stress was equal to the specified yield stress. This selected yielding
criterion was set to be that of von Mises.

Table 3 indicates different statistical parameters, including skewness. A value of 0
indicates that the dataset contained no skewness and had a perfectly normal distribution.
According to Aminu and Shariff [22], a range from −3 to 3 can be considered as a cutoff,
and based on this, the results show that the data were not significantly skewed. Kurtosis
is another parameter that assists further in determining whether a dataset is normally
distributed or not. This is performed by determining whether a dataset is “heavy-tailed”
or “light-tailed”. “Heavy-tailed” implies that a dataset contains numerous data points in
outlier positions, whereas a “light-tailed” dataset contains minimal to no outliers. Once
again, there is no accepted convention on what is deemed “heavy-tailed”; however, Aminu
and Shariff [22] state that a range from +10 to −10 is deemed light-tailed and contains
minimal outliers. In this context, it was observed that the dataset created for the needs of
this research work contained minimal outliers with a good distribution.

Table 3. Horizontally curved beam dataset descriptive statistics.

Mean Median STD Min Max Skewness Kurtosis

Ixx (mm4) 291,198,612 231,300,000 326,514,119 1,710,000 920,800,000 0.977 −0.455

Iyy (mm4) 12,720,819 13,180,000 1,1960,328 159,000 33,870,000 0.625 −0.960

J (mm4) 692,957 841,000 553,277 12,100 1,540,000 0.142 −1.343

h (mm) 349.80 400 172.05 100 600 −0.011 −1.284

b (mm) 150.59 180 58.02 55 220 −0.472 −1.181

A (mm2) 7490 8450 5048 1030 15,600 0.285 −1.223

L (m) 7.48 4 6.44 1 24 1.346 0.953

R (m) 27.99 16 35.26 1 192 2.653 8.242

Fy (MPa) 289.37 275 50.23 235 355 0.343 −1.543

E (GPa) 199.93 200 8.14 190 210 0.012 −1.491

The correlation matrix for the displacement dataset can be found in Figure 17a and for
the failure load dataset in Figure 17b. It was clear from the correlation matrix results that
all cross-sectional properties had a strong positive correlation with the midspan deflection
and the failure load. It was also clear that, of all the properties, the curved length had
the largest correlation with the midspan vertical deflection. This implies the potential to
translate to positive results in the sensitivity analysis; this is discussed in Section 7.
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7. Machine Learning Training and Testing

This section outlines how numerous ML algorithms were applied in order to create
formulae that can outperform current analytical methods used to estimate the deflection of
horizontally curved steel I-beams. The ML algorithms considered were linear regression
(LR), polynomial regression with hyperparameter tuning (POLYREG-HYT), deep artificial
neural networks with MPI, Horovod, and hyperparameter tuning (DANN-MPIH-HYT),
and extreme gradient boosting with hyperparameter tuning and cross-validation (XGBoost-
HYT-CV) [14]. It must be noted here that for the ML analyses performed, 85% of the dataset
was used to train the ML algorithm and 15% was used for testing. The performance of ML
algorithms varies; therefore, to quantify accuracy, numerous error metrics were considered.
The error metrics considered in this research work were the mean absolute percentage error
(MAPE), the mean absolute mean percentage error (MAMPE), the mean absolute error
(MAE), and the root-mean-square error (RMSE). The Pearson correlation coefficient was
also considered (R) for determining the similarity between the PV (predicted value) and the
DV (dependent variable). An in-depth discussion of the error metrics can be found in [23].

7.1. Proposed Predictive Models for the Case of Deflection

This section outlines the midspan deflection predictions provided by the various
ML algorithms. The numerically obtained error metrics were analysed to determine the
performance of the various proposed predictive models. The correlation for the train and
test datasets can be seen in Figures 18–21.
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using POLYREG-HYT (a) on the training dataset and (b) on the testing dataset.
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using the DANN-MPIH-HYT algorithm (a) on the training dataset (b) on the testing.
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Figure 21. Correlation between the deflection determined using FEM and the deflection estimated
using the XGBoost-HYT-CV algorithm (a) on the training dataset (b) on the testing dataset.

LR and POLYREG-HYT are the only ML algorithms considered in this study that are
capable of providing closed-form formulae. Equation (3) shows the formula generated with
the LR algorithm, which can be used to estimate the vertical midspan deflection, whereas
Equation (4) provides the proposed predictive model derived using POLYREG-HYT. When
implementing the formulae, all cross-sectional properties are in mm/mm2/mm3/mm4,
and the span is given in m. The yield strength is provided in MPa and the Young’s modulus
in GPa.
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d = −2.9147× 10−8E− 08× Ixx + 6.085× 10−6 × Iyy + 7.153× J + 8.6563×
10−1 × h− 6.7409× 10−1 × b− 4.496× 10−2 × A + 1.1562× 101 × L− 1.1261× R+

5.1585× 10−2 × fy − 6.87948× 10−2E
(3)

d = −1.10850× 10−2 × h× L + 5.54753× L2 − 2.59341× 10−2 × b× L2+
8.71342× 10−1 × L + 4.36940× 10−1 × R− 3.72902× 10−4 × b2 + 7.64167×
10−5 × h× R2 + 4.14113× 10−7 × h× A× L + 1.20492× 10−1 × R2−
2.10080× 10−9 × J × L× fy + 2.36217× 10−8 × A2 × R + 8.06401× 10−3 × b× L×
R− 3.01987× 10−5 × A× L× R− 1.61891× L× R− 2.78160× 10−2 × L3−
3.98564× 10−4 × R3 − 4.35591× 10−9 × b× A2 − 6.98688× 10−4 × b× R2+
4.76077× 10−3 × L× R2 + 9.28207× 10−12 × Iyy × b× fy − 2.05690× 10−7 × A×
R× fy + 2.68695× 10−7 × h3 + 1.26135× 10−10 × Iyy × R2 + 2.50786× 10−5 × R2×
fy + 8.68248× 10−4 × L2 × fy + 6.78638× 10−11 × Iy × R× fy − 1.03722× 10−6×
h× b× fy + 1.76647× 10−5 × h× b× R− 3.55305× 10−7 × A× E2−
9.13425× 10−7 × h× fy

2 + 1.87704× 10−7 × h× A× E− 8.00661× 10−7 × h× A×
R + 4.02981× 10−6 × h× fy × E− 2.62557× 10−4 × L× R× fy − 1.01188× 10−2×
L2 + 1.18944× 10−6 × J × L2 − 7.59868× 10−10 × Iyy × L× E

(4)

Visually, it was difficult to discern which ML algorithm performed the best. Therefore,
as previously mentioned, numerous error metrics were used to measure the performance of
the various algorithms. Table 4 summarises the results. As can be seen, XGBoost-HYT-CV
was the most accurate proposed model when looking at the training dataset, whereas when
comparing the error metrics obtained from the testing dataset, that was not the case. The
DANN-MPIH-HYT proposed predictive model was found to be slightly more accurate. It
should also be noted that, even though DANN-MPIH-HYT was the most accurate in the
testing phase, this algorithm did require the longest computation time (27 times slower).

Table 4. Comparison of the ML algorithms trained on the deflection dataset.

Model Dataset R MAPE MAMPE MAE RMSE Computation
Time (s)

LR Train 0.8934 225.93% 45.08% 17.6614 25.6709 0.0013

POLYREG-
HYT Train 0.9874 69.91% 13.90% 5.4447 9.0447 10.91

DANN-
MPIH-HYT Train 0.9950 39.64% 7.59% 2.9731 5.7272 2019.76

XGBoost-
HYT-CV Train 0.9968 22.97% 5.92% 2.3199 4.5566 75.27

LR Test 0.9064 168.22% 39.74% 17.1810 24.4716 0.00

POLYREG-
HYT Test 0.9905 70.38% 12.49% 5.3997 7.9865 0.00

DANN-
MPIH-HYT Test 0.9950 35.82% 8.04% 3.4776 5.8759 0.0004

XGBoost-
HYT-CV Test 0.9922 23.89% 8.44% 3.6504 7.2498 0.0033

Ultimately, it was apparent that accurate formulae can be created using ML algo-
rithms. A later section of this paper compares these results with out-of-sample data, further
validating the proposed predictive models’ ability to capture unknown results.

Sensitivity analyses were conducted on each of the independent variables to determine
which variable affected the dependent variable the most. This will assist future studies
in determining which variables to exclude in order to increase efficiency in the proposed
predictive models. This analysis also provides engineers with a deeper understanding of
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the behaviour of horizontally curved steel I-beams. Figure 22 summarises the findings of
the sensitivity analysis. As can be seen, the three most influential variables on midspan
vertical deflection were the curved length (L), the moment of inertia around the minor axis
(Iyy), and the radius of curvature (R). L was by far the most influential variable, according
to the obtained results. The cross-section area, cross-section width, and cross-section height
had practically no impact on the midspan deflection, according to the sensitivity analysis
performed for the needs of this research work related to the beam deflection.
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Figure 22. Summary of sensitivity analysis findings (XGBoost-HYT-CV).

It is important to show here that the predictive models did not overfit and that the
solution obtained through the ML analysis led to an objective predictive model that did not
overfit. In addition to the validation presented in Section 8, Figure 23 shows the tuned cross-
validation histories for the DANN-MPIH-HYT and the XGBoost-HYT-CV ML algorithms.
It was evident that the algorithms were able to derive models that were optimised through
the training and testing procedure.
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Figure 23. Case of deflection. Tuned cross-validation history for the case of (a) DANN-MPIH-HYT
and (b) XGBoost-HYT-CV.

7.2. Proposed Predictive Models for the Case of Failure Load

This section outlines the failure load predictions provided by the various ML algo-
rithms. An analysis was conducted to determine the performance of the various pro-
posed predictive models. The correlation for the train and test datasets can be seen in
Figures 24–27.
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Figure 24. Correlation between the failure load determined using FEM and the failure load esti-
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Figure 25. Correlation between the failure load determined using FEM and the failure load esti-
mated using POLYREG-HYT (a) on the training dataset (b) on the testing dataset. 

Figure 24. Correlation between the failure load determined using FEM and the failure load estimated
using LR (a) on the training dataset (b) on the testing dataset.
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Figure 24. Correlation between the failure load determined using FEM and the failure load esti-
mated using LR (a) on the training dataset (b) on the testing dataset. 
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mated using POLYREG-HYT (a) on the training dataset (b) on the testing dataset. 
Figure 25. Correlation between the failure load determined using FEM and the failure load estimated
using POLYREG-HYT (a) on the training dataset (b) on the testing dataset.
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(Ixx), the curved length (L), and the radius of curvature (R). Ixx was by far the most influen-
tial variable, due to the fact that as the stiffness of the beam in bending increased, a larger 
load was required to reach failure. The cross-sectional area (A), flange width (b), cross-
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As stated previously, it was necessary to use error metrics to determine which ML
algorithm performed the best. Therefore, a summary of error metrics can be seen in Table 5.
As can be seen, the proposed XGBoost-HYT-CV model was the most accurate when looking
at the training and testing datasets. This indicates the fact that no ML algorithm was
capable of providing accurate results for all datasets, and different algorithms were used in
allocating the best fit to a specific dataset.

Table 5. Comparison of the ML algorithms trained on the failure load dataset.

Model Dataset R MAPE MAMPE MAE RMSE Computation
Time (s)

LR Train 0.8939 53.64% 27.45% 54.597 76.468 0.001

POLYREG-
HYT Train 0.9369 28.10% 19.26% 38.308 59.633 11.09

DANN-
MPIH-HYT Train 0.9811 10.29% 8.90% 17.693 34.055 2014.47

XGBoost-
HYT-CV Train 1.0000 0.00% 0.00% 0.0025 0.0041 75.07

LR Test 0.8909 46.06% 27.56% 49.658 67.978 0.00

POLYREG-
HYT Test 0.9412 29.15% 20.86% 37.593 50.776 0.00

DANN-
MPIH-HYT Test 0.9791 10.59% 10.12% 18.241 32.1723 0.0008

XGBoost-
HYT-CV Test 0.9978 3.79% 2.61% 4.694 10.225 0.003

For the cases of the closed-form solutions, Equation (5) shows the formula generated
with LR, and Equation (6) provides the proposed predictive formula generated through the
POLYREG-HYT ML algorithm:

L f = 2.0577× 10−6 × Ixx − 1.5497× 10−4 × Iyy + 7.7002× 10−4 × J + 1.9789× h−
8.2286× b + 2.1078× 10−1 × A− 2.0335× 101 × L + 2.5421× 10−1 × R+
5.8542× 10−1 × fy − 9.3538× 10−2 × E

(5)
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L f = 1.2526× 10−3 × L× R2 − 2.153× 10−4 × Iyy − 1.455× 10−3 × b× A
+1.8898× 10−5 × h× L× E− 1.2804× 10−9 × Ixx × h× L
−7.8792× 10−5 × h× R2 + 1.1314× 10−11 × Ixx × h× R
+6.9077× 10−3 × L× fy − 1.9573× 10−3 × R× fy
+1.6174× 10−8 × Iyy × L2 + 2.9069× 10−11 × Iyy × A× fy
+2.2861× 10−9 × Iyy × A× L− 2.2406× 10−9 × Ixx × b× L
+3.1524× 10−8 × J × h× fy + 3.8102× 10−4 × h× b2

+8.3911× 10−5 × b× R× E− 2.3274× 10−6 × J × b
−1.1303× 10−2 × A× L− 6.1153× 10−10 × Iyy × R× E
−4.5723× 10−4 × b× L× fy − 1.7705× 10−11 × J2 × fy
+2.7631× 10−3 × f 2

y − 6.0399× 10−6 ∗ f 3
y + 7.0583× 10−5 × J × L

+1.36958× 10−10 × Ixx × A− 2.8373× 10−9 × J × R× E

(6)

Sensitivity analyses were also conducted on the failure load dataset. A graphical
summary of the findings can be seen in Figure 28. As can be seen, the three most influential
variables on the midspan failure load were the moment of inertia around the major axis (Ixx),
the curved length (L), and the radius of curvature (R). Ixx was by far the most influential
variable, due to the fact that as the stiffness of the beam in bending increased, a larger load
was required to reach failure. The cross-sectional area (A), flange width (b), cross-sectional
height (h), polar moment of inertia (J), and moment of inertia around the minor axis (Iyy) had
practically no impact on the failure load according to the XGBoost-HYT-CV ML algorithm.
These findings can be used to create an improved, simpler dataset in the future.
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Figure 28. Results of sensitivity analysis (XGBoost-HYT-CV).

Before moving to the validation section presented next, Figure 29 shows the tuned
cross-validation history for the case of the DANN-MPIH-HYT and XGBoost-HYT-CV algo-
rithms resulting from the analysis. Once more, it is easy to observe the numerical response
of the two histories that converge to R2 = 1.0, which represents maximum data correlation.
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8. Validation

This section outlines the process of validation that was performed through the use
of out-of-sample FE models. The validation aimed to evaluate the proposed predictive
models’ abilities to capture data that were not used during training or testing. It must
be noted here that the ML algorithms were trained on IPE sections (IPE 100, IPE 200, IPE
300, IPE 400, IPE 500, and IPE 600) of various geometries. For validation purposes, it was
decided to use sections as per the South African Steel Construction Handbook (SASCH). The
sections considered were 203 × 133 × 25, 305 × 165 × 40, and 457 × 191 × 67. Therefore,
the proposed predictive models had never been exposed to this type of sectional geometry.
Additionally, out-of-sample R/L ratios of 2.5 and 5 were considered and the overall span
of the section varied depending on the section depth. Out-of-sample yield strengths of
285 MPa and 325 MPa were considered and the Young’s modulus values considered were
195 GPa and 205 GPa. This led to a total of 48 out-of-sample beams being created for
validation purposes. The descriptive statistics relating to the new validation dataset can be
seen in Table 6.

Table 6. Validation models descriptive statistics.

Mean Median Std Min Max Skewness Kurtosis

Ixx (mm4) 134,333,333 85,500,000 116,928,298 23,500,000 294,000,000 0.58 −1.53

Iyy (mm4) 8,416,667 7,660,000 4,738,358 3,090,000 14,500,000 0.25 −1.53

J (mm4) 194,667 149,000 134,794 59,000 376,000 0.49 −1.53

h (mm) 320.20 303.8 103.97 203.2 453.60 0.24 −1.53

b (mm) 162.8 165.1 23.37 133.4 189.90 −0.15 −1.53

A (mm2) 5643.33 516 2225.95 3220 8550 0.33 −1.53

L (m) 9.17 8.5 5 3 18 0.56 −0.75

R (m) 34.38 27.5 22.9 7.5 90 1.11 0.69

fy (MPa) 305 305 20.21 285 325 0.00 −2.09

E (GPa) 200 200 5.05 195 205 0.00 −2.09

8.1. Validation of Deflection ML Results

The proposed predictive models that were developed to estimate the deflection of the
beams were used to predict the deflections of the out-of-sample data. This section focuses
only on the two algorithms, namely, DANN-MPIH-HYT and XGBoost-HYT-CV, that were
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found to outperform the rest of the ML-generated predictive models. Correlation plots of
the two ML models can be seen in Figures 30 and 31. These results were compared with
the current analytical method, Castigliano’s second theorem. The graph showcasing the
correlation of Castigliano’s second theorem can be seen in Figure 32.
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using DANN-MPIH-HYT on the validation dataset.
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Figure 32. Correlation between the deflection determined using FEM and the deflection estimated
using Castigliano’s theorem on the validation dataset.
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A summary of the error metrics of all ML algorithms can be seen in Table 7. As can be
seen, the DANN-MPIH-HYT algorithm outperformed all ML algorithms and the currently
used analytical formula. The POLYREG-HYT formula performed the worst. This poor
performance was attributed to over-fitting, as the LR formula was quite accurate. It should
be noted that even though these results were verified using FEM models, the FE modelling
technique used was experimentally verified using an experimental beam where the error
experienced was negligible.

Table 7. Summary of the error metrics on the validation dataset (case of deflection).

Algorithm R MAPE MAMPE MAE RMSE

LR 0.9267 82.37% 51.84% 20.471 24.426

POLYREG-HYT 0.5174 122.73% 131.81% 52.047 72.419

DANN-MPIH-HYT 0.988 19.08% 16.19% 6.393 8.389

XGBoost-HYT-CV 0.7007 68.37% 42.40% 16.744 21.509

Castigliano 0.6781 155.42% 126.23% 49.842 65.574

8.2. Validation of Failure Load ML Results

The proposed predictive models previously discussed were used to predict the failure
load of the out-of-sample data. This section outlines the findings. No analytical formulae
are discussed in this section, as the focus of this article is more on deflection estimation and
not failure mode investigation. Due to the complexities associated with the failure modes of
horizontally curved beams, numerous equations were consulted, and their inclusion would
overwhelm the article. The focus herein is on DANN-MPIH-HYT and XGBoost-HYT-CV
since they were found to outperform the other predictive models. Correlation plots can be
seen in Figures 33 and 34.

The results paint a different picture from what was seen during training and testing.
The XGBoost-HYT-CV did not seem to achieve better results than those generated with the
DANN-MPIH-HYT algorithm; however, a closer look at the error metrics was required. A
summary of the error metrics can be seen in Table 8.
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Table 8. Summary of error metrics on the validation dataset (case of failure load).

Algorithm R MAPE MAMPE MAE RMSE

LR 0.1440 478.86% 403.82% 548.0527 560.4963

POLYREG-HYT 0.2843 539.71% 500.12% 678.7503 885.5885

DANN-MPIH-HYT 0.9235 23.22% 22.42% 30.4302 38.4831

XGBoost-HYT-CV 0.7914 26.42% 26.87% 36.4645 42.9955

As can be seen, the correlation was significantly worse and all the error metrics
showed that the predictions provided through the XGBoost-HYT-CV were less accurate
than the predictions provided through the DANN-MPIH-HYT algorithm. This is the same
phenomenon as was experienced in the deflection dataset where the DANN-MPIH-HYT
algorithm performed better with the out-of-sample data compared with all the other ML
algorithms. Therefore, the extended duration required to train the DANN-MPIH-HYT
algorithm can be said to translate to improved accuracy during validation.

9. Conclusions and Recommendations

This study showed that FE modelling was able to replicate the experimental results
acquired with horizontally curved steel I-beams. For the needs of this research work, an
experiment was performed that involved the loading of an IPE100 curved steel I-beam
under a vertical load. The experimental data obtained were then used to validate numerical
models through the use of CivilFEM software. The usage of quadratic solid FEs with
a hexahedral mesh size of 50 mm as well as appropriate material constitutive models
paired with nonlinear analyses led to the most accurate results when compared with the
experimental data.

A parametric investigation was conducted in which it was noted that the FE modelling
technique outlined in this research work was capable of accurately estimating the midspan
deflection and rotation of horizontally curved steel I-beams. The MAE was noted to be 3.32%
when estimating deflection and 9.17% when estimating rotation, which far outperformed
analytical methods, which had an error of 19.80% when estimating deflection and 16.07%
when estimating rotation.

The experimentally validated model was then used to develop numerous FE meshes
that were analysed under ultimate limit state loading conditions. The numerically obtained
results were used to develop a large dataset. A total of 864 models were created that
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encompassed the entire IPE cross-section list (IPE100 to IPE600). A total of 10 independent
variables were considered in this study.

Numerous ML algorithms were used, namely, LR, POLYREG-HYT, DANN-MPIH-
HYT, and XGBoost-HYT-CV, for developing the proposed predictive models. During the
validation phase, experimentally validated FE models that were outside the training dataset
were created to validate the various proposed predictive models proposed in this research
work. To further evaluate the accuracy of the available analytical methods for computing
the deflection and ultimate load of curved steel I-beams, the validation data were used
to assess Castilgiano’s analytical formulae as well. According to the numerical findings,
the DANN-MPIH-HYT algorithm was the most accurate in estimating both deflection
and failure load. When estimating deflection, the DANN-MPIH-HYT proposed predictive
model had a MAMPE of 16.19%. This was found to be a significant improvement compared
with the analytical method, Castigliano’s second theorem, which derived an extremely
large MAMPE of 126.23%, highlighting the need for more accurate and objective predictive
models. It is also safe to conclude that based on the findings of this dissertation, the
proposed ML-generated predictive models are far more accurate than the current analytical
methods for estimating the deflection of curved steel I-beams.

In addition to the above, when estimating the failure load of curved steel I-beams,
the DANN-MPIH-HYT generated model was found to be significantly more accurate than
the other proposed models. This is most likely to be due to the complexities associated
with horizontally curved steel I-beams and the nature of the datasets. Horizontally curved
steel I-beams have various failure modes, given that they can fail due to flexure, torsion,
shear, or a combination of these. The beams may also fail due to lateral torsional buckling.
Therefore, a larger dataset is required for the ML algorithms to derive the patterns that
are connected to the failure modes of the beams. At this stage, the international literature
includes numerous equations for each of the failure modes. Therefore, there is no individual
formula to compare the estimates with. It is believed that the DANN-MPIH-HYT algorithm,
which resulted in a MAMPE of 22.42%, can be further improved in the future by either
increasing the dataset or providing different formulae for the different failure modes, as is
currently the case in all design codes.

Finally, this research study is able to propose, for the first time in the international
literature, accurate and objective predictive models that outperform any known formula
used to compute the deflection of curved steel I-beams and their ultimate capacity. The
largest datasets currently available in the international literature were also developed for
the training and testing of the proposed predictive models. This pilot project paves the way
for the development of future design formulae that can be more accurately applied to a
larger range of beams for different boundary conditions.

This research was limited to evaluating the feasibility of using FE models to estimate
the midspan deflection and failure load of horizontally curved steel I-beams with a single
point load at midspan and fully fixed at both ends. The development of the datasets
foresaw the use of minimum and maximum geometrical features. Therefore, the proposed
predictive models should not be used for beams with dimensions that are larger or smaller
than the respective maximum and minimum geometrical values of the beams found in the
datasets developed herein. Furthermore, recommendations for future work should include
the following:

• Perform more experiments on curved steel I-beams to further validate the proposed
predictive models;

• Consider various boundary conditions, such as torsionally pinned beams, and deter-
mine the influence this has on deflection, failure load, rotation, and stress distribution.
In theory, this should not significantly impact the failure load. However, this is
expected to have a drastic impact on the stress distribution and rotation of the section;

• Consider various loading conditions, such as uniformly distributed loads;
• Consider the impact residual stresses have on stress distribution and investigate

whether this has an impact on deflection and failure loads. Residual stresses are far
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greater in horizontally curved steel I-beams compared with straight beams, due to the
initial cold-forming process. Therefore, residual stresses vary depending on the R/L
ratio at hand. Currently, there is no formula available in the international literature
that allows accounting for how the residual stresses vary throughout the length of the
beam and within the cross-section. Therefore, a detailed investigation is required.

• Develop an accurate formula to determine the midspan rotation of horizontally curved
steel I-beams using a relevant dataset.
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