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Abstract
This study describes the preparation of zinc oxide nanocomposite and its application as photocatalyst in the degradation of 
methylene blue under sunlight irradiation. Zinc oxide-coated biochar (ZnO/BC) nanocomposite was prepared using the hydro-
thermal method from banana peels and zinc acetate dihydrate as precursors. The biochar (BC), ZnO nanoparticles (ZnONPs), 
and ZnO/BC nanocomposite were characterized, and the results showed that ZnONPs had definite crystallinity and a regular 
surface morphology, with particles approximately 18 nm in size, and a XRD pattern corresponding to ZnONPs. In contrast, 
the ZnO/BC nanocomposite exhibited a more amorphous structure consistent with wurtzite (ZnO) and an irregular surface 
morphology with clusters of white particles measuring around 20–30 nm. Tauc’s plot was used to calculate the band gaps 
energy of ZnONPs (3.04 eV) and ZnO/BC nanocomposite (2.89 eV). Catalyst-free, ZnONPs, and ZnO/BC nanocomposite 
were utilized for the photocatalytic degradation of methylene blue (MB) under sunlight irradiation for 0 to 120 min in which 
ZnO/BC nanocomposite showed excellent photocatalytic degradation of MB under sunlight irradiation at 0 to 120 min due 
to lower band gap energy and synergetic effect between ZnO and BC. Dosages of 100 mg (ZnO/BC nanocomposite) and 10 
ppm (MB) were optimized to obtain the best photocatalytic degradation efficiency (92 %) under sunlight irradiation with 0 to 
120 min. The process was conducted with various parameters like dosage variation, concentration of MB, and different pH 3, 
5, 8, and 10 to improve the photocatalytic degradation of MB from wastewater. The results indicated that the optimal condi-
tions for the photocatalytic degradation of MB (92% after 120 min) were a catalyst dosage of 100 mg, an MB concentration 
of 10 ppm, and a pH of 10. This work demonstrates the potential of ZnO/BC nanocomposite photocatalyst for application 
in wastewater treatment and environment remediation.
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1  Introduction

Water pollution stands as a significant global concern, 
exerting far-reaching impacts on both climate and the envi-
ronment, affecting various life forms [1]. Bodies of water 
worldwide have been compromised due to the influx of dyes 

from industrial processes, especially the textile sector, with 
MB dye among the pollutants posing a particular threat to 
freshwater resources [2]. Given the escalating demand, the 
production of dyes is slated to rise, necessitating diverse 
techniques such as biological, chemical, pharmaceutical, 
pulp, dye processing, and waste management to address the 
issue [3]. Traditional methods like adsorption on activated 
carbon, reverse osmosis, ultra-filtration, coagulation by 
chemical agents, and ion exchange on synthetic adsorbent 
resins are being replaced by novel approaches.

Methylene blue (MB) dye has found widespread use 
across industries like paper, paint, textiles, pharmaceuticals, 
cosmetics, and food [4, 5]. Regrettably, the wastewater from 
these sectors, when combined with drinking water, results in 
heavily contaminated water harboring dangerous pollutants 
for both humans and animals [6]. Exposure to MB triggers 
severe health problems, including nausea, mental confusion, 
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vomiting, methemoglobinemia, eye irritation, and profuse 
sweating [2]. An array of techniques has been explored to 
eliminate MB from water, ranging from filtration, adsorp-
tion, and electrochemical oxidation to reverse osmosis, 
membrane separation, ion exchange, and catalytic reactions 
[7–14]. Nonetheless, these techniques have their limitations, 
including high costs, protracted procedures, and incomplete 
MB removal. Considering their affordability, ease of use, 
photocatalytic reaction, and post-mineralization catalyst 
retrieval, photocatalytic methods have emerged as a viable 
solution [15, 16].

In recent years, advanced oxidation processes (AOPs) 
have gained traction as swift, efficient, and non-toxic 
approaches, with the photo-Fenton reaction, ozonation, and 
photocatalysis playing pivotal roles in degrading various 
pollutants, both organic and inorganic [17–19]. Photocata-
lytic degradation serves diverse purposes, spanning waste-
water treatment, air purification, sterilization, heavy metal 
remediation, and pollution breakdown [20]. While activated 
carbon is a mainstay in wastewater treatment, its high pro-
duction costs necessitate alternate activation methods [21]. 
Biomass conversion methods like pyrolysis, combustion, 
liquefaction, gasification, and others have been explored as 
cost-effective activation strategies [22–24]. There has been 
a recent emphasis on semiconductor photocatalysts as effec-
tive instruments for environmentally friendly wastewater 
treatment, operating on the principle of decomposing pollut-
ants into benign byproducts [25, 26]. Various semiconduct-
ing metal oxides, such as TiO2, CeO2, ZnO, SnO2, and CuO, 
have undergone thorough investigation as photocatalysts 
[27–31]. ZnO, due to its cost-effectiveness, chemical stabil-
ity, and efficacy, has garnered significant attention [32, 33]. 
Photocatalysis offers advantages such as the utilization of 
clean solar energy, high efficiency, and minimal generation 
of hazardous waste, making it applicable in diverse fields, 
ranging from environmental remediation to materials sci-
ence [34]. Key characteristics of photocatalysts include their 
extensive active surface area, effective charge separation, 
ability to absorb visible light, and enduring photostability. 
Despite the preference for ZnO nanoparticles in photocata-
lytic applications over bulk materials, they exhibit certain 
limitations, such as solubility in acidic conditions, photo-
leaching in basic solutions under UV light, rapid electron-
hole recombination, and insufficient absorption of visible 
light energy [35].

Over the last decade, biochar has been produced through 
thermal means from diverse biomass sources like plant 
waste, wood chips, banana peels, orange peels, and coco-
nut shells [36, 37]. Biochar boasts distinct physicochemical 
attributes like a generous surface area, strong carbonaceous 
properties, and superior electrical conductivity [38]. Its 
exceptional adsorption capacity aids in full mineralization 
of organic pollutants, while also curtailing electron-hole 

recombination during photocatalytic degradation. Moreover, 
biochar is environmentally friendly, renewable, and cost-
effective [39]. Bananas, rich in fibers, vitamins B6 and C, 
potassium, and magnesium, confer numerous health benefits 
like aiding digestion and weight management [40]. Banana 
peels are replete with oxygen, hydrogen, and carbon, form-
ing functional groups like carboxylic and hydroxyl groups 
on the biochar surface, proving instrumental in organic dye 
and pesticide degradation [41].

Various metal oxide-coated biochar nanocomposites, 
like carboxymethyl cellulose-modified ZnO-biochar nano-
composite, ZnO-encapsulated biochar nanocomposite using 
cotton stalks, and ZnO-betaine-modified biochar nanocom-
posites, have been prepared using different biomass sources 
[42–44]. ZnO-coated biochar nanocomposites bring the 
advantages of increased surface area, heightened reactive 
sites, improved dispersion, robust electron transfer between 
ZnO and biochar, and amplified photocatalytic activity [45, 
46]. Recent advancements have led to porous carbon-sup-
ported ZnO nanocomposites, expanding raw materials and 
enhancing photocatalytic performance [47]. While the full 
scope of ZnO/biochar nanocomposite’s potential remains 
untapped, its microstructure has shown promise in aug-
menting photocatalytic degradation through biochar sup-
plementation [48]. Hence, the fusion of ZnO nanoparticles 
and biochar holds substantial promise in the photocatalytic 
degradation of organic pollutants, with the ZnO/biochar 
nanocomposite demonstrating significant potential for pho-
todegradation studies.

There is currently significant interest in the potential 
applications of biochar produced through the pyrolysis 
of biomass. These biochars are made from inexpensive, 
environmentally friendly, renewable natural resources 
and involve simple techniques for creating functionalized 
carbon-based materials [49]. The creation of biochar and 
ZnO nanocomposites offers several advantages, such as 
increased adsorption capacity, high surface area, numerous 
active sites, well-established structures, and improved dis-
persion of ZnO nanoparticles on the biochar surface [50, 
51]. The nanocomposite catalyst developed enhances pho-
tocatalytic degradation efficiency [52]. Notably, Leichtweis 
et al. discovered that the interaction between Cu/Fe2O4 and 
biochar enhanced the photocatalytic degradation activity of 
the CuFe2O4/biochar nanocomposite. This interaction also 
improved charge carrier separation, adsorption capacity, and 
electron transfer mediation [53]. Meena et al. developed a 
green biochar-supported ZnFe2O4 composite photocatalyst 
that effectively degrades MB under visible light irradiation 
[54]. Additionally, pomegranate peels were used to cre-
ate a ZnO composite supported by biochar, enhancing the 
photocatalytic activity of ZnO nanoparticles. The biochar-
encapsulated ZnO nanocomposite, with its multiple active 
sites, supports increased adsorption of organic pollutants 
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and generates highly reactive radicals, thus boosting visible 
light absorption and photocatalytic efficiency [55, 56]. Sun 
et al. reported that a hybrid nanocomposite photocatalyst 
based on g-C3N4/ferrite and biochar demonstrated excellent 
photocatalytic degradation of dyes and enhanced adsorp-
tion of organic pollutants, making it suitable for wastewater 
treatment systems [57].

To date, no known reports have focused on the work pre-
sented in this study. In this investigation, a ZnO/BC nano-
composite was synthesized using the hydrothermal method, 
utilizing banana peels to produce biochar. The biochar was 
then modified with ZnO to form the nanocomposite. Char-
acterization of the materials was conducted using techniques 
such as FT-IR, UV-visible spectroscopy, XRD, SEM, and 
TEM. The design of the ZnO/BC nanocomposite aimed to 
enhance light absorption, alleviate photogenerated electron-
hole recombination, and fortify photocatalytic capabilities. 
The experimental evaluation of the materials focused on 
their photocatalytic degradation of methylene blue (MB) 
under sunlight irradiation, comparing the photocatalytic 
efficiency of ZnO with that of the ZnO/BC nanocomposite. 
As a result, the ZnO/BC nanocomposite emerged as a crucial 
agent in advancing our understanding of the photocatalytic 
process and the catalytic mechanisms involved.

2 � Experimental section

2.1 � Chemicals and reagents

Banana peels were collected from a nearby market in Ten-
kasi, India (circa N8.96°, E77.31°). Analytical-grade Zinc 
acetate dihydrate (Zn(OAc)2.2H2O) and methylene blue 
(MB) were procured from Sigma-Aldrich, India. Sodium 
hydroxide (NaOH), hydrochloric acid (HCl), and ethanol 
were sourced from Sisco Research Laboratories (SRL) PVT 
Ltd., India (www.​vijay​ascie​ntific.​com). Distilled water was 
employed for all experimental procedures.

2.2 � Preparation of ZnO nanoparticles

A 0.1M solution of Zn(OAc)2.2H2O was prepared by dis-
solving 2.0 g of the salt in 80 mL of distilled water and stir-
ring for 30 min. Subsequently, a 2.5 M solution of NaOH 
was obtained by mixing 1.0 g of NaOH with 10 mL of dis-
tilled water stirring for 20 min. This NaOH solution was 
then gradually added to the Zn(OAc)2.2H2O solution while 
stirring, resulting in a white precipitate. The mixture was 
stirred for an additional hour to ensure proper formation of 
the precipitate.

The resulting solution, now containing the white pre-
cipitate, was transferred into a 100-mL Teflon-coated auto-
clave. This autoclave was placed in a muffle furnace and 

maintained at a temperature of 180 °C for duration of 12 h. 
After this thermal treatment, the precipitate was recovered 
by centrifugation. This centrifugation process was repeated 
five times, alternating between distilled water and ethanol 
as the washing agents. The autoclave was allowed to cool to 
room temperature before starting the washing procedure. To 
obtain powdered ZnO nanoparticles, the white precipitate 
was subjected to a final drying step. This involved drying 
the precipitate at a temperature of 400 °C for duration of 2 h.

2.3 � Synthesis of ZnO/BC nanocomposite

The collected banana peels underwent a thorough cleans-
ing process, involving two rounds of washing with water to 
eliminate any impurities. Following this, they were allowed 
to naturally dry for 4 days under sunlight. Subsequently, the 
dried peels were finely ground into powder form. This pow-
der served as a foundational material for crafting a nano-
composite featuring biochar-coated zinc oxide, referred to 
as ZnO/BC.

To create the nanocomposite, a 250-mL beaker was 
employed, wherein 4.0 g of banana peel powder and 2.0 g 
of zinc acetate dihydrate were combined. To this mixture, 
80 mL of distilled water was introduced. The mixture was 
homogenized by stirring the solution using a magnetic stirrer 
for duration of 30 min. The next step involved transferring 
the solution into a 100-mL Teflon-coated autoclave, which 
was then positioned within a muffle furnace set at 180°C for 
a period of 6 h.

Upon completing the autoclave treatment, the resulting 
precipitate was gathered through centrifugation at a speed 
of 5000 rpm for 10 min. Subsequently, the precipitate was 
cleaned using multiple washes with a combination of water 
and ethanol to ensure the removal of any residual compo-
nents. The washed precipitate was then meticulously col-
lected and subjected to drying within an oven maintained at 
80 °C for a span of 12 h. This meticulous process culminated 
in the production of a distinctive black powder. The visual 
representation of the entire procedure is illustrated in the 
accompanying Scheme 1.

2.4 � Characterization methods

The present study employed a range of characterization 
techniques for the assessment of materials. The ZnONP and 
ZnO/BC nanocomposite powder samples were suspended 
in distilled water prior to measuring the optical properties 
using a UV-visible spectrometer (Double beam, Model: 
UH-5300, HITACHI). Functional group analysis of the 
materials was conducted with Fourier transform infrared 
(FT-IR) spectroscopy using an ID7ATR Thermo Scientific/
NicoLET IS5 instrument.

http://www.vijayascientific.com
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Fluorescence behavior of ZnONPs and the ZnO/BC nano-
composite was examined with a fluorescence spectrometer 
(Perkin Elmer). Crystalline properties were assessed using 
an X-ray diffractometer (Philips PW1729), with Cu Kα 
radiation (λ = 1.5406 Å) and operating at 45 kV and 40 mA.

Surface morphology and elemental composition analysis 
were performed using scanning electron microscopy (SEM) 
with a Carl Zeiss model (Ultra Plus). Size determination 
of ZnONPs and the ZnO/BC nanocomposite was achieved 
with transmission electron microscopy (TEM) using a JEOL 
JEM-2100F instrument, operating at an electron accelerating 
voltage of 200 kV.

2.5 � Photocatalytic degradation method

The investigation into the photocatalytic activity of ZnO 
nanoparticles (ZnONPs) and the ZnO/biochar (ZnO/BC) 
nanocomposite for MB dye degradation was carried out 
through a series of photocatalytic studies. To initiate the 
experimentation, a stock solution of 0.05 g of MB dye, 
equivalent to 100 parts per million (100 ppm), was dissolved 
in distilled water within a standard 1L measuring flask. 
Subsequently, a quantity of 10 mL from this stock solution, 
constituting 10 ppm of MB dye, was added to a 100-mL 
standard measuring flask, wherein it was reconstituted with 
distilled water. This solution, having the desired concentra-
tion, was utilized for the ensuing experiments.

The photocatalytic degradation reactions were executed 
by introducing 100 mg of the photocatalysts into a 100 mL 

solution of 10 ppm MB dye within a glass beaker. To ensure 
a well-dispersed mixture and attain an adsorption/desorption 
equilibrium, the amalgam was stirred in the dark for duration 
of 30 min. Following this, the suspension was subjected to 
natural sunlight irradiation. At specific intervals of time, 10 
mL of the solution was extracted and subjected to filtration 
using a 0.45-µM syringe filter to eliminate the presence of 
photocatalysts.

The collected solution underwent assessment for MB dye 
concentration using a UV–Vis spectrophotometer. Specifically, 
the absorbance at 664 nm was examined during the degrada-
tion process. This procedure allowed for the continuous moni-
toring and evaluation of the degradation process over different 
time intervals of 20 min. The percentage of MB degradation 
efficiency (%) was calculated using the following equation (1) 
[58, 59]:

where C0 and Ct represent the absorbance of MB solution 
before and after the photocatalytic degradation activity. The 
said procedure was also used for the dosages, concentrations 
of MB, pHs, stability, and scavenger studies. The pHs were 
adjusted by using 0.1 M HCl or 0.1 M NaOH. Degradation 
kinetic rate constants of MB with ZnONPs and ZnO/BC 
nanocomposite were evaluated by using the first-order rate 
equation as given below [60]:

(1)Degradation eff iciency � (%) = C
0
− Ct × 100∕C

0

(2)lnC
t
∕C

0
) = −kt

Scheme 1   Schematic diagram of the synthesis of ZnO/BC nanocomposite by using hydrothermal method
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where C0 is the initial concentration and Ct is the final con-
centration before and after irradiation time t. k is the degra-
dation rate constant (min−1).

2.6 � Scavenger trapping methods

Scavenger trapping methods were used to determine the 
active species during the photocatalytic degradation of MB 
under sunlight irradiation. Isopropanol (IPA), phosphoric 
acid (H3PO4), ethylenediaminetetraacetic acid (EDTA), and 
sodium persulfate (Na2S2O8) were used as scavengers for 
quench •OH, •O2

−, h+, and e-, respectively. This method was 
conducted during the photocatalytic degradation of MB by 
0.1 M scavengers.

3 � Result and discussion

3.1 � FT‑IR characterizations

FT-IR spectra are used to evaluate the organic functional 
groups, metal-oxygen vibration bands, and changes in 
metal-oxygen frequency due to modification. The FT-IR 
spectra of ZnONPs, BPs, and ZnO/BC nanocomposite are 
displayed in Fig. 1A (a–c). A broad absorption peak at 
3404 cm−1 is associated with the O-H stretching vibra-
tion band of hydration on the ZnO surface [61, 62]. A 
double peak at 2931 cm−1 and 2855 cm−1 is attributed to 
the =CH2 and C-H bands stretching vibration from the 

Fig. 1   A–F A FT-IR spectra 
(a) ZnONPs, (b) BC, and (c) 
ZnO/BC nanocomposite; B UV-
visible spectra of (a) ZnONPs 
and (b) ZnO/BC nanocompos-
ite; C Tauc plot of (a) ZnONPs 
and (b) ZnO/BC nanocompos-
ite, D Fluorescence spectros-
copy spectra for (a) ZnONPs 
and (b) ZnO/BC nanocompos-
ite, E XRD pattern of ZnONPs, 
and F XRD patterns of (a) BC 
and (b) ZnO/BC nanocomposite
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precursors to the acetate group [63]. The peak at 1617 
cm−1 and 1318 cm−1 revealed symmetry and asymmetry 
stretching vibration of C=O bands, a smaller peak at 1016 
cm−1 was related to C-O stretching vibration, and a sharp 
peak at 902 cm−1 was due to C-O bending vibration [64]. 
A high-intensity peak at 502 cm−1 detected the stretch-
ing vibration of the Zn-O band as shown in Fig. 1A (a) 
[65]. Figure 1A (b) shows that the peaks of BC shifted 
peak position at 3307 cm−1 due to O-H stretching vibration 
and other peaks increased intensity compared to ZnONPs. 
An additional peak appeared at 1722 cm−1 due to C=O 
stretching vibration in the COOH group of BC as shown 
in Fig. 1A (b). In Fig. 1A (c), the FT-IR spectrum of the 
ZnO/BC nanocomposite is depicted, revealing a reduc-
tion in peak intensity along with the presence of certain 
peaks. Notably, shifts in peak positions are observed at 
3321 cm−1, 1742 cm−1, and 427 cm−1, accompanied by 
reduced intensity. This observation indicates the success-
ful coating of BC with ZnO, as evidenced by alterations 
in peak positions corresponding to O-H, C=O, and Zn-O 
bonding [66, 67]. The FT-IR spectra indicate that the func-
tional groups in the BC may have contributed to the for-
mation of the ZnO/BC nanocomposite. Table 1 presents 
the functional groups corresponding to the FT-IR peaks.

3.2 � UV‑visible characterization

UV-visible absorption spectra of ZnONPs and ZnO/BC 
nanocomposite are shown in Fig. 1B (a, b). Figure 1B (a) 
shows a sharp absorption peak at 372 nm, which has been 
described as an intrinsic transition between the valence band 
(O 2p orbitals) and the conduction band of ZnONPs [80, 
81]. Figure 1B (b) shows that the ZnO/BC nanocomposite is 
shifted to a slightly longer wavelength at 382 nm with lower 

bandgap energy due to more optically active centers, exci-
tonic-related recombination, and surface traps [82]. Hence, 
BC is coated on ZnO to improve light harvesting, which is 
an essential requirement for enhancing photocatalytic activ-
ity. Figure 1C (a–c) shows the Tauc plots of ZnONP and 
ZnO/BC nanocomposite with calculated bandgap energy of 
3.04 eV and 2.89 eV, respectively, which are correspond 
to previous reported results [83]. ZnO/BC nanocomposite 
has lower bandgap energy than ZnONPs, records a lower 
electron-holes recombination rate, and is more useful for 
visible light photocatalysts. ZnO/BC nanocomposite can 
improve optical properties and enhance the photocatalytic 
degradation of MB under sunlight irradiation [84].

3.3 � Fluorescence spectroscopy characterizations

Defect energy levels, surface vacancies, and charge transfer 
of photocatalysts were identified by fluorescence spectros-
copy [85]. Figure 1D (a, b) shows the fluorescence spectra 
of ZnONPs and ZnO/BC nanocomposite with excitation at 
350 nm and is important for determining the fluorescence 
properties. Figure 1D (a) shows that the FL spectrum of 
ZnONPs observed a higher emission peak at 445 nm which 
is attributed to the oxygen vacancies (Vo) in the valence 
band transition. The FL spectrum of ZnO/BC nanocompos-
ite shows a low-intensity peak at 385 nm, indicating near-
band-edge emission due to the mixing of electrons from 
the less conduction band with holes of the valence band of 
ZnONPs as shown in Fig. 1D (b). FL spectra of ZnONPs and 
ZnO/BC nanocomposite and ZnO/BC nanocomposite reveal 
lower intensity peak due to BC and quenching fluorescence 
properties in ZnONPs. Low fluorescence indicates charge 
transfer and a reduced rate of electron-hole recombination 

Table 1   Functional groups of 
ZnONPs, BC, and ZnO/BC 
nanocomposite were determined 
by FT-IR

FT-IR wave number (cm−1) Vibrations References

ZnONPs
3404 cm−1 O-H stretching vibration [68]
2931 and 2855 cm−1 C-H stretching–methyl and methylene groups [69]
1617 cm−1 C=O stretching–carboxylic group [70]
1318 cm−1 symmetry stretching vibration C=O [71]
1016 cm−1 C-O stretching–saturated ester [72]
902 cm−1 C-O bending vibration [73]
502 cm−1 Zn-O stretching vibration [74]

Biochar (BC)
3307 cm−1 O-H stretching–carboxylic acid and hydroxyl groups [75]
1722 cm−1 O-C=O stretching vibration in the COOH group [76]

ZnO/BC nanocomposite
3321 cm−1 O-H stretching in hydroxyl groups and phenol [77]
1742 cm−1 -C=O stretching–carboxylic group [78]
427 cm−1 Zn–O stretching vibration [79]
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[86, 87]. As a result, the ZnO/BC nanocomposite has excel-
lent photocatalytic activity under sunlight irradiation.

3.4 � XRD characterizations

Powder X-ray diffraction serves as an effective method for 
examining both amorphous and crystalline aspects of pre-
pared materials. As depicted in Figure 1E (a), the XRD pat-
tern of the pure ZnO nanoparticles (ZnONPs) displays a 
set of distinct diffraction peaks. Notably, these peaks are 
identified at specific angles: 31.78° (100), 34.26° (002), 
36.25° (101), 47.56° (102), 56.75° (110), 62.75° (103), 
66.37° (200), 67.95° (112), 69.33° (201), 72.48° (004), and 
76.93° (202). These discernible peaks unequivocally indi-
cate the presence of the wurtzite structure characteristic of 
ZnO. The alignment of these peaks corresponds precisely 
to the JCPDS card no. 36-1451. Importantly, the observed 
peaks provide strong evidence of the material’s well-defined 
crystalline nature [88]. Figure 1F (a, b) shows the X-ray dif-
fraction pattern of BP powder and ZnO/BC nanocomposite. 
Several peaks were assigned to BP powder, of which two 
major peaks corresponded to the (002) and (100) plane of 
disordered graphitic carbon at 2θ of 21.34° and 40.29° in 
BC as identified by the JCPDS card no. 46–1045 as shown 
in Fig. 1F (a) [89–91]. Figure 1E (b) shows the XRD pattern 
of the ZnO/BC nanocomposite, which shows peaks indicat-
ing the crystallinity of the variants at 28.13° 31.86°, 34.39°, 
47.58°, 62.48°, and 66.35° with corresponding to (111), 
(100), (002), (102), (103), and (200) crystalline planes [92, 
93]. Additionally, these peaks were observed as ZnONPs 
according to the JCPDS card no. 36-1451. Two prominent 
peaks appear at 2θ = 21.34°, accompanied by a less pro-
nounced peak at 2θ = 40.29°, corresponding to the C (002) 
and C(100) planes, respectively. This unmistakably signifies 
the presence of a graphitic structure within the biochar (BC). 
Furthermore, a sharp peak of significant intensity appears at 
28.13° along the (111) plane, indicating that the crystallin-
ity patterns of the BC structure became more defined after 
forming the ZnO/BC nanocomposite [94, 95]. This result 
suggests that the ZnO/BC nanocomposite was effectively 
synthesized using ZnONPs and BC biochar. The average 
size of the ZnONPs within the ZnO/BC nanocomposite was 
determined from the maximum crystalline peak of ZnO at 
31.86°, which corresponds to the (101) plane. To compute 
this size, the Debye-Scherrer formula was employed, as out-
lined by the equation:

where 0.9 is the shape factor, λ is the x-ray wavelength 
(λ=1.5418 Å), β is the line broadening at half-width maxi-
mum intensity (FWHM) in radians, and θ is the Bragg angle. 
The average size of the ZnO nanoparticles was found to be 

(3)D = 0.9 �∕� Cos�

18 nm. For the ZnO/BC nanocomposite, the average size 
was calculated at the 2θ position of the (101) peak of ZnO 
NPs, which was 30 nm.

3.5 � SEM characterizations

Scanning electron microscope was used to find the surface 
morphology structure and shape of materials. Figure 2A–C 
shows the SEM images of small ZnONP aggregate with a 
granular shape at increasing magnifications of (A) 12 kV, 
1.15 kx, (B) 12.0 kV, 3.09 kx, and (C) 12.0 kV, 5.12 kx. The 
EDAX spectrum for elemental determination of Zn and O 
in ZnONPs was revealed as shown in Fig. 2D. Figure 3A–C 
shows the SEM image of ZnO/BC nanocomposite at differ-
ent magnifications of (A) 20.0 kV, 1.50 kx, (B) 20.0 kV, 6.76 
kx, and (C) 20.0 kV, 17.7 kx. The nanocomposite at 1.50 kx 
magnification looks like white particles of ZnO coated on 
the integrated structure of biochar and irregular size parti-
cles are recorded as shown in Fig. 3A. At 6.76 kx magnifica-
tion it looks like irregular stalks of white particles clustered 
together irregularly as shown in Fig. 3B. At a higher mag-
nification of 17.7 kx, it clearly shows the irregularly shaped 
rod and particles as shown in Fig. 3C. EDAX spectrum con-
firmed the Zn, O, and C elements ZnO/BC nanocomposite 
as shown in Fig. 3D.

3.6 � TEM characterizations

Figure 4A–D shows the TEM images of ZnO (A, B) and 
ZnO/BC nanocomposite (C, D) at magnifications of (A) 65 
kx (200 nm scale bar), (B) 100 kx (100 nm scale bar), and 60 
kx (50 nm scale bars insets to both A and B). Distinct shapes 
of ZnO nanoparticles (ZnONPs) were clearly evident under 
different magnifications, 65 kx and 100 kx, as illustrated 
in Fig. 4A and B. At the higher magnification of 60 kx, 
the hexagonal and square configurations of ZnONPs were 
captured and are featured in Fig. 4A and B, respectively. 
These images decisively affirmed the successful synthesis 
of ZnONPs through the hydrothermal method.

Figure 4C and D presents the images of the ZnO/biochar 
(ZnO/BC) nanocomposite. In Fig. 4C, observed at 100 kx 
with a 200-nm scale bar, agglomerated structures integrated 
with dark particles coated on the biochar substrate are dis-
cernible. This amalgamation is attributed to the ZnONPs and 
BC components. Similarly, Fig. 4D portrays the nanocom-
posite at 140 kx with a 100 nm scale bar, further highlight-
ing the distinctive features of ZnONPs and BC.

Collectively, these visual representations provide conclu-
sive evidence of the successful formation of ZnONPs and 
the ZnO/BC nanocomposite using the hydrothermal method. 
The size of the ZnO/BC nanocomposite, ranging approxi-
mately between 20 and 30 nm, was found to be in close 
agreement with the XRD analysis. This alignment further 
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validates the successful encapsulation of the BP biochar 
within the ZnO nanoparticles (ZnONPs).

3.7 � Photocatalytic degradation studies

The evaluation of catalyst-free photocatalytic degradation 
involved three scenarios: only sunlight, sunlight with ZnO 
nanoparticles (Sunlight + ZnONPs), and sunlight with the 
ZnO/biochar nanocomposite (Sunlight + ZnO/BC), targeting 
the degradation of methylene blue (MB) using UV-visible 
spectroscopy. In the standard procedure, the photocatalysts 
were subjected to a preliminary MB photocatalytic degra-
dation study in the absence of light for 30 minutes to con-
firm the adsorption/desorption process, which served as the 
0-minute reference. Subsequently, UV-visible spectral analy-
sis was used to monitor the progress of MB photocatalytic 
degradation under sunlight irradiation.

Without a catalyst, the UV-visible spectra of MB 
showed a persistent peak at 662 nm, indicating incomplete 
reduction in intensity across the time intervals from 0 to 
120 min, as illustrated in Fig. 5A. Introducing ZnONPs as 
the catalyst exhibited a gradual reduction in the UV-visible 
spectrum of MB under sunlight irradiation over the same 
time range, as depicted in Fig. 5B. In contrast, the ZnO/BC 
nanocomposites proved particularly efficient in degrading 

MB under sunlight irradiation within the 0 to 120-min 
span, evident in both the spectral data displayed in Fig. 5C 
and the inset digital images.

The assessment of photocatalytic efficiency was quan-
tified as depicted in Fig. 5D (a–c), which illustrates the 
percentage degradation of MB under sunlight irradia-
tion, comparing the scenarios of no catalyst, ZnONPs 
catalyst, and ZnO/BC nanocomposite catalyst at different 
time intervals using Equation (2). Significantly, the ZnO/
BC nanocomposite demonstrated superior photocatalytic 
activity, exhibiting a degradation efficiency of 91%, out-
performing ZnONPs (72%) and the absence of a catalyst 
(43%). Notably, ZnO/BC nanocomposite proved to be an 
exceptional photocatalyst for the degradation of MB under 
visible light irradiation.

Further insight into the kinetic rate constant and compara-
tive analysis with previous literature related to ZnO nano-
composites are summarized in Tables 2 and 3. Significantly, 
the ZnO/BC nanocomposite displayed a higher rate constant 
compared to ZnONPs and the no-catalyst scenario. These 
findings, supported by digital images in Fig. 5F, reinforce 
the exceptional photocatalytic performance of the ZnO/BC 
nanocomposite. Notably, the behavior of the ZnO/BC nano-
composite aligns well with results reported in the existing 
literature, showcasing its promising potential.

Fig. 2   A–D SEM images of 
synthesized ZnONPs with dif-
ferent magnifications A 50 µm, 
B 20 µm, and C 10 µm and D 
EDAX spectrum of ZnONPs
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3.8 � Effect of photocatalyst dosages

Figure 6 presents a crucial insight into the effect of varying 
photocatalyst dosages on the removal of dye, particularly 
highlighting the significance of the 100 mg dose for achiev-
ing optimal dye removal. Figure 6A–E effectively portrays 
the impact of different dosage levels, ranging from 25 to 
125 mg of ZnO/biochar (ZnO/BC) nanocomposite, while 
maintaining an initial concentration of 10 ppm of methylene 
blue (MB) under sunlight irradiation over a duration of 0 to 
120 min.

Figure 6A–C details the photocatalytic degradation of 
MB using ZnO/BC nanocomposite dosages of 25 mg, 50 
mg, and 75 mg. Under these conditions, the degradation 
is incomplete due to insufficient catalyst dosages and low 
photocatalytic activity. In contrast, Fig. 6D and E shows the 
degradation patterns with 100 mg and 125 mg dosages of 

ZnO/BC nanocomposite, respectively, where the photocata-
lytic degradations result in a nearly complete reduction in 
intensity over 0 to 120 min.

The efficacy of ZnO/BC nanocomposite as a photocata-
lyst was quantified through degradation efficiency calcula-
tions using Equation (1) for various dosages. The resulting 
degradation percentages for MB were 27% (25 mg), 45% 
(50 mg), 54% (75 mg), 91% (100 mg), and 96 % (125 mg) 
as depicted in Fig. 6F (a–e) and summarized in Table 2. 
These findings corroborate that 100 mg and 125 mg dosages 
of ZnO/BC nanocomposite yields remarkable MB degra-
dation under sunlight irradiation within the 0 to 120-min 
timeframe, attributed to the elevated concentration of active 
photocatalytic sites.

Furthermore, the kinetic degradation rate of MB, utiliz-
ing varying catalyst dosages of ZnO/BC nanocomposite 
under sunlight irradiation, was also assessed. Figure 6G 

Fig. 3   A–D SEM images of synthesized ZnO/BC nanocomposite with different magnifications A 20 µm, B 5 µm, and C 2 µm and D EDAX 
spectrum of ZnO/BC nanocomposite
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(a–e) shows the ln(Ct/C0) versus time plot, which was used 
to determine the kinetic rate constant for the photocatalytic 
degradation of MB using Equation (2), as detailed and sum-
marized in Table 2.

Although the 125 mg dose shown in Fig. 6E achieved 
slightly higher MB removal, it was slower in the initial phase 
of degradation. Therefore, the 100 mg dosage provided a 
better balance between removal rate and degradation effi-
ciency, resulting in the rapid decolorization of the MB dye 
within 0 to 100 min under visible light irradiation.

3.9 � Effect of MB concentration

The impact of varying concentrations of methylene blue 
(MB)—5 ppm, 15 ppm, 20 ppm, and 25 ppm—on the photo-
catalytic efficacy when coupled with ZnO/biochar (ZnO/BC) 
nanocomposite (100 mg) under sunlight irradiation at differ-
ent time intervals (0 to 120 min) is visualized in Fig. 7A–D.

Figure 7A distinctly depicts the ongoing, continuous 
decrease in photocatalytic degradation intensity of MB (5 
ppm) when treated with ZnO/BC nanocomposite under sun-
light irradiation from 0 to 60 min. This contrastingly pro-
gressive trend differentiates it from the concentrations of 
15 ppm, 20 ppm, and 25 ppm, as illustrated in Fig. 7B–D. 
The higher concentrations of 20 ppm and 25 ppm, however, 

exhibited slower degradation rates under sunlight irradia-
tion over the 0 to 120-min duration. This deceleration can 
be attributed to the abundant presence of MB molecules, 
which absorb significant sunlight and impede irradiation. As 
represented in Fig. 7C and D, this light absorption behavior 
aligns with the observed trend [100].

Quantitatively, the percentages of MB degradation were 
found to be 98%, 87%, 68%, and 45% for concentrations 
of 5 ppm, 15 ppm, 20 ppm, and 25 ppm, respectively, as 
demonstrated in Fig. 7E. Furthermore, the kinetic rate con-
stants, obtained from the analysis illustrated in Fig. 7F, are 
summarized in Table 2. The results underscore the excep-
tional degradation efficiency and kinetic rate constant 
achieved at a concentration of 5 ppm, highlighting its opti-
mal performance.

3.9.1 � Effect of pH

The treatment of wastewater involves a broad spectrum of 
pH values that influence pollutant removal through photo-
catalytic degradation, mediated by the catalysts’ surface 
charge Investigation into these pH conditions (pH 3, 5, 8, 
and 10) involved the ZnO/biochar (ZnO/BC) nanocomposite 
(100 mg) as a photocatalyst, targeting the degradation of 
methylene blue (MB) at a concentration of 10 ppm. These 

Fig. 4   A–D TEM images of 
synthesized ZnONPs with dif-
ferent magnifications A 200 nm, 
B 100 nm, and 50 nm inset (A, 
B) and C 200 nm and D 100 nm 
of ZnO/BC nanocomposite



Biomass Conversion and Biorefinery	

studies were conducted under sunlight irradiation, spanning 
time intervals of 0 to 120 minutes, as elucidated in Fig. S1 
(A–D) within the supporting information.

Figire S1 (A, B) captures the photocatalytic degrada-
tion spectra of MB at pH 3 and pH 5, revealing that the 
peak intensity reduction is incomplete. This phenomenon 
arises from the repulsion between the positive charge 
of the ZnO/BC nanocomposite and the positive charge 
of MB [101]. At lower pH values, specifically 3 and 5, 
the ZnO/BC nanocomposite exhibits a positive surface 
charge due to the high concentration of H+ ions. This 
results in reduced MB dye adsorption and lower pho-
tocatalytic degradation efficiency, as the electrostatic 
repulsion between MB and the ZnO/BC nanocomposite 

diminishes the interaction [102]. In contrast, the photo-
catalytic process gains momentum at pH 8, as depicted 
in Fig. S1 (C), where MB undergoes degradation under 
sunlight irradiation within the 0 to 120-min interval. This 
shift is attributed to the attractive interplay between the 
negative charges of the ZnO/BC nanocomposite at higher 
amount of −OH ions, which can interact with the positive 
charge of MB for electrostatic attraction [103]. Similarly, 
Fig. S1 (D) underscores the consistent degradation of MB 
at pH 10 and the result of electrostatic attraction between 
the highly negative charge of the ZnO/BC nanocompos-
ite and the positive charge of MB. Moreover, the ZnO/
BC nanocomposite surface is predominantly occupied by 
hydroxyl and oxygen groups at higher pH 8 and pH 10, 

Fig. 5   A–F UV-visible absorp-
tion spectra of MB with A 
catalyst free; B ZnONPs and C 
ZnO/BC nanocomposite with 
photocatalytic degradation of 
MB under sunlight irradiation 
at 0 to 120 min; D plot of the 
percentage of degradation effi-
ciency vs. time (a) catalyst free, 
(b) ZnONPs, and (c) ZnO/BC 
nanocomposite; E plot of ln(Ct/
C0) vs. time (a) catalyst free, (b) 
ZnONPs, and (c) ZnO/BC nano-
composite; and F digital image 
of successive photocatalytic 
degration of MB with ZnO/BC 
nanocomposite
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and surface charges exist as negative values [104]. This 
nanocomposite showed more affinity toward cationic MB 
dye, which is necessary for better adsorption in order to 
achieve increased photocatalytic degradation [105].

The pivotal role of pH 10 is evident, where the photo-
catalytic degradation of MB with the ZnO/BC nanocom-
posite takes precedence under sunlight irradiation. Sub-
stantiating this, the percentage (%) degradation efficiency 
of MB is quantified in Fig. 8A (a–d), yielding values of 
40%, 65%, 85%, and 94% at pH levels of 3, 5, 8, and 10, 
respectively. Decay kinetic rate constants were calculated 
using ln(Ct/C0) versus times and various pHs 3,5,8 and 10 
as shown in Fig. 8B (a–d) and reported in Table 2. Inter-
estingly, the best degradation efficiency and kinetic rate 
constant were demonstrated at pH 10.

3.9.2 � Effect of scavengers’ studies

Within the framework of this photocatalytic investigation, 
diverse scavengers were employed to quench reactive spe-
cies, constituting a vital facet of the experimental proce-
dure. The assessment of photocatalytic activity entailed 
a range of scavenger probes, each strategically incorpo-
rated. In the context of the photocatalytic degradation of 
methylene blue (MB) at a concentration of 10 ppm, spe-
cific scavengers were harnessed to target distinct species. 
Isopropanol (IPA), hydrogen phosphate (H3PO4), ethylen-
ediaminetetraacetic acid (EDTA), and sodium persulfate 
(Na2S2O8) were adeptly chosen as effective quenchers for 
hydroxide radicals (•OH), superoxide radicals (•O2

-), holes 
(h+), and electrons (e-) [106–108]. These reactive species 

Table 2   Summary of degradation efficiency and rate constants for photocatalytic degradation of MB under varying experimental conditions

Nanocomposites Dosages (mg) MB concentra-
tion (ppm)

pH Scavenger Degradation 
efficiency (%)

Rate constant (k) 
(min−1)

R2

Sunlight only - 10 - - 43% 0.0040 0.9868
Sunlight + ZnONPs 100 77% 0.0114 0.9151
Sunlight + ZnO/BC 125 96 % 0.0340 0.9218

100 92% 0.0180 0.9608
75 54% 0.0087 0.9282
50 45% 0.0056 0.9609
25 27% 0.0042 0.9921
100 25 45% 0.009 0.8854

20 68% 0.0178 0.8751
15 87% 0.0248 0.9472
5 98% 0.0603 0.8816
10 3 40% 0.0527 0.8705

5 65% 0.00705 0.9542
8 85% 0.01429 0.7702
10 94% 0.0233 0.9119
- EDTA (h+) 90% 0.0193 0.9516

Na2SO4 (e-) 66 % 0.0095 0.8432
IPA (•OH) 55 % 0.0068 0.8651
H3PO4 (•O2

−) 36% 0.0037 0.9899

Table 3   Comparison of 
photocatalytic degradation of 
MB with ZnO-biochar–based 
nanocomposites

Nanocomposites Light source Degradation 
efficiency (%)

References

ZnO-/carbon-based material Ultraviolet (UV) 95 [96]
ZnO/biochar nanocomposites Visible light 95.19 [67]
ZnO/biochar Ultraviolet (UV) 99 [97]
ZnO-C nanocomposite Visible light 99.7 [98]
ZnO/biochar nanocomposites Ultraviolet (UV) 83.1 [43]
Zinc oxide-N, O-contained biochar (ZnO/NOC) ultraviolet and visible lights 93 [99]
Biochar impregnated with ZnO nano-flowers Natural sunlight 94 [55]
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manifest during the photocatalytic degradation of MB 
under sunlight irradiation.

Interestingly, both EDTA and Na2S2O8 exhibited lim-
ited interaction with the holes (h+) and electrons (e-) ema-
nating from the ZnO/BC nanocomposite during the pho-
tocatalytic degradation of MB under sunlight irradiation 
over the 0 to 120-min span. Conversely, holes (h+) and 
electrons (e-) emerged as the primary agents driving the 
degradation of MB, accounting for respective percentage 
degradation efficiencies of 90 % and 66 %, as presented 
in Fig. 8C (a, b). Intriguingly, the scavengers IPA (55%) 
and H3PO4 (36%) displayed comparatively lesser involve-
ment in the photocatalytic degradation of MB in con-
junction with the ZnO/BC nanocomposite under sunlight 

irradiation as shown in Fig. 8C (c, d). Notably, hydroxide 
radicals (•OH) and superoxide radicals (•O2

-) were more 
significantly scavenged, as delineated in Fig. 8C (c, d).

The determination of the kinetic rate constant (k) was 
derived from the plot of ln(Ct/C0) versus time (t), and 
slope analysis facilitated the extraction of pertinent infor-
mation, as illustrated in Fig. 8D (a–d). The derived values, 
including R2 and k reported in Table 2, unveiled the kinetic 
characteristics of the scavengers. Specifically, the high 
degradation rate constants of EDTA and Na2S2O8 were 
particularly noteworthy, further attesting to their efficacy 
in degrading MB. The intricate interplay between scav-
engers and photocatalytic reactions thus adds a layer of 
understanding to the complex degradation process.

Fig. 6   A–G UV-visible absorption spectra of MB with different dos-
ages of A 25 mg, B 50 mg, C 75 mg, D 100 mg, and E 125 mg with 
ZnO/BC nanocomposite under sunlight irradiation. F Plot of degrada-

tion efficiency (%) and G plot of ln(Ct/C0) vs time of (a) 25 mg, (b) 
50 mg, (c)75 mg, (d) 100 mg, and (e) 125 mg
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3.9.3 � Stability and reusability of studies

The assessment of stability and reusability of the photocata-
lysts centered on the photocatalytic degradation of meth-
ylene blue (MB) at a concentration of 10 ppm, employing 
the ZnO/biochar (ZnO/BC) nanocomposite (100 mg) under 
sunlight irradiation spanning 0 to 120 min. Upon completion 
of the photocatalytic degradation experiment, the ZnO/BC 
nanocomposite photocatalyst was extracted and separated 
via centrifugation. It underwent rigorous washing with water 
and ethanol, followed by drying in a high-temperature oven 
set at 60°C. Subsequently, the photocatalyst was introduced 
into a freshly prepared MB solution of the same concen-
tration. This procedure was iteratively executed across 4 

consecutive cycles, each encompassing the photocatalytic 
degradation of MB under sunlight irradiation for durations 
spanning 0 to 120 min, as depicted in Fig. 9A–D.

From the plot portraying (%) removal efficiency against 
the number of cycles, distinct percentages of degradation 
efficiency were garnered: 92%, 90%, 75%, and 55%. Remark-
ably, the photocatalytic degradation efficiencies remained 
relatively steady at 55% even after the completion of four 
cycles, underscoring the sustained performance of the ZnO/
BC nanocomposite, as showcased in Fig. 9E. A small quan-
tity of catalyst lost during the regeneration process can be 
used to explain this slight decrease in photocatalytic degra-
dation efficiency [109]. This observation definitively attests 
to the commendable stability and reusability of the ZnO/BC 

Fig. 7   A–F UV-visible 
absorption spectra of MB with 
different concentration of A 
5 ppm, B 15 ppm, C 20 ppm, 
and D 25 ppm with ZnO/BC 
nanocomposite under sunlight 
irradiation. E Plot of degrada-
tion efficiency (%) and F plot of 
ln(Ct/C0) vs time of (a) 5 ppm, 
(b) 15 ppm, (c) 20 ppm, and (d) 
25 ppm
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nanocomposite in the context of photocatalytic MB degrada-
tion. Figure 9F (a, b) shows the Fourier-transform infrared 
(FT-IR) spectra of the ZnO/BC nanocomposite, both before 
and after the photocatalytic degradation of MB. The results 
indicate that the spectra exhibit limited alteration following 
the photocatalytic degradation experiment. This corrobo-
rates the persistence of the ZnO/BC nanocomposite com-
positional integrity and structural attributes throughout the 
course of the photocatalytic process.

3.9.4 � Photocatalytic degradation mechanism of MB 
with ZnO/BC nanocomposite

Under sunlight, the ZnONPs photocatalyst prompts the excitation 
of electrons from the valence band (VB) of ZnO to their conduc-
tion band (CB), accompanied by the generation of photogen-
erated holes. These photogenerated electrons are subsequently 
captured by dissolved oxygen molecules in water, leading to the 
formation of superoxide radical anions (•O2

-). Simultaneously, 
the photogenerated holes interact with hydroxyl ions, resulting 
in their absorption onto the photocatalyst’s surface, yielding 
hydroxyl radicals (•OH). These hydroxide radicals (•OH) and 
superoxide radical anions (•O2

-) are thought to play a role in the 
degradation of MB and its eventual mineralization [110, 111].

Nevertheless, the facile recombination of these photocata-
lytically generated electron and hole pairs, due to the signifi-
cant energy gap (3.04 eV), hampers the overall photocatalytic 

efficiency of the pristine ZnO catalyst. In contrast, the ZnO/
BC nanocomposite (with a narrower energy gap of 2.89 eV) 
capitalizes on the synergistic effect of ZnO and biochar during 
the MB degradation process. Upon UV-visible light irradiation, 
ZnO nanoparticles become activated, inducing the generation 
of photogenerated electron-hole pairs. Furthermore, the estab-
lishment of Zn-O-C bonds, as depicted in the diagram, facili-
tates the transfer of electrons from the ZnO nanoparticles con-
duction band to the biochar surface [112]. This notably reduces 
the recombination rate of the generated e-/h+ pairs within the 
ZnO/BC nanocomposite. The ZnO/BC nanocomposite FT-IR 
spectrum following MB degradation showed three prominent 
peaks with clearly visible decreased intensity and shifted wave 
number as demonstrated in Fig. 9F (b). The attachment of MB 
to the BC in the ZnO/BC nanocomposite was responsible for 
the peak intensity and shifts at 3318 cm−1, 1592 cm−1, and 1012 
cm−1, which corresponded to the O-H bond, C=O bond, and 
C-O bond of BC in the nanocomposite [113, 114].

Moreover, the conduction band electrons (e-) of biochar 
react with oxygen (O2) to form superoxide radicals (•O2

-), 
while the valence band holes (h+) of ZnO contribute to the 
generation of hydroxide radicals (•OH) [115]. These radical 
species efficiently participate in the oxidation of MB, lead-
ing to the formation of by-products such as carbon dioxide 
and water molecules, as elucidated in Scheme 2. The progres-
sion of this process is described by the following chemical 
reactions.

Fig. 8   A–D A Degradation 
efficiencies and B plot of kinetic 
rate constants of MB (a) pH 3, 
(b) pH 5, (c) pH 8, and (d) pH 
10. C Degradation efficien-
cies and D plot of kinetic rate 
constants of various scavengers 
(a) H3PO4, (b) IPA, (c) Na2SO4, 
and (d) EDTA under sunlight 
irradiation with ZnO/BC nano-
composite
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Fig. 9   A–F A First cycle, B 
second cycle, C third cycle, and 
D fourth cycle replication of 
the UV-visible spectra. E Plot 
of degradation efficiency vs. 
number of cycles and F FT-IR 
spectra of ZnO/BC nanocom-
posite (a) before and (b) after 
four cycles for photocatalytic 
degradation of MB under sun-
light irradiation
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4 � Conclusion

This research employs a ZnO-coated biochar nanocompos-
ite, synthesized from banana peels and zinc acetate dihy-
drate, to enhance the photocatalytic activity of the ZnO/
BC nanocomposite. This approach is both cost-effective 
and environmentally friendly. The ZnO/BC nanocomposite 
boasts abundant active sites, facilitating a high adsorption 
capacity for MB and the generation of reactive radicals. 
Consequently, the photocatalytic degradation efficiency is 
significantly improved under sunlight irradiation.

The elimination of MB from wastewater using the ZnO/
BC nanocomposite was modeled using the pseudo-first-
order approach. An in-depth examination of the ZnO/BC 
nanocomposite’s stability and reusability demonstrated 
consistent photocatalytic degradation efficiency (70%) for 
MB even after undergoing four cycles.

Scavenger studies further verified the participation of 
active radicals, including h+, e-, •O2

-, and •OH, in the pho-
tocatalytic degradation of MB. Particularly, electron (e-) 
and hydroxyl (•OH) radicals played prominent roles in the 
degradation process under sunlight irradiation.

This ZnO/BC nanocomposite holds substantial potential 
for wide-scale implementation in wastewater treatment and 
environmental remediation endeavors.
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