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Abstract: Early detection of plant nutrient deficiency is crucial for agricultural productivity. This
study investigated the performance and interpretability of Convolutional Neural Networks (CNNs)
for this task. Using the rice and banana datasets, we compared three CNN architectures (CNN, VGG-
16, Inception-V3). Inception-V3 achieved the highest accuracy (93% for rice and banana), but simpler
models such as VGG-16 might be easier to understand. To address this trade-off, we employed
Explainable AI (XAI) techniques (SHAP and Grad-CAM) to gain insights into model decision-making.
This study emphasises the importance of both accuracy and interpretability in agricultural AI and
demonstrates the value of XAI for building trust in these models.

Keywords: machine learning; deep learning; convolutional neural network; plant nutrient deficiency;
explainable artificial intelligence

1. Introduction

As the global population continues to grow, being projected to reach 8.5 billion ac-
cording to a 2030 report by The United Nations Food and Agriculture Organization (FAO)
projects [1], ensuring food security becomes a pressing challenge. Effective farming tech-
niques, including the timely identification of plant nutrient deficiencies, play a crucial role
in preventing crop diseases and significant financial losses [2]. Crop yields can be signifi-
cantly impacted by factors such as temperature, nutrients, water, and other environmental
factors [3]. A plant’s lifecycle is greatly influenced by nutrients, which play a crucial role in
determining factors such as plant quality and productivity. The authors in [4] state that
plants require seventeen vital mineral elements to complete their lifecycle.

In general, macronutrients such as Magnesium (Mg), Phosphorus (P), and Nitrogen (N)
are required in higher concentrations than micronutrients such as Manganese (Mn) and Zinc
(Zn) [5]. Nitrogen (N), a key nutrient, not only speeds up crop growth but also improves
the quality of crops [6]. Plants facing abiotic stresses such as heat, salinity, drought, and
waterlogging benefit from adequate phosphorus, as it plays a critical role in regulating
their physiological responses. However, the lack of such nutrients harms the plant, leading
to yield loss for farmers [7]. According to [8], the conventional methods that rely on
visual inspection by agriculture specialists for plant nutrient deficiency identification are
time-consuming and labour-intensive. The agriculture industry has increasingly adopted
machine learning (ML) and Artificial Intelligence (AI) to enhance the efficiency and accuracy
of plant health diagnosis. Moreover, [9] states that because of its enormous economic
potential, the use of deep learning (DL) in agriculture encompasses the identification
of plant diseases, managing crops, and predicting crop yield. According to [10], the
effectiveness of DL, particularly Convolutional Neural Networks (CNN), has undoubtedly
revolutionised our ability to classify images. CNN has a distinct edge because it can
learn from the local and global features of the input image through training. In the
field of computer vision (CV), CNNs excel at various tasks, such as object detection,
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image classification, and image segmentation [11]. This includes detecting plant diseases,
predicting crop yields, plant classification, and precision farming [12–15].

Ref. [16] stated that CNN surpasses conventional ML algorithms in carrying out
thorough image classification. Because CNNs learn from end to end, they are effective
tools for learning from a vast body of visual data. However, the learning strategy renders
CNNs as a “black box” which is challenging for humans to understand. Additionally, they
do not explain how they came to their predictions. Their lack of interpretability hinders
their practical application in the field. In response to the nature of “black box” models,
Explainable Artificial Intelligence (XAI) has become a topic of interest. According to [17],
XAI helps to visualise, explain, and interpret the inner workings of DL or ML models.
XAI methods aid in increasing the ML model’s transparency and trustworthiness. In this
study, we conducted experiments using two publicly available plant nutrient deficiency
image datasets and analysed the performance and interpretability of three CNN-based
architectures.

The contributions of this paper are the following:

• Compared to previous studies, it presents an integrated approach that considers both
the performance and explainability of CNN architectures when used for plant nutrient
deficiency identification.

• As a first attempt, it focuses on comparing the explainability of two prominent XAI
techniques, GRAD-CAM, and Shapley Additive exPlanations (SHAP) when used for
plant nutrient deficiency identification.

The structure of the remaining parts of this paper is described as follows. Section 2
provides an overview of relevant theoretical aspects and a review of related work on CNN-
based approaches that have been used for plant nutrient deficiency identification. Section 3
describes the methodology of this study, while Section 4 presents the results obtained from
experiments with the three CNN-based architectures. The discussion of results is presented
in Section 5, while the paper is concluded in Section 6 with a summary, and our perspective
on the future investigation.

2. Background and Related Work

In this section, we present a theoretical background to the study by touching on
the aspects of plant nutrient deficiency, the selected CNN architectures, and Explainable
AI methods.

2.1. Plant Nutrient Deficiency

According to [18], nutrient deficiencies occur when an important nutrient is not present
in sufficient quantities to meet the needs of growing plants. For instance, insufficient Nitro-
gen (N) in plants can have several detrimental effects on their growth and development [19].
Similarly, the lack of Phosphorus (P) is another nutritional factor that limits agricultural
production worldwide [20]. These deficiencies can arise from various factors such as soil
conditions, inadequate fertilisation, soil pH, and other environmental conditions [21–24]. If
the soil’s acidity or alkalinity is off balance (pH) plants cannot absorb the nutrients they
need, which hurts their growth [25]. Additionally, improper fertilisation practices, either
under-application or imbalanced nutrient rations, can lead to deficiencies [21]. The most
important step in diagnosing a nutria deficiency is identifying the location and pattern of
the symptoms on the plant. This is because different deficiencies often manifest in different
ways. For example, chlorosis, a condition characterised by the yellowing of leaf tissue due
to the lack of chlorophyll, often affects plants that lack Nitrogen, Sulfur, or copper (Cu) [26].
Similarly, a deficiency in Phosphorus, Potassium, or Boron can cause dead plant tissue, a
condition known as necrosis, which appears as brown spots on the tips or between the
veins of leaves [26].

In [27], the authors state that there are three methods of analysing deficiencies: visual
observation, plant analysis, and soil analysis. Using information from the leaf, the agri-
culturist primarily assesses the state of the plant’s nutrition. The human eye often cannot
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detect these nutrient deficiencies until the plant has already suffered damage. Because of
this, technology development is essential to help farmers and crop specialists spot these
shortcomings at an early stage.

2.2. Convolutional Neural Network

CNN is one of the various DL algorithms and is a unique form of a multilayer neural
network [28]. The algorithm is among the most important ones in computer vision. Accord-
ing to Wang [29], the three concepts that make up CNN architectures are local receptive
field, shared weights, and spatial subsampling. CNNs recognise visual patterns from
images with minimal processing. When it comes to different visual problems, CNN has
been utilised successfully [30]. CNN is composed of distinct layers such as convolutional,
pooling, and fully connected layers [31]. The most important element is the convolutional
layer. Convolution is used to condense images into a format that is simpler for the computer
to handle while simultaneously ensuring that no essential elements are lost for accurate
prediction. A significant benefit of incorporating pooling layers in a CNN is that they aid
in lowering the network’s computational complexity.

2.3. VGG16 Architecture

Simonyan and Zisserman from Oxford University proposed the use of VGGNet [32].
Even though VGGNet came in second place instead of winning, it was the runner-up in the
classification task of the ILSVRC (ImageNet Large Scale Visual Recognition Competition)
in 2014. The model attained an accuracy of 92.7% in the top-five test by utilising ImageNet.
It is one of the popular CNN architectures because it uses small-sized filters [28]. This type
of model is known for being easy to use and highly effective. It consists of 13 convolutional
layers with a filter size of 3 × 3, 3 dense layers with 4096 neurons in each layer, and five
pooling layers. According to Khan et al. [33], it is advantageous to increase the depth
of neural networks to enhance the network’s final performance. To decrease the spatial
dimension, each convolution is followed by a rectified linear unit (ReLU) action, and each
block is finished with a max pooling operation [34]. Nevertheless, the model comes with a
disadvantage in that it requires a greater expense for evaluation and a substantial amount
of memory and parameters [34].

2.4. Inception-V3 Architecture

The InceptionV3 architecture is a CNN with several layers that were trained on
ImageNet by Google researchers. Its introduction was made through a paper published
by Szegedy et al. [35] called “Rethinking the Inception Architecture for Computer Vision”.
The InceptionV3 model is built upon the Inception architecture, which was developed to
address the issue of the increasing depth of CNNs leading to higher computational cost and
decreased efficiency [36]. The Inception architecture introduces the concept of modules,
which are collections of convolutional and pooling layers that operate on different scales
and at different resolutions [33]. This allows the model to learn features at multiple scales,
reducing the number of parameters and computational costs while improving performance.

2.5. Explainable Artificial Intelligence

Understanding how AI approaches are used to provide such outcomes is necessary
when decisions made automatically have an impact on people [37]. Explainable AI is a
method and technique that provides humans with understandable results/output that
they can trust [38]. The black-box nature of the algorithm has highlighted the need for
explainable AI. The various types of explanation models include global methods, local
methods, and introspective methods. Global methods help in understating how a model
makes decisions for the overall structure. Additionally, we can explain the model’s entire
behaviour. Local techniques, on the other hand, aid in comprehending how the model
makes decisions for a particular instance.
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2.5.1. Shapley Additive exPlanations (SHAP)

SHAP uses a feature-relevant explanation approach. An ML model may be under-
stood and explained using it. There are various advanced ML techniques, specifically DL
architectures, which possess the unique characteristics of being opaque. The foundation of
SHAP values is Shapley values, a notion borrowed from [39] game theory. Shapley values
are utilised by SHAP to provide an interpretation and provide an explanation for any given
ML model [40].

Additionally, Lundberg and Lee [41] demonstrated that Shapley values are the only
approach to determine the relevance of a feature while preserving two crucial characteristics,
local accuracy, and consistency.

• Local accuracy: at a minimum, the explanation model must reproduce the results of
the original model [42]

f(x) = g
(
z′
)
= ∅0 + ∑M

j=1 ∅jZ′
j (1)

where g(Z′) is the explanation model and matches the original model f(x) when x = hx(x′) [24].

• Consistency: Regardless of other features, the significance of a feature should not
decrease if we change a model so that it depends more on that feature [42].

Let fx(z
′) = f(hx(z′)) and z′\i denote setting z′i = 0

For any two models f and f′, if

f ′x
(
z′
)
− f ′x

(
z′\i

)
≥ fx

(
z′
)
− fx

(
z′\i

)
(2)

For all inputs z′ ∈ {0, 1}M, then ∅i
(
f′, x

)
≥ ∅i(f, x) [41].

2.5.2. Gradient-Weighted Class Activation Mapping (Grad-CAM)

To enhance the transparency of decisions made by CNN-based models, Selvaraju [43]
introduced a method called Gradient-weighted Class Activation Mapping (Grad-CAM)
for presenting a “visual explanations” heatmap to understand the decisions made by these
models. The fundamental motivation for the creation of Grad-CAM is to leverage the
information contained in the convolutional layer to identify the significant parts of image
classification. According to Panesar [44], Grad-CAM combines feature maps using gradi-
ents such that the original network does not need to be changed. This method highlights
the areas of the input image that the model focuses on during the classification process.

2.6. Related Work

Previously, some attempts that focus on the identification of plant nutrient deficiency
using CNN have been reported in the literature. We present the most recent approaches as
follows. Xu et al. [45] examined the precision of various DCNNs in identifying nutrient
insufficiencies in rice and attained a 97.44% accuracy rate. Another vision-based monitoring
system was proposed by Tran et al. [46], who carried out research that involved the
comparison of two deep CNN models regarding their capability to predict and categorise
three nutrient deficiencies. The accuracy of Inception-ResNet v2 and Autoencoder reached
87.273% and 79.091%, respectively, with the validity of the ensemble averaging being 91%.
Talukder and Sarkar [5] suggested a Deep Ensemble CNN for detecting nutrient deficiency
in rice. They also employed pre-trained models such as InceptionV3. The model they
proposed accomplished an accurate rate of 98.33%. Ibrahim et al. [47] used CNN for palm
leaf nutrient deficiency. The dataset utilised by the study consists of 350 photos of healthy
leaves with different forms of palm leaf nutrient deficiencies. A confusion matrix was
employed to assess performance. The overall mean percentages were 94.29% for accuracy,
80% for sensitivity, and 96.67% for specification.

To evaluate the nitrogen content of wheat, ref. [40] suggested using machine learning
and XAI. Six ML regression models were utilised by the author to forecast the nitrogen of
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wheat. The gradient-boosting regression and random forest combination outperformed the
(R2 > 0.85) previous combinations. To provide local and global explanations, SHAP values
were used.

Compared to previous studies, our study provides a more comprehensive analysis of
plant nutrient deficiency by looking at two different plants (Rice and Banana) instead of one.
Additionally, most of the previous research assesses the accuracy of the DL models, but
they do not consider the explainability of the models as highlighted in Table 1. Therefore,
an integrated approach that considers both performance and explainability is lacking in
the existing body of work. This study seeks to fill the gap by comparing the explainability
of two prominent XAI techniques: GRAD-CAM and SHAP.

Table 1. Summary of related work.

Title Nutrient(s)/
Disease(s) Plant Type

The Algorithm
and Classifier

Used

Findings
(Accuracy)

XAI
Technique

Ibrahim et al. [47]

Nitrogen,
Potassium,

Magnesium, Boron,
Zinc and

Manganese

Palm leaves CNN CNN:
94.2% None

Talukder et al. [5]
Nitrogen,

Phosphorus, and
Potassium

Rice

InceptionV3, Incep-
tionResNetV2,
DenseNet121,

DenseNet201, &
DenseNet169

DenseNet169:
96.6% None

Xu et al. [45]

Nitrogen,
manganese,

calcium,
magnesium,
potassium,

phosphorus, zinc,
iron, and Sulfur

Rice

DCNN: Dense Net,
ResNet,

Inception-v3, and
NasNet-large

DenseNet121:
97.44% None

Singh et al. [40] Nitrogen Wheat
Six regression
models (i.e.,

Random Forest)

Random
Forest:

R2 = 0.89
SHAP

Our study
Nitrogen,

Phosphorus, and
Potassium

Rice, Banana CNN, VGG-16,
Inception-V3

Inception-V3:
Rice = 93%

Banana = 92%

SHAP,
Grad-CAM

3. Methods

An overview of the framework used in this study is presented in Figure 1. It comprises
two major phases: data preprocessing and the implementation of the interpretable DL
models. The subsequent subsections delve into the specifics of each of these stages.
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Figure 1. A general framework of the study.

3.1. Data Acquisition

For this study, two datasets were used. The rice dataset containing 1156 images of
rice was collected from Kaggle [48]. The dataset contains three distinct types of nutrient
deficiency, Potassium (K), Nitrogen (N), and Phosphorus (P). The images have a resolution
of 500 × 375 pixels. The second dataset (banana dataset) is available in [49], and consists
of various banana types, including Robusta, Poovan, and Monthan. The dataset contains
three classes: calcium, iron, and healthy leaves. The images have a resolution of 256 × 256,
and the background was set to black so that ML algorithms obtained uniform images to
train the model.

3.2. Image Pre-Processing

Images need to be pre-processed before being used for model training and testing [50].
Images may be pre-processed using a variety of images, for example, scaling images,
making them grayscale, and enhancing images. To perform pre-processing, we used a
technique called data augmentation. According to [50], data augmentation is a method
utilised in ML to enlarge the training dataset’s volume by implementing different modifica-
tions to the original images. This includes a function for random cropping, which takes a
random section of the image and resizes it to the specified size. All images are resized to
a uniform size (150 × 150). Another function was used to apply random rotations to the
image, ranging from −20 to 20 degrees. This helps the model learn features that are robust
to slight variations in the orientation of the objects. Additionally, images are randomly
flipped horizontally. This helps the model learn features that are independent of the object’s
orientation on the left or right side of the image.
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3.3. Data Training

For this study, Python (version 3.9.19) on Google Collab was used to perform the ex-
perimentation. The following is a discussion of the software environment, which comprises
frameworks and the main Python libraries that we employed in the experimental process
including TensorFlow, Pandas, and NumPy.

Model Architectures

The study implemented three well-known DL models, namely a baseline CNN and two
pre-trained models, for the identification of plant disease and nutrient deficiency. Table 2
contains the parameter settings. During training, the models were trained using 32 batch sizes,
and the number of epochs used was 30. The learning process was initiated with an initial
learning rate of 0.001 and the Adam optimiser was utilised for efficient weight updates. The
models were trained using the categorical cross-entropy loss function, which is well-suited for
multi-class classification tasks. Two callbacks were used in the model’s training and validation
processes. Monitoring the validation loss and decreasing the learning rate by a factor of 0.5
were carried out using the first callback. A categorical cross-entropy loss was used, which
measures the difference between the predicted probability distribution and the true labels for
multi-class classification problems. To stop early, a second callback was used. Both callbacks
were applied to prevent the model from over-fitting.

Table 2. Parameter settings used for training.

Parameter Settings

Cross-validation k-fold (k = 10)

Epochs 30

Batch Size 32

Early Stopping Patience = 10

Initial learning rate 0.001

Optimiser Adam

Loss Categorical Cross-entropy

3.4. Evaluation Metrics

The evaluation of the performance of the CNN models was carried out by using
standard metrics for classification: accuracy, precision, recall, and F1 score, which are
defined by [16] in terms of the number of fp—false positives; tp—true positives; tn—true
negatives; and fn—false negatives as follows:

Accuracy = (TP + TN)/(P + N) (3)

Precision = TP/(TP + FP) (4)

Recall = TP/(TP + FN) (5)

F1-Score = 2 × (Precision × Recall)/(Precision + Recall)) (6)

4. Results

The section analyses the performance of three image classification models on two
separate datasets (rice and banana). Table 3 shows that all three models achieved strong
performance on the rice dataset, with similar scores across all metrics. Inception-V3 and
VGG-16 achieved the highest scores, reaching 93% accuracy for all evaluation categories.
The trend of Inception-V3 dominance continued with the banana dataset. It achieved the
highest scores (92%) in all evaluation metrics. VGG-16 (82%) outperformed the CNN model
(68%), suggesting its potential as an alternative choice. Figure 2 shows that, across all
datasets, Inception-V3 consistently achieved the best performance, solidifying its superior-
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ity for image classification tasks on these specific datasets. VGG-16 presented itself as a
competitive alternative, particularly for the rice dataset. The CNN model, while functional,
yielded the lowest scores in all categories. Based on the results, Inception-V3 stands out as
the most effective model for image classification tasks across the rice and banana datasets,
as shown in Figure 2. Its consistently high performance in accuracy, precision, recall, and
F1-score suggests its suitability for these specific image classification problems. While
VGG-16 presents a viable alternative, further investigation might be necessary depending
on the specific application and dataset characteristics.

Table 3. Model performance across all datasets.

Dataset Classifiers Accuracy Precision Recall F1-Score AUC

Rice

CNN 84% 84% 84% 84% 93%

VGG-16 93% 93% 93% 93% 98%

Inception-V3 93% 93% 93% 93% 98%

Banana

CNN 68% 68% 68% 68% 85%

VGG-16 82% 81% 82% 81% 92%

Inception-V3 92% 92% 92% 92% 97%
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4.1. Confusion Matrix

A helpful instrument for assessing the effectiveness of ML models is the confusion
matrix. It provides a detailed breakdown of how many instances were classified correctly
or incorrectly for each class.

4.1.1. Rice Dataset

The confusion matrix for the three models when applied to the rice dataset is shown
in Table 4. The confusion matrix for the CNN model shows that it predicted Nitrogen
correctly 75 times, while incorrectly predicting Phosphorus 7 times and Potassium 6 times.
Similarly, the model predicted Phosphorus correctly 59 times but incorrectly predicted
Nitrogen 6 times and Potassium 13 times. The model’s accuracy rate was 84% in total.
The VGG-16 model showed a higher accuracy compared to the CNN model. It correctly
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predicted Nitrogen 84 times, Phosphorus 57 times, and Potassium 74 times. The model’s
accuracy rate was 93% in total. The overall accuracy of the Inception-V3 model was 93%,
as indicated by its confusion matrix. The model correctly predicted Nitrogen 94 times,
Phosphorus 56 times, and Potassium 66 times.

Table 4. Confusion matrix for the rice dataset.

True Labels Nitrogen Phosphorus Potassium

CNN
Nitrogen 75 6 2

Phosphorus 7 59 4
Potassium 6 13 60

VGG-16
Nitrogen 84 0 2

Phosphorus 2 57 5
Potassium 4 4 74

Inception-V3
Nitrogen 94 3 1

Phosphorus 5 56 2
Potassium 1 4 66

4.1.2. Banana Dataset

The corresponding confusion matrix outputs for each model are depicted in Table 5.
Overall, all three models performed well on the banana dataset, as indicated by the rela-
tively high number of correct predictions compared to misclassifications.

Table 5. Confusion matrix for the banana dataset.

True Labels Calcium Healthy Iron

CNN
Calcium 109 50 28
healthy 48 132 14

iron 20 8 129

VGG-16
Calcium 126 28 20
healthy 22 156 8

iron 12 9 157

Inception-V3
Calcium 154 16 13
healthy 5 182 3

iron 5 0 160

4.2. Model Explanation Using SHAP

Notwithstanding the good accuracy scores of the three models, there exists a lack of
transparency in these models. To explain any ML model, there are a few generalised XAI
methods. For this study, two XAI algorithms, SHAP and Grad-CAM, were used. In this
section, we explain the SHAP output of the three models when applied to two different
datasets.

4.2.1. Analysing Explainability of ML Models Using SHAP-Rice Dataset

The input image is displayed on the left in Figure 3, with the SHAP output of the CNN
model being highlighted in red and blue pixels. Red tones show positive contributions
and blue tones to negative contributions to the prediction of this category. The model
displays the three categories that it deems to be associated with the image. The probability
of phosphorus prediction is shown to increase in the first explanation image through the
display of a red tone. The explanations for nitrogen and potassium contain fewer red
colours. Overall, the figure suggests that the CNN model relies heavily on a few prominent
features to make its predictions. Figure 4 shows the SHAP output of the VGG-16 model.
This model also appears to rely on a limited set of notable features, similar to the CNN
model. However, the contribution of each feature is more evenly distributed, with fewer
features having an extremely positive or negative contribution. The SHAP output of the
Inception-V3 model is displayed in Figure 5. Inception-V3 appeared to be more reliant on
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a broader set of features than CNN, with many features making a significant positive or
negative contribution to the final prediction.
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4.2.2. Analysing Explainability of ML Models Using SHAP-Banana Dataset

By analysing the SHAP output from the CNN model as shown in Figure 6, we can see
that the most influential regions on the banana leaf are on the sides of the leaf. Compared to
the other models, the VGG-16 in Figure 7 distributes the SHAP values across the whole leaf.
The Inception-V3 models in Figure 8 rely on broader context clues, resulting in different
patterns of SHAP values across the banana leaf.
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Overall, the SHAP output of these three deep learning models suggests that each
model relies on a distinct set of key features to make predictions as summarised in Table 6.

Table 6. Summary of the explainability of the ML models based on SHAP.

Models Rice Dataset Banana Dataset

CNN Relies heavily on prominent features,
especially for phosphorus prediction

Influential regions on the
sides of the leaf.

Inception-V3 Relies on a broader set of features
Relies on broader context

clues, resulting in a different
pattern of SHAP values

VGG-16 Similar to CNN, but with more evenly
distributed feature contributions

Distributes SHAP values
across the whole leaf.
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4.3. Model Explanation Using Grad-CAM

For each of the three models, a GRAD-CAM visualisation technique was used to
debug the prediction process and emphasise the intriguing areas of the plant pictures that
determine the final decision. The visual explanation provides an overview by generating a
heatmap where pixels with high to low intensity are indicated in red, yellow, green, and
blue [34]. This technique can be used to determine whether the model accurately predicts
the absence of potassium based on the infected region of the plant.

4.3.1. Analysing Explainability of ML Models Using Grad-CAM-Rice Dataset

The CNN GRAD-CAM heatmap revealed that the model mainly focused on the tip of
the leaf, where the nutrient deficiency is prominent. The VGG-16 considered a similar part
of the leaf; however, the heatmap showed a more accurate part of the plant compared to
the CNN model. The way that VGG-16 localised the defected region shows that we can
trust the model. People can better understand how VGG-16 uses image classification to
identify the lack of nutrients in plants by examining the highlighted area.

The Inception-V3 GRAD-CAM heatmap showed a different pattern compared to
the first two models. The model highlighted various broader areas rather than a single
dominant area. The approach used in the study for nutrient deficiency identification is
consistent with the findings of [35]. The results presented in Figure 9 demonstrate the
effectiveness of Grad-CAM in providing transparency and interpretability of these models.
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4.3.2. Analysing Explainability of ML Models Using Grad-CAM-Banana Dataset

Figure 10 illustrates the use of the Grad-CAM approach when applied to the three
models to construct the class activation mapping. This mapping helps to localise the specific
region of the plant that predominantly influenced the decision [26]. In this instance, the
CNN model tended to highlight the contours of the banana leaf. However, the other two
models focused on the leaf itself. The Inception-V3 model heatmap lacks a precise overlap
with the object of interest.
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In conclusion, Grad-CAM is a powerful tool that helps us understand the decision-
making process of CNN models such as baseline CNN, VGG-16, and Inception-V3. The
results presented in Table 7 demonstrate the effectiveness of Grad-CAM in providing
transparency and interpretability of these models. This visual explanation enables a better
understanding of how the model performs image classification. Moreover, Grad-CAM is a
potential approach for improving the interpretability and transparency of CNN models,
offering practitioners and researchers insightful information about their internal working
and decision-making processes.

Table 7. Summary of the explainability of the ML models based on Grad-CAM.

Models Rice Dataset Banana Dataset

CNN Grad-Cam heatmap focuses on
the tip of the leaf.

Highlights banana leaf
contours.

Inception-V3 Highlights various broader areas. Lacks precise overlap with the
object of interest.

VGG-16 Localises the defected region. Focuses on the leaf itself.

5. Discussion

This study evaluated the performance and interpretability of three Convolutional Neu-
ral Network (CNN) architectures for identifying plant nutrient deficiencies. Two datasets,
of rice and banana plants, were employed for experimentation. The findings revealed that
Inception-V3 and VGG-16 surpassed the baseline CNN model in terms of accuracy for the



Computation 2024, 12, 113 14 of 17

rice dataset, both achieving 93%. Inception-V3 demonstrated exceptional performance on
the banana dataset, attaining an F1-Score of 92%, significantly exceeding CNN (68%) and
VGG-16 (81%). These results suggest Inception-V3’s efficacy in detecting nutrient deficien-
cies in banana plants. Overall, Inception-V3 consistently delivered superior performance
across all datasets. This can be attributed to its deeper architecture, which enable more
robust feature extraction capabilities, as observed in previous studies comparing CNN
architectures [8,16].

Beyond achieving high accuracy, model interpretability is equally important. This
study used two XAI algorithms, SHAP and Grad-CAM, to gain insights into the models’
decision-making processes. SHAP analysis revealed that CNN and VGG-16 models often
relied on a limited set of prominent features for prediction. Conversely, Inception-V3
incorporated a broader spectrum of features, suggesting its ability to leverage more nuanced
information for accurate classification. Grad-CAM visualisations provided further insights.
In the banana and rice datasets, the CNN model’s heatmaps highlighted the plant leaf’s
contours, while the other two models focused on the leaf itself. Notably, VGG-16 exhibited
the most reliable localisation of affected regions based on its heatmap quality. Similar to
the finding in [51], these visual explanations enhanced our understanding of how models
identify nutrient deficiencies by pinpointing the highlighted areas.

The findings highlight a trade-off between accuracy and interpretability. While
Inception-V3 achieved superior performance, its complex architecture may limit inter-
pretability. Conversely, VGG-16’s simpler structure facilitates explanation but potentially
compromises accuracy in certain scenarios. Therefore, the optimal model selection depends
on the application’s priorities. If paramount accuracy is required, Inception-V3 might be
preferred despite interpretability limitations. In contrast, if understanding the model’s
reasoning is critical, VGG-16 could be a better choice, even with a slight accuracy trade-off.

6. Conclusions

In this study, we performed comparative analyses of the performance and interpretabil-
ity of three CNN-based architectures for the identification of plant nutrient deficiencies.
The results showed that Inception-V3 achieved the highest accuracy and surpassed the
other two architectures in terms of performance. The implementation of SHAP and Grad-
CAM provided insights into classification decisions and increased the transparency of
models. SHAP focuses on feature importance, highlighting how each feature in the image
contributes to the model’s prediction. This allows researchers to understand which features
the model relies on most heavily for specific predictions. An advantage of SHAP is that it
can be applied to various model architectures, not just CNNs. However, SHAP may not
reveal the specific locations within the image influencing the decision, and interpreting the
heatmaps can be subjective. Grad-CAM, on the other hand, focuses on model attention.
It identifies the image regions most influential for the model’s prediction by generating
heatmaps where red areas indicate image regions with the highest influence on the model’s
decision. This provides a visual explanation of where the model “looks” at the image to
make a prediction. This is valuable for understanding if the model focuses on relevant
plant regions, such as areas with signs of nutrient deficiency. However, Grad-CAM does
not directly explain how individual features contribute, and the heatmaps might not be
perfectly localised, especially for complex models. The study’s findings demonstrate the
aforementioned strengths and weaknesses. The study contributes to the literature by incor-
porating explainable deep learning in the context of plant nutrient deficiency identification.
Moreover, unlike prior research that primarily evaluated accuracy without considering
explainability, the study addressed this gap by comparing the explainability of GRAD-CAM
and SHAP techniques, shedding light on how these models arrive at their predictions. By
bringing attention to the importance of a holistic approach that considers both accuracy
and explainability in the agriculture sector, the research enhances trust and usability in the
models’ predictions.
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Overall, the study contributes to the growing field of XAI by providing insights into
the performance and interpretability of CNN architectures for the identification of plant
nutrient deficiency. The results could help the application of ML models in agriculture to
be more trustworthy, and shed light on how these models operate internally.

The limitation of this study is the use of publicly available datasets, which cannot
fully capture the variations in plant nutrient deficiency in the real world. Future research
should explore the use of larger and more diverse datasets to enhance the generalisability
of the models. We will also collaborate with agricultural researchers to have access to real
farm datasets. Moreover, future research can explore other methods of explanation, such
as LIME and the Contextual Importance and Utility (CIU) method, to further improve the
transparency and interpretation of the DL and ML models.
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