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Abstract

Phenotyping of animals is a routine task in agriculture which can provide large datasets for the functional annotation of genomes.
Using the livestock farming sector to study complex traits enables genetics researchers to fully benefit from the digital transformation
of society as economies of scale substantially reduces the cost of phenotyping animals on farms. In the agricultural sector genomics has
transitioned towards a model of ‘Genomics without the genes’ as a large proportion of the genetic variation in animals can be modelled
using the infinitesimal model for genomic breeding valuations. Combined with third generation sequencing creating pan-genomes
for livestock the digital infrastructure for trait collection and precision farming provides a unique opportunity for high-throughput
phenotyping and the study of complex traits in a controlled environment. The emphasis on cost efficient data collection mean that
mobile phones and computers have become ubiquitous for cost-efficient large-scale data collection but that the majority of the recorded
traits can still be recorded manually with limited training or tools. This is especially valuable in low- and middle income countries and
in settings where indigenous breeds are kept at farms preserving more traditional farming methods. Digitalization is therefore an
important enabler for high-throughput phenotyping for smaller livestock herds with limited technology investments as well as large-
scale commercial operations. It is demanding and challenging for individual researchers to keep up with the opportunities created by
the rapid advances in digitalization for livestock farming and how it can be used by researchers with or without a specialization in
livestock. This review provides an overview of the current status of key enabling technologies for precision livestock farming applicable
for the functional annotation of genomes.
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Introduction
One of the ‘grand challenges’ in modern biology is to under-
stand the genetic basis of phenotypic diversity within and among
species [1]. The livestock sector can provide an advanced infras-
tructure for high throughput genotyping and phenotyping of ani-
mals. Although big datasets from livestock have been collected
since the beginning of the 20th century the rise of precision farm-
ing and overall digitalization of society mean that the amount of
data recorded about animals and their environment on farms is
growing at a rapid pace [2]. Precision livestock farming can here
be defined as a process where data from the sensors generate
feedback to the controller so that he or she can make informed
decisions based on a decision model in order to generate a set of

desired responses in the herd being managed [3]. For breeding pur-
poses industrial scale genotyping of livestock is performed simul-
taneously [4] which can provide access to 45 k Single-nucleotide
polymorphism (SNP) genotyping at a cost of <30 euro per animal
if performed in collaboration with breeding organizations [5].
This article will give an overview of how farming practices in a
digitalized society can enable large-scale studies on phenomics
in high as well as low-income settings as digital technology has
become commonplace on a global scale.

Scope
This narrative review will focus on four key areas for the utiliza-
tion of livestock farming data for high-throughput phenotyping of
animals:
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• The types of measurements used in farming applicable for
phenotyping in genetics research.

• The development of new sensors for the digitalization of on-
farm equipment generating data which are currently col-
lected in herd management systems on farms to support on-
farm operations [6].

• How the digitalization of agriculture and precision livestock
farming generate contextual information about farm animals
and their environment.

• Describing the role of breeding organizations and breeding
programs which may be utilized for high-throughput pheno-
typing.

The aim of this review is to narratively describe how technology
and precision livestock farming enables the measurements nec-
essary for high-throughput phenotyping. As a technology oriented
review this scope excludes the process of converting a set of
measurements into an observed phenotype or the calculation of
breeding values.

Phenotype measurements in agriculture
The observation and quantification of genetic traits is a key
activity when selecting animals for breeding. In this review we
highlight five different kinds of measurements currently in use
for livestock breeding and precision livestock farming.

• One time measurements – a measurement made once for
persistent characteristics such as polledness.

• Longitudinal data – repeated measurements giving a single
value such milk yield used in milk recordings [7].

• Behavioural measurements measuring the displayed behaviour
of an individual [8].

• Endophenotypes or intermediate phenotypes using biomark-
ers which may be more accessible or stable than measured
phenotypes for example used when studying genetic suscep-
tibility to a metabolic disorder.

• Contextual phenotyping where measuring the environmental
context of an animal can enable measurements of traits
related to phenotype plasticity [9] and robustness [10].

From historical records easily recorded characteristics con-
cerning the exterior of an animal has been very important to
define a breed. The physical form of an animal is often correlated
with other adaptions to the local environment or farming prac-
tices. It is therefore often possible to use historical records to iden-
tify phenotypes distinct for specific geographical regions or breeds
which can provide valuable information regarding the complex
interplay of artificial selection, population admixture, inbreeding
and genetic drift for genetics research [11]. Longitudinal data
collection requires more persistent efforts and herd books and
milk recording organizations became prominent in the early 20th
century [7]. Data collection efforts enabled organizations to track
progress over time and supported the organization of data in
such ways that more complex traits such as total milk yield per
lactation could be estimated. Simple collections have evolved to
modern day breeding programs where a large number of traits
related to productivity, health, and other production factors are
being measured which is further described in the section ‘Data
recording for breeding and advisory organizations’.

An area receiving increased attention in livestock research is
the automated collection of behavioural information. Tempera-
ment is often used as a composed trait for selection of animals
in breeding programs but usually relies on personal observations
which do not generally work well to enable the identification

of separate genetic traits [12, 13].With improved animal track-
ing within farms high-throughput phenotyping of behaviour has
become more viable. This tracking can take the form of movement
sensors [14] or gate passages using farm equipment such as
autonomous milking systems and smart gates [15] as well as by
using novel solutions relying on machine vision [16, 17] to visually
track animal behaviour which makes it possible to study even
complex social behaviour in a production environment [14, 18].

Endophenotypes are commonplace in medicine as samples
are taken and analysed in the healthcare system. For specific
applications a similar approach can be taken for livestock and
some farms have invested in compact on-farm labs like the Herd
Navigator [19]. Such machines are expensive but make it possi-
ble to measure hormones and metabolites such as progesterone
to detect heat, lactate dehydrogenase to detect early mastitis,
betahydroxybutyrate for ketosis and urea to adjust protein intake
for animals.

Contextual information is another area where digitalization
and automation are drastically reducing costs of data collec-
tion. Open data strategies in the public sector and funding for
ambitious data collection projects such as the Sentinel-2 satel-
lites mean that substantial amounts of data regarding weather,
biomass growth and water availability are now available on a
weekly basis down to a resolution of 10 × 10 m [20]. These data
can be combined with data from other sources such as feed
producers, fixed environmental sensors and geospatial data from
satellites and/or drones, this have created an emerging field of big
data within precision livestock farming using remote sensing for
both feed production and herd monitoring [21]. When combined
with animal data this information makes it possible to measure
traits related to phenotypic plasticity [8, 22] or robustness [10,
23] as the expressed phenotype can be put into a context of the
environmental conditions which have shaped the animal.

Economic considerations of phenotyping in
livestock farming
The economic value of an individual is directly related to the
amount of money which can be invested in monitoring it. An
estimate of global total output value of farmed animals based on
the FAOSTAT database operated by the Food and Agriculture Orga-
nization of the United Nations [24] indicate that the global eco-
nomic value of livestock outputs are dominated by the value that
cattle outputs generate (34% in 2018), followed by chickens (21%),
pigs (17%), aquaculture (14%), other livestock (12%), and sheep
(2%) [25]. Using a similar approach to the methodology presented
by Schrobback et al. the annual production value per producing
animal can be calculated (supplementary material 1). The use of
annual income per animal used in production is necessitated by a
lack of data on culling rates and the way total population statistics
are being aggregated on a species level rather than production
system or type of output. Dairy from cattle generates the highest
annual income per individual in production with a median of 1789
USD per head and year. Meat from cattle generates the second
highest economic value with a median income of 1097 USD per
head. In comparison a pig brings in a median value of 171 USD per
head, sheep 102 USD per head, goat meat 87 USD per head, and
chickens a median of 4 USD. Goats used for dairy bring in 121.8
USD per animal and year while sheep used for dairy are reported
to generate an annual value of 83.1 USD during their productive
years. To better display the variation in production value between
countries, Fig. 1 provides a set of violin plots displaying the distri-
bution of reported income per product in countries reporting data
to FAOSTAT, Table 1 display the median value, standard deviation
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Figure 1. Violin plots of the food items produced by species included in the review. As indicated by table 1 and 2 the variation of annual production
value is lower among European Union members but median production values are similar (FAO. FAOSTAT. License: CC BY-NC-SA 3.0 IGO. Extracted
from: https://www.fao.org/faostat/en/#data. Data of Access: 2024-06-27).

and number of reporting countries in total and Table 2 the same
statistics but for the single European market. A link to the calcula-
tions and source data is available in Supplementary Material 1. It
is important to note that this data describe revenue per producing
animal and year and not the overall income or profitability of the
animals. A dairy cow will join the productive population at ∼2
years of age but will remain productive for several years, while
a chicken for meat production will only live for 50–60 days. On a
herd level this mean that individual tracking where a sensor is
attached to an animal is more attractive for long-lived animals
generating value over multiple years while fixed installations
that remain in place as individuals are slaughtered and replaced
become more attractive for short-lived production animals. This
is also reflected in this review as cattle production with its high
economic value and longevity of production animals make use
of a wide variety of wearable devices or fixed installations with
identification provided by a transponder or radio-frequency iden-
tification (RFID) tags worn by individual animals. Emerging fields
such as video surveillance and sound monitoring will however
have a higher value for high-throughput production of animals
such as broiler chickens and pig farming as recording devices
can be used for multiple generations of animals each year which
can be combined with existing fixed installations and RFID-based
identification [26].

Data recording for breeding and advisory
organizations
For inclusion in a breeding program any trait measured must
be heritable and of sufficient economic importance to justify
the costs of measuring. To ensure that enough animals can be
measured to accurately calculate genomic breeding values there
must be a reference population of sufficient size to perform
the calculations [27]. Relatively straightforward traits to measure
are therefore preferred in data collection for breeding evalua-
tions. Over time the scope of traits targeted for selection have
moved away from being purely production oriented toward a
more balanced breeding goal covering aspects such as health and
fertility in addition to productivity traits [7]. The Nordic countries
have long held a leading role in this process [7, 28] making the
Nordic Total Merit Index a good example of the scope of such a
modern breeding program with 83 different measurements being
performed to calculate 16 different sub-indices. These sub-indices
concern milk yield, growth, fertility, birth index, calving index,
udder health, general health, claw health, frame, feet and legs,
udder, milkability, temperament, longevity, youngstock survival
and saved feed (see supplementary materials 2, Table 2 for a
full list of measurements). For a more comprehensive overview
of traits currently used in breeding programs and how they are
measured, the International Bull Evaluation Service (Interbull)
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Table 1. The median value of annual production (USD) per productive animal by item produced, standard deviation (SD), number of
productive animals (slaughtered, milked or egg-laying during the year) and number of countries reporting data to FAOSTAT (FAO.
FAOSTAT. License: CC BY-NC-SA 3.0 IGO).

Item USD per head SD Nr of Animals (million) Nr of Countries

Hen eggs in shell, fresh 22.8 24.9 5485.9 61
Meat of cattle with the bone, fresh or chilled 1096.8 829.4 50.6 38
Meat of chickens, fresh or chilled 4 2.7 21611.7 29
Meat of goat, fresh or chilled 87.1 60.3 35.6 20
Meat of pig with the bone, fresh or chilled 171.2 112.7 986.3 35
Meat of sheep, fresh or chilled 101.9 111.1 311 30
Raw milk of cattle 1788.6 2942.3 111 82
Raw milk of goats 121.8 156.9 33.2 24
Raw milk of sheep 83.1 98.4 65.6 18

Extracted from: https://www.fao.org/faostat/en/#data. Date of Access: 2024-06-27). The global data highlight a large variation in annual production value and
the median value has therefore been highlighted over the mean value, see supplementary material 1 for a breakdown of data on the national level.

Table 2. The median value of annual production (USD) per productive animal by item produced, standard deviation (SD), number of
productive animals (slaughtered, milked or egg-laying during the year) among the European Union members which report data to
FAOSTAT (FAO. FAOSTAT. License: CC BY-NC-SA 3.0 IGO).

Item USD per head SD NrAnimals (million) NrCountries

Hen eggs in shell, fresh 27.8 4.6 5 2
Meat of cattle with the bone, fresh or chilled 1057.6 437.5 7.8 12
Meat of chickens, fresh or chilled 3 0.6 464.8 3
Meat of goat, fresh or chilled 57.2 41.9 1.4 5
Meat of pig with the bone, fresh or chilled 168.7 27.8 140.2 13
Meat of sheep, fresh or chilled 88.8 39.8 17.4 11
Raw milk of cattle 3871.4 1006.7 14.9 23
Raw milk of goats 118.2 111.4 4.7 7
Raw milk of sheep 153.2 131.9 16.6 6

Extracted from: https://www.fao.org/faostat/en/#data. Date of Access: 2024-06-27). The global data highlight a large variation in annual production value and
the median value has therefore been highlighted over the mean value, see supplementary material 1 for a breakdown of data on the national level.

host a compiled list of traits used in various national genetic
evaluations from member organizations (https://interbull.org/ib/
geforms). A more historical perspective of breeding programs is
provided by the review of Miglior et al. [7] and provides a valuable
introduction to the field for geneticists looking to utilize data from
livestock in their research.

International standardization of testing is a major challenge for
breeding organizations as exemplified by the differences in proce-
dures used in national genetic evaluations submitted to Interbull.
Researchers with different specializations, or working in different
regions, will therefore have to rely on different nomenclatures
and standards when using production data for high-throughput
phenotyping of animals. It is therefore important to connect
phenotypes collected from animals in recordings and breeding
programs with definitions from ontologies such as the animal
trait ontology [29] and databases such as the Animal QTLdb [30]
to link the applied animal science to knowledge structures used
in genetics, molecular biology and the functional annotation of
genomes.

Establishing sustainable animal recordings in low- or mid-
dle income countries have proven to be challenging as a lack
of economically sustainable infrastructure makes it difficult to
maintain records over long periods of time and return value of the
recordings to farmers. Conceptually the challenges of establishing
reliable animal recordings in low-or middle income countries
can be described as a wicked problem [31] where the lack of
organized recording makes it difficult to obtain a premium val-
uation for premium animals which in turn have made it difficult
to obtain the funds necessary to organize large-scale recording
operations. Breaking this cycle require concentrated efforts by

interdisciplinary teams combining internet and communications
technology to develop accessible recording solutions with ade-
quate measurements selected for recording at an acceptable price
[32, 33]. From a purely technical perspective most recordings used
for breeding evaluations are relatively simple and can be carried
out without access to advanced technical infrastructure. Using
the Nordic Total Merit Index as an example most measurements
(58 out of 83) rely purely on observations and the date of events
being recorded (Table 3). A further 15 require a more careful
evaluation of the animal prior to an index or evaluation result
being recorded. In total only 5 out of 83 traits can be considered
difficult to measure from a technical perspective, those traits are
related to measurements of milk composition during different
lactations [34, 35].

In addition developments in the internet and communications
technology sector enables farmers to perform more accurate
recordings while breeding organizations and advisory organiza-
tions can quickly act on the information provided by the farmer
and provide value adding services via mobile phones [36, 37].
Given the reliance on basic measurements such as the recording
of time, volume, weight, height, and behaviour the combination
of a high people-to-animal ratio and increasing availability of
mobile phones means that individual farmers and community
breeding programs can engage in citizen science [38] to provide
extensive phenotyping of local genotypes in low and middle-
income countries (LMICs). The number of mobile phone users in
rural areas has grown rapidly in the previous decade and with
on-farm recording systems in place [39, 40] community programs
for breeding may thereby provide an important contribution to
phenotyping of indigenous livestock populations in LMICs as
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Table 3. Measurement types and training requirements for data recording according to Nordic Total Merit Index.

Measurement type # Training requirements #

Recording 58 Low 39
Evaluation 15 Medium 15
Weighing 5 High 29
Chemical analysis 5 Total number 83
Total number 83

Low training requirements mean that measurements can be done with minimal training, medium with specific training and high requires a trained
professional. Very high training is used to signify the need to conduct a full research project prior to obtaining the desired data. For a full breakdown of traits
and requirements see supplementary material 2.

well as strengthen rural economies [41]. This form of citizen
science [42, 43] may therefore become a major contributor to the
largescale characterization of phenotypes in indigenous livestock
populations as well as direct feedback to the farmers.

Digitalization of on-farm equipment
A sensor is any device that detects changes in its environment
and transmits a resulting impulse. The rapid advancement of
information and communication technology mean that devices
that detect a change in its environment, convert it to a digital
signal and transmit it to a computer processor now make up a
large proportion of all sensors. The computer processor then run
code which enable information to be analysed, routed or stored
as appropriate by the design of the device. Many digital devices
are stand-alone systems consisting of one or more sensors, a
processor and a display or other interface to interact with the
user or other devices. Weather stations used on many farms are a
common example of such self-contained devices with a tempera-
ture sensor and a humidity sensor attached to a processor which
converts the digital signal to numbers which are immediately
displayed on a small screen.

Connecting multiple devices into a network requires communi-
cation protocols to define how information is received and inter-
preted when exchanged between components of the network.
Large equipment manufacturers such as DeLaval International
AB, Lely Industries N.V. and GEA Group AG are transforming
their business models into not only providing singular pieces of
equipment but also a networked system of devices which together
provide the farmer with improved situational awareness, decision
support and automation within a proprietary network. From a
data collection perspective this means that the availability of data
collected from farming equipment is dependent on the relation-
ship between farmers and equipment manufacturers as well as
national legalization or adherence to best practice procedures
for data ownership and control in a rapidly evolving landscape
[44, 45]. Organizations such as the International Committee for
Animal Recording (ICAR) also has an important role in the devel-
opment of this landscape as exemplified by the development of
the Animal Data Exchange standard being implemented for dairy
through the International Dairy Data Exchange Network which
provides a standard and infrastructure for data exchange between
machines in the dairy sector [46].

Providing a high-level overview of technology available
for phenotyping is complicated by farming equipment being
developed for farmers and advisors rather than the scientific
community. Publications made by agricultural scientists may cite
the agricultural equipment in scholarly papers but the citation
standards for equipment are not suited for being readily identifi-
able in systematic reviews using databases such as Web of Science
or Scopus as the Methods & Methods and Introduction field where
equipment names and manufacturers are listed are not covered in

the database. Google scholar provides better coverage but makes
it impossible to define clear inclusion criteria for a systematic
review. Thematic surveys and grey literature produced in different
projects can however provide valuable snapshots of technology
developments and their applications within smart farming [47].
ICAR and the Horizon2020 EU project Data Driven Dairy Decisions
for Farmers (4D4F) (Fig. 2) have produced such surveys focused
on ruminant animals in 2018 [48, 49] providing an overview of
traits and applications of smart farming equipment and sensors.
A review of on-farm recording tools for smallholder dairy farming
in developing countries was published in 2024 but focused on
data curated from scientific literature which likely contributed
to the heavy emphasis on recording devices developed by
researchers [40].

There is a large number of manufacturers with ICAR certified
equipment and a majority of the equipment covered by the survey
(Fig. 3) [48] are recording milk weight, in the vast majority of cases
these machines are also designed to enable sampling of milk
for external analysis on accredited laboratories with information
also passed on to breeding organizations. In addition many of
these machines automatically measure the conductivity of milk
which provides early warning of potential mastitis [50]. Looking
at the fields of application covered by the study (Fig. 4) milk
sensors make up the dominant application of tools (99 out of
155), followed by health measurements (42/155), fertility (25/155),
positioning and body condition (22/155), feeding (8/155), calving
(7/155), and emissions (2/155).

The 4D4F technology warehouse (https://www.4d4f.eu/content/
technology-warehouse) provides an overview of commercial
technologies available to monitor and support cow health and
performance. This definition includes ‘smart’ equipment such
as automatic feeding equipment which may not necessarily
generate data for trait recording. In total the warehouse compile
information on 137 different devices submitted during the
duration of the project [49]. A noticeable difference in this dataset
is that a large number of automated feeding devices are recorded
but only 7 are registered in the ICAR dataset for trait recording
of feed intake. In total 31 devices for automatic feeding, 24 for
automatic milk feeding of calves and 7 devices for eating time are
listed. Other common areas of utilization for devices identified by
4D4F are activity measurements (24) and mastitis (17) followed
by a large number of use areas with a handful of devices in each
area.

Restl et al. [40] produced a systematic review of on-farm record-
ing systems for smallholder dairy farming. Manual recording
using a mobile phone was the dominant form of data recording
with only a single Internet of Things (IoT) device (a scale mecha-
nism embedded onto a wheel-barrow to measure milk production
of individual cows) was identified in the study. Most recording
systems enabled collection of data on milk production (14 out of
the 19 systems with reported recording capabilities followed by
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Figure 2. Number of devices capable of recording different traits. Some devices record a large number of different traits meaning that the total number
of traits measured is higher than the number of devices in the dataset.

Figure 3. Trait analysis aggregated by field of application.

reproduction (10/19), feeding (6/19), economic performance (3/19
and calf information (2/19).

Looking at the development of equipment covered by these
three studies equipment can broadly be categorized into four
types of equipment.

• Digitalized farming equipment where embedded systems and
new sensors enhance equipment used for example for milk-
ing systems, feeding systems and gates which were previously
analogue and unable to collect data.

• New wearable devices with sensors.
• Camera and automated monitoring using image analysis.
• Centralized services offered by laboratories and advisory

organizations.

Digitalized farming equipment
Large equipment manufacturers like the aforementioned DeLaval,
Lely and GEA have a long history of supplying equipment
for farms. Their devices have grown increasingly ‘smart’ by
incorporating sensors generating digital input which is processed
by embedded computers that control the machine and enables
complex operations such as the automated attachment of suction
cups to cow teats or control over animal activity by smart gates
that provide conditional access to parts of the barn or feed
depending on pre-defined rules. The digitalization of equipment
also mean that information can be exchanged between different
devices on the farm and major equipment manufacturers now
offer software branded as farm or herd management systems
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Figure 4. Devices by category included in the 4D4F technology warehouse survey (137 devices out of which some can be used for multiple purposes).

such as DeLaval DelPro, Lely Time for Cows (T4C) and GEA
DairyPlan. These management systems provide farmers with
information to support their daily operations.

A single piece of equipment may also host a large number of
different sensors to provide information to the farmer and other
pieces of equipment as equipment such as milking stations and
feeding systems interact with a large number of animals each
day, thus making it economically feasible to incorporate devices
that would be prohibitively expensive if used to monitor a single
animal. As a result, especially milking equipment and associated
devices are growing increasingly complex and capable of measur-
ing not only the weight of milk produced but also record values
concerning milk composition (fat, protein, and lactose), electri-
cal conductivity, flow rate, peak flow and somatic cell count.
Additional measurements of endophenotypes such progesterone
to detect heat, lactate dehydrogenase to detect early mastitis,
betahydroxybutyrate for ketosis and urea to help farmers adjust
the protein intake of animals can also be conducted.

Wearable devices
The first sensors to measure parameters about single individuals
were developed in the 1980s [51]. From a practical perspective,
wearable devices can be thought of as one or more sensors,
a computer processor, memory and one or more modules for
input/output. These devices must be powered and protected from
the surrounding environment they are exposed to during the daily
life of the animal. A good example and introduction to how a
wearable device can be designed integrating multiple sensors and
a Bluetooth low energy module with a built-in processor and
memory has been published by Pandey et al., [52] documenting
how the team developed behavioural monitoring tool for pig farm-
ing capturing movement, sound and temperature for processing
by machine learning algorithms.

Compared with medical devices, cost control and servic-
ing requirements are much more limiting for farm animal
applications, commercially available devices for livestock are
therefore largely devoted to measuring physical parameters

with most devices focusing on movement and/or temperature
which may sometimes be combined with additional information
such as sound, pH, or light [48, 49, 51, 53]. These parameters
are applicable for a large number of areas and an equipment
manufacturer targeting the agricultural sector can thereby
purchase generic sensors and other electronics with the livestock-
specific component being the physical specifications and the
development of algorithms interpreting the data to measure
outputs such as activity, heat or calving. The development of
biosensors measuring endophenotypes from sweat, blood or other
body fluids have been envisaged but have not seen widespread
commercialization with the exception of boluses measuring pH in
the rumen of cows. The reliance on a pH probe which degrade over
time however mean that pH measurements are only available for
the first 100–200 days while the bolus remains active measuring
temperature and movement in the rumen for up to six years [54].

For livestock there are six common locations for position-
ing wearable sensor devices, ear, neck, leg, tail, vagina and, for
ruminant animals, the rumen. For any sensor there is a trade-
off between cost, size, weight, battery life and power usage. The
location of the device and size of the animal it is developed for
imposes a physical limit to the size of the battery and different
manufacturers use different hardware as well as different pri-
orities between the form of the device, sampling intervals and
the power of the radio. This mean that for each sensor location
there is a range of device with different sensors, battery lives,
communication ranges and sampling intervals to choose from, as
shown in Table 4.

Vision and sound systems in the barn
Fixed mountings of cameras or sound recorders in the barn can
provide a cost efficient way of tracking animals, their behaviour
and feed intake [55]. For pigs and poultry where the herd sizes are
larger and individual value per animal is lower these approaches
are especially important as a smaller number of cameras or
microphones can be used to maintain surveillance over a large
number of animals [56, 57]. Machine learning techniques make it
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Table 4. A summary of sensor locations, input measurements from sensors, output measurements calculated using algorithms, battery
lifetime and range of communications.

Sensor location Input measurements Output measurements Time Range Intervals

Ear tag Accelerometer Activity, ruminating time, location, heat
index, temperature and eating time

2–3 years 200–500 m 15 minutes to
every 2 h

Temperature
Neck collar Accelerometer Activity, ruminating time, location, heat

index, temperature, eating time, lying
time, standing time and step count.

6 months to
10 years

200–1000 m Continuous to
every 2 h

Microphone
Temperature

Leg tag Accelerometer Activity, standing time, lying time,
walking time, step count, heat index
(based on movement).

2–10 years 50–1000 m Continuous to
every 2 h

Temperature
Tail Accelerometer 60 days - 5 years 2000 m
Vagina Temperature Calving (tail movement), Calving

(temperature), Calving (ejection of sensor)
2 years 1000 m

Light
Bolus sensors Accelerometer Activity, temperature, drinking, pH and

calving
3–6 years 10–1000 m 15 minutes to

every 1 h
Temperature
pH Sensor

The table is a summary of what is currently achievable among commercially available sensors mounted on different locations of a cow and provides an
interval covering the sensors reviewed by Lee et al. [47]. The interval ranges from the best in class for each parameter.

Table 5. Examples of applications of cameras and imaging methods used to generate data (Fernandes et al.).

Specie Application Image signal

Cattle Mastitis Infrared
Digital dermatitis Infrared
Body temperature Thermography
Gait and body measurements 3D
Weight 3D
Coat and conformation Visible light
Body condition Visible light, thermography and 3D

Poultry Behaviour Visible light and 3D
Shape D

Pigs Tracking Visible light and 3D
Behaviour Visible light and 3D
Weight Visible light and 3 D
Gait and body measurements 3D

possible to transform non-numeric information such as images
into computable data. The emergence of Convolutional Neural
Network (CNN) and other deep learning techniques have greatly
increase the interest for Computer vision for high-throughput
phenotyping in agriculture [58, 59]. When sold commercially
many applications are marketed as ‘Artificial intelligence’ or ‘AI’.
In practice however each device consists of a recording device
connected to an on-board computer or an external server or
cloud computing service running a model for classifying data
or making predictions based on the feed generated from the
recording device. The mathematical theory behind commonly
used machine learning is complex and the training of a model
for analysis is demanding in terms of data collection, computing
power and memory. The popularity of CNNs can at least partially
be explained by the increased availability of data combined with
CNNs requiring fewer assumptions and less curation of data
prior to performing the supervised learning steps to create a
prediction model. Multiple toolkits and services are however
available to automate or facilitate the process to a level where the
process is no more complex than any development of prediction

models with supervised learning such as linear regression. As
these models can be used on mobile phone cameras or other
consumer grade recording devices these models create significant
new opportunities for phenotyping at a low cost.

A key challenge working with the commercialization or
widespread deployment of camera devices and sound recording
systems is the adjustment to different barn environments with
different ceiling height, light conditions and equipment obscuring
a clear view. Two main approaches are taken to deal with these
limitations. Commercial systems like the BCS camera (DeLaval
BCS™, DeLaval, Tumba) and Cattle Feed InTake (CFIT) [60] camera
have clearly defined installation requirements requiring digital
cameras to be installed looking straight down facing a floor
or feeding tray with good contrast versus the animals or feed
measured by the device. Another alternative is transfer learning
where a model has been trained on data from multiple sources
and location specific training is then performed at a much smaller
scale during the installation using a much smaller dataset [61].

Compared to wearable devices the cost of cameras per animal
monitored is lower and a review by Oliveira et al. [59] show that
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among a majority of studies done in recent years for using deep
learning and computer vision for phenotyping animals pigs were
the most common target of research (21/44) followed by dairy
cattle (11/44), beef cattle (6/44), poultry (5/11) and goats (1/44).
For applications where cameras have been tested visible light
cameras providing imagery in 2D or combined with some kind
of depth sensor are the most common as they enable animals
to be tracked looking for abnormal behaviour, activities, social
interactions and locomotive issues such as lameness. Infrared
cameras have also been used either to provide better data in low-
light conditions or as a way to measure abnormal temperatures on
parts of the body which may indicate mastitis or digital dermatitis.
Numerous detailed reviews on these applications and the quality
of data extracted from imagery using different algorithms have
been published in recent years [17, 58, 59].

Centralized services
Breeding organizations and advisors often collaborate with lab-
oratories, slaughter houses and other service organizations to
obtain data. Laboratory milk analysis, conformation recording,
animal identification, genomic services and carcass evaluations
are examples of services often provided in this way. In some cases,
it would be difficult to replicate the services elsewhere, in others,
digitalization, automation and miniaturization mean innovations
in wearable device or digital farm equipment may supersede or
replace centralized services by putting them closer to the farmer.
As early as 2006, experts analysed the potential impact of the
small but growing use of on-farm decision-support systems and
how automated on-farm recording systems would impact the
collection of data for breeding programs [62]. Poor data quality
caused by a lack of machine calibration, a lack of communication
between on-farm systems and Dairy Herd Improvement Agencies
and the risk of abundant low-quality information crowding out
more valuable information were highlighted as key challenges for
future breeding programs.

Simultaneously the employment of specialists working with
advanced tools and incentives to remain in business create incen-
tives and opportunities for new services to be developed by service
providers. Utilizing artificial intelligence to automatically analyse
animal-based welfare indicators in abattoirs have been proposed
as a more cost-effective and objective method for welfare surveil-
lance in swine production compared with on-farm evaluations
[63]. In a similar vein automated image analysis in abattoirs have
been proposed as a more objective way of grading muscle size,
tenderness, intramuscular fat and marbling in beef [64], pork [65]
and lamb production [66].

Laboratory services for milk testing using Mid-infrared
spectroscopy (MIRS) showcase the dynamic relationship between
on-farm testing and centralized services. MIRS function by
measuring the proportion of infrared light being absorbed by
different molecular bonds in the sample. Using different mathe-
matical techniques and signal processing this creates a spectrum
with absorption as a function of wave lengths between 2500 and
25,000 nm which can be used to estimate the concentration of key
components in the milk sample [67]. MIRS can be used for a wide
variety of applications but many agricultural organizations have
sub-contracted service providers for analysis of milk samples
to report the computed measurements of key components
such as fat, protein and somatic cell count without storage
of the full spectral data [68]. This limited set of services can
now be performed on farms using modern milking equipment
and machines leading to the challenges described by Wade
in 2006 [62]. Initiatives such as OptiMIR, HappyMoo [69] and

D4Dairy [70] have however combined full spectral data with
machine learning techniques and on-farm data to greatly expand
what can be measured using MIRS. Biomarkers so far tested
with MIRS include markers for energy deficit energy deficit
(citrate, isocitrate, glucose-6 phosphate [glucose-6P], free glucose),
ketosis (β-hydroxybutyrate and acetone), mastitis (N-acetyl-
β-d-glucosaminidase activity and lactate dehydrogenase), and
fertility (progesterone) [71], in addition research indicate that
predictions from MIRS data may also be capable of replacing
direct measurements of functional traits difficult to measure like
nitrogen efficiency [72] and methane gas emissions [73].

In addition to data collection of full milk spectra, the successful
estimation of endophenotypes or functional traits from MIRS
requires large datasets for technical standardization, calibration
and selection of a prediction model suited to the biomarker being
measured [67, 69, 70, 74]. Given the current emphasis on “AI
models it is also worth noting that simpler more interpretable
models like partial least squares regression, or least absolute
shrinkage and selection operator may equal or outperform the
predictions of neutral networks [74]. The costs of operating a
lab able to routinely produce high quality MIRS data and the
need to calibrate prediction models for each endophenotype being
studied mean that the start-up costs for any new phenotype
measured in a population using MIRS will be high but any such
investment will also see a high degree of scalability once validated
and implemented.

Contextual phenotyping and remote monitoring
Phenotype plasticity is the ability of an organism to change in
response to stimuli or inputs from the environment. Phenotypic
plasticity can be a source of ‘noise’, or confounding variation in
experiments [9]. In livestock farming however, phenotypic plastic-
ity is often in itself a trait of relevance to farmers and breeders as
traits such as resilience are desirable and heritable characteristics
of an animal [75]. Heritability of traits as measured by breeders
is also dependent on animal environment interactions leading to
decreased heritability estimates of traits for commercial livestock
when imported from temperate climates to the tropics [76]. These
challenges are especially clear in extensive production systems
where animals to a greater degree are dependent on their local
environment [77]. For researchers integration of data may help
researchers in both applied agricultural sciences and more fun-
damental genetics research regarding environmental interactions
to contextualize phenotype data and test the variance and covari-
ance structure under a wider range of conditions, ideally using
continuous environmental gradients [78]. With sufficiently large
datasets researchers can thereafter start untangling correlated
phenotypes, separating phenotypes such as successful grazing
behaviour versus high metabolic efficiency or resilience towards
parasites.

Much work is still needed on developing frameworks to for-
mulate data-driven questions and identifying suitable research
environments where information about animals, herds, farm-
ing operations and local environment can be merged to capture
phenotype plasticity [21]. This work does not only require the
integration of new sensor technologies but also the selection of
algorithms suited for different classification and prediction tasks.
Machine Learning methods are widely used in genetics [79] and
described further in the phenotyping methods section of this
review. As datasets become increasingly complex and reliant on
multiple data sources a shift from regression-based methods to
methods such as Random Forest or Neural networks can improve
the scalability of projects by requiring less pre-processing and
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assumptions when selecting a regression model. Kamphuis et al.
recently published a study exemplifying this by comparing logistic
regression and random forest for predicting lifetime resilience
scores [75]. From a methods development perspective, the study
showed random forest to only provide slightly better classification
performance but that the method is more scalable for large scale
project as data requires less pre-processing and optimization to
achieve this performance. The study therefor does not only exem-
plify the value of data integration from multiple sensors such as
surveillance drones with automated localizations, identification
and activity, but also how algorithms for data analysis must not
only be evaluated on performance but also scalability and ease of
use [75].

Key technologies suitable for providing contextual information
on pastures have recently been summarized by Herlin et al. [80]
highlighting that even though the development of sensors for
livestock primarily have targeted indoor usage there is rapid
development of new technology for outdoor usage as well. Overall
the combination of improved batteries, development of drones
as a platform for video cameras and access to electronic posi-
tioning and transfer systems including RFID, Wireless Sensor
Networks (WSN), Global Positioning (GPS), the IoT, and Low-Power
Wide-Area solutions enables farmers, advisors, and researchers
unprecedented access to data concerning the environment and
activities of animals on pastures. Of special note is that when
optical identification and tracking is possible positioning can be as
accurate as 1–3 m [81] while GPS collars are limited to an accuracy
of 7–13 m in open terrain while providing robust but less exact
positioning measurements 19–30 m) in dense forests [80].

In addition to sensors tracking animals, remote measurement
techniques using satellites to monitor crops, land use and live-
stock movements have taken an important role in precision agri-
culture for pasture monitoring and crops production. Services like
Cropsat (https://cropsat.com/) using satellite imagery from the
European Sentinel-2 satellites are now freely available on line
with resolutions down to 10 × 10 m to 60 × 60 m resolution
depending on the wavelength [82]. These data can be used to
evaluate biomass growth, surface water coverage for land surveil-
lance and also specifically used for estimations for pasture quality
[83]. Researchers affiliated with International Livestock Research
Institute have developed one of the first practical applications
for satellite imaging being used for pastoral farming in LMICs.
An Index-Based Livestock Insurance program shows that satellite
data can provide an early and robust warning of adverse growth
conditions for livestock [84] giving farmers improved financial
flexibility to deal with adverse conditions. This example demon-
strates how the integration of satellite data used for economic
purposes to deal with environmental challenges, if appropriately
measured, may turn out to be a long-term value for phenotyping
and research on livestock. Similar models may be applied not only
for assessing the context of measurement to study characteristics
such as resilience of animals [75] but also to provide an opportu-
nity for farmers to be compensated for environmentally friendly
activities taken to ensure biological diversity or wildlife friendly
farming [85].

Conclusion
Livestock farming and breeding is dependent on large scale data
collection and analysis. Within the sector, new wearable devices,
networked services and low cost information and communica-
tions technology make data collection cheaper and more acces-
sible than ever before. New implementations of AI for analysis

of images, video feeds or sound recordings also make it possible
to collect data from individual data in species where the low
economic value and physical characteristics of an individual oth-
erwise would make individual data collection difficult. Through
collaboration with the agricultural sector, genetics researchers
can hereby obtain data from thousands of animals at a fraction
of the cost for raising animals specifically for research. In some
cases, this data collection is enabled by high-end technology
requiring significant capital investments in equipment such as
dairy milking robots or activity sensors. In many cases the key
to successful phenotyping however lies in the organization of
farmers, breeding organizations and advisors to collect relevant
information. Internet access and mobile phones here serve as key
enablers to make recording schemes viable even in low income
settings even if much work is still limited to researcher-dominated
projects.

Data collection and aggregation also make up a second space
for AI implementations. Decision support systems rely on aggre-
gation of data from a large number of data sources and their
implementation in precision livestock farming. Combined with
the growing interest in the environmental component in live-
stock farming this creates further opportunities for researchers
to access data for phenotyping. Weather data and environmental
monitoring from programmes such as the EU Sentinel 2 satellites
here make it possible to better study the impact of environmental
factors as well as gene–environment interactions over long peri-
ods of time. Taken together this mean that livestock stock farming
is a sector which is well positioned to support large-scale data
collection efforts and use the data both for commercial interests
and as a contribution to fundamental genetics researching explor-
ing complex traits and the complex interplay between genes and
environment.

Key points of the article

• As genetic data becomes increasingly accessible, pheno-
typing replaces genotyping as the bottleneck in genetics
research.

• Economies of scale mean that when performed in col-
laboration with the industry chips such as 45 k EuroG
MD beadchip for cattle can be used to genotype animals
for a price of <30 e per animal.

• Data collection from farm animals benefit from digi-
talization of farming equipment. New wearable devices
and devices such as cameras or audio recorders using
machine learning (often refered to as ‘AI’) to generate
physical measurements and activity data are becoming
increasingly common.

• Contextual information is becoming increasingly avail-
able as large open data sets measuring weather, biomass
and other environmental factors become available as a
part of the digital transformation of society as a whole.
Advanced data processing has been a major part of
agriculture for over a century and in this context the
emphasis on ‘AI’ can serve to rapidly expand the toolset
and data sources to augment existing industry infras-
tructures supporting high-throughput collection of data
which can be used for phenotyping.

• Even with digitalization most traits used in current
breeding programs are still of a simple nature. Com-
bined with information and communication technolo-
gies accessible through cheap telephones. This creates

https://cropsat.com/
https://cropsat.com/
https://cropsat.com/
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an impetus for high-throughput phenotyping in collab-
oration with smallholder farmers in low- or middle-
income countries that are hotspots for genetic diversity
due to the preservation of indigenous breeds.
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