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A B S T R A C T

Shopping mall parking lots are promising and popular sites across nations to be transitioned into charging
stations due to the nature of land availability and attractiveness to people. Sufficient charging poles contribute
to satisfactory user experience, but excessive charging poles jeopardise the financial feasibility. In this study,
an optimal transition planning strategy is proposed that carefully balances the number of charging poles to
maximise financial returns while ensuring user convenience. For this purpose, a charging demand model at
shopping malls is obtained from historical parking records. A real-time parking bay allocation strategy is
obtained according to the charging requests against the available charging poles with the consideration of the
maximum demand tariff. To handle the inherent uncertainty of charging demand, we formulate the optimal
transition planning problem into a stochastic programming framework. In the case study, we investigate the
optimal transition plan for a shopping mall parking lot in the United Kingdom. The optimal results show
the transition planning method increases the annual profit by 34% and user satisfaction by 37% compared
to the baseline method. The insights for the transition plans that accommodate varying factors including EV
penetration, types of charging poles, and charging prices are provided.
1. Introduction

The green transition of the transportation sector requires a shift
from traditional internal combustion engine vehicles (ICEVs) to electric
vehicles (EVs). Numerous countries worldwide set ambitious targets for
EV sales [1] and establish timelines to phase out the sale of fossil fuel-
powered cars [2]. According to forecasts by the International Energy
Agency (IEA), the global EV market share is expected to reach 20% by
2030 [3].

The fast adoption of EVs drives the need for widespread deployment
of charging infrastructures [4]. As a result, many studies focus on the
layout and capacity design of charging station networks [5–7]. How-
ever, the option of upgrading existing infrastructure, such as parking
lots and petrol stations, into charging facilities receives less attention
in the literature. Building brand-new charging stations generally offers
more design flexibility, as they do not have to accommodate existing
structures, but this comes with higher upfront costs, including expenses
for site selection and land acquisition. Consequently, upgrading existing
infrastructure is often a simpler and more cost-effective approach for
charging service providers [8]. This study addresses the transformation
of existing shopping mall parking lots into EV charging stations. For
mall parking lot owners, this transition enables them to make profits

∗ Corresponding author.
E-mail address: xianming.ye@up.ac.za (X. Ye).

by offering charging services. From the EV drivers’ perspective, shop-
ping malls are ideal locations to provide convenient charging services
while drivers shop. On the one hand, it is anticipated that EV drivers
would prefer to get the vehicle charged whenever parking or idling, as
charging typically takes longer than refuelling a conventional vehicle at
a petrol station. The average parking durations at shopping malls range
from 1.5 to 3.36 h, according to studies [9–11], while current commer-
cial charging technologies can deliver a range of 180 to 240 miles with
just one hour of charging [8]. On the other hand, shopping is the second
most common daily travel purpose, following trips to home, according
to the National Household Travel Survey in the United States [12].
Multiple surveys reveal that EV drivers have high expectations for the
availability of charging services during shopping [13,14]. For example,
a survey in Virginia finds that up to 64% of drivers expect to charge
their EVs at stores when needing to charge outside the home [13].
From a regulatory perspective, the transition complies with evolving
regulatory standards. In countries like Norway, the Netherlands, and
Germany, regulations mandate the installation of charging stations in
new or renovated parking facilities [15,16].

To successfully transition parking lots into EV charging stations,
parking lot owners must upgrade existing bays by installing vertical or
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wall-mounted charging poles, transformers, and completing the neces-
sary civil and electrical work [8]. While most parking lot owners may
not be experts in constructing charging stations, service providers like
EVCSGO in the USA offer turnkey solutions for converting parking bays
nto charging stations [17]. Therefore, the key challenge for parking

lot owners during this transition lies in the optimal deployment of
charging infrastructure. While transforming the entire shopping mall
parking lot into charging stations can offer maximum convenience
for EV drivers, it disrupts the parking of traditional ICEVs and is not
cost-effective due to the limited penetration rate of EVs and the high
capital costs of charging poles [18]. However, an insufficient number
f charging poles can harm user satisfaction, leading to lower cus-
omer retention [19]. Therefore, both over- and under-deployment of

charging poles can jeopardise the sustainability of this transition. This
study defines the problem as the optimal transition plan for parking
lots, aiming to determine the ideal number of charging poles to deploy
to maximise financial returns while ensuring user convenience. Since
historical charging data are not available during the planning stage,
an appropriate approach to estimate the future charging demand in
the charging station should be explored. It is predictable that there are
peak and off-peak periods of charging demand in shopping malls. Peak
periods of shopping malls often coincide with visitors’ convenience
time before or after work or school [20]. The number of charging
oles should be determined carefully to ensure user convenience during
eak times while avoiding unnecessary oversupply during off-peak
ours. At the same time, implementing charging management strategies
an effectively adapt to grid electricity tariffs while maintaining user
onvenience, which contributes to reducing the number of charging
oles needed. In addition, the charging demand exhibits uncertainties
n different days in the number of EV arrivals, arrival times, duration of
arking, and requested energy. Weekends, public holidays, and special
vents such as promotions significantly increase the number of con-

sumers, leading to fluctuation in charging demand [21]. Deterministic
planning methods to find the optimal number of charging poles relying
n a typical charging demand profile would lead to inaccuracies in this
ynamic context. Therefore, a new approach for the optimal transition
lanning for shopping mall parking lots needs to be developed.

2. Literature review on shopping mall charging station

Understanding the expected demand for EV charging stations is
essential for the design of charging stations. Generally speaking, the
charging demand can be obtained by aggregating all charging requests
consisting of arrival time, parking time, and requested energy, of EV
drivers. If the historical charging record is available, the shopping mall
charging demand can be easily modelled. A shopping mall charging
emand model provided in [20] based on historical charging data

reveals there are two peak times within a day, occurring at 12:00 and
8:00, respectively. However, the charging data is simply unavailable
t the planning stage. This requires us to analyse the shopping mall

charging demand according to other data, such as activity data [22,23]
nd Google Popular Times data [24]. Activity data, which records

drivers’ travel activities including trip start/end time, trip propose, trip
istance, and trip tool, are usually accessible from travel surveys [25].

In [22], spatial and temporal charging demand models for the Atlanta
metropolitan area are developed by integrating the activity data and
ser charging choice model. The resulting model provides an aver-
ge charging demand profile for shopping areas in 24 h, revealing
 clear peak period between 10:00 and 22:00. However, variations
n charging demand between different days, particularly on weekdays
nd weekends, are not modelled. Moreover, limited by the sample
mount, the activity data-based charging demand models can only
eflect part of the charging demand of all shopping areas. In [24],

a charging demand simulation tool is developed for shopping mall
charging stations, where the Google Popular Times data is adopted to
simulate the arrival rate of EVs. The Google Popular Times data reveals
 e

2 
the degree of busyness of the shopping mall during different times of
the day, but it lacks details of the arrival hours of each vehicle. In
addition, the tool relies on assumptions about EVs’ parking behaviour
and requested energy. This study suggests modelling shopping mall
harging demand using historical parking data, which comes with
everal advantages. Accessing parking data is straightforward as it is
vailable from the parking ticket system of shopping mall parking lots.
his data accurately and comprehensively mirrors the quantity and
rends of vehicle parkings within the shopping mall on different days.
t provides details information on actual patterns of vehicle arrivals
nd parking durations, offering an authentic representation of driver
ehaviour.

The optimal transition problem aims to determine the optimal
umber of charging poles to be deployed in a parking lot to maximise

the interests of investors. The queuing theory model, as a classical
pproach, is good at the congestion analysis of charging stations and
inding the optimal balance between waiting time and the quantity

of charging poles [26,27]. In [26], the ideal number of chargers for
arking lot retrofitting is estimated based on the queuing theory model.
 non-stationary Poisson process and time-varying parameter expo-
ential distribution are used to describe arrival and parking duration,
espectively, which improves the assumption that parking lots have
onstant arrival and service rates. The developed method is applied
n Docklands’ parking lot in Melbourne and suggests that under 30%
V penetration rate, the optimal strategy is to place chargers in 9% to
3% of the total number of parking spots, with payback period of 1.78
o 2.40 years. However, the proposed queuing model is based on the
irst come first served charging strategy, which ignores the fact that
he charging request can be scheduled if the parking time is longer

than the required charging time. As revealed in [28], 43% of charging
requests in large retail are schedulable, failing to consider the flexibility
ffered by schedulable charging requests results in an overestimation
f the required capacity for shopping mall charging stations. At the
ame time, charging demand uncertainty is not considered in [26]. To

overcome the shortcomings of queuing theory models, we suggested
 stochastic optimisation framework for our optimal transition prob-
em of shopping mall parking lots. Stochastic programming is widely
pplied in the charging station capacity planning problem [29–31].

In [30] investigates the optimal sizing of charging stations considering
the quality of service. The quality of service is defined according to
the probability that an EV will suffer a delay in the completion of its
charging task. The sizing problem is formulated as a cost-minimisation
problem with chance constraints. In [31], it proposes a two-stage
stochastic framework for the single output multiple cables charging
station planning, where the first stage obtains an optimal configuration
of the charging station to minimise the station’s equivalent annual
investment costs. The second stage simulates the coordinated charging
process to minimise the expectation of operation cost including electric-
ity cost and penalty of unfulfilled energy. The stochastic programming
approach is also applicable to the optimal transition problem since
the shopping mall charging demand exhibits uncertainties on different
days in the number of EV parkings, arrival times, duration of parking,
and requested energy. It is predictable that the shopping mall charging
demand will increase on weekends, public holidays, and special events
due to the significant increase in the number of consumers [21].

The charging scheduling strategy is a prioritised vehicle charg-
ing management plan that determines the charging order, allocates
charging poles, and controls the charging power of EVs to maximise
charging station investors’ interests. In shopping mall charging stations,
shopping mall charging station owners need to formulate proper charg-
ing scheduling strategies in response to electricity tariffs. Maximum
demand charges tariffs are widely applied to business consumers, which
significantly increase the energy costs of shopping mall charging station
owners [32,33]. Ref. [32] concludes that EV charging at retail buildings
significantly increases the demand charge of the annual electricity bill,
specially in cold-climate areas, where the increase is as high as 88%.
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It should be noted that the concepts of peak demand and maximum
emand are different because the maximum demand is only recorded
n specific demand windows [34]. In [28], a demand-charge-reducing

approach that combines a real-time water-filling algorithm and active
demand response and load control is proposed. The proposed method
shows that the maximum demand in large retail caused by EV charging
can be reduced by 40% under the 30% EV penetration rate. However,
the proposed strategies require EVs’ long-term occupation of charging
poles, thus decreasing the utilisation rate of charging poles. In [35,36],
improved charging strategies are used, which allow EVs to connect to
charging poles and complete charging in a specific duration during
parking time. For example, in [35], the uninterrupted battery charging
management strategy for battery swapping stations is investigated,
where the charging start time and charging power of batteries are
optimised to maximise the total profit. Such a problem is formulated as
a two-dimensional-rectangle packing problem and solved by the mixed-
nteger linear program. In [36], an uninterrupted charging scheduling

approach is proposed to smooth the aggregated load profile and reduce
peak demand. The proposed algorithm is designed as a decentralised
framework and eliminates the need for heavy computations and ex-
tensive bi-directional communications, which makes the developed
approach particularly suitable for real-time implementation. Refs. [28,
35–37] do not consider the limit of the number of charging poles. This
implification is reasonable only in a few cases, i.e., the number of
harging poles is significantly more than the number of EVs [38]. Such
 problem cannot be simplified when considering the optimal design

of shopping mall charging stations because the number of charging
oles directly affects the investment cost of charging station owners.
ecognising these challenges and limitations, this study introduces a
eal-time parking bay allocation strategy. This strategy is aimed at

determining the optimal charging start times for EVs, considering both
the need to reduce maximum demand and the constraints imposed by
the limited number of charging poles.

Our work is closely related to the aforementioned research but
significantly differs from them. The primary focus lies in promoting the
transition from existing infrastructure such as shopping mall parking
lots to charging stations, as opposed to the construction of brand-new
charging stations as studied in [6,7]. Our objective is to stimulate
nterest from potential investors and municipalities towards the de-

velopment of shopping mall charging stations. To achieve this, we
offer an optimal transition planning strategy designed to determine
the ideal number of charging poles for installation. On the techni-
cal aspect, the literature review of existing studies highlights several
technical challenges that have not been adequately addressed, partic-
ularly in the domains of shopping mall charging demand modelling,
charging scheduling strategies, and capacity planning. Considering the
unavailability of charging demand data in the planning phase, we
develop a shopping mall charging demand modelling approach based
on historical parking data. The method prioritises data accessibility and
reliability of shopping mall parking lots and is able to comprehensively
mirror the trends of charging demand within the shopping mall on
different days. It can be independently applied to various parking
lots. Furthermore, the characteristic of schedulable of shopping mall
charging demand promotes us to formulate a charging management
strategy to allocate charging requests to available charging poles. This
strategy takes into account commonly used maximum demand tariffs
in commercial areas. Compared with maximum demand reduction
strategies studied in [28,35–37], the developed strategy operates taking
the limited number of charging poles into consideration and operates
in real-time, enhancing its realism and applicability. Additionally, com-
pared with the approach proposed in [26], we frame the planning
problem within a stochastic programming framework, taking the inher-
ent uncertainty associated with shopping mall charging demand into
ccount.
3 
3. Problem statement

EVs are widely recognised for their environmental friendliness com-
pared to ICE vehicles. However, the disadvantage of driving an EV is
ensuring timely access to charging facilities to alleviate range anxiety.

he National Household Travel Survey from the United States shows
hat the top 3 people’s daily travel purposes are home (34.3%), shop-
ing (19.5%), and work (16.6%) [12]. Therefore, convenient access to

EV charging at these locations, such as homes, shopping malls, and
workplaces, across the country or region is essential for EV adoption.
Upgrading the shopping mall parking lot into EV charging stations
is a viable solution as it enhances the shopping experience for EV
rivers and attracts more of them to shopping malls. One of the key
hallenges of transforming a parking lot into a charging station is to

ensure users’ convenience whilst demonstrating financial viability. The
user convenience mainly links to the number of available charging
poles in shopping mall charging stations. Intuitively, the more charging
poles, the higher user convenience. However, excessive charging poles
may jeopardise the financial feasibility of such a transition. To address
his challenge, we propose an optimal transition planning strategy to
etermine the optimal number of charging poles for installation. The
nknown shopping mall charging demand model brings challenges to
he transition planning strategy problem. Since the historical charging
emand data is unavailable, a charging demand model derived from

historical parking data is proposed. Based on the established demand
model, the optimal number of charging poles needs to be carefully de-
ermined to ensure user convenience during peak times while avoiding
nnecessary oversupply during off-peak hours. At the same time, the
pplication of charging management strategies helps smooth charging

demand and maximise charging profit with the limited number of
charging poles needed. Charging demand changes on different days
n terms of volumes of EVs, arrival times, and parking times, partic-
larly on weekends, public holidays, and promotion days, with notable

increases in charging demand. To overcome the variations of charg-
ing demand, our study introduces a two-stage stochastic optimisation
roblem including both investment and operation stages for the optimal
ransition plan problem. The decision variables include the number of
harging poles at the investment level the charging start time and the
harging power of EVs at the operational level. At the investment level,
he problem is constrained by the capacity of the shopping mall parking
ot. At the operation level, constraints on the rated power of charging
oles, the maximum demand, the parking time, and the number of
harging poles to be installed take effect. Several vital energy and price
odels are developed to enable the problem formulation, which are

ntroduced in the following sections.

4. Charging demand modelling

Intuitively, the number of charging poles required for the design of
the shopping mall charging station is determined by the actual charging
demand from the EVs. Therefore, the identification of the charging de-
mand is crucial. To start with, we define several key charging demand
profiles, including requested charging demand, rescheduled charging
demand, and actual charging demand, as illustrated in Fig. 1. The
requested charging demand is defined as the sum of EVs’ maximum
chargeable energy. The requested charging demand curve may have
peaks and valleys due to drivers’ natural charging behaviours [39].
Restricting the number of charging poles installed and implementing
demand-side management techniques can reshape the requested charg-
ing demand curve, resulting in a rescheduled charging demand [28].
The trend of the rescheduled charging demand curve can be various,
etermined by the charging station owner’s interest. In Fig. 1, we use a

flat curve as an example, representing that the charging station owner
aims to flatten the peak–valley difference. The rescheduled charging
demand serves as a reference power level to guide the charging stations

in managing EV charging. The actual charging demand is the real
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Fig. 1. The requested charging demand, rescheduled charging demand, and actual
charging demand.

charging power offered by the charging station to the EV drivers, only
available after the shopping mall charging station is open for use. Due
to the power supply uncertainties, or sudden changes in drivers’ charg-
ing requests, the actual charging demand may also deviate from the
rescheduled charging demand. In the planning stage, it is assumed that
the actual charging demand equals the rescheduled charging demand.
This assumption holds when the grid power supply is reliable and no
EV drivers would change their charging request after submission.

Without loss of generality, we try to model the requested charging
demand profile on a daily basis based on the historical parking data.
Since the requested charging demand is not measurable, we have to ob-
tain it by the analytical method. The requested charging demand profile
is determined by the integration of all charging demand requests. Key
determinants for the daily requested charging demand profile are (1)
the number of EVs that will park at the parking lot; (2) the EV arrival
time; (3) the EV departure time; and (4) the maximum chargeable
energy of each EV.

Let the daily number of vehicles parking at the shopping mall
parking lot be denoted as 𝐺, encompassing both EV and ICEV are
included. Considering that the historical parking records might lack
specific features on vehicle type (EV or ICEV), the daily number of EVs
parking at the shopping mall charging station is calculated based on
the EV penetration rate 𝛼 in the area of interest, which can be sourced
from statistics from local governments and institutions such as [40].
This study assumes that both ICEV and EV drivers have similar travel
patterns and parking habits when engaging in shopping activities. Then,
the daily number of EV parkings at the shopping mall charging station
is 𝛼 𝐺. Since vehicle flows on different days show differentiated features
in terms of arrival time and parking time, the arrival time 𝑡𝑎𝑟𝑟𝑖 and
parking time 𝑡𝑑 𝑒𝑝𝑖 follow different distributions in different days. The
arrival and parking time records can be obtained from the parking
ticket system at the shopping mall. The scheduling horizon is set as
24 ℎ and is divided into 𝐾 time slots. The length of a time slot is 𝛥𝑡.
Assume the charging state of each EV remains unchanged during a time
slot. The available park-starting and park-ending time slots of EV 𝑖 are
calculated by

𝑡𝑎𝑖 = ceiling
( 𝑡𝑎𝑟𝑟𝑖

𝛥𝑡

)

, 𝑖 ∈ 𝐼 , (1)

𝑡𝑑𝑖 = floor
(

𝑡𝑑 𝑒𝑝𝑖
𝛥𝑡

)

− 1, 𝑖 ∈ 𝐼 , (2)

where 𝐼 is the set of EVs, ceiling(⋅) is the roundup function, floor(⋅) is
the rounddown function. When 𝑡𝑑𝑖 < 𝑡𝑎𝑖 , it means no available parking
time slot exists after time discretisation. When 𝑡𝑑𝑖 ≥ 𝑡𝑎𝑖 , the total number
of parking time slots that is available for charging can be calculated as
𝑡𝑑 − 𝑡𝑎 + 1. Let 𝑆 𝑂 𝐶 represent the SOC of EV 𝑖’s battery when it arrives
𝑖 𝑖 𝑖
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at the charging station and 𝐶𝑖 represent the battery capacity of EV 𝑖.
The requested charging demand of EV 𝑖 is

𝐸𝑟𝑒𝑞
𝑖 = (1 − 𝑆 𝑂 𝐶𝑖)𝐶𝑖. (3)

Limited by the availability of charging poles, it is possible that the
requested charging demand may not be fully satisfied. Let 𝐽 be the set
of candidate charging poles to be installed and 𝑚 = |𝐽 | ≤ �̄� be the total
number of charging poles to be installed, where �̄� is the number of
parking bays in the shopping mall parking lot. Considering the limited
parking time and amount of charging poles, the requested charging
demand of EV 𝑖 is rescheduled as

𝐸𝑟𝑒𝑠
𝑖 = min

{(

𝑡𝑑𝑖 − 𝑡𝑎𝑖 + 1) 𝑝max𝛥𝑡, 𝑑𝑖𝑝max𝛥𝑡, 𝐸𝑟𝑒𝑞
𝑖

}

, (4)

where 𝑝max represents the rated power of charging poles to be installed
and 𝑑𝑖 is the maximum available number of continuous time slots
within the parking duration of EV 𝑖. Fig. 2 is provided to illustrate how
to obtain 𝑑𝑖. It displays the occupation status of the charging poles when
EV 𝑖 arrives (only two charging poles in the example). According to
Fig. 2, the available continuous time slots provided by charging stations
are (1) time slots 𝑘, (2) times slots 𝑘 + 1 and 𝑘 + 2, and (3) times slots
𝑘+ 4 and 𝑘+ 5, thus the maximum available number of continuous-time
slots 𝑑𝑖 is 2.

To define 𝑑𝑖 mathematically, we first define the charging pole occu-
pation state variable 𝑥𝑘𝑖𝑗 , which is a binary variable. 𝑥𝑘𝑖𝑗 = 1 represents
that the charging pole 𝑗 is occupied by EV 𝑖 at time slot 𝑘. When EV 𝑖
arrives at the charging station, according to 𝑥𝑘𝑖𝑗 , 𝑡

𝑎
𝑖 , and 𝑡𝑑𝑖 , the charging

management system can calculate 𝑑𝑖 by 𝑑𝑖 = max{𝐻|

∑𝐻
ℎ=0 𝑥

𝑟+ℎ
𝑖𝑗 =

0,∀𝑗 ∈ 𝐽 , 𝑡𝑎𝑖 ≤ 𝑟, 𝑟 + ℎ ≤ 𝑡𝑑𝑖 } + 1. Note that 𝑑𝑖 = 0 indicates that there is
no available charging pole for EV 𝑖 within the parking duration, thus
𝐸𝑟𝑒𝑠
𝑖 = 0.

The input parameters of the proposed charging demand model
include the arrival time and parking time, the EV battery capacity, the
arrival SOC, and the maximum power of charging poles. The statistical
features of arrival time and parking time are available from the parking
ticket system of the parking lot. The average battery capacity of EVs can
be estimated using data from available EV models on the market. For
the SOC, it is assumed to follow a beta distribution in [24] and follow
a uniform distribution within the interval [0, 1] in [41]. In [22,23,42],
the arrival SOC is obtained based on travel chains, which calculates
the arrival SOC by considering the remaining energy of the EV from its
previous destination and the energy consumption during the journey to
the next destination. However, it introduces more assumptions on the
initial SOC of EVs and the travel distance between two destinations.
In practice, to avoid too many assumptions, the arrival SOC uses the
Weibull distribution with scale parameter 𝜆 = 0.8 and shape parameter
𝑐 = 10. This choice is based on the work in [20]. Their model is derived
from real charging data collected from existing shopping mall charging
stations. The requested charging demand is only determined by the
states of arriving EV batteries, which is the maximum energy that can
be charged. The rescheduled charging demand is determined by the
rated power of installed charging poles, available charging time slots,
and parking time. The rescheduled charging demand of one EV cannot
exceed its requested charging demand.

5. Charging station operation

5.1. Electricity tariffs

This section gives the grid electricity tariffs and EV charging service
fees. Compared with [26], a more general grid electricity tariff struc-
ture consisting of time-of-use (TOU) and maximum demand (MD) tariff
is considered. The time-of-use tariff is given by

𝑐𝑡𝑜𝑢𝑘 =

⎧

⎪

⎨

⎪

𝑐𝑝, Peak period,
𝑐𝑠, Standard period,
𝑐𝑜, Off-peak period.

(5)
⎩
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Fig. 2. Charging process of EV 𝑖.
The maximum demand charge is calculated based on the highest half-
hourly electricity consumption within the demand window on any
given day. The maximum demand tariff is defined as 𝑐𝑚𝑑∕k VA and
the demand window is defined by [𝑡𝑑𝑠 , 𝑡𝑑𝑒 ). 𝑡𝑑𝑠 and 𝑡𝑑𝑒 are the start time
and end time of the demand window, respectively. The time-of-use
and maximum demand tariffs promote the charging demand shifting
to the non-peak and non-demand window periods, respectively. The
maximum demand tariff further encourages the charging station owner
to reduce peak demand during the demand window. Since the design
of the charging pricing exceeds the scope of this study, a fixed charging
service fee of 𝑐𝑐 per kWh is adopted.

5.2. Shopping mall charging station operation mode

The parking lot is divided into charging and non-charging areas.
A charging management system will be integrated into the existing
parking management system, forming a shopping mall vehicle manage-
ment system to handle both parking and charging operations. Vehicles
without charging requests are directed to the non-charging area, while
those with charging requests are managed according to a predefined
scheduling mechanism. Upon departure from the mall, vehicles are
charged parking fees, with additional charging service fees applied if
charging services are used. Specifically, when an EV arrives at the shop-
ping mall charging station, it submits a charging request to the vehicle
management system, including details such as arrival time, parking
duration, and requested energy. The system checks the availability of
charging poles, rejecting the request if no poles are available within
the parking duration. If idle poles are available during the EV’s parking
period, the system guides the EV to the non-charging area to wait and
assigns it a charging pole at the appropriate time. EV drivers can move
their vehicles to the charging area themselves or use valet parking
services. The charging start time and end time are determined by the
proposed scheduling algorithm and will inform the drivers. Once the
charging is over, drivers are required to transfer their EVs to the non-
charging area. Charging station owners can implement a penalty policy
to disincentivize the overstaying issue, like Tesla [43]. In the planning
stage, we assume that all EV drivers will transfer their EVs in time after
completing charging.

5.3. Charging without scheduling

This section describes the charging process without scheduling. It
is regarded as a baseline model for the proposed charging strategy,
suggested in [26,44]. The charging process without optimal scheduling
is described as follows. EVs occupy parking bays with installed charging
poles according to the first come first served principle and are charged
at the maximum power until the battery is fully charged. The charging
request will be declined if there is no available charging pole during
the parking duration. Let 𝑡𝑠 be the IDs of the charging start time slot
𝑖

5 
of EV 𝑖, 𝑡𝑠𝑖 ≥ 𝑡𝑎𝑖 . The total energy that EV 𝑖 obtained from the charging
station at the beginning of time slot 𝑘 is derived as

𝐸𝑘
𝑖 =

{

0, if 𝑘 < 𝑡𝑠𝑖 ,
min{𝐸𝑟𝑒𝑠

𝑖 , 𝐸𝑘−1
𝑖 + 𝑝max𝛥𝑡}, if𝑘 ≥ 𝑡𝑠𝑖 ,

(6)

𝐸𝑘
𝑖 = 0 before EV 𝑖 connects to one charging pole. After EV 𝑖 connects

to one charging pole, it will be charged at the maximum power 𝑝max

until the requested energy 𝐸𝑟𝑒𝑠
𝑖 is satisfied.

5.4. Proposed parking bay allocation strategy

In this study, a real-time parking bay allocation strategy is proposed.
When 𝑖th EV arrives at the charging station the following optimisation
problem is solved to allocate a parking bay with an installed charging
pole and determine the charging start time slot 𝑡𝑠𝑖 and charging power
𝑝𝑘𝑖 for EV 𝑖. The goal of the strategy is to maximise the daily profit 𝐷𝑖 of
the charging station, which is calculated based on the charging revenue
and costs.

max
𝑡𝑠𝑖 ,𝑝

𝑘
𝑖

𝐷𝑖 =
𝐾
∑

𝑘=1
(𝑐𝑐 − 𝑐𝑡𝑜𝑢𝑘 )(𝑝𝑘𝑙 𝑜𝑎𝑑 + 𝑝𝑘𝑖 )𝛥𝑡 − 𝑐𝑚𝑑 max

𝑡𝑑𝑠 ≤𝑘<𝑡𝑑𝑒

{

𝑝𝑘𝑙 𝑜𝑎𝑑 + 𝑝𝑘𝑖
}

, (7)

subject to
𝑡𝑎𝑖 ≤ 𝑡𝑠𝑖 < 𝑡𝑠𝑖 + 𝑑𝑖 ≤ 𝑡𝑑𝑖 , (8)

𝑝𝑘𝑖 ≤ 𝑝max, ∀𝑘 ∈ [𝑡𝑠𝑖 , 𝑡𝑒𝑖 ), (9)

𝑝𝑘𝑖 = 0, 𝑘 < 𝑡𝑠𝑖 , 𝑘 ≥ 𝑡𝑠𝑖 + 𝑑𝑖, (10)

𝐸𝑘
𝑖 = 𝐸𝑘−1

𝑖 + 𝑝𝑘𝑖 𝛥𝑡, ∀𝑘 ∈ 𝐾 , (11)

𝐸𝑘
𝑖 = 𝐸𝑟𝑒𝑠

𝑖 , 𝑘 = 𝑡𝑒𝑖 , (12)

where 𝑝𝑙 𝑜𝑎𝑑 = (𝑝1𝑙 𝑜𝑎𝑑 ,… , 𝑝𝐾𝑙 𝑜𝑎𝑑 ) is the total rescheduled charging demand
profile of EVs arriving before EV 𝑖. Constraint (8) ensures that the
actual charging start and end times are within the parking duration.
Constraints (9) and (10) are the power limits of charging poles. Con-
straint (11) is the energy balance equation of EV batteries. Constraint
(12) ensures that the EV’s charging request is fully satisfied when it
is disconnected from the charging pole. By introducing a new decision
variable 𝑧, we have the following equivalent linear form of (7),

max
𝑡𝑠𝑖 ,𝑝

𝑘
𝑖

𝐷𝑖 =
𝐾
∑

𝑘=1
(𝑐𝑐 − 𝑐𝑡𝑜𝑢𝑘 )(𝑝𝑘𝑙 𝑜𝑎𝑑 + 𝑝𝑘𝑖 )𝛥𝑡 − 𝑐𝑚𝑑𝑧, (13)

and 𝑧 satisfies

𝑧 ≥ 𝑝𝑘𝑙 𝑜𝑎𝑑 + 𝑝𝑘𝑖 , ∀𝑘 ∈ [𝑡𝑑𝑠 , 𝑡𝑑𝑒 ). (14)

The pseudo-code of the proposed real-time parking bay allocation
algorithm is given in Algorithm 1. When EV 𝑖 arrives at the charg-
ing station, it submits a charging request (𝑡𝑎𝑖 , 𝑡𝑑𝑖 , 𝐸𝑟𝑒𝑞

𝑖 ). The charging
management system reads the current charging station status including
𝑝𝑙 𝑜𝑎𝑑 and 𝑥𝑘𝑖𝑗 . Then, the charging management system calculates 𝑑𝑖 and
𝐸𝑟𝑒𝑠. The charging request is rejected if all charging poles are fully
𝑖
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occupied during the parking time of EV 𝑖 (𝑑𝑖 = 0). Otherwise, the
harging management system finds the optimal charging start time slot
𝑠
𝑖 , charging pole 𝑗∗, and charging power 𝑝𝑘𝑖 for EV 𝑖 by solving the
ptimisation problem (13). By enumerating all available charging poles
nd time slots, the solution with the maximum profit is adopted as the
harging instruction for EV 𝑖. If there are multiple solutions with the
ame maximum profit, the solution with the earliest start time and the

minimum charging pole ID number will be assigned to EV 𝑖. According
to the solution, the charging management system updates 𝑝𝑙 𝑜𝑎𝑑 and 𝑥𝑘𝑖𝑗 ,
utputs the charging instruction to EV 𝑖, and then waits for the next
V.
Algorithm 1: The real-time parking bay allocation algorithm for
EV 𝑖.

Input: charging request (𝑡𝑎𝑖 , 𝑡𝑑𝑖 , 𝐸𝑎𝑟𝑟
𝑖 ) of EV 𝑖

1 Read current charging pole occupancy state 𝑥𝑘𝑖𝑗 and charging
load 𝑝𝑘𝑙 𝑜𝑎𝑑

2 Calculate reschedule charging demand 𝐸𝑟𝑒𝑠
𝑖 and 𝑑𝑖 according to

(4)
3 Reject charging request 𝑖 if 𝑑𝑖 = 0
4 Solve optimisation problem (13) with constraints (8)-(12), and

(14) to find charging start time 𝑡𝑠𝑖 , allocated charging pole 𝑗∗,
and charging power 𝑝𝑘𝑖

5 Update charging pole occupancy state 𝑥𝑘𝑖𝑗
6 Update charging load 𝑝𝑘𝑙 𝑜𝑎𝑑 = 𝑝𝑘𝑙 𝑜𝑎𝑑 + 𝑝𝑘𝑖
7 return charging start time 𝑡𝑠𝑖 , allocated charging pole 𝑗∗, and

charging power 𝑝𝑘𝑖 for EV 𝑖

6. Optimisation problem formulation

In this section, an optimisation problem is formulated to find the
optimal number of charging poles for the shopping mall charging
station to maximise the NPV of the investment of a shopping mall
charging station. Considering the randomness of charging demand,
this problem is formulated as stochastic programming. The objective
function that aims to maximise the N-year NPV of the charging pole
investment is formulated as follows:
max𝑚 NPV = −𝐶𝐼 +

∑𝑁
𝑛=1

1
(1+𝑟)𝑛

(

E[𝐶𝑃 ] − 𝐶𝑀
)

,
𝐶𝐼 = 𝑐1𝑚,
𝐶𝑃 = 365𝐷

|𝐼|,
𝐶𝑀 = 𝑐2𝑚,

(15)

where 𝐶𝐼 is the total investment cost, 𝑐1 is the investment cost of the
unit charging station including the purchase cost of one charging pole
nd retrofitting cost for one parking bay. 𝐶𝑃 is the annual profit by
roviding charging service. Considering the uncertainty of charging de-

mand, we use the expectation of 𝐶𝑃 . 𝐶𝑀 is the annual management and
maintenance cost, and 𝑐2 is the annual management and maintenance
cost per charging pole. 𝑟 is the discount rate and 𝑁 is the service life
f charging poles.

The stochastic problem is solved by the sample average approxi-
ation (SAA) [45], where we sample different problem instances from

he probability distribution of parameters 𝑡𝑎𝑖 , 𝑡
𝑑
𝑖 and 𝐸𝑟𝑒𝑞

𝑖 and obtain
an estimation of E[𝐶𝑃 ]. In particular, we create a set 𝑆 of problem
scenarios, where in each scenario a set 𝐼 (𝑠) with parameters 𝑡𝑎,(𝑠)𝑖 , 𝑡𝑑 ,(𝑠)𝑖
nd 𝐸𝑟𝑒𝑞 ,(𝑠)

𝑖 is created to represent the EV fleet. Then

E[𝐶𝑃 ] = 365 1
|𝑆|

|𝑆|
∑

𝑠=1
𝛾 (𝑠)𝐷(𝑠)

|𝐼|, (16)

where 𝛾 (𝑠) is the probability of scenario 𝑠. E[𝐶𝑃 ] is obtained after all
scenarios are evaluated, then, the N-year NPV can be calculated.

7. Case study

This section provides a case study to illustrate the effectiveness of
the proposed approach. We start with the analysis of vehicle parking
patterns in the shopping mall parking lot.
6 
Table 1
Vehicle parking statistics.

Number of vehicle parkings Day(s)

Weekday Saturday Sunday Total

0–500 1 0 1 2
500–1000 190 1 14 205
1000–1500 44 19 26 89
1500–2000 24 22 7 53
2000–2500 2 2 3 7
2500–3000 0 5 1 6
3000–3500 0 2 0 2
3500–4000 0 1 0 1
Total 261 52 52 365

7.1. Vehicle parking pattern analysis in the shopping mall parking lot

The vehicle parking pattern analysis of the shopping mall parking
lot is based on data from 1 Oct 2018 to 30 Sep 2019 of Grafton East car
ark, which is a parking lot located at the Grafton shopping centre with

769 parking spaces [46]. We divide the dataset into two parts: 80% of
the data used for modelling and 20% of the data used for validation.
The parking statistics during the time period of Grafton East car park
are shown in Fig. 3. The vehicle parking statistics are summarised in
Table 1. The distributions of arrival time and parking time of each
day are shown in Fig. 4. For parking records, we have the following
observations:

• The number of visits per week is periodic. The number of visits on
weekdays is lower than the number of visits on weekends, where
the Saturday visits are more than the Sunday visits.

• The maximum and the minimum number of visits on weekdays
are 2107 vehicles on 29th May and 512 vehicles on 17 Septem-
ber, respectively. There are 234 days with the number of visits
between 500 and 1500, accounting for 91% of the weekdays. The
average number of visits on weekdays is 885 vehicles.

• The maximum and the minimum number of visits on Saturday are
3650 vehicles on 3rd November and 1177 vehicles on 20th April,
respectively. There are 41 days with the number of visits between
1000 and 2000 vehicles, accounting for 79% of the total number
of Saturdays. The average number of visits on weekdays is 1748,
which is twice the amount on weekdays.

• The maximum and the minimum number of visits on Sunday
are 2512 vehicles on 7th November and 273 vehicles on 21st
April. There are 40 days with the number of visits between 1000
and 2000 vehicles, accounting for 77% of the total number of
Saturdays. The average number of visits on weekdays is 1245
vehicles.

• The distribution of arrival time from 16:00 to 20:00 on Wednes-
day is slightly different from other weekdays. The distributions
of arrival times on weekdays, Saturdays, and Sundays are ob-
viously different. On weekends, the vehicles arrive at the shop-
ping mall earlier than on weekdays, especially on Sundays. The
distributions of parking time for each day are roughly the same.

According to the above observations, the number of vehicles and arrival
time distribution vary between weekdays, Saturdays, and Sundays, thus
we select weekdays, Saturdays, and Sundays as typical days to generate
harging demand scenarios. The arrival time distributions 𝑓 𝑎𝑟𝑟(𝑘), and

the parking time distributions 𝑓 𝑝𝑎𝑟(𝑘) of weekday, Saturday, and Sun-
day are shown in 5. Drivers’ parking time is slightly longer on weekends
than on weekdays. Let subscripts 𝑋𝑝𝑟𝑒 and 𝑋𝑟𝑒𝑎 represent the prediction
alue and real value, respectively. The following error functions are
resented.

The prediction error of the number of vehicles

𝑒𝑣𝑒ℎ = |𝑛𝑝𝑟𝑒 − 𝑛𝑟𝑒𝑎|∕𝑛𝑝𝑟𝑒. (17)
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Fig. 3. Parking statistics from 1 Oct 2018 to 30 Sep 2019.
Fig. 4. Distributions of arrival time and parking time of each day.
Table 2
Model validation results.

Error Weekday Saturday Sunday

𝑒𝑣ℎ𝑒 3.90% 8.95% 4.73%
𝑒𝑎𝑟𝑟 2.42% 3.49% 7.84%
𝑒𝑝𝑎𝑟 1.68% 2.74% 3.46%

The prediction error of the arrival time distribution

𝑒𝑎𝑟𝑟 =
𝐾
∑

𝑘=1
|𝑓 𝑎𝑟𝑟

𝑝𝑟𝑒 (𝑘) − 𝑓 𝑎𝑟𝑟
𝑟𝑒𝑎 (𝑘)|∕

𝐾
∑

𝑘=1
𝑓 𝑎𝑟𝑟
𝑝𝑟𝑒 (𝑘). (18)

The prediction error of the parking time distribution

𝑒𝑝𝑎𝑟 =
𝐾
∑

𝑘=1
|𝑓 𝑝𝑎𝑟

𝑝𝑟𝑒 (𝑘) − 𝑓 𝑝𝑎𝑟
𝑟𝑒𝑎 (𝑘)|∕

𝐾
∑

𝑘=1
𝑓 𝑝𝑎𝑟
𝑝𝑟𝑒 (𝑘). (19)

Based on the remaining 20% of data, the validation results are
ummarised in Table 2.
7 
Fig. 5. Arrival time and parking time distributions.
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Table 3
Parameter settings.

Parameters Value Unit

Charging station open time 6:00–24:00
Time interval 𝛥𝑡 30 min
Charging pole price 𝑐1 3450 [49] $∕pole
Rated power of charging poles 𝑝max 19.2 [49] kW
Lifetime of charging pole 𝑁 9 year
Maintenance fee 𝑐2 2%𝑐1 [50] $∕pole
Charging service fee 𝑐𝑐 0.3 $∕kWh
EV penetration 𝛼 0.1
Average EV battery capacity 72 [51] kWh
Discount rate 𝑟 10%

Fig. 6. The results stability of the sample average approximation method with respect
to the number of scenarios and the number of charging poles 𝑚.

7.2. Simulations and results

The numerical simulation is performed by using Gurobi solver [47],
on an Intel Core i9-12900 CPU @3.20 GHz, 32 GB RAM. The parame-
ters used in the simulation are given by Table 3. The time-of-use tariff
s given by

𝑐𝑡𝑜𝑢𝑡 =

⎧

⎪

⎨

⎪

⎩

0.1242 $∕kWh, 𝑡 ∈ [0, 7), [22, 24),
0.1578 $∕kWh, 𝑡 ∈ [7, 14), [20, 22),
0.1981 $∕kWh, 𝑡 ∈ [14, 20).

The maximum demand tariff is 𝑐𝑚𝑑 = 0.3574 $∕k VA per day and the
demand window is from 14:00 to 20:00 [48].

According to the analysis in Section 7.1, scenarios are generated to
imulate requested charging demand profiles on weekdays, Saturdays,
nd Sundays. Each scenario contains four key parameters: (1) The

number of EVs at the parking lot; (2) the EV arrival time; (3) the EV
departure time; and (4) the arrival SOC of each EV. The daily number
of EV parkings at the parking lot is determined by the average number
of vehicles parkings on weekdays, Saturdays, and Sundays obtained in
Section 7.1. The EV arrival time and parking time are generated from
istributions given in Fig. 5. The arrival SOC of each EV is generated
ccording to the Weibull distribution with scale parameter 𝜆 = 0.8 and
hape parameter 𝑐 = 10 as discussed in Section 4. In addition, the

number of scenarios is critical in the sample average approximation
pproach. The optimal solution converges to the expectation as the

number of scenarios approaches infinite. However, too many scenarios
ncrease the computational complexity. To balance the accuracy and
omputing complexity, the relationship between the expectation of
aily profit and the number of scenarios is tested under different
umbers of charging poles 𝑚. The results are shown in Fig. 6. It can be
8 
Fig. 7. Requested charging demands on different days.

seen that the number of charging poles has no significant impact on the
ptimal number of scenarios. The expectation of daily profit is stable
hen the amount of samples of each typical day is greater than or equal

o 4. To balance the computational burden and accuracy, we chose 6
samples for each typical day (18 scenarios in total). According to the
iven parameters, the average requested charging demand profiles of

weekdays, Saturdays, and Sundays, and weighted average requested
harging demand are drawn in Fig. 7. It can be seen that the requested

charging demand on Saturday is the highest and the charging demand
on weekdays is the lowest. The peak demand occurs at 12:30 on
weekdays and Sundays, while on Saturdays it peaks at 14:00.

7.3. Optimal number of charging poles and NPV

For the designed shopping mall charging station, the following
ndicators are used for performance evaluation. Since we categorise
he scenarios into weekdays, Saturdays, and Sundays, the average

values of each scenario and weighted values of all scenarios of these
ndicators are calculated. The weighted values for these three scenarios
re derived based on the frequency of each day type in a typical year.
he weights assigned to the scenarios are 261∕365 for weekdays, and

52∕365 for both Saturdays and Sundays, respectively.

(1) Energy consumption and maximum demand
The energy consumption is calculated by

𝜙𝑒𝑛,(𝑠) =
𝐾
∑

𝑘=1

𝐼 (𝑠)
∑

𝑖=1
𝑝𝑘,(𝑠)𝑖 , (20)

The maximum demand 𝜙𝑚𝑑 ,(𝑠) is 𝑧 kVA.

(2) Electricity cost and profit
The energy cost is calculated by

𝜙𝑒𝑐 ,(𝑠) =
𝐾
∑

𝑘=1

𝐼 (𝑠)
∑

𝑖=1
𝑐𝑡𝑜𝑢𝑘 𝑝𝑘,(𝑠)𝑖 , (21)

The maximum demand charge 𝜙𝑚𝑑 ,(𝑠) is calculated by 𝑐𝑚𝑑𝑧. The
rofit 𝜙𝑝𝑟,(𝑠) = 𝑐𝑐𝜙𝑒𝑛,(𝑠) − 𝜙𝑒𝑐 ,(𝑠) − 𝜙𝑚𝑑 ,(𝑠).
(3) Utilisation rate of charging poles

The hourly utilisation rate of the charging pole at the time interval
𝑘 in scenario 𝑠 is calculated by

𝜙𝑢𝑟,(𝑠)
𝑘 =

Number of EVs charged at time interval 𝑘 in scenario 𝑠 (𝑝𝑘,(𝑠)𝑖 > 0)
Number of charging poles .
(22)
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Table 4
Optimal results with 𝑚∗ = 13.

Day Energy
(kWh)

Maximum
demand (kVA)

Energy
cost ($)

Demand
charge ($)

Profit
($)

Utilisation
rate

User
satisfaction

Weekday 1166 140 202 50 98 43% 100%
Saturday 2043 220 356 79 174 75% 82%
Sunday 1589 220 281 79 117 58% 88%
Average 1351 163 236 58 130 50% 96%
Fig. 8. NPV and annual profit under different number of charging poles installed.

The daily average utilisation rate is calculated by

𝜙𝑢𝑟,(𝑠)
𝑑 =

∑𝐾
𝑘=1 𝜙

𝑢𝑟,(𝑠)
𝑘

Charging station opening hours ∕𝛥𝑡
. (23)

(4) User satisfaction
User satisfaction in scenario 𝑠 is defined as

𝜙𝑢𝑠,(𝑠) =
Rescheduled charging demand in scenario 𝑠
Requested charging demand in scenario 𝑠

. (24)

The relationship between the number of charging poles to be in-
talled and NPV is shown in Fig. 8. The maximum NPV $ 167 190 is

achieved when 𝑚∗ = 13 and the corresponding annual profit is $ 41
43. The energy consumption, maximum demand, energy cost, demand
harge, profit, utilisation rate, and user satisfaction are calculated in

Table 4. The hourly utilisation rates of charging poles on different
days are shown in Fig. 9. It can be observed that the highest charging
emand on Saturday yields the highest energy consumption, maximum

demand, energy cost, demand charge, profit, and utilisation rate be-
tween three days. However, user satisfaction on Saturday is the lowest
due to the limited number of charging poles. Fig. 10 shows that user
satisfaction increases as the number of charging poles increases. User
atisfaction first reaches 100% on weekdays because the number of EVs
isiting the shopping mall on weekdays is the least. Continuing to in-
rease the charging pole contributes to increasing user satisfaction, but
conomically suboptimal. When the number of charging poles increases
rom 13 to 20, user satisfaction rises by 4%, but the NPV drops by
1%. It is important to note that this study focuses on single-objective
ptimisation for the design problem. If multiple objectives, such as
PV and user satisfaction, are considered simultaneously, the optimal
umber of charging poles may differ. The proposed planning method
an easily be adapted to a multi-objective framework, depending on
nvestors’ attention to different objects.

Based on the optimal results, the potential of demand-side manage-
ent is explored. The constraint (12) is relaxed to 𝐸𝑘 <= 𝐸𝑟𝑒𝑠, 𝑘 =
𝑖 𝑖

9 
Fig. 9. Charging pole utilisation rate with 𝑚∗ = 13.

Fig. 10. User satisfaction with different numbers of charging poles.

𝑡𝑠𝑖 + 𝑑𝑖, which implies that the charging station can curtail the required
energy of EVs through demand-side management. Since this study does
not involve specific demand-side management strategies, we only show
the potential of demand-side management in improving the investment
of charging poles. Similar to the method adopted in [52], a weight
factor 𝜂 is assigned to the maximum demand charge item 𝑐𝑚𝑑𝑧 in
(13). The real-time scheduling algorithm tends to charge less electricity
for EVs within the demand window as the increase of weight factor.
According to the testing, the real-time scheduling algorithm shows the
best performance when 𝜂 = 0.2. The numerical results are compared
in Table 5. Compared to the results of 𝐸𝑘

𝑖 = 𝐸𝑟𝑒𝑠
𝑖 , it is observed that

partially satisfying the rescheduled charging demand can lead to higher
annual profit and NPV. While the energy cost decreases by only 7%, the
maximum demand charge is reduced by 28%, highlighting the value
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Table 5
Comparison between the real-time parking bay allocation strategies with 𝐸𝑘

𝑖 = 𝐸𝑟𝑒𝑠
𝑖 and 𝐸𝑘

𝑖 ≤ 𝐸𝑟𝑒𝑠
𝑖 .

Case NPV ($) Annual
profit ($)

Energy
(kWh)

Energy
cost ($)

Demand
charge ($)

User
satisfaction

𝐸𝑘
𝑖 = 𝐸𝑟𝑒𝑠

𝑖 167 190 41 643 1 351 236 58 96%
𝐸𝑘

𝑖 ≤ 𝐸𝑟𝑒𝑠
𝑖 181 551 43 334 1 264 218 42 89%
Table 6
Comparison of transition plans with and without scheduling methods.

𝑚∗ NPV∗ ($) Annual
profit ($)

Payback period
(years)

User
satisfaction

Without charging scheduling 8 138 499 31 134 0.88 70%
Proposed method 13 167 190 41 643 1.2 96%
Proposed method with 𝑚 = 8 8 158 459 35 428 0.79 85%
of demand-side management, especially in reducing the maximum
demand for shopping mall charging stations.

7.4. Transition planning results under different scheduling strategies

Table 6 shows the comparisons of the transition planning results
with and without the proposed real-time parking bay allocation strat-
gy, including optimal numbers of charging poles to be installed, NPVs,
nnual profits, payback period, and user satisfaction. For the baseline
ase (transition planning without scheduling strategy), the optimal
umber of charging poles is 8 and the optimal NPV is $ 138 499. The
roposed transition planning method can increase the annual profit by
4% and user satisfaction by 37%. The results indicate the proposed
lanning method can achieve higher annual profits and user satisfaction
ut a longer payback period because more charging poles are suggested
o be installed. The performance of two operational strategies with
he same number of charging poles (8 charging poles) are compared.
t can be observed that all performance indicators listed in Table 6

of the proposed real-time parking bay allocation strategy are better
than those without scheduling. The normalised annual profits (annual
rofit divided by the number of charging poles) of two cases with
espect to the number of installed charging poles are shown in Fig. 11.

The normalised annual profit decreases as the number of charging
oles increase. When installing a small amount of charging poles,

the normalised annual profits of the two cases are not significantly
different. However, as the number of charging poles increases, the
proposed method brings higher and higher normalised annual profit.
Fig. 12 shows the maximum demand of two cases as the number of
nstalled charging poles increases. When there are few charging poles
n the charging station, although EV’s charging requests are shiftable,
he charging station lacks the capability to shift them because all the
harging poles are fully occupied. With the increase in the number
f charging poles, the charging station’s capability of demand shifting
mproves (The decrease in the utilisation rate shown in Table 6 proves
his point), which enables the implementation of the charging schedul-

ing strategy to reduce maximum demand. When 𝑚 = 13, the proposed
strategy shows good performance in reducing the maximum demand,
nd the maximum demand is reduced by 26%.

7.5. Impact of EV penetration

With the increase in EV penetration, the charging station owner can
btain a larger NPV by deploying more charging poles in the charging
tation. Fig. 13 shows that the optimal number of charging poles and
he corresponding NPV are positively related to the EV penetration
ate. The optimal number of charging poles to be installed should be
ncreased by an average of 11 to obtain the optimal NPV, whenever the

EV penetration rate increases by 0.1.
10 
Fig. 11. Normalised annual profit of two operational strategies under different numbers
of charging poles installed.

Fig. 12. Maximum demand of two operational strategies under different numbers of
charging poles installed.

7.6. Impact of charging proce

Fig. 14 shows the relationship between the charging price and
payback period. When 𝑐𝑐 = 0.3 $/kWh, the discounted payback period
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Fig. 13. Optimal number of charging poles and NPV as the increasing of EV
penetrations.

Fig. 14. Profit vs payback period with 𝑚 = 13.

is 1.2 years. The payback period is larger than 8 years if the charging
price is less than 0.24 $/kWh. The increase in profit decreases the
payback period and brings higher NPV of the designed shopping mall
charging station, but it will increase the charging cost of EV drivers,

hich may decrease drivers’ willingness to charge EVs at the shopping
all charging station. The relationship between charging price and EV

charging demand exceeds the research scope of this research. Interested
eaders can read [53,54] for more details.

7.7. Impact of the charging power of charging poles

This section considers the impact of the rated power of charging
poles. According to the proposed charging demand model, charging
poles with higher charging power can complete the EVs’ charging
task faster and satisfy more initial charging demand of EVs. However,
the purchase and installation costs of the charging pole dramatically
increase as the rated power of the charging pole increases. Here, we
consider three levels of charging poles, alternating current (AC) Level
1, AC Level 2, and direct current (DC) fast charging. Their rated power
 s

11 
outputs are 1.9 kW, 19.2 kW, and 50 kW, respectively, with purchase
and installation costs of $ 900, $ 3 450, and $ 25 000, respectively [49].
The simulation results of three levels of charging poles are given in
Table 7. According to the results, the AC level 2 charging pole is the

ost suitable choice for shopping mall charging stations, which has
he highest NPV, profit, and user satisfaction. When the rated power
f charging poles is small (Level 1), only a small part of the initial
harging demand is satisfied, thus leading to the lowest user satisfaction

rate. Since the unit price (Unit cost/power) of Level 1 charging poles
is less than Level 2 charging poles, the optimisation problem prefers
to install more Level 2 charging poles rather than Level 1 charging
poles. In addition, the high initial cost hinders the application of direct
urrent fast charging. Compared with the Level 2 charging, the higher
tilisation rate and lower user satisfaction of DC fast charging indicate
hat the number of fast charging poles is too small such that many EVs
annot be connected to the fast charging stations.

8. Conclusions

In this study, we delve into the optimal transition planning for
shopping mall parking lots to stimulate interest from potential in-
estors and municipalities towards the development of shopping mall
harging stations. Our approach involves modelling the charging de-
and specific to shopping malls, drawing from historical parking data
hile meticulously accounting for data reliability and availability. To
fficiently manage the limited number of charging poles and reduce
aximum demand, we propose a real-time parking bay allocation

trategy to determine the optimal charging start time and charging
ower for each EV. Moreover, in light of the inherent uncertainty
ssociated with drivers’ parking behaviours, we propose a two-stage
tochastic optimisation framework to determine the optimal number

of charging poles to be deployed within shopping mall parking lots,
maximising the NPV of the charging station investment. The optimal
solution is analysed from the perspective of charging station owners
and explores the impact of several sensitive factors, including rated
power of poles, EV penetration rate, and charging price. The optimal
results show the proposed planning method increases the annual profit
by 34% and user satisfaction by 37% compared to the baseline method.
There are significant disparities in the requested charging demand
at shopping malls between weekdays, Saturdays, and Sundays. The
performance of the proposed scheduling strategy in terms of profitabil-
ity and maximum demand reduction is contingent on the number of
charging poles to be installed. Specifically, with a limited number
of charging poles, the profitability difference between employing the
scheduling strategy and not doing so is negligible. However, as the
number of charging poles increases, the proposed charging scheduling
method becomes increasingly lucrative, resulting in higher normalised
annual profits and greater maximum demand reduction. Additionally,
our research suggests that the transition may not be sustainable in
the financial return if the charging price is less than 0.24 $/kWh.
Presently, AC level 2 charging is the most suitable option for shopping
mall charging stations. While DC fast charging may seem appealing for
EVs with high initial charging demand and short parking durations, its
prohibitive purchase and installation costs present a significant hurdle.
Consequently, reducing the expenses associated with fast-charging pole
installation is pivotal for promoting the expansion of fast-charging
networks in the future.

During the implementation stage, parking lot owners may face the
selection of different types of charging poles, such as charging poles

ith varying power ratings or charging poles with multiple ports. The
roposed solution can also be used to guide the selection. For instance,
f the planning stage recommends installing 3 charging poles, the owner

can choose to install either 3 individual poles or 1 multi-port pole with
 ports. For charging poles with different rated powers. Our results
ive the number of charging poles and the minimum rated power that
hould be selected.
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Table 7
Comparison between different charging power levels.

Charging
power (kW)

𝑚∗ NPV∗

($)
Investment
cost ($)

Energy
(kWh)

Energy
cost ($)

Demand
charge ($)

Daily
profit ($)

Utilisation
rate

User
satisfaction

1.9 11 21 512 9900 198 35 7 18 87% 12%
19.2 13 167 190 44 850 1351 236 58 130 50% 96%
50 4 87 178 100 000 1231 215 53 108 84% 69%
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