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Abstract
To realize the first sustainable development goal of ending 
“poverty in all its forms everywhere,” local governments 
in South Africa need to implement informed targeted 
policy interventions based on up-to-date data and sound 
analytics. Statistics South Africa (Stats SA) Censuses re-
veal the socioeconomic circumstances of people living in 
South Africa but are only conducted every 10 years. As a 
result, most analytical studies done in-between Censuses 
rely on outdated socioeconomic data. This study dem-
onstrates how poverty levels in one of the provinces of 
South Africa, Gauteng, can be predicted when up-to-date 
Census datasets are not available. The spatial lag model is 
used to explain the relationship between the South African 
Multidimensional Poverty Index (SAMPI) and statistically 
significant variables extracted from land use datasets (i.e., 
land areas classified as built-up, informal, residential, town-
ship, and non-urban), and to ultimately predict the levels of 
poverty. Out-of-sample predicted poverty levels obtained 
based on the spatial lag model correlate with the actual lev-
els of poverty thereby reflecting known spatial patterns of 
the levels of poverty in Gauteng province.
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1  | INTRODUC TION

Poverty remains a socioeconomic challenge that continues to plague many countries in the developing world. The 
dire consequences of poverty have triggered concerted global efforts to eradicate it. The first United Nations 
Sustainable Development Goal of ending “poverty in all its forms everywhere” is a clear example of the world's 
commitment to addressing poverty. However, such global efforts can only materialize through regional, country-
wide, and local initiatives and targeted policy interventions. In South Africa, more than half (50%) of the population 
lived in poverty in 2015 (Stats SA, 2017a). The hard lockdown restrictions due to COVID-19 further contributed to 
an increasing unemployment rate that South Africa continues to grapple with to date. The outcomes of a national 
longitudinal household survey conducted by the National Income Dynamics Study (NIDS) in 2020, estimated a 
substantial increase in poverty for individuals who had lost their jobs (Jain et al., 2020). In a country where there 
is a multitude of needs and interests competing for few resources, the South African government's efforts toward 
alleviating poverty need to be guided by evidence-based policies for targeted interventions. Hence, a need for re-
liable socioeconomic data and statistics to support and promote informed and evidence-based policy formulation.

Statistics South Africa (Stats SA) Censuses reveal the socioeconomic circumstances of people living in South 
Africa but are only conducted every decade. Logistical considerations and high operational costs are among the 
reasons that contribute to Censuses being conducted only once every 10 years. Although community surveys are 
conducted in-between Censuses, the output datasets of such surveys are representative at larger scales of data 
aggregation (e.g., at the municipal and provincial levels only). In contrast, policy makers in government implement 
policies and programs geared toward poverty alleviation based on administrative boundaries such as the ward (a 
unit of data aggregation lower than the municipality). For example, in Gauteng province, 50 wards named “fifty 
priority wards” were selected for targeted poverty alleviation policies as part of the “service delivery war room” 
program initiated by the provincial government in 2012 (Wray & Storie, 2012). In the absence of up-to-date socio-
economic data, such as those provided by Stats SA, it becomes a challenge to formulate evidence-based policies 
that can appropriately inform the implementation of programs to address current poverty issues at a granular level 
of administrative boundaries such as the ward. For example, the South African Multidimensional Poverty Index 
(SAMPI), which is employed as a multidimensional approach to measuring poverty in South Africa at the ward 
level, was constructed based on Census data collected in 2011 (Stats SA, 2014).

Traditional ways of collecting data (e.g., Census surveys) for assessing socioeconomic outcomes such as pov-
erty are costly. Data collected from satellite imagery can be used as a passive and less expensive means for 
analyzing socioeconomic circumstances and predicting poverty when national Censuses or other demographics 
are outdated, not available, or not accessible (Jean et al., 2016). One of the early direct applications of remotely 
sensed imagery in the social science domain is the work by Hall et al.  (2001) who used land cover and GIS to 
identify pockets of urban poverty in Argentina. Back then (i.e., in the 90s), the temporal and spatial resolutions of 
remotely sensed images were not as high as they are today.

Satellite imagery is increasingly available at higher spatial and temporal resolutions and its use as a proxy for 
estimating or predicting economic activities and ultimately poverty is expanding (Xu et al., 2021). For example, 
poverty has been predicted based on the relationship between the intensity of nighttime light (visible on satellite 
imagery) and a measure of poverty computed from socioeconomic variables (Jean et al., 2016; Okaidat et al., 2021; 
Perez et al., 2017; Xie et al., 2016; Xu et al., 2021; Yeh et al., 2020). This confirmed the assumption that a greater 
intensity of light at night in an area is associated with lower levels of poverty. Researchers also confirmed that 
the physical environment represented through human settlements, land use, land cover, etc., in which people live, 
reflects their respective socioeconomic circumstances (Duque et al., 2015; Jean et al., 2016; Perez et al., 2017; 
Xie et al., 2016). An interesting example is the one by Peng et al. (2023) who proposed a set of composite slum 
spectral indices for mapping slums in Mumbai, India. While employing remotely sensed images to predict poverty, 
some studies have also explicitly acknowledged the spatial heterogeneity of features on the landscape. These in-
clude Li et al. (2023) who proposed a “point-to-region co-learning” framework that considers the characteristics of 
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neighbouring features to predict low-income areas in Kenya. Pettersson et al. (2023) employed publicly available 
satellite imagery to develop an algorithm that considers the geographical and temporal characteristics of features 
to predict poverty in selected countries in Africa (including South Africa). Alongside socioeconomic, demographic, 
and other relevant spatial and non-spatial data, Akinyemi (2010) mentioned land cover as a common dataset for 
measuring and assessing poverty. These studies inspired this investigation into the use of satellite imagery for 
estimating and predicting poverty in South Africa.

While regional and country-level analyses (e.g., Jean et al., 2016; Okaidat et al., 2021; Perez et al., 2017; Xie 
et al., 2016) are very relevant for continental or global initiatives such as those led by the World Bank and other 
international organizations (e.g., USAID), transferability of the methods employed for modeling and/or predict-
ing poverty within individual countries at a granular level of data aggregation poses a challenge. For example, 
Pettersson et al. (2023) extended Yeh et al. (2020)'s algorithm to devise a model capable of learning from geo-
graphical and temporal features. However, Pettersson et al. (2023)'s algorithm exhibited lower performance for 
South Africa due to fewer collected samples.

A specific mention of the lack of suitability of nighttime light in the context of South Africa needs to be high-
lighted. Figure 1 shows the yearly average nighttime light intensity across South Africa. Looking at the entire 
country, it is mostly characterized by low nighttime light intensities, except for a few urban areas. Typically, night-
time light mirrors the urban footprint, regardless of the varied socioeconomic circumstances of the population. In 
other words, nighttime light does not always discriminate between poor and rich areas, making its use inefficient 
in predicting poverty in the context of South Africa. Hence, with minimal spatial variation of nighttime light in both 
urban and non-urban areas (refer to Figure 1), it becomes a challenge to obtain reliable models that can describe 
the relationship between the intensity of light at night and poverty measured by the SAMPI. Given these reasons, 
nighttime light was not considered as a potential predictor of poverty in the analyses performed in this study.

F I G U R E  1 DMSP-OLS nighttime light yearly average nighttime light intensity (average visible, stable lights, & 
cloud free coverages) in 2011. Source: NOAA (n.d.).
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Furthermore, in the context of developing countries (e.g., South Africa), limitations such as the low resolution 
of nighttime light imagery and the high monetary cost involved in the acquisition of high-resolution day-time 
imagery, make it a challenge to implement or replicate country-level studies, such as the ones conducted by Jean 
et al. (2016), and Xie et al. (2016), at a finer granularity. Although Perez et al. (2017) and Yeh et al. (2020) have 
proposed the use of freely available day-time imagery (e.g., Landsat images), the interpretability of their results 
impairs the adoption of such studies for policy formulation and implementation.

The complexity of artificial intelligence (AI) and machine learning algorithms lies in the difficulties of fully inter-
preting the deep learning algorithms developed to adequately address specific challenges in predictive analytics. 
For example, Barbierato and Gatti (2024) highlight the difficulties in understanding how complex and multilayered 
neural network models arrive at a particular decision based on a combination of multiple factors. Machine learning 
algorithms consume information, in our case properties of remotely sensed imagery such as reflectance, that is 
less interpretable in the context of describing the drivers of poverty. This study therefore employs a national land 
cover dataset that has already been classified into intuitive land use classes. The aim is to model the relationship 
between the built-environment variables extracted from the South African national land cover datasets and the 
SAMPI at the ward level, with Gauteng province as an example. The analysis is performed at a granular level by 
using the ward as the spatial unit of data aggregation.

Several studies have employed (non-spatial) regression models in the prediction of poverty using satellite 
imagery (e.g., Pan & Hu, 2018; Xu et al., 2021; Yong et al., 2022). However, they ignored misspecifications that 
might occur due to induced spatial autocorrelation observed in data aggregated at a spatial unit, for example, 
county, ward, or municipality. When employed on spatially aggregated data, linear regression models fail to 
address a model misspecification manifesting itself in spatially autocorrelated residuals. This results in the 
violation of the Gauss–Markov assumption of linear regression: independence of the error terms (Griffith & 
Paelinck, 2011). In their identification of predictors of child poverty in the United States, Voss et al.  (2006) 
used spatial regression models to explicitly highlight the deficiencies of failing to incorporate spatial effects in 
the modeling process when ordinary least squares regression models are used. Hence, this study incorporates 
spatial dependence in the analysis by employing a spatial regression model. Akbar et al. (2022) also employed 
spatial regression models to explain poverty, but their independent variables were extracted from a field-
based survey of rural infrastructure in Pakistan. Similarly, David et al.  (2018) based their spatial regression 
modeling exercise on the 2011 Stats SA Census data when explaining potential causes of poverty patterns 
among the 234 municipalities in South Africa. Neither of these mentioned studies made use of satellite imag-
ery. A few exceptions include Pokhriyal and Jacques (2017) who modified the kernel function of their Gaussian 
process regression model to include the spatial distances between centroids of polygons when predicting 
poverty, based on variables extracted from remotely sensed imagery and other relevant socioeconomic and 
environmental datasets. However, the spatial lag model was suitable for explaining and ultimately predicting 
poverty in this study.

Hence, this study makes the case for a spatial regression model to explain and predict poverty based on covari-
ates extracted from freely available land use datasets in the context of Gauteng province. Furthermore, this study 
proposes a suitably fitted spatial lag model to perform an out-of-sample prediction of poverty using variables 
extracted from land use datasets.

In essence, this study makes the following two main contributions:

	(i)	 Addressing the challenges of having to rely on outdated Census data to determine the levels of poverty in the 
province of Gauteng, South Africa. Hence, this study proposes an approach for predicting or estimating pov-
erty when up-to-date Census datasets are not available. This approach can easily be replicated in other prov-
inces of South Africa and other parts of the world with similar socioeconomic conditions as Gauteng province.

	(ii)	 Highlighting existing shortcomings of current studies (e.g., Pan & Hu, 2018; Xu et al., 2021; Yong et al., 2022) 
that have employed regression models that ignore spatial dependence in their respective formulation when 
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predicting or explaining poverty using remotely sensed data (e.g. land cover). This is done in order to propose 
the use of a spatial regression model that incorporates spatial dependence in its functional form.

In spatial regression analysis, spatial prediction can be performed in- or out-of-sample (Goulard et al., 2017). 
In the case of in-sample predictions, values for the independent variables and the dependent variable are known 
a priori, while with out-of-sample predictions, known values of the independent variables are used to predict 
unknown values of the dependent variable based on a model that was constructed based on known values 
of the independent variables and the dependent variable. Most studies we have reviewed from the literature 
focussed on in-sample predictions (e.g., Akbar et al., 2022; David et al., 2018; Kamenetsky et al., 2019), which 
limits the predictions to data that are known to the model. In this study, we also conducted an out-of-sample 
prediction analysis, which is essential for predicting poverty when up-to-date Census datasets are not avail-
able. To the best of our knowledge, this is the first study that employs a spatial regression model using built-
environment variables derived from satellite imagery to predict poverty in South Africa. Compared with other 
methods, this is less complex to implement and explain, and also more cost-efficient. The remainder of this 
article is structured as follows: Section 2 describes the study area, presents the datasets that were used, and 
explains how poverty estimation and prediction was done. Results are presented and discussed in Section 3, 
with concluding remarks in Section 4.

2  | STUDY ARE A , DATA , AND METHOD

2.1 | Study area

As the economic hub of South Africa with its 34% share of the country's total GDP (Stats SA, 2017b), Gauteng is 
regarded as a place of socioeconomic opportunities. This makes Gauteng a milieu of constant in-migration which 
puts pressure on the availability, efficiency, and quality of the province's service infrastructure. For these reasons, 
Gauteng was selected as the study area of choice for studying poverty in South Africa. Future work could expand 
poverty estimates and predictions to other provinces. Figure  2 illustrates the geographic location of Gauteng 
province in South Africa, with its urban footprint in the year 2000, and municipal boundaries. The government 
implements poverty alleviation policies based on the ward, an administrative boundary at a level lower than the 
municipality (Wray & Storie, 2012). The analysis performed in this study was based on 508 wards in Gauteng prov-
ince, as per the administrative boundaries of South Africa demarcated in 2011 (MDB, 2023). However, since 2016, 
there are 529 wards in Gauteng province (MDB, 2023). Nevertheless, the 508 wards were considered because the 
computed SAMPI dataset is available based on the 2011 ward demarcated boundaries.

2.2 | Data description

2.2.1 | The South African Multidimensional Poverty Index (SAMPI)

SAMPI is a multidimensional index of poverty based on Census data collected in 2001 and 2011 in South Africa. 
It is a linear combination of socioeconomic variables, constructed by following the “Alkire-Foster” methodol-
ogy (Alkire & Foster, 2011). The flexibility of the “Alkire-Foster” methodology enabled the adjustment of indica-
tors and the inclusion of an additional dimension (i.e. economic activity) in the construction of the SAMPI (Stats 
SA, 2014). Table 1 provides the list of indicators, dimensions, and deprivation cutoffs considered in the construc-
tion of the SAMPI. Dimensions are weighted equally (1/4 per dimension). Similarly, there is an equal share of the 
weight assigned to a dimension among all of its indicators.
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A household is defined as being multidimensionally poor if a third or more of its indicators satisfy the 11 
indicators' deprivation cut-offs. The proportion of multidimensionally poor households within a given ward 
constitutes the headcount or prevalence of poverty. The intensity (or acuteness or depth) of poverty is the 
average percentage of deprivations (i.e., the indicators that satisfy deprivation cut-offs) experienced by multi-
dimensionally poor households within a given ward. The SAMPI is then obtained by computing the product of 
the intensity of poverty and the headcount. A full report on the SAMPI can be obtained from StatsSA's website 
(Stats SA, 2014).

2.2.2 | Land use

This study employs two sets of land use data: the 2000 and 2013–2014 land use datasets. The 2000 land 
use dataset is based on Landsat images collected in 2000, 2001, and 2002 (GEOTERRAIMAGE—2014) 
(GCRO, 2024). The 2013–2014 land use dataset is a subset of the 2013–2014 South African National Land 
Cover (SANLC) dataset, which is made available freely and openly by the Department of Forestry, Fisheries 
and the Environment (DFFE) in South Africa (DFFE, 2024). The 2013–2014 SANLC dataset is based on the 
2013 and 2014 Landsat images. The 12 land use classes listed in Table 2 were considered in the analysis per-
formed in this study. Land use classes 1–11 are collectively classified as urban land cover. The proportion of a 
ward area covered by each of the 12 land use classes was hypothesized as a potential explanatory variable of 
the SAMPI.

F I G U R E  2 Study area (Gauteng province).
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2.3 | Data preparation

The analysis distinguishes between two sets of data as presented in Table 3 with their corresponding variables. 
These two datasets have been aggregated at the ward level. In 2011, there were 508 wards in Gauteng but only 
497 wards were considered for the analysis. Eleven wards were excluded from the analysis because of missing 
indicators of poverty or extremely low levels of poverty (i.e., negligible values of the SAMPI).

The first set of data (i.e. “Dataset 1”) is composed of the 2001 SAMPI as the dependent variable for each ward, 
and 12 covariates extracted as land use classes from the 2000 land use data. Being a land use class, each covariate 
is quantified as the proportion of land area it covers in each of the 497 wards. The same description applies to 
“Dataset 2” with the exception that the dependent variable is the 2011 SAMPI for each ward, and the covariates 
have been extracted from the 2013/2014 land use data.

2.4 | Methodology and approach

The methodological approach adopted in this study consists of three main analytical processes, namely, model 
selection, model training, and prediction. As presented in Table  3, two sets of data, namely, “Dataset 1” and 
“Dataset 2” were considered for the analysis. The first dataset (i.e., “Dataset 1”) was used for selecting and 
training the appropriate model (i.e., the spatial lag model) which was subsequently employed to perform both 
in-sample and out-of-sample prediction of poverty. The in-sample prediction process used selected covariates 
from “Dataset 1,” while the “out-of-sample” prediction process was based on corresponding selected variables 

TA B L E  1 List of dimensions, indictors, and deprivation cut-offs for SAMPI.

Dimension Indicator Weight Deprivation cut-offs

Health Child mortality 1/4 (25%) If any child under the age of 5 has died in the past 
12 months

Education Years of schooling 1/8 (0.125%) If no household member aged 15 or older has 
completed 5 years of schooling

School attendance 1/8 (0.125%) If any school-aged child (aged 7 to 15) is out of 
school

Standard of living Fuel for lighting 1/28 (0.036%) If a household is using paraffin/candles/nothing/
other

Fuel for heating 1/28 (0.036%) If a household is using paraffin/wood/coal/dung/
other/none

Fuel for cooking 1/28 (0.036%) If a household is using paraffin/wood/coal/dung/
other/none

Waster access 1/28 (0.036%) If no piped water in a dwelling or on a stand

Sanitation type 1/28 (0.036%) If not a flush toilet

Dwelling type 1/28 (0.036%) If an informal shack/traditional dwelling/caravan/
tent/other

Asset ownership 1/28 (0.036%) If a household does not own more than one radio, 
television, telephone, or refrigerator and does not 
own a car

Economic activity Unemployment 1/4 (0.125%) If all adults (aged 15–64) in the household are 
unemployed
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extracted from “Dataset 2.” Hence, the model selection and training process was only based on variables ex-
tracted from “Dataset 1”.

2.4.1 | Model selection

The model selection process was guided by an exploratory spatial data analysis (ESDA) which is essential for 
discovering spatial autocorrelation and spatial heterogeneity in the data. More importantly, in the context of 
regression analysis, an ESDA serves the purpose of identifying possible misspecifications in the statistical models 
considered for the analysis (Chi & Zhu, 2008). At first, the dependent variable (i.e., “SAMPI 2001” from the first 
dataset, i.e., “Dataset 1”) was transformed to closely conform to the assumption of normality. In particular, the 
choice of the Box-Cox transformation was motivated by the need to adhere to the Gauss–Markov assumptions of 
linear regression analysis (Box & Cox, 1964).

The Box-Cox transformation of the dependent variable is given by Equation (1):

where SAMPI2001
′ is the Box-Cox transformed version of the dependent variable in 2001 (i.e., SAMPI2001). The trans-

formation parameter 𝝀 is estimated using the maximum likelihood method (Chi & Zhu, 2008; Fischer, 2016). The 
estimated value of 𝝺 was 0.2.

To obtain a parsimonious regression model that also eliminates multicollinearity, a stepwise regression anal-
ysis was performed. This resulted in the reduction of the original set of 12 variables to a set of five statistically 
significant variables, namely, “Informal,” “Non-urban,” “Residential,” “Built-up,” and “Townships” which were free of 
any multicollinearity problem. Even though the residuals of the reduced multiple regression model were normally 

(1)SAMPI2001
�
=

SAMPI2001
�
− 1

�

TA B L E  2 Area proportion of land use classes in each ward.

Land use class  
(ward area proportion) Description

1 Commercial Includes commercial, offices, government, health facilities, train 
stations, churches, may include residential flats, etc.

2 Industrial Industrial, power stations, etc.

3 Residential Formal residential housing, townhouses, hostels complexes, flats, 
etc.

4 Township Townships and RDP housing

5 Informal Informal residential housing

6 Smallholding Smallholdings and small farms

7 Village Traditional villages

8 Sport and golf Sports fields and golf courses, exclude school sports fields

9 School and sport grounds School buildings and school sports grounds

10 Built-up Any areas of which the classification is unknown, runways/airports 
and associated buildings, holiday chalets, cemeteries, etc.

11 Mine buildings Mine buildings

12 Non-urban Includes: bare (non-vegetated) land, erosion, mines water 
permanent, mines water seasonal, mines (bare and semi-bare), 
plantation, cultivated land, low shrubland, shrubland fynbos, 
grassland, woodland/open bush, thicket/dense bush, indigenous 
forest, wetlands, water permanent and water seasonal
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distributed after the Box-Cox transformation of the dependent variable (i.e. “SAMPI 2001”), it became clear that 
a spatial regression model would be appropriate since the residuals exhibited statistically significant patterns of 
spatial autocorrelation.

The outcome of the ESDA and detailed scrutiny of the baseline ordinary least squares (OLS) model led to the 
selection of the spatial lag model as the most appropriate for this study. This decision was based on the results of 
the Lagrange multiplier tests as prescribed by Anselin (1988, 2005). Hence, this study employs a spatial regression 
model that incorporates a spatially lagged dependent variable as one of its covariates.

The spatial lag model formulated in Equation (2) below represents the relationship between SAMPI and the 
five significant explanatory variables:

where SAMPI represents SAMPI in 2001 or SAMPI in 2011. X represents explanatory variables (i.e., covariates) as de-
scribed in Table 3. W is the spatial weight matrix based on queen first-order contiguity for the wards in Gauteng prov-
ince. � represents the normally distributed error term. � and � are the slope coefficients of the explanatory variables 
and the spatially lagged dependent variable (conditional on W) respectively. The spatially lagged dependent variable 
represents a weighted average of neighboring values of the dependent variable. � represents normally distributed 
independent error terms with a mean of zero and a constant variance. The spatial weight matrix (W) in Equation (2) 
illustrates how spatial dependence is incorporated into the dependent variable of the spatial lag model. This ensures 
that spatial interaction among wards is considered in the model.

(2)
SAMPI=�o+X�+WSAMPI�+�,

�∼N
(

0, �2In
)

,

TA B L E  3 Datasets description.

Dependent variable

Dataset 1 Dataset 2

Year: 2001 Year:2011

South African Multidimensional 
Poverty Index (2001)

South African Multidimensional 
Poverty Index (2011)

SAMPI 2001 SAMPI 2011

Independent variables/covariates

Land use class (ward area 
proportion) based on 2000 Landsat 
Images

Land use class (ward area 
proportion) based on 2013/2014 
Landsat Images

Commercial Commercial

Industrial Industrial

Residential Residential

Townships Townships

Informal Informal

Smallholdings Smallholdings

Villages Villages

Golf courses and sports ground Golf courses and sports ground

Schools (and sports ground) Schools (and sports ground)

Mines Mines

Built-up Built-up

Non-urban Non-urban
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The spatial lag model assumes a global spillover effect due to the interaction among agents, regions, or 
processes in space (LeSage,  2014). In spatial regression analysis, a spillover occurs when changes in an in-
dependent explanatory variable in a given region result in changes in the dependent variable in neighboring 
regions (Golgher & Voss,  2016). Such changes could be restricted locally within a neighborhood (i.e., local 
spillover effect) or they could propagate to an entire study area (i.e., global spillover). The spatial lag model 
is used to model phenomena that may result in a global spillover. In this study, we used the spatial lag model 
for modeling poverty because the results of an ESDA, namely, the local indicator of spatial association (LISA), 
revealed clusters of poverty localized in specific neighborhoods in Gauteng (see Figure 3). The results of LISA 
have been further confirmed by the empirical results of the Lagrange multiplier tests on the residuals of the 
baseline OLS regression model which suggest that a spatial lag term should be incorporated in the specifica-
tion of the spatial regression model.

Our approach is further motivated by Golgher and Voss (2016) who argued that a well-defined theoretical 
model should inform the choice for an empirical spatial model. Theory suggests that poor households may be 
constrained to specific neighborhoods due to shared socioeconomic conditions such as limited housing stocks 
and/or offerings or scarce employment opportunities. Voss et al. (2006) refer to these types of socioeconomic 
constraints as a grouping of forces that may be responsible for the observed patterns of spatial autocorrelation 
in the dependent variable (i.e., poverty). Hence, our approach is grounded on both theoretical and empirical 
foundations. Furthermore, in comparison to the black box of machine learning methods, the results from a 
statistical model such as a spatial lag model can be explained, which facilitates adoption by policymakers and 
the public in general.

Other spatial regression models discussed in Elhorst (2010) were also computed solely for the sake of compar-
ing their performance with that of the spatial lag model. The Manski model, spatial error model (SEM), Spatially 
Lagged X model (SLX), Spatial Durbin model (SDM), Spatial Durbin Error model (SDEM), and Kelejian-Prucha 

F I G U R E  3 LISA based on SAMPI 2001.
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model are briefly discussed. For the sake of brevity, only the functional form of the Manski model is provided 
since all the other considered spatial regression models can be derived from the Manski model (see Elhorst, 2010). 
The Manski model is expressed by Equation (3) as follows:

where y is the dependent variable and � is the spatial lag coefficient. W represents the spatial weight matrix that 
defines the spatial relationship among the spatial units of analysis. Wy is the spatially lagged dependent variable that 
encapsulates the spatial interactions observed in the dependent variable. X represents the independent/explanatory 
variables. WX represents spatially lagged independent variables that encapsulate the spatial interaction among the 
independent/explanatory variables. β represents the slope coefficients of independent variables X while Θ represents 
the slope coefficients of spatially lagged independent variables. The spatially lagged error term is given by Wu while 
λ represents the spatial autocorrelation coefficient. ε represents the normal, independent, and identically distributed 
error term. Lastly, α represents the y-intercept.

When the values ρ and Θ are not different from zero, the SEM is obtained. The SEM is appropriate when the 
spatial dependence in the dependent variable is not substantive. However, the significant pattern of spatial auto-
correlation observed in the error term is a nuisance that the SEM addresses. The spatially lagged X (SLX) model is 
obtained when the values of ρ and λ are not different from zero. Unlike the other spatial regression models which 
require the method of maximum likelihood to estimate the model parameters, the parameters of the SLX can be 
estimated based on the OLS method. The SDM is obtained when the value of λ is not different from zero. The 
SDM is appropriate when spatial dependence is substantive in both the dependent and independent variables. 
Conversely, when spatial dependence is not substantive in the dependent variable with the value of ρ = 0, the 
SDEM is obtained. Lastly, when Θ = 0, the Kelejian-Prucha model is obtained. The “in-sample” and “out-of-sample” 
predictions of these models were compared with those of the spatial lag model.

2.4.2 | Model training and prediction

As already mentioned at the beginning of Section 2.4.1., the spatial lag model was trained based on the 2001 
SAMPI as the dependent variable, and the independent variables were extracted from the 2000 land use dataset 
(i.e., “Dataset 1”) as described in Table 3. The trained spatial lag model was used to perform in-sample and out-
of-sample predictions. The out-of-sample prediction of poverty (i.e., predictions of poverty in 2011) was based 
on the covariates extracted from the 2013–2014 version of the land use dataset (i.e., “Dataset 2”). Laurent and 
Margaretic (2021) also performed a similar analysis but considered polygons with missing data as suitable candi-
dates for out-of-sample spatial prediction of unemployment based on a selection of relevant independent socio-
economic variables in France.

The reduced form of the spatial lag model that is suitable for performing spatial predictions is given by the 
following functional form (see Anselin & Rey, 2014; Bivand, 2002):

Equation (4) is derived from the convenient rearrangement of the spatial lag model (see Equation (2)) to have 
all the known parameters and variables on the right-hand side while the unknown variable to be predicted (i.e., the 
dependent variable term) is kept on the left-hand side.

(3)

y=�+�Wy+X�+WXΘ+u,

u=�Wu+�

�∼N
(

0, �2In
)

,

(4)
SAMPIpredicted=(I−�W)

−1
X�+(I−�W)

−1
�

�∼N
(

0, �2In
)

,
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It should be noted that land use datasets produced from land cover datasets strictly obtained in 2001 and 
2011 were not readily available at the time this study was conducted. Hence, the explanatory variables represent 
the best possible approximation of land use classes in 2001 and 2011, respectively. This limitation should be 
addressed in future work, for example, by producing land cover/use datasets for the missing years to fill in the 
gaps of the authoritative “South African National Land-Cover Datasets” made freely and publicly available by the 
Department of Forestry, Fisheries and the Environment in South Africa (DFFE, 2024).

3  | RESULTS AND DISCUSSION

3.1 | Exploratory spatial data analysis (ESDA)

Table 4 provides values of the Pearson correlation coefficient between the dependent variable (i.e., SAMPI in 
2001 and 2011) and each of the hypothesized explanatory variables for the respective year. The directions of the 
positive or negative relationship between the SAMPI and each of the hypothesized explanatory variables appear 
as expected. The variable that represents land use classified as “Informal” has a higher correlation coefficient 
value with the SAMPI in 2001 and 2011 (0.434 and 0.37 respectively) compared with the remaining explana-
tory variables mentioned in Table 4. There is a change in the strength of the correlation between “Informal” land 
use and poverty from 0.434 in 2001 to 0.37 in 2011. Such a decrease could be attributed to some of the policy 
reforms adopted by the South African government right after the dawn of democracy in 1994. One such policy 
is the housing program of the reconstruction and development plan (RDP) which promoted the construction of 
millions of formal houses for the previously disadvantaged population in South Africa (Harrison & Todes, 2015). 
Subsequent related initiatives include the Informal Settlement Upgrading Program which was adopted in 2004 
(Huchzermeyer, 2009). Also, as expected, the relationship between poverty and Golf courses and sports grounds, 
commercial land, built-up areas, and residential areas is negative, suggesting that such areas are associated with 
low poverty levels.

TA B L E  4 Land use variables and SAMPI correlation matrix.

Land use class (ward area 
proportion) SAMPI 2001

p-value (at 5% level 
of significance) SAMPI 2011

p-value (at 5% level 
of significance)

Informal 0.434 0.00 0.37 0.00

Non-urban 0.274 0.00 0.336 0.00

Villages 0.057 0.208 0.031 0.489

Townships 0.149 0.00 0.003 0.953

Mines −0.074 0.099 0.126 0.005

Smallholdings −0.064 0.153 0.067 0.138

Industrial −0.074 0.099 −0.065 0.148

Golf courses and sports 
grounds

−0.289 0.00 −0.261 0.00

Commercial −0.264 0.00 −0.263 0.00

Schools (and sports ground) −0.124 0.006 −0.192 0.00

Built-up −0.249 0.00 −0.251 0.00

Residential −0.624 0.00 −0.518 0.00
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The descriptive statistics of the hypothesized explanatory variables are provided in Tables 5 and 6. The levels 
of poverty decreased from 2001 to 2011, as can be seen from the mean of the SAMPI per ward decreasing from 
0.47 in 2001 to 0.02 in 2011.

The 12 hypothesized explanatory variables contained in “Dataset 1” as presented in Table 3 were included 
in an initial/baseline OLS regression model (i.e., the training model). However, the dependent variable (i.e., 
SAMPI 2001) was subjected to a Box-Cox transformation to closely conform to the assumptions of normality, 

TA B L E  5 Descriptive statistics of the hypothesized explanatory variables in the 2001 datasets.

Land use class (ward area 
proportion) N Mean SD Min q.25% q.50% q.75% Max

SAMPI 2001 508 0.047 0.053 0 0.006 0.03 0.073 0.29

Commercial 508 0.037 0.06 0 0.004 0.018 0.048 0.576

Industrial 508 0.017 0.048 0 0 0 0.007 0.431

Residential 508 0.149 0.208 0 0 0.033 0.215 0.761

Townships 508 0.16 0.243 0 0 0.003 0.295 0.883

Informal 508 0.055 0.146 0 0 0 0.022 0.92

Smallholdings 508 0.034 0.094 0 0 0 0.005 0.711

Villages 508 0.006 0.044 0 0 0 0 0.667

Golf courses and sports 
ground

508 0.011 0.026 0 0 0 0.009 0.243

Schools (and sports ground) 508 0.036 0.039 0 0.006 0.02 0.054 0.194

Mines 508 0 0 0 0 0 0 0.001

Built-up 508 0.034 0.057 0 0.008 0.02 0.037 0.594

Non-urban 508 0.461 0.282 0 0.221 0.394 0.722 0.999

TA B L E  6 Descriptive statistics of the hypothesized explanatory variables in the 2011 datasets.

Land use class (ward area 
proportion) N Mean SD Min q.25% q.50% q.75% Max

SAMPI 2011 508 0.02 0.029 0 0.003 0.009 0.026 0.22

Commercial 508 0.038 0.061 0 0.005 0.019 0.048 0.587

Industrial 508 0.018 0.049 0 0 0 0.007 0.445

Residential 508 0.154 0.212 0 0 0.035 0.236 0.779

Townships 508 0.171 0.247 0 0 0.007 0.331 0.891

Informal 508 0.059 0.15 0 0 0.001 0.03 0.938

Smallholdings 508 0.031 0.085 0 0 0 0.006 0.691

Villages 508 0.007 0.047 0 0 0 0 0.686

Golf courses and sports 
ground

508 0.012 0.025 0 0 0 0.01 0.187

Schools (and sports ground) 508 0.036 0.039 0 0.006 0.022 0.054 0.193

Mines 508 0.011 0.032 0 0 0 0.005 0.24

Built-up 508 0.046 0.062 0 0.014 0.032 0.054 0.521

Non-urban 508 0.429 0.276 0 0.198 0.369 0.671 0.996
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linearity, absence of multicollinearity, and normality and independence of the residuals which are necessary 
for the application of the Gauss–Markov theorem. The results of the baseline OLS regression model as illus-
trated in Table  7 suggest a very poor fit with regression coefficients having p-values greater than the sig-
nificance level (0.05). The multicollinearity number was also extremely high (i.e., 37459.59). Although this 
initial OLS model had normally distributed residuals, they were however not independent. The residuals were 
spatially autocorrelated (Moran's I = 0.22 and p-value <0.05), implying that OLS regression is not suitable and 
that a spatial regression model should be considered. Although the adjusted coefficient of determination was 
above 0.5 (i.e., 0.53), the obtained regression model could not be relied upon given the spatial autocorrelation 
patterns displayed by its residuals and the extremely high condition number suggesting a substantial occur-
rence of multicollinearity.

To obtain a parsimonious model that is also free from multicollinearity, the initial OLS regression model was 
subjected to a stepwise (forward, backward, and bi-directional) regression analysis, and five explanatory variables 
(i.e., “Built-up,” “Informal,” “Residential,” “Townships,” and “Non-urban”) emerged as being statistically significant 
(refer to Table 8). The selection criteria were based on the Akaike Information Criterion (AIC) values and the level 
of significance. The threshold for the level of significance of any variable to enter into the model was set to 0.01, 
and 0.05 was set for remaining in the model. The main purpose of performing a stepwise regression analysis was 
to obtain a parsimonious model that has the same or superior performance results than the initial OLS model 
with the 12 originally hypothesized explanatory variables. Based on the AIC, the parsimonious OLS regression 
model with only five independent variables appears to display the best performance results compared with the 
initial OLS regression model with 12 explanatory variables. After running an OLS regression analysis based on 
the reduced number of explanatory variables, the residuals of the obtained regression model were still spatially 
autocorrelated. This suggests that the residuals could contain some information that cannot be explained by the 
regression model in its current form.

TA B L E  7  Initial OLS regression model results.

Dependent variable: SAMPI 2001: South African multidimensional poverty index 2001

Independent variables Coefficients/values p-value

Commercial −106.4 0.729

Industrial −105.3 0.732

Residential −107.1 0.727

Townships −105.5 0.731

Informal −104.0 0.735

Smallholdings −106.1 0.730

Villages −105.6 0.731

Golf courses and sports ground −107.5 0.726

Schools (and sports ground) −105.9 0.730

Mines −605.7 0.423

Built-up −106.8 0.728

Non-urban −105.4 0.731

(Intercept) 103.3 0.737

Adj. R2 0.53

AIC (Akaike Information Criterion) 649.7

Log-likelihood −310.85
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3.2 | Results of the spatial regression models

Although the spatial lag model proved to be suitable for the analysis performed in this study, the results of other 
spatial regression models have also been discussed. This is done to highlight the superiority of the spatial lag 
model, and also conform with common practices as been observed in other similar studies that have discussed 
spatial regression models (see Akbar et al., 2022; Voss et al., 2006). The spatial lag model performed relatively well 
in terms of the model fit measures such as the AIC (565.31) and log-likelihood value (−274.67) compared with the 
other spatial regression models considered in this study (see Table 10). Its lag coefficient was statistically signifi-
cant confirming the results of the robust Lagrange multiplier (lag) test that suggested the inclusion of a spatially 
lagged dependent variable as one of the covariates in the model (see Table 9). All the covariates had their respec-
tive signs as expected. Hence, the direction of the relationship between “SAMPI 2001” and each of the covariates 
was encapsulated in the spatial lag model as anticipated. To correct the misspecification of the baseline model, the 

TA B L E  8 Parsimonious OLS regression model results.

Dependent variable: SAMPI 2001: South African multidimensional poverty index 2001

Independent variables/statistics Coefficients/values p-value

Built-up −1.05 0.021

Informal 1.97 0.00

Non-urban 0.71 0.00

Residential −1.16 0.00

Townships 0.49 0.009

(Intercept) −2.83 0.00

Adj. R2 0.53

AIC (Akaike Information Criterion) 642

Log-likelihood −315

Diagnostics for spatial dependence

Moran's I (on residuals) 0.23 0.00

Lagrange multiplier (lag) 85.7 0.00

Robust LM (lag) 17.82 0.00

Lagrange multiplier (error) 71.18 0.00

Robust LM (error) 3.33 0.068

TA B L E  9 Changes in poverty (SAMPI).

WARD_ID Old predictions New predictions Difference

79700026 0.170 0.037 0.133

79700096 0.111 0.095 0.016

79700065 0.076 0.064 0.012

79700067 0.066 0.059 0.008

79700025 0.056 0.051 0.005

79700066 0.045 0.042 0.003

79700068 0.067 0.066 0.002

79700069 0.049 0.047 0.002
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residuals of the spatial lag model exhibited a pattern of complete spatial randomness (Moran's I for residuals was 
0.02 with a p-value >0.05). Lastly, all the covariates in the spatial lag model were statistically significant except for 
the “Built-up” and “Townships” variables. Section 3.3 provides a detailed contextual discussion of the results of the 
spatial lag model and possible implications.

A possible candidate model that also accounts for spatial dependence in a misspecified OLS (linear) re-
gression model is the SEM (Elhorst, 2010). The results of SEM based on the five significant covariates appear 
to be superior compared with its OLS regression counterpart (see Table 10). Furthermore, the residuals of 
the SEM model are not spatially autocorrelated (Moran's I = −0.01 and p-value >0.05. Although the spatially 
lagged X model (SLX) performed better than the baseline OLS regression model, its residuals were spatially 
autocorrelated. Furthermore, the SLX performed poorly in terms of the model fit results such as the AIC and 
the log-likelihood value compared with the SEM (see Table 10). The SDEM performed better than the baseline 
OLS model, SEM, and SLX; and its residuals display patterns of complete spatial randomness. The SDM and 
the SDEM had similar performance results. However, the spatially lagged covariates for both the SDM and 
the SDEM were not statistically significant except for the “Informal” variable which was statistically significant 
in the SDEM. This suggests that the inclusion of spatially lagged covariates did not substantially improve the 
SDEM or the SDM to the extent of outperforming the spatial lag model. In terms of the model fit measures 
(e.g., AIC and log-likelihood values) for both in-sample and out-of-sample predictions), the difference between 
the three models (spatial lag model, SDM, and SDEM) is marginal. Lastly, the Kelejian-Prucha (SAC) model 
and the MANSKI model were not further considered since they produced contrasting results within their 
respective specifications. The SAC model produced two lag coefficients: the lag coefficient for the spatially 
lagged dependent variable was statistically significant (ρ = 0.4*, see Table 10), while the one for the spatially 
lagged error term was not significant (λ = 0.11, see Table 10). The opposite was true for the MANSKI model 
since the lag coefficient for the spatially lagged dependent variable was not statistically significant (ρ = −0.29, 
see Table  10), while the one for the spatially lagged error term was statistically significant (λ = 0.67*, see 
Table 10). This suggests that the inclusion of a spatially lagged error term in the SAC model did not contrib-
ute to the extent of outperforming the spatial lag model. Along the same vein, the inclusion of the spatially 
lagged dependent variable as one of the covariates in the MANSKI model did not contribute to the extent of 
outperforming the spatial lag model.

Besides the statistical results which favor the spatial lag model over other spatial regression models tested 
in this study, theoretical considerations have also guided our choices as already explained in the methodol-
ogy section (i.e., Section 2.4). Given the patterns of spatial autocorrelation displayed by the levels of poverty 
across space by wards in the province of Gauteng (see Figure 3), we hypothesize that exogenous variables 
should have considerable influence on the dependent variable at the local level even though such an impact 
can propagate to all the wards in the entire study area given the global effect of the spatial lag model. As an 
illustration, the map in Figure 4 presents changes in poverty levels after altering the value of informal land area 
from 0.63 to 0 km2 in ward 79700026 in the municipality of Ekurhuleni, while keeping the remaining covariates 
constant. Although changes in ward 79700026 cascaded to all the other wards in the study area, immediate 
neighbors of ward 79700026 experienced positive changes in poverty reduction. In other words, wards that 
share a boundary with ward 79700026 witnessed a noticeable decrease in the levels of poverty (i.e., spillover 
effect) while ward 79700026 itself experienced the highest positive change because of the direct effect (see 
Table 9).

To assess the quality of the predictions made by the computed spatial regression models, the mean ab-
solute error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE), and symmetric 
mean absolute percentage error (sMAPE) were computed in two ways. In the first instance, the measures of 
model performance (i.e., MAE, RMSE, MAPE, and sMAPE) were calculated based on the results of in-sample 
predictions. In the second instance, the same measures of model performance were calculated based on the 
results of out-of-sample predictions. The idea was to assess the performance of the spatial lag model based 
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on the dataset it had not seen yet. In general, the values of MAE, RMSE, MAPE, and sMAPE were relatively low 
for both in-sample and out-of-sample predictions of the SAMPI. This suggests that for both in-sample and 
out-of-sample predictions, on average, the predicted values of the SAMPI are not far away from the actual 
observed values (see Table 10).

The MAE, RMSE, MAPE, and sMAPE form part of a family of measures that evaluate the performance of models 
based on the average discrepancy between the predicted and actual values (Chicco et al., 2021). The lower the 
discrepancy, the better the performance of a given model. Although there is a lack of consensus in terms of which 
value of these measures indicates the best-performing model, in general, values closer to zero point to reliable 
predictions.

The Pearson's correlation coefficient r and its corresponding square r2 are used to evaluate the linear rela-
tionship between the predicted and actual values. Higher values of r or r2 indicate better-performing models 
(see Pettersson et  al.,  2023). The models' results for in-sample predictions exhibited relatively high Pearson's 
correlation coefficient r values that ranged between 0.73 and 0.75, and a moderate value of squared r2 values that 
ranged between 0.53 and 0.56 (see Table 10). The spatial lag model had an r value of 0.74 and a r2 value of 0.56. 
All the models exhibited the same value of r and r2 for the out-of-sample predictions. However, the results of the 
Lagrange multiplier (LM) tests as prescribed by Anselin (2005) indicated the suitability of the spatial lag model. The 
positive relationship pattern displayed by the scatter plot (see Figure 5) confirmed the strong linear relationship 
between the actual and predicted values of the 2011 SAMPI (i.e., out-of-sample) based on the spatial lag model. 
Hence, the overall results of the analysis suggest that the constructed spatial lag model is capable of performing 
relatively well on new datasets. Furthermore, the mapping of the out-of-sample predicted values of the SAMPI re-
produced known spatial patterns of poverty in Gauteng province (see Figures 6 and 7). In other words, the spatial 
lag model predicted high poverty levels in wards with actual high levels of poverty. Similarly, low levels of poverty 
predictions were also observed in wards with actual low poverty levels.

F I G U R E  4 Prediction simulation from ward: 79700026.
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3.3 | Discussion

The following paragraphs present a contextual discussion of the outcomes of the spatial regression models ob-
tained from applying the method and sequence of analyses explained in Section 2.4. A summary of the results in 
the form of direct, indirect, and total effects, describing the spatial interactions among the 497 wards is presented 
in Table 11. The interpretation of these spatial interactions has been guided by LeSage and Pace (2009)'s recom-
mendations. An individual direct effect can be interpreted as the change in the SAMPI (i.e. poverty) at a given 
ward due to a change in an explanatory variable at the same ward. The average direct effect across all the 497 
wards for the SAMPI due to a unit change in each of the five explanatory variables (i.e., covariates) respectively, 
is presented in Table 11 under the “Direct effect” column. The indirect or spillover effect can be interpreted as a 
change in the SAMPI in a ward due to a change in an explanatory variable at another ward. The average indirect 
effect across all the 497 wards is presented in Table 11 under the “Indirect effect” column. The average total ef-
fect is the sum of the average direct and indirect effects. As can be seen (in Table 11), except for “Built-up” and 
“Townships,” the coefficients illustrating the direct effect of each of the explanatory variables on the dependent 
variable are statistically significant (i.e., p-value <0.05), and they have their respective signs as expected. That is, 
a positive sign for the “Informal,” and “Non-urban” variables, and a negative sign for the “Residential” variable. This 
suggests that an increase in land areas classified as “Informal” or “Non-urban” in a given ward would result in a 
direct increase in the levels of poverty in that ward. Conversely, an increase in land areas classified as “Residential” 
in the same ward would result in a direct decrease in the levels of poverty in that ward. The spillover (or indirect) 
effect on the SAMPI that arises from changes in terms of the land area classified as “Informal” or “Non-urban” is 
positive and statistically significant. This suggests that an increase in terms of the land area classified as “Informal” 
or “Non-urban” in a given ward would translate into an increase in the levels of poverty in its surrounding wards.

F I G U R E  5 Actual versus predicted 2011 SAMPI: Out-of-sample predictions.
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Given that the “Residential” variable has a negative indirect effect, it means that an increase in terms of the land 
area classified as “Residential” in a given ward would translate into a decrease in the levels of poverty in its sur-
rounding wards. The impact of such spillover effects would propagate to the entire study area since the spatial lag 
has been employed. The spillover effects for land areas classified as “Built-up” and “Townships” are not statistically 
significant (i.e., p > 0.05). Furthermore, their total effects are also not statistically significant.

The spatial mapping of land areas classified as informal and townships corroborate the outcome of the spa-
tial regression models, given that they are mostly located in poor neighborhoods at the fringes of the different 
municipalities, far from the centers of major economic activity (refer to Figure 8). In the context of South Africa, 
townships are land areas that were segregated and reserved for the Black, Indian, and Colored population groups 
during the apartheid era. Due to the legacy of these segregationist policies, coupled with today's poor municipal 
infrastructure and service delivery, these neighborhoods are the most affected by poverty. To this day, issues 
and challenges related to adequate formal housing provisions, access to clean water and energy, and access to 
proper sanitation and health care are still prominent in such areas. These neighborhoods include Soweto and 
Alexandra in the City of Johannesburg Metropolitan Municipality, Atteridgeville, Mamelodi, and Soshanguve in 
the City of Tshwane Metropolitan Municipality and Katlehong, Kwa-Thema, and Tembisa in the City of Ekurhuleni 
Metropolitan Municipality. See the map in Figure 8.

Given the legacy of segregationist policies that characterized South Africa pre-1994, Gauteng province is just 
a microcosm that reflects the urban morphology of the country. The typical typology of cities in most provinces 
is characterized by a single (or few at the most) small centers of economic activity, surrounded by other areas 
(i.e. land use classes). Most of the wealthy and middle-income earners live in neighborhoods that are close to the 
economic centers where the built infrastructure is reasonably well maintained and service delivery is efficient. 
Most of the poor population, who also constitute the majority of the population in South Africa, reside in settle-
ments that are far from job opportunities in centers of economic activity. Hence, it is very likely that the modeling 

F I G U R E  6 SAMPI 2011 actual values per ward.
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approach adopted in this study to explain and predict poverty patterns using a spatial lag model is transferable to 
other provinces of South Africa. Further research could explore how transferable this approach would be in other 
cities across the globe with a similar urban morphology and/or history of segregationist policies.

Lastly, a worthwhile contribution of this study is demonstrated in the simulation exercise depicted in Figure 4. 
Figure 4 illustrates the spatial interaction among the wards when the land area classified as ‘Informal’ in one of 
the wards (i.e. ward 79700026) decreased from 0.63 to 0 km2, resulting in a remarkable reduction in the levels of 

F I G U R E  7 SAMPI 2011 predicted values per ward.

TA B L E  11  Impact of spatial interaction among wards (on average).

Explanatory variable Direct effect Indirect effect Total effect

Impact measures (SLAG)

Built-up −0.47 −0.36 −0.83

Informal 1.4 1.07 2.47

Non-urban 0.52 0.40 0.92

Residential −0.93 −0.71 −1.64

Townships 0.25 0.19 0.44

Simulated p-values

Built-up 0.25 0.26 0.25

Informal 0.00 0.00 0.00

Non-urban 0.002 0.003 0.001

Residential 0.00 0.00 0.00

Townships 0.134 0.143 0.134
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poverty in that particular ward (i.e. direct effect), also in the surrounding wards (i.e., spillover effect). The intensity 
of the spillover effect was negligible beyond the wards that were not directly connected to ward 79700026. This 
simulation exercise which can be useful for policy formulation and monitoring is feasible based on a spatial re-
gression model (i.e., the spatial lag model). A simulation based on other covariates can easily be performed as well.

4  | CONCLUSION AND POLICY IMPLIC ATIONS

This study employs the spatial lag model to explain the relationship between the SAMPI and statistically significant 
variables derived from land use datasets. The spatial lag model is also used to predict the levels of poverty in the ab-
sence of up-to-date socioeconomic data collected by Stats SA during Censuses. All in all, the model predictions reflect 
the spatial distribution of the levels of poverty across the province. The results of the modeling exercise, coupled with 
the poverty maps produced, can be used to inform government policies for targeting poverty alleviation initiatives in 
specific neighborhoods. The five variables that have been identified as statistically significant drivers of poverty in the 
province are related to informal settlements, areas that have been classified as townships, non-urban areas, built-up, 
and residential areas. The results reveal that wards with high proportions of informal settlements, townships, and 
non-urban areas tend to be associated with higher levels of poverty. This highlights the importance of implement-
ing existing policies such as the National Development Plan (NDP) that seeks to support the construction of formal 
houses, infrastructure development, and the improvement and maintenance of existing infrastructure in poverty-
stricken areas (National Planning Commission, n.d.). This study also confirms the importance of the “Breaking New 
Ground (BNG)” policy which promotes the upgrading of informal settlements to improve the quality of life of residents 
(Department of Human Settlements, 2004). This study demonstrates that informal settlements contribute to rising 
levels of poverty, not only in a given ward but also in its immediate surrounding wards. Finally, concerning townships 

F I G U R E  8  Informal and township land use classes.
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which have been identified as being among the drivers of poverty in the province, this analysis confirms the impor-
tance of the Gauteng provincial government's program, referred to as the “Gauteng township economy revitalization 
strategy”, seeking to support entrepreneurial initiatives in areas classified as townships (Gauteng Province, n.d.).

Besides revealing and predicting the spatial patterns of poverty, this study illustrates a spatial interaction scenario 
where plausible explanatory variables can be manipulated to monitor their effects on the resulting levels of poverty 
in space. More importantly, the analytical method employed in this article can be used as a tool for continuously 
monitoring and evaluating the effectiveness of the government's policies and programs aimed at alleviating poverty. 
Besides Gauteng, the findings and recommendations of this study can be applied to other provinces in South Africa. 
Its applicability to cities in other countries or regions with a segregationist history should be explored.
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