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Johann D. D. Pitout,1,2,3 Gisele Peirano,1,2 Yasufumi Matsumura,4 Rebekah DeVinney,1 Liang Chen5,6

AUTHOR AFFILIATIONS See affiliation list on p. 13.

ABSTRACT Escherichia coli sequence type ST410 is an emerging carbapenemase-pro
ducing multidrug-resistant (MDR) high-risk One-Health clone with the potential to 
significantly increase carbapenem resistance among E. coli. ST410 belongs to two clades 
(ST410-A and ST410-B) and three subclades (ST410-B1, ST410-B2, and ST410-B3). After a 
fimH switch between clades ST410-A and ST410-B1, ST410-B2 and ST410-B3 subclades 
showed a stepwise progression toward developing MDR. (i) ST410-B2 initially acquired 
fluoroquinolone resistance (via homologous recombination) in the 1980s. (ii) ST410-B2 
then obtained CMY-2, CTX-M-15, and OXA-181 genes on different plasmid platforms 
during the 1990s. (iii) This was followed by the chromosomal integration of blaCMY-2, 
fstl YRIN insertion, and ompC/ompF mutations during the 2000s to create the ST410-
B3 subclade. (iv) An IncF plasmid “replacement” scenario happened when ST410-B2 
transformed into ST410-B3: F36:31:A4:B1 plasmids were replaced by F1:A1:B49 plasmids 
(both containing blaCTX-M-15) followed by blaNDM-5 incorporation during the 2010s. 
User-friendly cost-effective methods for the rapid identification of ST410 isolates and 
clades are needed because limited data are available about the frequencies and global 
distribution of ST410 clades. Basic mechanistic, evolutionary, surveillance, and clinical 
studies are urgently required to investigate the success of ST410 (including the ability 
to acquire successive MDR determinants). Such information will aid with management 
and prevention strategies to curb the spread of carbapenem-resistant E. coli. The medical 
community can ill afford to ignore the spread of a global E. coli clone with the potential 
to end the carbapenem era.
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High-risk multidrug-resistant clones

T he global spread of antimicrobial-resistant (AMR) genes within or between bacterial 
populations is due to the perseverance of certain successful multidrug-resistant 

(MDR) clones, and/or the movement of AMR genes within, and between diverse strains 
or lineages (1, 2). Successful MDR clones (also known as high-risk, super, epidemic, 
eminent, special, or problem clones) are not directly responsible for the movement of 
AMR genes, but they act as important “hoarders” of AMR genes (3).

“High-risk” is the term that will be used in this article to describe successful and 
dominant bacterial clones (2, 3). These clones are pivotal in the global emergence, 
spread, and subsequent increase of AMR genes within various bacterial populations 
(1). Such clones are likely to have enhanced infectivity and/or fitness properties that 
have allowed them to dominate within antimicrobial susceptible and AMR bacterial 
populations, where they effectively compete, cooperate, and construct within bacte
rial ecosystems (e.g., the human gastro-intestinal tract) (2, 3). This has ensured their 
long-term survival and subsequent effective transmission, especially in the presence 
of the selection pressures created by antimicrobial agents (4). MDR successful clones 
are important contributions to the spread of AMR determinants among various 
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bacteria especially Staphylococcus aureus [especially methicillin-resistant (MRSA) strains], 
Pseudomonas aeruginosa, and the Enterobacterales (i.e., such as Klebsiella pneumoniae, 
Escherichia coli, and the Enterobacter cloacae complex) (1–3).

AMR extra-intestinal pathogenic E. coli

Human extra-intestinal pathogenic E. coli (ExPEC) are responsible for infections outside 
the gastro-intestinal tract and are the most common cause of global community-
acquired and healthcare-associated urinary tract and bloodstream infections (5). This E. 
coli pathotype is the leading cause of community-onset hospitalization, sepsis, and death 
across the world, especially among the elderly (6). During 2019, AMR E. coli infections 
were directly responsible for 850,000 global deaths (7).

During the 1990s, ExPEC obtained from human clinical infections were mostly 
sensitive to a variety of antibiotic classes but especially the fluoroquinolones (e.g., 
ciprofloxacin or norfloxacin) and 3rd generation cephalosporins (e.g., cefotaxime, 
ceftriaxone, or ceftazidime) (8). The fluoroquinolones and 3rd generation cephalosporins 
are often used to treat serious ExPEC infections (9). During the 2000s, AMR increased 
rampantly among ExPEC but especially to the fluoroquinolones and 3rd generation 
cephalosporins (10). This global increase in fluoroquinolone- and 3rd generation 
cephalosporin-resistant ExPEC isolates has led to overuse of other antibiotic classes 
(especially the carbapenems with the subsequent increase in carbapenem resistance) 
(9, 11). Losing the use of the carbapenems will be devastating for medical practice 
(11). These agents are some of the most effective last-line treatment options for serious 
infections due to MDR Gram-negative bacteria (12). Hence, the World Health Organiza
tion added E. coli to its 2017 global “MDR watch list” (13).

MDR ExPEC clones

Certain ExPEC clones (i.e., ST69, ST73, ST95, ST131, and ST1193) are overpresented 
among non-selected E. coli populations (14). Non-selected ExPEC populations include 
all isolates, irrespective of their susceptibilities. Different E. coli clones (except for ST131 
and ST1193) are overpresented among MDR ExPEC populations that consist of fluo-
roquinolone-resistant isolates, extended-spectrum β-lactamase (ESBL), and carbapene
mase producers (15). High-risk MDR E. coli clones that are linked with fluoroquinolone 
resistance include ST131 and ST1193 (15). MDR high-risk clones that are associated with 
ESBLs include ST131, ST405, ST410, and ST648 (9). MDR clones that are linked with 
carbapenemases include ST410, ST131, ST167, and ST38 (15, 16).

E. coli ST410 is an emerging ESBL- and carbapenemase-producing global MDR E. coli 
clone (15–19). This manuscript aims to illustrate on how the acquisition of different 
AMR determinants over time has shaped the ST410 evolution. We will also compare this 
process with the most successful global MDR high-risk E. coli clone named ST131.

E. coli ST410

Introduction

The first published reports of E. coli ST410 appeared during 2009–2012 among global 
genomic surveys of ESBL- and carbapenemase-producing E. coli obtained from human 
and animal sources. These studies described ST410 with blaCTX-M-15 from the USA (20), 
Spain (21, 22), Brazil (23), Canada (24), and Germany (25); ST410 with blaCTX-M-14 from 
Spain (26) and Portugal (27); ST410 with blaNDM-1 from the UK and Pakistan (28); and 
ST410 with blaKPC-2 from Greece (29). The earliest known human ST410 isolate was 
obtained in 2002 from an elderly Canadian female with upper urinary tract infection (24) 
while the earliest known animal ST410 isolate was obtained in 2004 from a German dog 
with lower urinary tract infection (25). These early ESBL- and carbapenemase-producing 
ST410 isolates showed non-susceptibilities to the carbapenems (i.e., carbapenemase-
producing isolates), the cephalosporins (i.e., ESBL-producing isolates), fluoroquinolones, 
aminoglycosides, trimethoprim-sulfamethoxazole, and the tetracyclines.
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Publications of ESBL-producing ST410 (most often with blaCTX-M-15) escalated during 
2013–2017 that included isolates from additional countries in Europe [i.e., Switzerland 
(30), France (31), Romania (32), UK (33), and Denmark (34)], Africa [i.e., Mauritania (35)], 
and Asia [(i.e., Taiwan (36), China (37), and Japan (38)]. Gradually, reports of carbapene
mase-producing ST410 increased globally with descriptions of KPC-2 from Israel (39), 
Taiwan (40), and China (41); NDM-1 from Canada (42) and Poland (43); NDM-4 from China 
(44); NDM-5 from South Korea (45) including the co-production of OXA-181 in Denmark 
(46), Myanmar (47), and Saudia Arabia (48); OXA-181 from China (49), Canada (50), and 
France (51); and OXA-48 from Poland (52) and New Zealand (53).

Microbiology and One Health global distribution

E. coli clonal complex (CC) 10 belongs to virulence-associated phylogenetic group A 
and is composed of several STs including ST10, ST167, and ST410 (14). E. coli ST410 
contains the O8:H9 antigens and fimH24 type 1 pili (54). ST410 can also be positive for 
fimH53 and O/H non-typable (55). ExPEC has certain genetic traits named virulence-asso
ciated factors that differentiate this pathotype from commensal and diarrheagenic E. coli 
(56). Overall, ST410 shows significantly lower virulence-associated factor scores when 
compared to other ExPEC STs such as ST131 and ST405 (16, 57). Multilocus sequence 
typing (MLST) is currently the only reliable method to identify ST410 isolates (https://
github.com/tseemann/mlst).

E. coli ST410 is a true One-Health pathogen and has been reported from humans, 
animals, and the environment obtained from all continents (excluding Australia and 
Antarctica) (Table 1; Fig. 1). This clone is responsible for different types of human 
infections including neonatal infections (58), urinary tract infections (59), blood stream 
infections (60), as well as rectal carriage (61). ST410 has also been reported from 
various animals (62–64) including livestock, wildlife, and companion animals as well as 
environmental sources including hospital wastewater (65), rivers/lakes (66), food produce 
(67), and food markets (68).

Prevalence

The prevalence of ST410 has mainly been reported among AMR-selected E. coli popula
tions including fluoroquinolone-resistant and ESBL- and carbapenemase-producing 
isolates (Table 1). ST410 is often the 2nd or 3rd most common ST (behind ST131 and 
ST167) among such populations with prevalence rates of 3–17% among fluoroquinolone 
resistant isolates, 3–42% among ESBL-producing isolates, and 3–62% among carbapene
mase-producing isolates (Table 1). Global surveillance data have suggested that ST410 is 
especially frequent among carbapenemase-producing E. coli (57), especially isolates 
positive for blaOXA-181 (104) and, to a lesser extent, blaNDM-5 (101). An interesting 
surveillance study from a Swiss veterinary hospital showed that 100% of cats and dogs (n 
= 24) were rectally colonized with OXA-181-producing ST410 after being hospitalized at 
this institution (95).

Overall, ST410 is rare among unselected E. coli populations (i.e., populations that 
include all isolates, irrespective of the presence or absence of AMR determinants) (105). 
However, 15/176 (6.7%) of E. coli infections among Chinese neonates were due to ST410 
(106).

E. coli ST410 clades

Roer and colleagues from Denmark were the first group in 2018 to perform phylogenetic 
analysis on a large collection of ST410 genomes [i.e., 46 isolates from a national Danish 
surveillance program (DANMAP) and 78 international genomes] (19). The international 
collection spanned from 1975 to 2017 and was obtained from 14 different countries (i.e., 
Denmark, UK, USA, Germany, Canada, Brazil, Ireland, Japan, Nepal, Norway, Saudi Arabia, 
Singapore, Sweden, and Tanzania). Phylogenetic reconstruction divided ST410 into two 
clades namely antimicrobial susceptible A/H53 and AMR B/H24 (19). Clade A contained 
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TABLE 1 Prevalence of ST410 among global Escherichia coli collectionsa

E. coli population
country

Year One Health distribution Specimen type Number
E. coli isolates

ST410 prevalence References

Fluoroquinolone resistant
  Greece 2012 Human Various 35 17% (69)
  Brazil 2017 Human Urine 61 3% (70)
  USA 2020 Animal Various 110 4% (71)
ESBL-producing
  Germany 2014 Animal, food Various 21 24% (55)
  Israel 2014 Human Stool 30 10% (72)
  China 2016 Animal Cow milk 31 6% (36)
  Germany 2016 Human, animal Various 90 30% (73)
  UK 2016 Animal Various 38 24% (74)
  Denmark 2017 Human Blood 491 3% (34)
  Thailand 2018 Human Various 47 11% (75)
  Switzerland 2018 Animal Urine 35 25% (76)
  Iran 2020 Human Urine 37 3% (77)
  Malawi 2021 Human Various 38 42% (78)
  Ethiopia 2021 Human Urine 40 13% (79)
  Italy 2021 Human, animal Various 579 6% (80)
  Bangladesh 2021 Human Various 46 4% (81)
  Zimbabwe 2021 Human Urine 48 25% (59)
  Mozambique 2022 Human Blood 16 38% (82)
  Italy 2022 Human Rectal swab 43 2% (83)
  Ghana 2022 Human Various 102 21% (84)
  Nigeria 2022 Human Various 107 14% (85)
  Malawi 2023 Human Various 473 10% (86)
  Chile 2023 Animal Various 19 26% (63)
Carbapenemase-producing
  UK/Pakistan 2011 Human Various 18 5% (28)
  Israel 2014 Human Various 88 16% (39)
  Myanmar 2018 Human Various 35 15% (47)
  China 2018 Human Various 24 33% (87)
  Poland 2018 Human Various 14 21% (88)
  Lebanon 2018 Human Various 27 11% (89)
  Canada 2018 Human Various 67 29% (50)
  France 2018 Human Various 140 7% (51)
  China 2018 Human Various 54 6% (90)
  Oman 2020 Human Various 35 9% (91)
  Yemen 2020 Human Various 6 50% (92)
  India 2020 Human Blood 60 12% (93)
  South Korea 2020 Human Various 13 8% (94)
  Switzerland 2020 Environment Water 17 6% (95)
  Taiwan 2021 Human Various 23 55% (96)
  Qatar 2021 Human Various 38 21% (97)
  China 2021 Human Various 144 10% (98)
  South Korea 2021 Human Various 707 6% (99)
  Global 2022 Human Various 229 20% (57)
  China 2022 Human Various 28 22% (100)
  Thailand 2022 Human Various 120 62% (101)
  China 2023 Human Blood 114 3% (60)
  Germany 2023 Human Various 222 8% (102)
  Europe 2023 Human Various 874 11% (103)
aExtended-spectrum β-lactamases (ESBLs).
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the fimH53 type 1 pili and clade B contained the fimH24 type 1 pili. The B/H24 clade was 
further divided into the following subclades: B1/H24, B2/H24R, B3/H24Rx, and B4/
H24RxC (19). The B1/H24 subclade was antimicrobial susceptible; the B2/H24R subclade 
was fluoroquinolone resistant; and B3/H24Rx was fluoroquinolone resistant, linked with 
blaCMY-42 and blaCTX-M-15, while the B4/H24RxC subclade was fluoroquinolone resistant 
and linked with blaCMY-2, blaCTX-M-15, and blaOXA-181 (and blaNDM-5 to a lesser extent) 
(19). Approximately 20% of B3/H24Rx isolates also contained blaCMY-2 and blaOXA-181.

In 2022, Chen et al. updated the ST410 Roer clades (107). They performed core SNP 
phylogenetic analysis of 614 publicly available global genomes and also divided ST410 
into two clades namely ST410-A and ST410-B. The ST410-B clade consisted of 3 subclades 
(i.e., ST410-B1, ST410-B2, and ST410-B3). In the updated analysis, the previous Roer 
subclades (i.e., B2/H24R and B3/H24Rx) belonged to a single subclade namely ST410-B2. 
The revised Chen ST410 clades corresponded to the following Roer clades (19): ST410-A 
was identical to A/H53, ST410-B1 was identical to B1/H24, ST410-B2 included B2/H24R, 
and B3/H24Rx and ST410-B3 corresponded to B4/H24RxC (107). A summary of the Roer 
and Chen ST410 clade classifications and associations with different AMR determinants 
is shown in Table 2. For the remainder of this manuscript, we will use the 2022 updated 
Chen ST410 clade definitions.

Surveys of the frequencies and global distribution of different ST410 clades are rare 
and showed that certain clades seem to be scarce (i.e., antimicrobial susceptible ST410-A 
and ST410-B1) while the MDR ST410-B2 and ST410-B3 subclades are common in France 
(17), China (18), and Denmark (19). Results from an E. coli carbapenemase global genomic 
survey (n = 229) with a large presentation of lower- and middle-income countries 
(LMICs) collected during 2015–2017 from 45 countries showed an overall dominance 
of the ST410-B3 subclade, consisting of nearly 80% of the total ST410 population (57). 
ST410-B2 isolates, consisting of 20% of the ST410 population, contained the following 
carbapenemase types (i.e., KPC-2, VIM-23, OXA-48, and OXA-181) and were obtained 
from various countries including Georgia, Kuwait, Mexico, Morocco, South Africa, the 
USA, and Vietnam. Interestingly, ST410-B3 isolates were specifically linked with OXA-181 
and NDM-5 carbapenemases and were acquired from different countries (than ST410-
B2), especially from LMICs such as Jordan, Egypt, and Thailand. Results from that global 
survey showed that ST410 MDR clades B2 and B3 have a different global distribution and 
are linked with different types of carbapenemases.

FIG 1 The global distribution of fluoroquinolone-resistant, extended-spectrum β-lactamase, and carbapenemase-producing E. coli ST410.
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TABLE 2 E. coli ST410 clades: associations with different antimicrobial resistance determinantsa b

ST410-A
(A/H53)

ST410-B1
(B1/B2/H24R)

ST410-B2
(B3/H24Rx)

ST410-B3
(B4/H24RxC)

Geographic location ? ? Global Global
QRDR mutations
  gyrA S83L – – 100% 100%
  gyrA D87N – – 100% 100%
  parC S80I – – 100% 100%
  parE S458L – – 100% 100%
Carbapenemases
  KPC-2 – – 20% Rare
  KPC-3 – – Rare Rare
  NDM-1 – – Rare –
  NDM-4 – – – Rare
  NDM-5 – – – >30%
  NDM-7 – – – Rare
  OXA-48 – – Rare –
  OXA-181 – – 20–30% 60-70%
  VIM-23 – – Rare –
Other β-lactamases
  OXA-1 – – >60% >60%
  CMY-2 – – 20–30% >95%
  CMY-42 – – 30–40% –
  CTX-M-14 – – Rare Rare
  CTX-M-15 – – >70% >90%
  Other CTX-Ms – – Rare Rare
  TEM-1 – – 20–30% >70%
  TEM-ESBLs – – Rare –
  SHV-ESBLs – – Rare –
Aminoglycoside modifying enzymes
  aadA2 – – 5–10% 40%
  aadA5 – – 5–10% >60%
  aac(3’)-IIa – – Rare –
  acc(3’)-IId – – 10–20% >80%
  aac(6’)-Ib-cr – – 60–70% >90%
  aph(3’)-Ib – – – 30–40%
  aph(6’)−1d – – 5–10% >90%
PBP-3 mutations (ftsI)
  YRIN – – – >95%
  YRIK – – 15% –
Other AMR determinants
  fosA – – – –
  qnrS1 – – 15–20% 60–70%
  dfrA12 – – 5–10% 30–40%
  dfrA17 – – 30–40% 80–90%
  sul1 – – 50–60% >95%
  sul2 – – 5–10% >90%
  tetA – – 90% –
  tetB – – – >95%
aRoer classification (19): A/H52, B1/H24, B2/H24R, B3/H24Rx, and B4/H24RxC.
bChen classification (107): ST410-A1, ST410-B1, ST410-B2, and ST410-B3.
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Acquisition of antimicrobial resistance determinants among ST410 clades

Fluoroquinolone resistance

Among E. coli,  mutations within the quinolone resistance determining regions (QRDR) 
are the most common causes of fluoroquinolone  resistance (108). Three specific 
QRDR mutations are essential for high-level clinical resistance in E. coli  to the 
fluoroquinolones,  namely gyrAS83L (TCG to TTG), gyrAD87N (GAC to AAC), and 
parCS80I (AGC to AGT). The QRDR mutations in E. coli  are normally acquired in a 
sequential manner: gyrAS83L appeared first,  followed by parCS80I, while gyrAD87N 
arrived later (109). The sequential acquisition of such QRDR mutations increased 
fluoroquinolone  resistance in a stepwise manner (i.e.,  the gradual increase in 
fluoroquinolone  minimum inhibitory concentrations as each mutation was added). 
Plasmid-mediated fluoroquinolone  resistance determinants [e.g.,  qnr,  aac(6')-Ib-cr] 
are less common among E. coli  (than QRDR mutations) but also contributed to 
fluoroquinolone  resistance among this species (108).

The ST410-A and ST410-B1 clades are susceptible to fluoroquinolones and do not 
contain QRDR mutations or plasmid-mediated fluoroquinolone resistance determinants. 
The ST410-B2 and ST410-B3 subclades are resistant to the fluoroquinolones due to the 
three typical E. coli QRDR mutations, namely gyrAS83L, gyrAD87N, and parC S80I (17, 
18, 107). ST410-B2 and ST410-B3 also contained the parE mutation S458L (Table 2). The 
acquisition of these QRDR mutations in ST410-B2 and ST410-B3 subclades was due to a 
single multi-allelic homologous recombination event and not the typical E. coli stepwise 
acquisition (107). The possible donors of these large recombination regions were likely 
E. coli ST940 and ST694 (107). The same QRDR mutation recombination process was 
previously described in a different E. coli high-risk clone, namely ST1193 (110, 111).

The prevalence of the plasmid-mediated fluoroquinolone resistance determinants 
aac(6')-Ib-cr (>90%) and qnrS1 (>50%) is high among ST410-B2 and ST410-B3 isolates 
but especially among the ST410-B3 subclade (Table 2). Other types of plasmid-mediated 
fluoroquinolone resistance determinants are rare among ST410 (Table 2). AAC(6')-Ib-cr is 
an aminoglycoside-modifying enzyme that also inactivates the fluoroquinolones.

CTX-M β-lactamases

The most common causes of resistance to the 3rd generation cephalosporins among E. 
coli are the ESBLs and more specifically the CTX-M enzymes (9, 112). The prevalence of 
CTX-M β-lactamases increased rapidly during the mid- to late 2000s and is currently 
the most common global ESBL among E. coli (9). This is especially true for E. coli 
causing bloodstream infections where more than 90% of ESBLs were identified as either 
CTX-M-14 or CTX-M-15 (24, 105). From 2010 and onward, the prevalence of E. coli with 
CTX-M-27 has been increasing over time among ESBL-producing isolates (113, 114).

ESBLs are absent among ST410-A and ST410-B1 clades. CTX-M types have been 
described among ST410-B2 and ST410-B3 subclades. The CTX-M-15 allele is by far 
the most frequent type of ESBL among ST410-B2 and ST410-B3 isolates (e.g., >80% 
prevalence) (Table 2) (19, 57). Non-CTX-M-15 types of ESBLs (i.e., TEMs, SHVs, CTX-M-1, 
CTX-M-2, CTX-M-3, CTX-M-14, CTX-M-32, and CTX-M-65) are rare among ST410 isolates 
(Table 2) (18, 19, 107).

Long read whole genome sequencing revealed interesting information regarding 
the plasmids harboring blaCTX-M-15 within the ST410-B2 and ST410-B3 subclades. The 
blaCTX-M-15 is situated on IncF plasmids that are typed as F36:31:A4:B1 (using the plasmid 
MLST scheme) within ST410-B2 isolates (107). However, within the ST410-B3 subclade, 
the blaCTX-M-15 was situated on IncF plasmids that were identified as the F1:A1:B49 
(107). The F36:31:A4:B1 and F1:A1:B49 ST410 plasmids showed less than 45% sequence 
homologies, indicating that they were different types of IncF plasmids. Shared regions 
between the two ST410 IncF plasmids included the Tn3-blaTEM-1-IS26-ISEcp1-blaCTX-M-15-
Tn3-cat-blaOXA-1-aac(6’)-Ib-cr-IS26 resistance module (107). Both IncF types of plasmids 
contained several toxin-antitoxin systems and truncated gene transfer modules.
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CMY β-lactamases

E. coli possess a chromosomal gene that encodes for an AmpC β-lactamase. Usually, low 
amounts of these enzymes are produced because the AmpC gene is regulated by a weak 
promoter and a strong attenuator (115). E. coli can also contain plasmid-mediated (or 
imported) AmpC β-lactamases that include CMY, ACT, FOX, ACT, and DHA types (115). 
Among E. coli, CMY-2 are the most common imported AmpC β-lactamases (116).

CMY β-lactamases (i.e., CMY-2 and CMY-42) have been described among ST410 
isolates but the distribution and frequencies differ among the different clades (19, 107). 
CMYs were absent among ST410-A and ST410-B1 isolates, blaCMY-42 was limited to 
ST410-B2, while blaCMY-2 was very common within ST410-B3 isolates (and rare among 
ST410-B2) (Table 2). Long read whole genome sequencing revealed that the blaCMY-42 
within ST410-B2 isolates was located on ~38 kb IncI(Gamma) plasmids while the blaCMY-2 
was located on 110 kb IncC plasmids (107). However, within the ST410-B3 subclade, the 
CMY-2 gene was integrated within an ~73 kb tRNA-Ser site chromosomal genomic island 
(107, 117).

Carbapenemases

The carbapenemases are the most important causes of carbapenem resistance among 
Enterobacterales because carbapenemase genes can be transferred between different 
Enterobacterales species (118). E. coli is the second most common carbapenemase-pro
ducing Enterobacterales species (behind Klebsiella species) (119, 120). Large global 
genomic surveys of carbapenemase-producing E. coli are currently rare. The most 
common carbapenemases among E. coli are the NDMs (i.e., NDM-1 and NDM-5), 
OXA-48-like β-lactamases (i.e., OXA-48 and OXA-181), and KPC enzymes (i.e., KPC-2 and 
KPC-3) (57). The VIM and IMP carbapenemases tend to be rare in E. coli.

Several types of carbapenemases were described within ST410 and included KPCs 
(i.e., KPC-2 and KPC-3), NDMs (i.e., NDM-1, NDM-4, NDM-5, and NDM-7), OXA-48-like 
(i.e., OXA-48 and OXA-181), and VIMs (i.e., VIM-4 and VIM-23) (Table 2). The distribution 
and frequencies were different among ST410 clades (17, 18, 107). Carbapenemases 
were absent among ST410-A and ST410-B1. The KPCs, NDM-1, OXA-48, and VIMs were 
limited to ST410-B2 while NDM-4, NDM-5, and NDM-7 were limited to ST410-B3 (Table 
2). OXA-181 are found among ST410-B2 and ST410-B3 but in different frequencies [i.e., 
approximately 20–30% of ST410-B2 contained OXA-181 as compared to 60–70% of 
ST410-B3 (19, 107) (Table 2).

Overall, OXA-181 and NDM-5 (sometimes co-produced in the same isolate) were 
the most frequent ST410 carbapenemases and were specifically linked to the ST410-B3 
subclade (19, 57, 107). Long read whole genome sequencing showed that blaOXA-181 
from ST410-B2 and ST410-B3 was situated in Tn2013 and harbored on nearly identical 
51 kb IncX3 plasmids with 99.9–100% similarities to the previously published plasmid 
p72_X3_OXA181 obtained from K. pneumoniae ST307 obtained from South Africa (121, 
122). The IncX3 plasmids also contained qnrS1 and truncated ColKp3 replicons (122). 
Highly similar IncX3 plasmids with OXA-181 were previously described from different 
Enterobacterales species worldwide (104).

The NDM-5 genes within ST410-B3 were located on mosaic narrow-host range 
IncF plasmids that were identified as F1:A1:B49. These were the same IncF plasmids 
responsible for the high frequency of blaCTX-M-15 among ST410-B3 isolates (107). 
The blaNDM-5 flanking region consisted of IS26-blaNDM-5-bleMBL-trpF-desD-ISCR1. The 
F1:A1:B49 plasmids contained several toxin-antitoxin systems and truncated gene 
transfer modules.

Penicillin-binding protein (PBP3), outer membrane protein (ompC), and 
ompF point mutations

The E. coli ftsI gene encodes for PBP3 (123). Certain PBP3 amino acid insertions (i.e., YRIN, 
YRIK, or TIPY) confer reduced susceptibilities to several β-lactams, including aztreonam, 
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ceftazidime, cefepime, ceftazidime/avibactam, and ceftolozane/tazobactam (124). PBP3 
mutations were absent among ST410-A and ST410-B1. Most (>95%) of the ST410-B3 
isolates contained the ftsI YRIN insertion, while some (approximately 15%) of ST410-B2 
isolates contained the ftsI YRIK insertion (Table 2) (17, 107). ST410-B3 likely acquired 
an ~130 Kb recombination region that included fstI mutations and lipopolysaccharide 
synthesis genes (e.g., lpxC) from another E. coli high-risk MDR clone namely ST167 
(17, 107). The ompC (i.e., R195L) and ompF (i.e., C->T,−46) mutations were limited to 
ST410-B3 isolates (17).

Other antimicrobial resistance determinants

Certain “other” AMR determinants (e.g., dfrA17, sul1, or tetA) were common among 
ST410-B2 and ST410-B3 while aadA5, acc(3’)-IId , aph(6’)−1d, sul2, and tetB were more 
frequent among ST410-B3 (when compared to ST410-B2) (Table 2).

Evolution: acquisition of different AMR determinants shaped ST410 clades

ST410 BactDating estimated that the most recent common ancestor, namely ST410-A, 
appeared around the mid-1800s [i.e., 1855 (95% confidence interval, CI, 1808–1893)], 
approximately 170 years ago (18, 107). ST410-B1 likely emerged around the mid-1930s 
[i.e., 1935 (95% CI, 1920–1950)] that was associated with a type I pili switch from 
fimH53 to fimH24. The fluoroquinolone-resistant ST410-B2 subclade emerged around 
the late 1980s to early 1990s [i.e., 1990 (95% CI, 1983–1996)], which correlated with 
the introduction of the fluoroquinolones (i.e., norfloxacin and ciprofloxacin) in clinical 
medicine during the early to mid-1980s (125). The ST410-B3 subclade evolved from 
ST410-B2 around the mid-2000s (i.e., 2006 [95% CI, 2004–2009]) (18, 107).

The evolution of ST410 is highlighted by the gradual acquisition of different AMR 
determinants over time as antimicrobial susceptible clades (i.e., ST410-A and ST410-B1) 
evolved into MDR subclades (i.e., ST410-B2 and ST410-B30) (Fig. 2). The fluoroquinolone-
resistant ST410-B2 subclade evolved from ST410-B1 by the acquisition of three QRDR 
mutations (i.e., gyrA S83L, gyrA D87N, and parC S80I) via a large homologous recombi
nation event with E. coli ST940 and ST694 being the donors (107). The divergence of 
ST410-B2 from ST410-B1 also correlated with the acquisition of blaCTX-M-15 situated 
within F36:31:A4:B1 plasmids in the late 1990s that became common and distributed 
widely among this subclade (Fig. 2; Table 2). IncC plasmids containing blaCMY-2 and 
IncX3 plasmids with blaOXA-181 likely entered the ST410-B2 population in the early to 
mid-2000s but did not become populous among this subclade (Fig. 2). Recent genomic 
surveys have shown that approximately 15–20% of ST410-B2 contained blaCMY-2 and 
blaOXA-181 (Table 2) (17, 107).

The emergence of the ST410-B3 subclade from ST410-B2 was accompanied by the 
chromosomal integration of blaCMY-2, the acquisition of ftsI YRIN insertion, and ompC/
ompF mutations, as well as the replacement of F36:31:A4:B1 plasmids with F1:A1:B49 
plasmids also harboring blaCTX-M-15 (Fig. 2) (17, 107). F1:A1:B49 plasmids with CTX-M-15 
and IncX3 plasmids with OXA-181 became dominant over time within the ST410-B3 
population (Fig. 2; Table 2). Recent genomic surveys showed that >90% and approxi
mately 70–80% of ST410-B3 contain blaCTX-M-15 and blaOXA-181, respectively (17, 107). 
The NDM-5 gene was gradually incorporated into the same F1:A1:B49 plasmids starting 
around ~2010 (95% CI, 2009–2013), likely via IS26-mediated insertion (Fig. 2) (107). The 
contributions of QRDR, ftsI, and ompC/ompF mutations, as well as the acquisition of 
plasmids with CMY-2, CTX-M-15, OXA-181, and NDM-5 in the evolution of ST410 
subclades over time, are shown in Fig. 2.

E. coli ST131

Introduction and ST131 clades

E. coli ST131 was first described among ExPEC with blaCTX-M-15 obtained during 2000–
2006 from several countries including Spain, France, Canada, Portugal, Switzerland, 
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Lebanon, India, Kuwait, and Korea (126, 127). These two initial studies showed that ST131 
emerged independently in different parts of the world spanning three continents, 
seemingly at the same time. It became quickly apparent that ST131 was largely responsi
ble for the global increase of fluoroquinolone- and ESBL-producing ExPEC during the 
2000s (128).

ST131 belongs to three clades (fluoroquinolone susceptible clades namely A, B, and 
fluoroquinolone-resistant clade C) (129). Clade A is associated with serotype O16:H5 and 
fimH41, clade B is linked with serotype O25b:H4 and fimH22/fimH27, while all clade C 
isolates contain fimH30 and type with O25b:H4 (129). ST131-B gained fluoroquinolone 
resistance, certain bacteriophages, and pathogenicity islands to become ST131-C (130). 
ST131-C then divided into subclades (i.e., C1, C1-M27, and C2), which became 3rd 
generation cephalosporin-resistant over time, by acquiring different CTX-M genes (114, 
131). MDR ST131-C1 and ST131-C2 account for 80% of global ST131 population (132, 
133).

Acquisition of antimicrobial resistance determinants among ST131 clades

Fluoroquinolone resistance

Fluoroquinolone resistance has been a strong driver for ST131-C’s success and global 
dissemination (131). ST131 acquired different QRDR mutations in a sequential manner 
(57, 133, 134). During the mid-1980s, ST131-B transformed into ST131-C0: gyrAS83L 
appeared first and was followed by parCS80I (Fig. 3). During the early 1990s, ST131-C0 
acquired two additional QRDR mutations (i.e., gyrAD87N and parCE84V) and then split 
into ST131-C1 and ST131-C2 (Fig. 3) (57, 134).

The prevalence of the plasmid-mediated fluoroquinolone resistance determinant 
aac(6')-Ib-cr is high among ST131-C2 isolates (60–80%) (134, 135). AAC(6')-Ib-cr has 
provided a selective advantage for ST131-C2 in the presence of fluoroquinolones and 
has contributed significantly to the overall success of ST131 (135).

FIG 2 The stepwise acquisition over time of antimicrobial resistance determinants in the evolution of ST410 subclades.
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CTX-M β-lactamases

There are different ST131 clade/CTX-M combinations (136). CTX-M β-lactamases are 
extremely rare in clades ST131-A, ST131-B, and ST131-C0. CTX-M-14 are linked with 
ST131-C1, CTX-M-27 with ST131-C1-M27, and CTX-M-15 with ST131-C2 (132, 134).

Within the ST131-C clades, different IncF subtypes are associated with specific CTX-M 
enzymes (137): e.g., F1:A2:B20 plasmids containing blaCTX-M-14 and F1:A2:B20 plasmids 
with blaCTX-M-27 are found in ST131-C1 and C1-M27, respectively. F2:A1:B1 plasmids with 
blaCTX-M-15 are mainly detected in ST131-C2 (138). The specific ST131-C and CTX-M IncF 
type plasmid combinations spread globally and are examples of some of the greatest 
clone/plasmid evolutionary successes of the millennium (2, 131, 137).

Evolution: emergence of different MDR ST131 clades over time

The contributions of fimH shift, QRDR mutations, aac(6')-Ib-cr, and CTX-Ms in the 
evolution of ST131 over time are shown in Fig. 3. The ancestral clade, ST131-A, emerged 
in the mid- to late 1800s. In the early to mid-1900s, ST131-A underwent a type 1 pili shift 
from fimH41 to fimH22/fimH27 to establish ST131-B (130, 131). During the early 1980s, 
ST131-B transformed into ST131-C0 by acquiring the following (Fig. 3): (i) stepwise QRDR 
mutations and (ii) IncF plasmids with blaCTX-Ms

.

During the early to mid-1990s, ST131-C0 underwent the following transformation 
(Fig. 3):  (i)  ST131-C0 acquired additional QRDR mutations (via a stepwise process).  (ii) 
ST131-C0 split into ST131-C1 and C2 (134). (iii)  F1:A2:B20 plasmids (initially without 
CTX-Ms) entered the ST131-C1 lineage likely during the mid-1990s and gained 
blaCTX-M-14  over time (137). (iv) The F2:A1:B1 plasmids (initially without CTX-Ms) 
entered the ST131-B clade likely around the 1950s and then moved to the ST131-C2 
population during the early 1990s. These plasmids lost the B1 replicon and gained 
CTX-M-15 and aac(6')-Ib-cr  over time (137). (v) In the mid-2000s, ST131-C1 acquired a 
genomic element (i.e.,  prophage M27PP1) to become ST131-C1_M27 (114). This was 
accompanied by a point mutation in blaCTX-M-14  to become blaCTX-M-27.  ST131-C1-
M27 then increased in frequency among E. coli  producing ESBLs, especially during 
the mid-late 2010s (9).

Overall, the ST131 evolution scenario over time shared very similar characteristics 
(type 1 pili switch, QRDR mutations, and clade-specific IncF plasmids with CTX-Ms) 

FIG 3 The stepwise acquisition over time of antimicrobial resistance determinants in the evolution of ST131 subclades.
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to ST410 clade evolution (Fig. 2 and 3). However, ST410 acquired QRDR mutations 
via a large homologous recombination event and took the “MDR process” further by 
incorporating additional AMR determinants (e.g., ftsI, ompC/ompF mutations, blaOXA-181, 
blaNDM-5, or blaCMY-2 chromosomal integration) to become a lineage that contained 
large number of AMR determinants.

CONCLUSION

Before the 2000s, ExPEC was not considered to be important global AMR players. At 
that time, localized ESBL-producing isolates (mostly TEM types) were reported, but 
widespread fluoroquinolone and 3rd generation cephalosporin-resistant E. coli were 
very rare (139, 140). The MDR landscape during the 1990s was mainly occupied by 
carbapenem-resistant P. aeruginosa, MRSA, penicillin-resistant Streptococcus pneumoniae, 
and ESBL-producing K. pneumoniae. However, the scenario changed dramatically in the 
early to mid-2000s when fluoroquinolone-resistant and ESBL-producing ExPEC isolates 
increased exponentially by the 2010s (15). In 2000 (i.e., Y2K), it was expected that 
widespread computer programming shortcuts would cause extensive havoc as the 
year changed from 1999 to 2000. As it turned out, ExPEC isolates were responsible 
for wide-spread AMR mayhem starting around 2000, as MDR isolates emerged and 
spread globally over a relatively short 10-year period (139, 140). Since ExPEC is mainly 
responsible for community-onset infections, the increase of MDR isolates was not initially 
recognized and flew for most part, under the radar of AMR surveillance studies (56, 139, 
140).

MDR high-risk clones are important reservoirs of AMR genes and have played 
essential roles in the global emergence, spread, and subsequent increase of MDR (15). 
This is illustrated with the emergence of ST131 in Calgary, Canada. Studies spanning over 
an 11-year period (2000–2010) showed that fluoroquinolone-resistant and ESBL-produc
ing ExPEC causing bloodstream infections were rare during the early 2000s (i.e., 6% and 
0.3%, respectively) (24, 141). By 2010, the frequency of fluoroquinolone-resistant and 
ESBL-producing isolates increased to 26% and 14%, respectively (24, 141). This increase 
was mainly due to the “invasion” of E. coli ST131: in 2000, none of fluoroquinolone-resist-
ant (n = 19) and none of ESBL-producing E. coli (n = 1) belonged to ST131 (24, 141). 
The frequencies of ST131 in 2010 increased to 65/119 (55%) and 49/63 (78%) among 
fluoroquinolone-resistant and ESBL-producing E. coli, respectively (24, 141). This scenario 
could easily happen with ST410 in the 2020s.

Overall, carbapenem resistance is currently still rare among E. coli populations (e.g., 
less than 5% of isolates) (142). E. coli ST410 is an emerging carbapenemase-producing 
global MDR clone with the potential to significantly increase carbapenem resistance 
among E. coli in the foreseeable future. Recent global surveillance studies have shown 
that carbapenem resistance among E. coli is steadily increasing over time (119, 120), and 
genomics have revealed that ST410 is a major contributor to these carbapenem-resistant 
isolates (57).

The ST410-B3 subclade dominates the population structure of this lineage and has 
played an important role in the global distribution of OXA-181 during the early to 
mid-2010s (19). The OXA-181 gene is housed within IncX3 plasmids and has provided 
low-level carbapenem resistance in E. coli (104). ST410-B3 had gradually incorporated 
a different carbapenemase, NDM-5 into existing IncF plasmids (Fig. 2) (107). NDM-5 (as 
opposed to OXA-181) is responsible for high levels of carbapenem resistance in E. coli 
(143). IncF are examples of low copy number and narrow host range plasmids (144). 
Due to the plasticity of IncF plasmids, they continually undergo extensive rearrange
ments, especially among the accessory genes such as AMR genes. The presence of 
addition/restriction systems combined with truncated transfer regions has led to IncF 
plasmid persistence and stability with subsequent fixation within certain E. coli lineages 
such as ST131 (144). IncF plasmids with blaNDM-5 will continue to co-evolve with 
ST410-B3, ensuring that high-level carbapenem resistance will become entrenched in 
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this subclade. The use of the carbapenems will continue to create selection pressures 
that enhance the risks for the selection of MDR high-risk clones, especially ST410-B3.

The ST410-B3 subclade has shown a stepwise progression toward developing 
MDR. After an initial fimH switch between clades ST410-A and B1, ST410-B2 acquired 
fluoroquinolone resistance (in the 1980s), as well as CMY-2, CTX-M-15, and OXA-181 
genes (in the 1990s) (Fig. 2). This was followed by the chromosomal integration of 
blaCMY-2 (to offset fitness cost), fstl YRIN insertion (for reduced susceptibilities to 
ceftazidime/avibactam), and ompC/ompF mutations (for decreased permeability to 
β-lactams) to create MDR ST410-B3 in the mid-2000s (Fig. 2). Interestingly, an IncF 
plasmid “replacement” scenario happened when ST410-B2 transformed into ST410-B3 
(i.e., F36:31:A4:B1 plasmid being replaced by F1:A1:B49 plasmids). Additionally, the 
NDM-5 gene was incorporated into these F1:A1:B49 plasmids (Fig. 2). ST131 show a 
similar stepwise progression toward developing MDR but not to the same extent as 
ST410 (Fig. 3). The pattern of gaining successive AMR determinants is also shared with 
certain K. pneumoniae MDR high-risk clones (e.g., ST147 or ST307) (145). This is an 
example of “MDR convergent evolution” where distantly related organisms independ
ently evolve similar traits to adapt to similar necessities (4).

ST410 is a true One-Health MDR clone and has been obtained from humans, various 
animals, and the environmental sources (Table 1). This is different from ST131 that is 
mainly a human MDR clone and is relatively rare in animals and environment sour
ces (138). It is possible that acquiring extensive AMR determinants including various 
carbapenemase genes was essential for the successful adaption and continuous survival 
of ST410 within various One Health environments.

There is an enormous public health burden due to E. coli MDR high-risk clones such 
as ST131 and ST410. These clones have played pivotal roles in the global spread of 
MDR per se. Yet, sparse information is available on the following ST410 aspects. (i) Very 
limited data are available about the frequencies and global distribution of ST410 clades 
(especially ST410-A and ST410-B1). This could be due in part to the selection of ST410 
surveys (mainly ESBL- and carbapenemase-producing isolates) and lack of cost-effective 
methods for identifying ST410 isolates and clades (i.e., MLST for ST410 identification and 
WGS phylogenetic analysis to confirm different clades). We urgently need user-friendly 
cost-effective methods for the rapid identification of ST410 isolates and clades. Such 
methodologies have been pivotal in describing the global distribution of ST131 clades 
(146). (ii) It is unknown which specific biologic features have enabled ST410 to acquire 
various AMR determinants to become such a successful global One Health pathogen in a 
relatively short time.

Research projects aimed at investigating the important features responsible for the 
success of ST410 and ST131 need to be funded. This should include the ability of 
ST410-B3 to successfully acquire successive MDR determinants. Such information will 
aid in designing management and prevention strategies for both clones. These projects 
will also serve as models to predict the future emergence of successful clones among 
clinically relevant Gram-negative bacteria. The medical community can ill afford to 
ignore the spread of a global E. coli clone with the potential to end the carbapenem 
era.
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