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Abstract: The global diversity of fungi has been estimated between 2 to 11 million species, of which only about 155 000 have been named. Most fungi are 
invisible to the unaided eye, but they represent a major component of biodiversity on our planet, and play essential ecological roles, supporting life as we 
know it. Although approximately 20 000 fungal genera are presently recognised, the ecology of most remains undetermined. Despite all this diversity, the 
mycological community actively researches some fungal genera more commonly than others. This poses an interesting question: why have some fungal 
genera impacted mycology and related fields more than others? To address this issue, we conducted a bibliometric analysis to identify the top 100 most cited 
fungal genera. A thorough database search of the Web of Science, Google Scholar, and PubMed was performed to establish which genera are most cited. 
The most cited 10 genera are Saccharomyces, Candida, Aspergillus, Fusarium, Penicillium, Trichoderma, Botrytis, Pichia, Cryptococcus and Alternaria. 
Case studies are presented for the 100 most cited genera with general background, notes on their ecology and economic significance and important 
research advances. This paper provides a historic overview of scientific research of these genera and the prospect for further research.
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INTRODUCTION

Fungi are a diverse group of eukaryotic organisms that play 
important roles in numerous biological processes (Pawlowski et al. 
2012, Antonelli et al. 2020). Fungi can be found in a wide range of 
habitats (Hyde et al. 2020c, Apurillo et al. 2023, Asghari et al. 2023, 
Gunarathne et al. 2024, Thakshila et al. 2024), but their actual 
number is poorly understood. There are estimated to exist between 
2 to 11 million species (Tedersoo et al. 2010b, Hawksworth & 
Lücking 2017, Baldrian et al. 2021, Lücking et al. 2021), but only 
about 155 000 species have been formally described (Bánki et al. 
2023). There are approximately 20 000 fungal genera that have 
been described since the 1690s (Phukhamsakda et al. 2022) and 
about 2 000 new species have been described each year in the 
past two decades (Cheek et al. 2020, Bhunjun et al. 2022). Over 
the years several genera have emerged as being more commonly 
researched than others, with numerous studies on their biology, 
ecology, and pathogenicity. This raises the question why some 
genera have impacted mycology and related fields more than 
others. Are these genera important pathogens with a large number 
of studies aiming to better understand the underlying mechanisms 
of pathogenicity? Are these genera used in the production of various 
foods and beverages and a better understanding of their physiology 
and ecology can be vital in the development of new products? 
Or are these genera more commonly studied as they are a rich 
source of bioactive compounds with numerous biotechnological 
applications? Or are they simply occurring on many substrates 
across the globe? Therefore, there is a need to determine the most 
researched genera as well as provide insights into various aspects 
of their biology, ecology, and pathogenicity with prospects for future 
research.

In this study, the Web of Science database was used to 
establish which genera are most cited as of December 2021 (Table 
1). The 100 most cited genera are presented as case studies 
with general background, notes on their ecology and economic 
significance and important research advances. This study provides 
a valuable resource by highlighting the importance and research 
trends associated with these genera.

METHODS

The list of fungal genera was selected from Wijayawardene et 
al. (2022) and the 100 most cited genera were determined by 
searching the Web of Science Core Collection database (http://
apps.webofknowledge.com/). The taxon name was used as a 
query under “Topic” on Web of Science and the genera were ranked 
according to the summary of citation numbers obtained from the 
citation report of Web of Science. There were no restrictions on 
publication type or language, but the period of 2011 to 2021 was 
selected. All the searches were performed in December 2021. 

The number of publications and summary of times cited of each 
genus were retrieved from the citation report. When compiling the 
list of the top 10 cited articles, publications that only refer to the 
coincidental use of the name of the genus or species epithet were 
excluded as well as publications that refer to fungi now placed in 
other genera. The publication titles, number of publications and 
number of citations were retrieved and analysed by Excel (2016) 
and VOSviewer v. 1.6.15 software. The VOSviewer software was 
also used to retrieve high-frequency words or terms to map the 
network of keywords for the 25 most cited genera.

CASE STUDIES

In this section, we provide a review of the 100 most cited genera 
with a general background, ecology, economic significance and 
important research advances. The genera are listed according to 
the number of citations, starting from the highest cited genus.

1. Saccharomyces Meyen, Arch. Naturgesch. 4 (2): 100. 1838.

Type species: Saccharomyces cerevisiae Meyen

Classification: Ascomycota, Saccharomycotina, Saccharomycetes, 
Saccharomycetales, Saccharomycetaceae.

Background

Saccharomyces was introduced in 1838 by F.J.F. Meyen for T. 
Schwann’s “Zuckerpilz”, which was a sugar fungus responsible 
for fermentation as demonstrated by the fermentation experiments 
Schwann performed in 1837 (Barnett 1998). Three species, S. 
cerevisiae, S. pomorum and S. vini were initially proposed by 
Meyen, with the specific epithets indicating their sources of beer, 
fermenting apple juice and wine, respectively (Barnett 2004). 
Reess (1870) described the morphology of S. cerevisiae with 
accurate drawings of the cells, asci and ascospores. Hansen 
(1883) described the formation and germination of ascospores of 
S. cerevisiae based on the study of pure cultures that he developed 
in the early 1880s (Barnett 2004).

At present, eight natural species, S. arboricola, S. cerevisiae, 
S. eubayanus, S. jurei, S. kudriavzevii, S. mikatae, S. paradoxus, 
and S. uvarum; and two natural hybrids, S. pastorianus 
(syn. S. carlsbergensis) and S. bayanus, are included in the 
genus Saccharomyces (Alsammar & Delneri 2020) (Fig. 1). 
Saccharomyces pastorianus is an alloploid hybrid formed by 
S. cerevisiae and S. eubayanus, while S. bayanus is a triple-
hybrid with a genome composed of mainly S. uvarum and S. 
eubayanus sequences with introgressions from S. cerevisiae 
(Libkind et al. 2011). The hybrid species are sexually infertile and 
their ascospores are mostly inviable, while the natural species 
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Table 1. Top 100 cited genera starting with the most cited genus and the number of citations from the Web of Science (WoS) from the period of 2011 to 2021.
Rank Genera WoS Citation Rank Genera WoS Citation
1 Saccharomyces >1 000 000 51 Microsporum 11 474
2 Candida >500 000 52 Curvularia 11 008
3 Aspergillus >400 000 53 Rhizomucor 10 915
4 Fusarium 363 128 54 Pyricularia 10 856
5 Penicillium 130 850 55 Parastagonospora 10 146
6 Trichoderma 117 855 56 Monascus 10 083
7 Botrytis 103 497 57 Hanseniaspora 9 891
8 Pichia 102 697 58 Paracoccidioides 9 763
9 Cryptococcus 95 586 59 Schizophyllum 9 725
10 Alternaria 73 134 60 Plasmopara 9 535
11 Phytophthora 69 739 61 Auricularia 9 237
12 Rhizopus 51 691 62 Russula 9 156
13 Phanerochaete 50 545 63 Zygosaccharomyces 9 140
14 Colletotrichum 46 970 64 Torulaspora 9 132
15 Trametes 46 427 65 Boletus 9 078
16 Rhizoctonia 46 317 66 Botryosphaeria 9 058
17 Pleurotus 45 475 67 Cunninghamella 8 997
18 Ganoderma 44 643 68 Diaporthe 8 987 
19 Neurospora 44 091 69 Bipolaris 8 933
20 Cladosporium 38 580 70 Lentinula 8 733
21 Yarrowia 37 460 71 Erysiphe 8 683
22 Agaricus 34 079 72 Scedosporium 8 662
23 Kluyveromyces 33 194 73 Zymoseptoria 8 661
24 Mucor 30 923 74 Phellinus 8 392
25 Verticillium 30 674 75 Sporothrix 8 267
26 Sclerotinia 27 698 76 Macrophomina 8 240
27 Rhodotorula 26 581 77 Flammulina 8 218
28 Beauveria 26 077 78 Pseudogymnoascus 7 988 
29 Puccinia 25 970 79 Podospora 7 890
30 Cordyceps 23 831 80 Amanita 7 672
31 Trichophyton 21 756 81 Cercospora 7 493
32 Metarhizium 21 615 82 Lactarius 7 481
33 Pythium 20 902 83 Lasiodiplodia 7 394
34 Funneliformis 20 832 84 Exophiala 7 344
35 Ustilago 20 809 85 Monilinia 7 268
36 Rhizoglomus 17 651 86 Coccidioides 6 936
37 Acremonium 17 481 87 Melampsora 6 915
38 Chaetomium 16 519 88 Antrodia 6 910
39 Paecilomyces 16 324 89 Brettanomyces 6 693
40 Trichosporon 15 922 90 Ascochyta 6 690
41 Malassezia 15 632 91 Epichloe 6 496
42 Phoma 15 402 92 Pyrenophora 6 439
43 Thermomyces 15 013 93 Hymenoscyphus 6 420
44 Lentinus 13 964 94 Diplodia 6 337
45 Mortierella 12 787 95 Inonotus 6 331
46 Debaryomyces 12 476 96 Ophiostoma 5 912 
47 Metschnikowia 11 995 97 Neofusicoccum 5 591 
48 Talaromyces 11 976 98 Hericium 5 458 
49 Geotrichum 11 900 99 Phakopsora 5 143 
50 Pestalotiopsis 11 758 100 Leptosphaeria 5 133 
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can mate with each other (Naumov 1996). Thus, the species 
exhibit post-zygotic isolation and the biological species concept 
combined with consideration of genome sequence divergence is 
used to define species in the genus (Liti et al. 2006). The species 
are morphologically and physiologically similar (Vaughan-Martini 
& Martini 2011), but the eight natural species can be identified 
using ITS and D1/D2 sequence analyses (Fig. 1B, C). The two 
hybrid species, which usually occur in fermentation associated 
environments, can be differentiated further using specific markers 
targeting the genome sequences of the parental species of the 
hybrids (Bing & Bai 2018).

Ecologically, Saccharomyces species occur broadly in nature 
associated with bark, rotten wood of broad-leaved trees, especially 
Fagales, and nearby soil (Sampaio & Gonçalves 2008, Wang et al. 
2012d, Hittinger 2013, Alsammar & Delneri 2020, Bai et al. 2022). In 
contrast to the expectation that these yeasts may distribute commonly 
in sugar-rich environments, as implied by the etymology of the genus 
name (sugar fungus), they have rarely been isolated from fruit and 
orchards, except for S. cerevisiae. Though S. cerevisiae exists on 
fruit, the success rate of S. cerevisiae isolation from fruit is generally 
lower than that from broad-leaved tree bark (Wang et al. 2012d, 
Bai et al. 2022). Geographically, some Saccharomyces species 
are cosmopolitan while others occur in only limited regions (Table 
2). Saccharomyces cerevisiae and S. paradoxus usually coexist in 
nature globally, but the former distributes ubiquitously from tropical 

to temperate climate zones, while the latter has rarely been found 
in tropical areas (He et al. 2022b). Saccharomyces eubayanus, S. 
uvarum and S. kudriavzevii are usually cryophilic or cryotolerant 
species since they are more easily isolated at low temperatures 
(Sampaio & Gonçalves 2008) or occur more commonly at high 
altitudes. The hybrid species S. pastorianus and S. bayanus are also 
considered cryophilic because they are usually associated with low-
temperature fermentation processes.

Saccharomyces species usually grow as diploids in nature. 
Their life cycles are illustrated using S. cerevisiae as an example 
(Fig. 2), which has been well documented in the laboratory 
(Herskowitz 1988). The diploid cells usually reproduce asexually 
by budding and undergo meiosis and sporulation in response to 
nutrition depletion, especially nitrogen starvation. Four haploid 
spores are usually formed in an ascus with two of the spores 
having mating type a (MATa) and the other two MATα. Intratetrad 
mating can occur between a pair of spores with opposite mating 
types within the ascus upon germination and form a diploid cell. 
Ascospores can also germinate and reproduce asexually by 
budding to form MATa and MATα haploid cell lines. A haploid cell 
can mate with another haploid with an opposite mating type either 
from an ascospore of the same strain (selfing) or from an ascospore 
of a different strain (outcrossing). Haploid cells can also restore the 
diploid state through a haplo-selfing or autodiploidisation process 
regulated by a mating-type switch mechanism (Lee & Haber 2015).

Fig. 1. Phylogenetic relationships of the currently recognised Saccharomyces species inferred from the A. maximum likelihood of whole genome, B. 
neighbour joining tree of internal transcribed spacer (ITS) region of the rRNA gene, and C. neighbour joining tree of D1/D2 domain of the large subunit (LSU) 
of the rRNA gene sequences. The parents of the two hybrid species are marked in A. and the parent that donates only minor genome sequences is marked 
by a dashed line. GenBank accession numbers for the ITS and D1/D2 sequences of type strains are shown in parentheses.

Table 2. Ecological and geographical distributions of the wild Saccharomyces species.
Species Observed habitats in nature Geographical distribution
S. arboricola Bark and exudates of Quercus, Cyclobalanopsis, Juglans, and 

Castanea; soil; insects; mushrooms; fruit
Asia (China), Oceania (New Zealand)

S. cerevisiae Bark, rotten wood, and nearby soil of broad-leaved trees, fruit Cosmopolitan in tropical to temperate climate zones
S. eubayanus Bark, leaves, exudates and seeds of Quercus, Nothofagus, 

Araucaria; rotten wood; sporocarps of Cyttaria; soil
Asia (China), North America, South America (Argentina, Chile), 
Oceania (New Zealand) 

S. jurei Bark of Quercus Europe 
S. kudriavzevii Bark of Quercus, Cyclobalanopsis, and Castanea; soil; decayed 

leaves
Asia, Europe

S. mikatae Bark of Quercus, Ulmus, Juglans, Diospyros, Betula; soil; fruit Asia
S. paradoxus Bark, rotten wood, and nearby soil of broad-leaved trees, mostly 

Fagales
Cosmopolitan in subtropical (rare) to temperate climate zones

S. uvarum Bark or seed of Nothofagus, Quercus, Fagus, Araucaria; 
sporocarps of Cyttaria; soil; wine; beer; fruit; juice

Asia, Europe, North America, South America, Oceania
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Economic and scientific significance

A unique trait of Saccharomyces species is that they preferentially 
metabolise sugars through an anaerobic fermentation pathway 
to produce ethanol and CO2, even in the presence of oxygen for 
aerobic respiration. This aerobic fermentative trait is known as the 
Crabtree effect (Dedeken 1966), which shares several features 
with the Warburg effect (enhanced glycolytic activity and reduced 
oxidative phosphorylation) of tumour cells (Diaz-Ruiz et al. 2009). 
This trait is usually thought of as an outcome of adaptative evolution 
which endows Saccharomyces species with an enhanced ability of 
fast sugar consumption and ethanol production and thus a strong 
ability to outcompete other microbes in sugar-rich niches (Piškur et 
al. 2006). The fast and strong CO2 and ethanol production abilities 
of the yeasts have been explored by humans for bread and alcoholic 
beverage production worldwide for thousands of years. The earliest 
archaeological evidence for wine-like beverage production in about 
7 000 BC was found in a Neolithic village in China (McGovern et 
al. 2004).

The role of yeast as the agent of fermentation was revealed 
150 years ago by pioneering scientists, including Theodor Schwann 
and Louis Pasteur (Barnett 1998, 2000). In the early 1880s, Emil 
Christian Hansen developed an effective technique for isolating 
pure yeast cultures and paved the way for their use in standardised 
industrial fermentation (Barnett & Lichtenthaler 2001). Although 
ancient practices employing spontaneous fermentation by natural 

microbial communities dominated by Saccharomyces yeasts 
are still used in traditional fermented food production worldwide, 
elaborately selected or bred S. cerevisiae or S. pastorianus strains 
are usually used in large-scale industrial production of bread, beer, 
wine, and spirits. The current worldwide market of alcoholic drinks 
is estimated to be over 1 600 billion US dollars. Beer contributes 
the largest market segment at nearly 640 billion US dollars, while 
spirits and wine amount to approximately 520 and 360 billion US 
dollars, respectively (data from https://www.statista.com/outlook/
cmo/alcoholic-drinks/worldwide).

Saccharomyces cerevisiae is also used for bioethanol 
production (Eliodório et al. 2019). There is an increasing demand 
for clean renewable biofuels to cope with climate change (Liu et al. 
2021a). Among such biofuels, bioethanol is currently the largest 
product from crops and other feedstock biomass (Eliodório et 
al. 2019). Saccharomyces cerevisiae is the dominant species in 
industrial bioethanol production due to its ability to efficiently and 
completely ferment sugars from hydrolysates of feedstock biomass 
into ethanol (Walker & Walker 2018). The annual world bioethanol 
production from 2016 to 2021 ranged from 26 to 29 billion gallons 
(Renewable Fuels Association 2022).

With the advantages of easy cultivation, a fast growth rate, 
a simple single-celled life cycle with clear vegetative and sexual 
reproduction states, sharing with multicellular eukaryotes many 
fundamental cellular structures and biological properties, and a 
relatively small eukaryotic genome, S. cerevisiae has become one 
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Fig. 2. Life cycle of S. cerevisiae. Saccharomyces cerevisiae usually grows in nature as a diploid microbe. Diploid cells (a/α) either reproduce asexually 
by budding (mitosis) or undergo meiosis and sporulation in response to nutrition depletion, resulting in the formation of tetrads with four ascospores each. 
Ascospores either undergo intratetrad mating to form a diploid cell or germinate to form haploid cells (a or α). A haploid cell either reproduces by budding 
or mates with a sibling (selfing) or non-sibling (outcrossing) haploid with an opposite mating type to form a diploid cell or undergoes haplo-selfing or 
autodiploidization through a process known as mating-type (MAT) switch to restore the diploid phase.
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of the most powerful eukaryotic models in virtually every discipline 
of biology (Botstein & Fink 1988, 2011, Duina et al. 2014). The first 
evidence of enzymatic activities outside of a living cell was obtained 
using yeast extracts by Edward Buchner in the early 1900s, which 
founded the groundwork for biochemistry and metabolism research 
(Barnett & Lichtenthaler 2001). In the 1930s, Øjvind Winge and 
Carl Lindegren began to use yeast as an experimental organism 
in genetic studies (Mortimer 2000). The genetic and biochemical 
experiments performed by Fred Sherman in the 1960s and 1970s 
attracted broad attention to the yeast system from the scientific 
community (Liebman & Haber 2013). Then, the successful 
transformation of yeast with a plasmid replicable in Escherichia 
coli in 1978 (Hinnen et al. 1978) established the central role of S. 
cerevisiae as a model in molecular biology.

A milestone in the history of biology is the sequencing of 
the first eukaryotic genome of S. cerevisiae in 1996, which 
was the outcome of a worldwide collaboration of hundreds of 
researchers (Goffeau et al. 1996). Approximately 6 000 genes 
were recognised in the genome of the yeast strain S288C with 
a total size of 12 000 kb and 16 chromosomes. The high-quality 
genome sequence of S. cerevisiae, which is comprehensively 
annotated in the Saccharomyces Genome Database (SGD, http://
www.yeastgenome.org/) has provided a wealth of information for 
intensive studies on genomics and many other disciplines of biology 
(Cherry et al. 2012, Engel et al. 2014). Based on the genomic 
sequence and efficient tools for homologous recombination in 
yeast, a budding yeast deletion library has been generated through 
a cooperative effort of the international yeast community (Winzeler 
et al. 1999, Giaever et al. 2002). These resources together with 
the Gene Ontology Consortium (GO) database (Ashburner et 
al. 2000; http://www.geneontology.org/) and a series of other 
resources available to the scientific community (Botstein & Fink 
2011, Duina et al. 2014) have greatly improved the studies on the 
functions of genes and proteins and laid the groundwork for the 
fields of functional genomics and systems biology, which focus on 
how genes and proteins interact and work together to determine 
the traits of organisms.

The budding yeast system has facilitated many landmark 
discoveries in biology. Since the beginning of the 21st century, at 
least five Nobel Prizes have been awarded to scientists for their 
breakthrough work mainly using S. cerevisiae as a model organism. 
Lee Hartwell revealed the foundations of regulated cell division in 
budding yeast and was awarded a Nobel Prize in Physiology or 
Medicine in 2001. Roger Kornberg deciphered the structure of 
the components critical for transcription using the budding yeast 
toolkit and was awarded a Nobel Prize in Chemistry in 2006. Jack 
Szostak, Elizabeth Blackburn, and Carol Greider were awarded 
the 2009 Nobel Prize in Physiology or Medicine for their work in 
eukaryotic telomere structure involving budding yeast. Two other 
excellent discoveries that took advantage of the yeast system are 
Randy Schekman’s work on eukaryotic vesicle trafficking (2013 
Nobel Prize in Physiology or Medicine) and Yoshinori Ohsumi’s 
work on mechanisms of autophagy (2016 Nobel Prize in Physiology 
or Medicine). These examples highlight the far-reaching impact that 
the yeast system has had on our understanding of basic biological 
processes relevant to all eukaryotes, including humans.

Research interests

There are over 50 000 publications and over 1 000 000 citations 
from 2011–2021 in the Web of Science (Fig. 3), with numerous 
publications involving S. cerevisiae every year. It is not easy 
to figure out the exact number because of the extremely broad 
application of the model organism as an experimental tool and the 
use of the huge amount of genomic, proteomic and metabolomic 
data generated from yeast in biological research, as shown by 
the top cited articles in the Web of Science (Table 3). Several 
notable hotspots of research directly on Saccharomyces species 
or exclusively using the species as a model or tool are discussed 
here based on highly cited publications in the past decade (Fig. 4).

Speciation and evolution
Saccharomyces species usually exhibit post-zygotic reproductive 
isolation and it is easy to test the degree of isolation by examining 

Fig. 3. Trends in research of Saccharomyces in the period 2011–2021. The figure shows citations for only 10 000 records.
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spore viability of the crosses between strains from the same or 
different species. Thus, the genus has become a powerful model in 
research on the mechanism of speciation (Chou & Leu 2010, Ono 
et al. 2020). Typically, intra- and inter-specific crosses usually result 
in ~1 % or less and above 50 % spore viability, respectively (Liti 
et al. 2006, Dujon & Louis 2017). Several mechanisms underlying 
post-zygotic reproductive isolation between Saccharomyces 
species have been identified. Chromosomal translocations or 

rearrangements can lead to unbalanced chromosomal segments 
and lethality in the meiotic spores lacking the translocated 
segments harbouring essential genes (Liti et al. 2006, 2009, Hou 
et al. 2014, 2015, Dujon & Louis 2017). Genetic incompatibility or 
Bateson-Dobshansky-Muller incompatibility is another mechanism, 
which leads to improper interactions of genes from different parents 
in an offspring of a hybrid and thus causes sterility of the hybrid. 
Such incompatible genes causing reproductive isolation are usually 

Table 3. Top 10 cited articles related to Saccharomyces published in the period 2011–2021.
Rank Article title No. of citations References
1 Saccharomyces genome database: the genomics resource of budding yeast 1 044 Cherry et al. (2012)
2 Search-and-replace genome editing without double-strand breaks or donor DNA 985 Anzalone et al. (2019)
3 Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems 939 DiCarlo et al. (2013)
4 A global genetic interaction network maps a wiring diagram of cellular function 617 Costanzo et al. (2016)
5 Production of amorphadiene in yeast, and its conversion to dihydroartemisinic 

acid, precursor to the antimalarial agent artemisinin
454 Westfall et al. (2012)

6 Genome evolution across 1,011 Saccharomyces cerevisiae isolates 435 Peter et al. (2018)
7 High-resolution mapping reveals a conserved, widespread, dynamic mRNA 

methylation program in yeast meiosis
415 Schwartz et al. (2013)

8 Structure of the yeast mitochondrial large ribosomal subunit 397 Amunts et al. (2014)
9 The one hour yeast proteome 386 Hebert et al. (2014)
10 The reference genome sequence of Saccharomyces cerevisiae: Then and now 202 Engel et al. (2014)

Fig. 4. Network visualisation of keywords of the publications related to Saccharomyces. The larger the text and the circle the more often the subject has 
been cited.
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called “speciation genes”. A few examples of genetic incompatibility, 
particularly between nuclear and mitochondrial genes, have been 
characterised in Saccharomyces species (Lee et al. 2008, Chou 
& Leu 2010, Chou et al. 2010). However, it is not clear whether 
the incompatibility occurred prior to or after speciation (Louis 
2009, 2011). The third mechanism is anti-recombination due 
to sequence divergence, which acts to prevent recombination 
between nonidentical sequences mediated by the mismatch repair 
system during meiosis, resulting in the failure of meiotic crossovers 
required for proper chromosome segregation (Ono et al. 2020).

Saccharomyces has also become a model genus in evolutionary 
genetics and genomics (Hittinger 2013). The genomes of 2 478 S. 
cerevisiae, 409 S. paradoxus, 303 S. eubayanus, 82 S. uvarum, 
30 S. kudriavzevii, 10 S. arboricola, two S. jurei, and two S. 
mikatae strains have been sequenced and released in GenBank. 
Population genetics and genomic studies have shown that the wild 
and domesticated populations of S. cerevisiae are separated in 
phylogeny and show hallmark differences in heterozygosity and 
sexuality (Fay & Benavides 2005, Liti et al. 2009, Duan et al. 2018, 
Peter et al. 2018). The global genetic diversity of S. cerevisiae is 
mainly contributed by strains from Far East Asia, and the ancient 
basal lineages of the species have been found only in primeval 
forests in China, supporting an “out-of-China” origin hypothesis of 
the species (Wang et al. 2012d, Liti 2015, Duan et al. 2018, Peter 
et al. 2018, Bai et al. 2022). In addition to S. cerevisiae, the wild 
species S. paradoxus is a promising alternative model in ecology 
and evolutionary biology (Boynton & Greig 2014, Leducq et al. 
2016). The genetic diversity of S. paradoxus is much higher than 
that of S. cerevisiae and the population structure of the former is 
well delineated along with geographical boundaries (Liti et al. 2009, 
Xia et al. 2017). A highly diverged ancient lineage of S. paradoxus 
has been identified in China (He et al. 2022b).

Another interesting progress in the evolution of Saccharomyces 
species is the identification of S. eubayanus as the wild ancestor 
of lager beer yeast S. pastorianus (Libkind et al. 2011, Bing et al. 
2014). Saccharomyces eubayanus, contributing to the non-ale 
subgenome of the hybrid S. pastorianus, was first discovered 
from native forests in Patagonia, Argentina (Libkind et al. 2011) 
and was then isolated from the Tibetan Plateau (Bing et al. 2014). 
Population genetics and genomics analyses have shown that the 
genetic diversity of S. eubayanus is much higher in Far East Asia 
than in America, suggesting that S. eubayanus is native to Far East 
Asia. One of the Tibetan lineages of the species exhibited closer 
affinity with lager yeast than the Patagonian lineage (Bing et al. 
2014, Okuno et al. 2016). Thus, a Tibetan origin hypothesis of lager 
yeast has been proposed (Bing et al. 2014), which is supported 
by the finding that the mitochondrial genome of S. pastorianus 
originates exclusively from the Tibetan lineage of S. eubayanus 
(Okuno et al. 2016).

Synthetic biology
A post-genomic global collaboration of the yeast community is the 
synthetic yeast genome project Sc2.0, aiming to build a functional 
synthetic genome of an eukaryote and to answer fundamental 
biological questions relating to properties of chromosomes, genome 
structure and evolution, gene content, function of RNA splicing, 
and the distinction between prokaryotes and eukaryotes, and to 
establish a platform for the development of biotechnology (Dymond 
et al. 2011, Richardson et al. 2017). Six chromosomes (synII, synIII, 
synV, synVI, synX, and synXII) and the right arm of chromosome 
IX (synIXR) have been successfully synthesised (Richardson 
et al. 2017, Pretorius & Boeke 2018). Then, a functional single-

chromosome yeast from a haploid cell of S. cerevisiae containing 
16 linear chromosomes has been created by successive end-to-
end chromosome fusions and centromere deletions (Shao et al. 
2018).

Benefiting from the rapid developments of synthetic biology and 
genome editing tools, especially the CRISPR-Cas9 system (DiCarlo 
et al. 2013), S. cerevisiae has been developed as a cell factory to 
produce many chemicals, bioactive secondary metabolites, and 
pharmaceuticals (Nielsen et al. 2019). For example, amorphadiene, 
which is the precursor to the antimalarial agent artemisinin, was 
produced by fermentation from engineered S. cerevisiae (Westfall 
et al. 2012). Saccharomyces cerevisiae was also engineered to 
produce opioid compounds thebaine and hydrocodone starting 
from sugar by reconstructing the full biosynthesis pathway required 
for the expression of 21 (thebaine) and 23 (hydrocodone) enzymes 
from plants, mammals, bacteria, and yeast itself (Galanie et 
al. 2015). Through metabolic rewiring, directed evolution, and 
bioprocess optimisation, S. cerevisiae was reprogrammed from 
ethanol fermentation to a pure lipogenesis metabolism for high-level 
production of free fatty acids (Yu et al. 2018).

Structural biology
Because of the high-level conservation between yeast and human in 
protein sequences and cell organelle structures and their functions, 
S. cerevisiae has been used as a powerful model in structural 
biology. Due to the application of yeast as a model system in the 
study of human mitochondrial disorders (Barrientos 2003), the 
structure of yeast mitochondrial ribosomal large subunit was solved 
using single-particle cryo-electron microscopy. A nearly complete 
atomic model with a resolution of 3.2 angstroms was built de novo, 
including 39 proteins and expansion segments of mitoribosomal 
RNA (Amunts et al. 2014). The structure of the intact spliceosome of 
S. cerevisiae, which mediates splicing of the precursor messenger 
RNA (pre-mRNA) involving intron removal and exon ligation, 
was resolved at atomic resolution through a series of structural 
studies since 2016 (Wan et al. 2020). The molecular mechanism 
of pre-mRNA splicing was elucidated based on structural studies 
together with biochemical and genetic investigations (Wan et al. 
2020). The structural studies on human spliceosomes performed 
simultaneously revealed strict conservation between humans 
and yeast in the overall organisation of the spliceosome and the 
configuration of the splicing active site (Wan et al. 2020).

Epigenetics
Post-synthesis modifications of DNA, RNA, and proteins all 
potentially impact their function and are the main targets of 
epigenetics, which focuses on heritable changes in gene function 
that are not attributed to alterations of the DNA sequence. Previous 
studies have shown that DNA methylation and RNA interference 
(RNAi) machinery are absent from S. cerevisiae (O’Kane & Hyland 
2019). The lack of these processes simplifies the examination of 
the remaining epigenetic marks. The lack of potential complications 
caused by the cross-talk between the DNA methylation and histone 
modification pathways as observed in animal cells (Cedar & 
Bergman 2009) and the limited functionally redundant copies of the 
genes encoding core histone proteins make S. cerevisiae one of 
the best models available for studying the inheritance of histone 
modification-dependent chromatin states. Epigenetic mechanisms 
involving heritable silent chromatin in S. cerevisiae, including 
telomere silencing, mating type silencing, and rDNA silencing, have 
been extensively studied (Rusche et al. 2003, Grunstein & Gasser 
2013, Gartenberg & Smith 2016, O’Kane & Hyland 2019).
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Messenger RNA (mRNA) methylation has been revealed as 
a key player in eukaryotic gene expression regulation, and N6-
methyladenosine (m6A) is among the most abundant internal 
mRNA modification known in eukaryotic mRNA (Covelo-Molares et 
al. 2018). In S. cerevisiae mRNA methylation occurs only during 
meiosis. Deletion of the core RNA methyltransferase components 
delays meiotic entry but is not lethal to yeast. Therefore, S. 
cerevisiae is a promising tool in the study of mRNA methylation 
(Schwartz et al. 2013). Genomic maps of m6A sites in meiotic yeast 
transcripts at nearly single-nucleotide resolution were generated 
using a high-resolution assay coupled with mutants defective 
in methylation, resulting in the identification of 1 308 putatively 
methylated sites within 1 183 transcripts (Schwartz et al. 2013). 
The study also showed a striking similarity in methylation profiles 
and components between yeast and mammals, enhancing the 
value of yeast as a compelling model system for studying the role 
of methylations (Schwartz et al. 2013).

Proteomics
Expression and interactions of proteins are essential for understanding 
biological phenomena. Technologies for large-scale quantitative 
measurement of proteins have been developed and improved 
substantially in recent decades. With its unmatched resources in 
genomics and transcriptomics, S. cerevisiae has been a preferred 
platform for proteomic studies. The first large-scale yeast proteome 
study using two-dimensional chromatography coupled with tandem 
mass spectrometry identified 1 483 proteins (Washburn et al. 2001). 
Ghaemmaghami et al. (2003) created a S. cerevisiae fusion library 
where each annotated ORF was fused to a TAP tag. They measured 
approximate expression levels of the tagged ORFs and found that 
about 4 500 proteins (80 % of the proteome) were expressed during 
normal growth conditions. Huh et al. (2003) fused more than 4 100 
proteins to GFP and identified their subcellular locations, providing 
information about what their function might be.

Picotti et al. (2013) generated an almost complete reference 
map (97 % of the genome-predicted proteins) of the S. cerevisiae 
proteome using a strategy based on high-throughput peptide 
synthesis and mass spectrometry and applied the maps to a 
protein quantitative trait locus (QTL) analysis. Hebert et al. (2014) 
developed a protocol for comprehensive analysis of the yeast 
proteome in just over one hour with improved sample preparation 
and chromatographic separations, and by using a new Orbitrap 
hybrid mass spectrometer. On average, each 1 h analysis 
achieved the detection of 3 977 proteins (1 % false discovery rate). 
Ho et al. (2018) generated a unified protein abundance data set, 
covering about 5 400 proteins by combining 21 quantitative yeast 
proteome data sets, including MS-, GFP-, and western blotting-
based methods. Recently, Gao et al. (2021b) generated the largest 
yeast proteome data set, including 5 610 identified proteins, using 
a strategy based on optimised sample preparation and high-
resolution mass spectrometry. These yeast proteome data sets are 
important resources for further systematic studies.

Author: F.Y. Bai

2. Candida Berkhout, Schimmelgesl. Monilia: 41. 1923.

Type species: Candida vulgaris Berkhout [(syn. Candida tropicalis 
(Castellani) Berkhout]

Classification: Ascomycota, Saccharomycotina, Pichiomycetes, 
Serinales, Debaryomycetaceae.

Background

Candida was introduced by C.M. Berkhout (1923) in her PhD thesis 
to accommodate asexually reproducing yeasts that form hyphae 
that may disarticulate and form blastoconidia by budding from the 
hyphae or each other. Berkhout’s translated diagnosis of the genus 
reads as “Few hyphae, sessile, disarticulating into shorter or longer 
fragments. Conidia formed budding from hypha or each other; they 
are small and colourless (hyaline)”. Candida vulgaris, currently a 
synonym under C. tropicalis (Lachance et al. 2011), was selected by 
Berkhout as the generic type. The expansion of the genus Candida 
over the years is clearly illustrated by the number of species listed 
in the first monograph on asexual yeasts (Diddens & Lodder 1942) 
and all subsequent five editions of “The Yeasts, a Taxonomic study” 
(TYTS, Lodder & Kreger-van Rij 1952, Lodder 1970, Kreger-van Rij 
1984, Kurtzman & Fell 1998, Kurtzman et al. 2011) that contained 
26, 30, 81, 196, 163, and 314 species, respectively. Candida 
contains asexually reproducing Saccharomycotina budding yeasts 
with white, moist colonies that may or may not form pseudohyphae 
or true hyphae, and produces yeast cells by blastoconidiogenesis. 
For a long time, morphologically similar yeasts belonging to both 
Basidiomycota and Ascomycota were included in the genus. 
Yarrow & Meyer (1978) changed the generic concept by including 
yeasts that do not form hyphae. Thus, they merged Torulopsis 
(with no hyphae) with Candida (with hyphae) giving nomenclatural 
priority. Torulopsis was described by Berlese (1895) with T. rosea 
as the type species. However, the taxonomic concept of Torulopsis 
remained doubtful as its true identity could not be verified because 
no strain was available. Yarrow and Meyer recombined Torulopsis 
glabrata, originally described as Cryptococcus glabratus Anderson, 
in Candida as C. glabrata (Anderson) Yarrow & Meyer (1978). This 
merging of Candida and Torulopsis has contributed to the present 
highly polyphyletic nature of the genus (see below).

This expansion of Candida was followed by a taxonomic clean-
up by the removal of yeasts with basidiomycetous affinity (Weijman 
et al. 1988), thus restricting Candida to ascomycetous yeasts 
with the following characteristics: Candida Berkhout char. emend. 
Weijman, Rodrigues de Miranda & Van der Walt: Cells globose, 
ellipsoid, ovoid, cylindrical, elongate, rarely ogival, triangular, 
apiculate or ampulliform. Cell wall by TEM ascomycetous, 
two-layered. Vegetative reproduction is holoblastic and as a 
rule multilateral budding. Pseudohyphae and as a rule non-
disarticulating hyphae may occur, the latter if septate, non-porate 
or with closure lines or disjunctives (micropores plasmodesmata). 
Chlamydospores may occur. Pigmentation, when manifest, due 
to non-carotenoids. Amyloid compounds giving a positive starch 
reaction absent. Xylose, rhamnose and fucose are absent in 
cell wall hydrolysates. The presence of disarticulating hyphae is 
considered by these authors a key feature.

With the advent of molecular phylogeny, it became clear that 
Candida, as defined above, belongs to many phylogenetic lineages 
within Saccharomycotina (Kurtzman 1987, 1990, 1993a, 1993b, 
1993c, Kuramae et al. 2006, Lachance et al. 2011, Gabaldón 
et al. 2013, Daniel et al. 2014, Hittinger et al. 2015, Shen et al. 
2018). Barns et al. (1991) using sequence analysis of the small 
subunit (SSU or 18S) ribosomal RNA (rRNA) gene had already 
noticed that C. glabrata clustered distinctly from C. albicans and 
C. tropicalis, and was more closely related to Saccharomyces 
cerevisiae. This was confirmed by Kurtzman & Robnett (1997, 
1998) who in several studies using partial sequence (D1/D2 
regions) of LSU showed that C. glabrata belongs to a different 
lineage than C. tropicalis, but also from C. albicans (Kurtzman & 
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Robnett 1998). This was later confirmed by phylogenetic analyses 
using whole genome-based data (Fitzpatrick et al. 2006, Kuramae 
et al. 2006, Robbertse et al. 2006, Gabaldón 2013, Pryszcz et 
al. 2014, 2015, Hittinger et al. 2015). All these studies confirmed 
the large phylogenetic distances between various lineages of 
ascomycetous budding yeasts (Kurtzman & Robnett 1998, Dujon 
2006). As a result, the 314 described species, plus the 51 species 
that were not yet included in the 5th edition of TYTS, belonged to at 
least 28 clades (Lachance et al. 2011). Daniel et al. (2014) listed 
12 sexually defined ascomycetous genera that contain Candida 

species. Candida glabrata clustered in Saccharomycetaceae and 
C. albicans and C. tropicalis in the so-called Lodderomyces clade 
of Debaryomycetaceae. The website “theyeasts.org”, the electronic 
successor of TYTS, still lists 288 species in Candida, while the 
remaining species have been reclassified in a large number of 
genera: Ambrosiozyma, Blastobotrys, Clavispora, Danielozyma, 
Diddensiella, Diutina, Groenewaldozyma, Hemisphaericaspora, 
Hyphopichia, Kazachstania, Kuraishia, Kurtzmaniella, 
Martiniozyma, Metschnikowia, Metahyphopichia, Meyerozyma, 
Middelhovenomyces, Nakazawaea, Ogataea, Priceomyces, 

Fig. 5. Trends in research of Candida in the period 2011–2021. The figure shows citations for only 10 000 records.

Fig. 6. Network visualisation of keywords of the publications related to Candida. The larger the text and the circle the more often the subject has been cited.
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Saccharomycopsis, Saturnispora, Scheffersomyces, Spathaspora, 
Spencermartinsiella, Starmerella, Sugiyamaella, Suhomyces, 
Teunomyces, Tortispora, Wickerhamiella, Yamadazyma, and 
Zygoascus. To further complicate the current polyphyly of the 
genus, the 288 species retained in Candida are distributed into 
at least 25 clades or families: namely clades Ambrosiozyma, 
Barnettozyma, Candida glaeboa, Cyberlindnera, Dipodascaceae, 
Kazachstania, Kodamaea, Kurtzmaniella, Lodderomyces/
Spathaspora, Metschnikowia/Clavispora, Meyerozyma, 
Nakaseomyces, Nakazawaea, Ogataea, Phaffia/Komagataella, 
Phaffozyma, Pichia, Priceomyces, Scheffersomyces, Starmera, 
Sugiyamaella, Suhomyces, Wickerhamomyces, Yamadazyma, 
Yarrowia, Zygoascus, and, in addition, 13 unaffiliated clades. As 
the generic type C. vulgaris, a current synonym under C. tropicalis 
belongs to the Lodderomyces clade, it is clear that this clade will 
form the core of the s. str. circumscription of the genus Candida after 
this has been fully revised. Even the Lodderomyces clade might 
host a number of genera. To link the name Candida to that of the 
infectious disease candidiasis, the most common fungal infection 
in man/animals, and C. albicans its main causative agent, it might 
be needed to reconsider the typification of the genus and select 
C. albicans as a neotype. Proper actions to realise this have to be 
taken by yeast taxonomists and nomenclatural experts. With the 
global emergence of Candida auris as a human pathogen (Rhodes 
& Fisher 2019, Chow et al. 2020, Chakrabarti & Sood 2021), a 
species that belongs to the Metschnikowia clade, such typification 
issues should be convincing for the nomenclature purists, and also 
for the broader community of clinicians. Clinical arguments for such 
restriction of the genus Candida can be found in the extensive 
differences in antifungal susceptibility patterns and clinical aspects 
by species belonging to the various clades (Schmalreck et al. 2014, 
Stavrou et al. 2019, 2020). Restriction of Candida to the clade that 
contains C. albicans will also be beneficial for the acceptance of 
other species that are currently classified in the polyphyletic genus 
Candida, for use in biotechnology, fermentation and biocontrol.

Ecological and economic significance

Candida ranks number two in the list of most cited fungal genera, 
which is mainly due to the large number of opportunistic infections 
caused by species hitherto classified in the genus. Candidiasis 
occurs globally with an estimated > 400 000 cases per year (Brown 
et al. 2012). Fifty to 75 percent of fertile women suffer from at least 

one episode of vulvovaginal candidiasis and five to eight percent 
suffer from four episodes annually (Brown et al. 2012). Among 
the top five clinically most important yeasts are C. albicans, C. 
tropicalis, C. glabrata and C. parapsilosis (s. lat.), whereas others, 
such as Pichia kudriavzevii (Boidin et al. 1965) and Meyerozyma 
(Pichia) guilliermondii are in medical literature commonly referred 
as C. krusei and C. guilliermondii, respectively (Cleveland et al. 
2012, Guinea 2014, Pfaller et al. 2014, Schmalreck et al. 2014, Da 
Matta et al. 2017, Stavrou et al. 2019, Kmeid et al. 2020).

Invasive candidiasis comprises bloodstream infections or 
candidemia, and also deep-seated infections (Kullberg & Arendrup 
2015). The latter have a mortality of 40 % even when treated with 
antifungals (Kullberg & Arendrup 2015). Another ongoing process, 
with an increased risk for patients, is the shift from infections caused 
by C. albicans to those caused by non-albicans Candida species 
(Kullberg & Arendrup 2015, Stavrou et al. 2019). Recently, Candida 
auris, has emerged as a global threat in human invasive infection 
exhibiting mortality rates ranging from 30 to 60 % (Calvo et al. 
2016, Chowdhary et al. 2016, De Almeida et al. 2021, Chakrabarti 
& Sood 2021). Since its description in 2009, the species is 
associated with hospital-acquired infection causing outbreaks 
worldwide. Candida auris infections are challenging to treat as 
the species exhibits a resistant profile to fluconazole and variable 
susceptibility to other triazoles, echinocandins, and polyenes 
drug classes (Satoh et al. 2009, Chowdhary et al. 2014b, 2018, 
Chow et al. 2018, 2020). Candida auris is commonly misidentified 
as C. haemulonii, C. famata, C. sake, and even Saccharomyces 
cerevisiae by phenotypical identification methods, and accurate 
species characterisation requires molecular sequencing (ITS 
region) or MALDI-TOF MS (Kathuria et al. 2015, Girard et al. 2016, 
Ruiz Gaitán et al. 2017, Das et al. 2019, Ding et al. 2019). Due 
to the clinical challenges posed by C. auris, several public health 
authorities have released clinical guidelines for use in healthcare 
facilities on infection prevention in order to control this emerging 
pathogen, also highlighting the importance of notifying the cases 
to health authorities. As species belonging to the various Candida 
clades show differences in their susceptibility to antifungals, species 
identity may give a clue for the treatment of patients suffering from 
infections by such non-conventional Candida species (Schmalreck 
et al. 2014, Stavrou et al. 2019).

Virulence factors, such as differences in adhesion to epithelial 
cells, secretion of hydrolytic enzymes, yeast-hyphal dimorphism, the 
extent of biofilm formation, and phenotypic switching determine the 

Table 4. Top 10 cited articles related to Candida published in the period 2011–2021.

Rank Article title No. of citations References
1 Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance 

mucosal reactivity via interleukin-22
1 134 Zelante et al. (2013)

2 Candida albicans pathogenicity mechanisms 973 Mayer et al. (2013)
3 Fate mapping of IL-17-producing T cells in inflammatory responses 799 Hirota et al. (2011)
4 ESCMID* guideline for the diagnosis and management of Candida diseases 2012: non-

neutropenic adult patients
791 Cornely et al. (2012)

5 Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity 708 Puel et al. (2011)
6 Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal 

products and new therapeutic options
686 Sardi et al. (2013)

7 Growth of Candida albicans hyphae 665 Sudbery (2011)
8 Invasive candidiasis 650 Kullberg & Arendrup (2015)
9 Type I interferon inhibits interleukin-1 production and inflammasome activation 648 Guarda et al. (2011)
10 Antifungal drug resistance: mechanisms, epidemiology, and consequences for treatment 624 Pfaller (2012)
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pathogenic potential of Candida species and their isolates (Mayer 
et al. 2013, Sardi et al. 2013, Nobile & Johnson 2015, Ramos et 
al. 2015, Wakade et al. 2020). Risk factors for invasive candidiasis 
include a long stay at intensive care units/critical illness, abdominal 
surgery, pancreatitis, hematologic malignant diseases, solid organ 
transplantation, solid organ tumours, use of broad-spectrum 
antibiotics, use of catheters, use of chemotherapy, and neonatal 
state or being colonised by Candida yeasts (Nucci et al. 1998, 
Pasqualotto et al. 2007, Pfaller et al. 2014, Kullberg & Arendrup 
2015, Da Matta et al. 2017, Warris et al. 2020). The secretion of 
candidalysin, a recently found cytolytic peptide (Moyes et al. 2016), 
modulates innate immunity thus impacting immune regulation 
(Ho et al. 2020). For instance, candidalysin induces early and 
robust early and innate Th17 cell-derived interleukin 17A (IL-17A) 
(Verma et al. 2017, Ho et al. 2020). Complex immunomodulatory 
mechanisms increase or decrease the susceptibility of the host to 
C. albicans, e.g., mechanisms that enhance colonisation resistance 
of the gut and reduce colonisation by C. albicans relate to the 
effect of tryptophan metabolites that expand lactobacilli via aryl 
hydrocarbon receptor-dependent transcription of interleukin 22 (IL-
22). The resulting IL22-dependent mucosal balance enhances the 
survival of microbial communities, and also reduced colonisation 
by C. albicans and protection against inflammation (Zelante et al. 
2013). Other immune active molecules, such as interleukin-17 (IL-
17), relate to mucocutaneous immunity against C. albicans (Hirota 
et al. 2011, Puel et al. 2011), whereas Type I interferon inhibited the 
production of interleukin-1 (IL-1) also impacts susceptibility of the 
host to the yeast (Guarda et al. 2011).

Clinically relevant is the observation that many Candida 
species or strains show reduced susceptibility to one or several 
of the major classes of antifungals (Pfaller 2012, Schmalreck et al. 
2014, Arendrup & Patterson 2017, Cortegiani et al. 2019, Stavrou 
et al. 2019). Treatment options are presented in a large series of 
clinical guidelines, e.g., dealing with neonates, non-neutropenic 
patients, patients suffering from haematological malignancies, HIV 
infections and AIDS, patients at intensive care units, etc. (Papas et 
al. 2004, Cornely et al. 2012, Hope et al. 2012a, Lortholary et al. 
2012, Ullmann et al. 2012a, b, Chaves et al. 2018), and also for 
infections caused by non-albicans Candida species (Mermel et al. 
2011, Arendrup et al. 2014).

Genetic processes, such as hybridisation, either or not followed 
by processes of post-hybridisation genetic diversification resulting 
in (massive) loss of heterozygosity are considered to have played a 
role in the evolution of virulence of human opportunists in species 
(complexes), such as the C. albicans, C. inconspicua, and C. 
parapsilosis complex (Pryszcz et al. 2015, 2014, Mixão & Gabaldón 
2018, Mixão et al. 2021).

Beyond the clinical importance of Candida species, others are 
also biotechnologically important. For example, C. rugosa produces 
lipases and sterol esterases that are important for application in the 
food industry, production of pharmaceuticals, biosurfactants, biofuels, 
bio-sensor, cosmetics, etc. (Benjamin & Pandye 1998, Barriuso 
et al. 2016). Candida tropicalis and C. maltosa are utilised for the 
production of xylitol (Guo et al. 2006, Kumar et al. 2022). Several 
species that were previously classified in Candida and that are 
now in genera like Kluyveromyces, Scheffersomyces and Yarrowia 
are also highly important from fermentation and biotechnological 
perspectives, but outside the scope of this text. Candida parapsilosis 
has been used as a biocatalyst for organic transformations, i.e., 
deracemisation, enantioselective reductions, and kinetic resolutions 
(Chadha et al. 2016). Candida tropicalis has been associated as a 

relevant metaboliser of hydrophobic substrates, such as fatty acids 
or alkanes, to produce long-chain dicarboxylic acid, and modulation 
in the copy number of the ctfat1p gene plays an important role to 
improve the production of this compound (Lebeault et al. 1970, 
Zhang et al. 2021c). The species can successfully decontaminate 
phenol wastewater and soil under salt or no-salt conditions within pH 
and temperatures ranging from 3.0 to 9.0, and to 20 °C, respectively 
(Wang et al. 2011a, Basak et al. 2014, Gong et al. 2021). Meyerozyma 
(Candida) guilliermondii is an effective yeast for bioconversion of 
xylose into xylitol, a promising productor of ethanol and aromas 
which is able to reduce the content of patulin in culture medium, and 
use hydrocarbons as a sole carbon source on minimal salts medium 
(Schirmer-Michel et al. 2008, Guo et al. 2009, Wah et al. 2013, Chen 
et al. 2017e, Hashem et al. 2018).

Research interests

There are over 40 000 publications and over 500 000 citations from 
2011–2021 in the Web of Science (Fig. 5). The research interests 
of Candida yeasts focus on improving the taxonomy, epidemiology 
and diagnostics of Candida-related infections, understanding the 
regulation of virulence, interaction with the host immune system, 
fundamental cell biology and biochemistry, comparative and 
functional genomics, and role in human (and animal) microbiomes 
(Fig. 6). This is clearly reflected in the highly cited papers (Table 4). 
Beyond this, the use of specific Candida species and strains for use 
in biotechnology, fermentations, and biocontrol is also important. 
Immune response mediated by interferons and interleukins in C. 
albicans infections is also a highly cited topic. The main aspects 
addressed in the top-cited papers include conservative cytokines 
production of TH17 cells in an acute cutaneous infection caused 
by C. albicans; the role of interleukin-17A and interleukin-17F in 
the mucocutaneous immunity against chronic mucocutaneous 
candidiasis; pro-interleukin-1β induced by aluminium salts, and C. 
albicans suppressed by type I interferon role to develop Candida 
infections.

In the top-cited review papers, aspects include data regarding 
epidemiology, antifungal susceptibility profile by the manufacturer, 
and natural options of Candida species added to the integrative 
analysis of classical and novel pathogenic mechanisms of 
C. albicans involved in host infection highlighting molecules 
related to adhesion and invasion of tissues, enzymes profiles, 
fitness attributes, and yeast morphology switching; consensus 
recommendations to the diagnosis and management options for 
non-neutropenic adult patients with Candida infections intended to 
provide practical assistance in the laboratory and clinical decisions 
in different hospitalised populations, as critically ill individuals 
under risk factors for invasive candidemia, surgical intensive 
care units patients, and others; transduction pathways and the 
molecular processes to activate a program of hypha-specific gene 
transcription; and trends and strategies in invasive candidiasis.

Authors: E.C. Francisco, F. Hagen and T. Boekhout

3. Aspergillus P. Micheli ex Haller, Hist. stirp. Helv. 
(Bernae) 3: 113. 1768.

Type species: Aspergillus glaucus (L.) Link

Classification: Ascomycota, Pezizomycotina, Eurotiomycetes, 
Eurotiales, Aspergillaceae.
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Background

Aspergillus was introduced by Micheli (1729) who considered 
the characteristic vesiculated conidiophores to resemble an 
aspergillum, also called a holy water sprinkler. The name was later 
validated by Von Haller (1768) and sanctioned in Fries (1832). 
The genus is typified by A. glaucus [IMI 211383 (neotype); CBS 
516.65 = NRRL 116 = ATCC 16469 = IMI 211383 (ex-neotype)]. 
Several sexual morphs (teleomorphs) like Eurotium, Emericella, 
Neosartorya, etc. are associated with Aspergillus, with phylogenetic 
analyses resolving these in a large clade, within which sexual 
morphs typically also resolved as distinct subclades (Houbraken & 
Samson 2011). Following the concept of single nomenclature (One 
Fungus = One Name) (McNeill et al. 2012), a debate followed on 
whether to use a broad concept of Aspergillus or split the genus 
based on the smaller clades typically represented by sexual 
generic names (Pitt & Samson 2007, Houbraken & Samson 2011, 
Pitt & Taylor 2014, 2016, Samson et al. 2014, 2017, Kocsube et 
al. 2016, Taylor et al. 2016, Houbraken et al. 2020). Aspergillus 
was eventually chosen by the community with several sexual and 
asexual genera synonymised with the former (Samson et al. 2014). 
A review of the genus resulted in Samson et al. (2014) publishing an 
accepted species list, providing guidelines to work with and identify 
Aspergillus strains, and proposing calmodulin as an alternative 
identification marker. Many new species were subsequently 
described which necessitated a review by Houbraken et al. (2020) 
who accepted 446 species (currently 454) and classified them into 
6 subgenera, 27 sections and 75 series. More recently, Visagie 
et al. (2024) provided an update on taxonomic revisions and new 
species published since Houbraken et al. (2020), which brought the 
number of accepted species in Aspergillus to 453 (currently 467).

Ecological and economic significance
Food mycology and ecology

Aspergillus represents one of the most economically important 
fungal genera (Samson et al. 2014). Aspergillus spp. are 
widespread geographically and can be either beneficial or harmful 
microorganisms, however, they mainly have a saprophytic lifestyle 
and predominantly grow on decaying plant material (Perrone 
& Gallo 2017). They are among the most successful groups of 
moulds with important roles in natural ecosystems and the human 
economy.

Aspergilli are important in fermented food of Asian cuisines 
by enhancing nutrients, textures, and flavours (Bennett 2010). In 
particular, important in food mycology as beneficial are the three 
koji moulds A. oryzae, A. sojae, and A. luchuensis, the Koku-kin 
(national fungi) that are certified by the Brewing Society of Japan 
(Ichishima 2016). These koji moulds can be classified as yellow-, 
black-, and white-koji moulds (Hong et al. 2014). For example, A. 
oryzae is used for the production of sake, shochu (distilled sake), 
amazake (a sweet beverage), and mirin (sweet alcoholic seasoning) 
in Japan and for Huang-chiu (yellow wine) in China (Kitagaki & 
Kitamoto 2013, Ashu et al. 2016). The Black-koji moulds are used 
in Japan to produce shochu (A. kawachii = A. luchuensis) and 
awamori (A. luchuensis) (Hong et al. 2014). Many additional uses 
in food mycology are also known for Aspergillus: i.e., A. chevalieri 
and A. pseudoglaucus in traditional fermentation and ripening of 
katsuobushi (Takenaka et al. 2020); various species of sections 
Aspergillus, Flavi and Nigri are commonly isolated from meju, a 
brick of dried fermented soybeans popular in Korean cuisine (Hong 

et al. 2015); and also, from fermented tea including Pu-erh tea and 
Fuzhuan Cha (Fu brick tea) (Park et al. 2017).

Unfortunately, Aspergilli are one of the major causes of 
degradation of agricultural products, as they can contaminate 
foods and feeds at different stages including pre- and postharvest, 
processing and handling (Perrone & Gallo 2017). So, although 
important in fermented foods, they can cause undesirable changes 
of sensorial, nutritional and qualitative nature like pigmentation, 
discoloration, rotting, and development of off-odours and off-
flavours, but most importantly they can produce dangerous 
mycotoxins that contaminate food, agricultural and food products 
(Perrone et al. 2007, Bennet 2010, Taniwaki et al. 2018). However, 
only a handful of species are significant mycotoxin producers 
in agricultural products and food and mainly belong within the 
subgenus Circumdati. In particular, three species groups are 
represented: A. flavus - A. parasiticus and their close relatives; A. 
westerdijkiae - A. steynii and their close relatives; A. carbonarius 
and the closely related species in series (Visagie et al. 2014b, 
Frisvad et al. 2019, Houbraken et al. 2020). Most Aspergillus 
species are saprophytic, but in some cases can be pathogenic 
like in the Flavi group producing aflatoxins on peanuts and maize. 
These species can grow in these plants under unfavourable growth 
conditions for the plants, such as drought stress, which permits 
infection of developing nuts or grains, and hence the production 
of aflatoxins before harvest (Saori & Keller 2011). Subgenera 
Circumdati and Nigri species occur mainly as postharvest infections 
having no affinity with crop plants, with some exceptions like A. 
carbonarius and closely related species on grapes (Perrone et al. 
2008, Perrone & Gallo 2017). Aspergillus species can grow at a 
very wide range of temperatures, water activities and pH, so its 
species are cosmopolitan and prevalent components of different 
ecosystems in a wide range of environmental and climatic zones 
(Klich 2002, Abdel-Azeem et al. 2016). They are widely present 
in soils (Klich 2002, Jaime-Garcia & Cotty 2010), salt marshes 
(Butinar et al. 2011), agricultural ecosystems (Perrone et al. 2007, 
Taniwaki et al. 2018), arctic (Arenz et al. 2014), stones, fossils, 
water, animal and humans, etc. (Abdel-Azeem et al. 2019). They 
are very important in decomposition processes driving the natural 
cycling of chemical elements, particularly in the carbon cycle; they 
are part of a consortia of organisms from different kingdoms that 
recycle starches, hemicelluloses, celluloses, pectins and other 
sugar polymers. Some aspergilli are capable of degrading more 
refractory compounds such as fats, oils, chitin, and keratin (Bennet 
2007). Recently the beneficial impact of Aspergillus species in 
soil and environment has been reviewed (Nayak et al. 2020), and 
also, its protective role as plant growth-promoting fungi has been 
evidenced (Daigham et al. 2023).

Their ability to disperse spores globally in air, to survive 
and grow in different environmental and geographical habitats, 
together with high reproductive and competitive capabilities means 
that “ubiquitous” is among the most common adjectives used to 
describe these moulds (Horn & Dorner 2002, Bennet 2007, Mehl 
& Cotty 2013).

Research interests

There are over 35 000 publications and over 400 000 citations from 
2011–2021 in the Web of Science (Fig. 7) with the top 10 most cited 
articles listed in Table 5. Most publications focused on secondary 
metabolites and diseases associated with Aspergillus (Fig. 8).
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Extrolites
The 467 species described and accepted in Aspergillus can 
produce a very large number of small molecule extrolites, also 
called secondary metabolites, specialised metabolites or natural 
products (Samson et al. 2014, Frisvad 2015, Frisvad & Larsen 
2015, Houbraken et al. 2020). While Aspergillus spp. share many 
secondary metabolites (SMs) with Penicillium spp., these two 
genera share many secondary metabolites with Talaromyces 
spp. (Yilmaz et al. 2014). Like in other filamentous fungi, the SMs 
produced by Aspergillus species are produced in species specific 
profiles (Frisvad 2015), and recently it has been shown that profiles 
of carbohydrate active enzymes (CAZymes) are also species 
specific in Aspergillus and Penicillium (Barrett et al. 2020).

Important drugs or promising drugs in clinical trials produced 
by isolates of Aspergillus species include lovastatin (= mevinolin 
= monacolin K) produced by A. terreus (Huang et al. 2021d), 
fumagillin produced by A. fumigatus (Kornienko et al. 2015, Frisvad 
& Larsen 2016), and the anticancer halimide (= phenylahistin) 

produced by A. calidoustus (Kornieno et al. 2015, Aldholmi et al. 
2020). Many other bioactive potential drug candidates have been 
found in species of Aspergillus (Lee et al. 2013).

The most important mycotoxin from Aspergillus is the most 
carcinogenic secondary metabolite known, aflatoxin B1, and 
this toxin is produced foremost by species in section Flavi: 
A. aflatoxiformans, A. austwickii, A. cerealis, A. flavus, A. 
minisclerotigenes, A. luteovirescens (syn. A. bombycis), A. mottae, 
A. nomiae, A. novoparasiticus, A. parasiticus, A. pipericola, A. 
pseudocaelatus, A. pseudonomiae, A. pseudotamariit, A. togoensis 
and A. transmontanensis, and aflatoxin is of serious consequence 
for food safety (Varga et al. 2011, Frisvad et al. 2019, Kjærbølling 
et al. 2020). Aflatoxins and sterigmatocystins are also produced 
by Aspergillus species from other sections that rarely occur in 
foods, feeds or the built environment (Rank et al. 2011). In addition 
to aflatoxins, many species in section Flavi also produce the 
mycotoxins 3-nitropropionic acid and cyclopiazonic acid, adding 
to the high toxicity of A. flavus and similar species. Many species 

Fig. 7. Trends in research of Aspergillus in the period 2011–2021. The figure shows citations for only 10 000 records.

Table 5. Top 10 cited articles related to Aspergillus published in the period 2011–2021.
Rank Article title No. of citations References
1 Hidden killers: human fungal infections 2 175 Brown et al. (2012)
2 Practice guidelines for the diagnosis and management of Aspergillosis: 2016 update by the 

infectious diseases society of America
1 079 Patterson et al. (2016)

3 Immunity to fungal infections 729 Romani (2011)
4 A comprehensive evaluation of normalization methods for Illumina high-throughput RNA 

sequencing data analysis
655 Dillies et al. (2011)

5 Antifungal drug resistance: mechanisms, epidemiology, and consequences for treatment 624 Pfaller (2012)
6 Impact of mycotoxins on humans and animals 608 Zain (2011)
7 Epidemiology and clinical manifestations of mucormycosis 604 Petrikkos et al. (2012)
8 Regulation of fungal secondary metabolism 569 Brakhage (2013)
9 Phylogeny, identification and nomenclature of the genus Aspergillus 557 Samson et al. (2014)
10 Diagnosis and management of Aspergillus diseases: executive summary of the 2017 

ESCMID-ECMM-ERS guideline
529 Ullmann et al. (2018)
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in Aspergillus subgenus Nidulantes, section Nidulantes series 
Versicolores can produce sterigmatocystin and these species are 
common in the built environment. Other important mycotoxins 
from Aspergillus species include ochratoxin A, produced by A. 
westerdijkiae, A. steynii, A. ochraceus and other species in section 
Circumdati (Visagie et al. 2014c), by A. alliaceus in section Flavi 
and A. niger, A. welwitschiae and A. carbonarius in section Nigri 
(Abarca et al. 1994, Samson et al. 2004). Aspergillus niger and the 
closely related A. welwitschiae, can in addition, produce fumonisin 
B2, B4 and B6 (Frisvad et al. 2007, 2011, Logrieco et al. 2014). 
The mycotoxin patulin is produced by members of section Clavati, 
most importantly A. clavatus (Bergel et al. 1943) that can occur 
in breweries and produce both patulin and cytochalasin E in the 
barley (LopezDiaz & Flannigan 1997). In addition to ochratoxins, 
species in Aspergillus section Circumdati can also produce the 
mycotoxins penicillic acid, xanthomegnin, viomellein, vioxanthin, 
avrainvillamide and stephacidin A (Visagie et al. 2014c, Mikkola et 
al. 2015).

Authors: G. Perrone, C.M. Visagie and J.C. Frisvad

4. Fusarium Link, Mag. Ges. Naturf. Freunde Berlin 3: 10. 
1809.
Synonyms: Fusisporium Link, Mag. Ges. Naturf. Freunde Berlin 3: 
19. 1809.
Selenosporium Corda, Icon. Fung. 1: 7. 1837.
Gibberella Sacc., Michelia 1: 43. 1877.
Lisea Sacc., Michelia 1: 43. 1877.
Sporotrichella P. Karst., Meddel. Soc. Fauna Fl. Fenn. 14: 96. 1887.
Gibberella subgen. Lisiella Cooke & Massee, Grevillea 16: 5. 1887.
Lisiella (Cooke & Massee) Sacc., Syll. Fung. 9: 945. 1891.
Septorella Allesch., Hedwigia 36: 241. 1897.
Ustilaginoidella Essed, Ann. Bot. 25: 351. 1911.
Rachisia Linder, Deutsche Essigind. 17: 467. 1913.
Stagonostroma Died., Krypt.-Fl. Mark Brandenb. 9: 561. 1914.

Fusidomus Grove, J. Bot. 67: 201. 1929.
Pseudofusarium Matsush., Microfungi Solomon Isl. Papua-New 
Guinea: 46. 1971.

Type species: Fusarium sambucinum Fuckel

Classification: Ascomycota, Pezizomycotina, Sordariomycetes, 
Hypocreales, Nectriaceae.

Background

For decades the genus Fusarium has attracted significant attention 
from researchers from different disciplines, resulting in a long and 
rather conflictive taxonomic history. Its high relevance derives from 
its diverse ecology, worldwide distribution, and species richness. It 
includes some of the most important plant pathogens (Dean et al. 
2012), common endophytes and occasionally saprobes (Zhang et 
al. 2023a), opportunistic animal and human pathogens (Al-Hatmi et 
al. 2019, Lombard et al. 2019b, Song et al. 2023), and producers 
of bioactive secondary metabolites, including mycotoxins (Ibrahim 
et al. 2021).

Fusarium was first described by Link (1809), and characterised 
by forming elongated, fusoid, multiseptate conidia. Currently, 
18 species complexes are recognised in Fusarium s. str. using 
multigenic genealogy, morphology, secondary metabolite data, 
sexual reproduction and host diversity. Among these, the Fu. 
fujikuroi species complex (SC) (FFSC), Fu. chlamydosporum SC 
(FCSC), Fu. incarnatum-equiseti SC (FIESC), Fu. oxysporum SC 
(FOSC), and Fu. sambucinum SC (FSAMSC, including the internal 
Fu. graminearum clade) encompass the most relevant species for 
agriculture, animal and human health, and biotechnology (Crous et 
al. 2021a, 2022).

Laboratory identification of Fusarium s. lat. (including the 
genera Albonectria, Bisifusarium, Cyanonectria, Fusarium s. str., 

Fig. 8. Network visualisation of keywords of the publications related to Aspergillus. The larger the text and the circle the more often the subject has been 
cited.
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Geejayessia, Luteonectria, Neocosmospora, Nothofusarium, and 
Setofusarium), mostly rely on molecular characterisation using 
translation elongation factor (tef1) and RNA polymerase II second 
largest subunit (rpb2) markers. Morphological data, such as culture 
features (colony texture, pigmentation, type of aerial mycelium, 
presence of sporodochia), sexual morph (ascomata colour, wall 
thickness, ornamentation, presence and nature of basal stroma), 
and asexual morph (nature of conidiophores, conidiogenous 
cells, conidia and chlamydospores), as well as host preference, 
can be used for species identification (Leslie & Summerell 2006, 
Crous et al. 2021b). Mycotoxin profiling may also be helpful to 
separate Fusarium s. str. from other closely related fusarioid 
genera as, for instance, trichothecenes, known to be produced by 
species of Fusarium s. str. are generally not detected from other 
fusarioid genera; while cyclosporins, dihydrofusarin, polyketides 
neovasipyrones and vasinfectin A have been reported only from 
Neocosmospora species but not from Fusarium s. str. (Crous et 
al. 2021a).

Ecological and economic significance

Species of Fusarium s. lat. can cause diseases in numerous 
economically important crops (Afroz et al. 2020, Paul et al. 2020, 
Lombard et al. 2022), in forests (Hyde et al. 2023b), and also infect 
animals and humans (Chang et al. 2006, O’Donnell et al. 2009). 
Plant diseases cause significant economic losses and threaten 
global food security. They are difficult to eradicate due to elevated 
resistance or tolerance to fungicides. Similarly, most of the clinically 
relevant Fusarium species are also resistant to currently available 
antifungal agents and such diseases can be fatal (Al-Hatmi et al. 
2016). Some of these diseases and infections are summarised 
below.

Plant diseases
Two main plant diseases, wilt and root rot caused by Fusarium s. 
lat., result from fungal spores that can remain dormant in the soil or 
an alternative host for a prolonged period (Dita et al. 2018). When 
a suitable host is introduced to the environment, spores germinate 
and penetrate the roots. The mycelium invades the plant vascular 
system by growing through the cortex to the epidermis. Constant 
production of fungal spores occurs in vascular tissues from where 
they spread throughout the plant. As a result of vascular tissue 
blockage, leaves may turn yellow (Dita et al. 2018, Arie 2019). In 
the case of pitch canker and malformation, air-borne spores enter 
the host through a fresh wound, or the fungus can be transmitted 
via insects (Fox et al. 1991, Dwinell et al. 2001). Stress factors such 
as drought might increase the incidence and severity of diseases 
as shown in the crown and root rot diseases in asparagus and 
citrus species (Nigh 1990, Sandoval-Denis et al. 2018).

Crown rot is a disease caused mainly by Fu. culmorum and 
Fu. pseudograminearum. These species can infect barley, oats, rye 
and wheat (Kazan & Gardiner 2018, Hagerty et al. 2021). Fusarium 
crown rot (and root rot) disease in Asparagus officinalis (Elmer 
2001) is caused by Fu. oxysporum s. lat. and Fu. annulatum.

Ear rot disease affects maize ears and kernels, and is one 
of the most important maize diseases, due to yield decrease 
and mycotoxin contamination of the grain. It is mainly associated 
with Fu. annulatum, Fu. subglutinans, Fu. verticillioides, and less 
frequently with Fu. culmorum and Fu. graminearum (Duncan & 
Howard 2010, Oldenburg & Ellner 2015, Lanubile et al. 2017).

Wilt disease affects tomato and sweet potato (caused by Fu. 
oxysporum s. lat.), cabbage (Fu. equiseti and Fu. oxysporum s. 

lat.), date palms (by Fu. oxysporum f. sp. canariensis and Fu. 
oxysporum s. lat.), oil palms (by Fu. oxysporum f. sp. elaidis), and 
banana (also called Panama disease, by Fu. odoratissimum), the 
latter is considered one of the most destructive banana diseases 
(Ploetz 2001, Song et al. 2004, Liu et al. 2017e, Dita et al. 2018, 
Maryani et al. 2019, Afroz et al. 2020, Paul et al. 2020).

Stalk rot and grain mould in sorghum are mainly induced by 
Fu. andiyazi, Fu. annulatum, Fu. beomiforme, Fu. nygamai, Fu. 
sacchari, Fu. thapsinum and Fu. verticillioides. In stalk rot, Fusarium 
mainly colonises the plant stem, causing tipping and breaking, but 
it can also interfere with grain formation. In grain mould, Fusarium 
species infect and colonise the grains, causing a reduction in grain 
size and weight (Leslie et al. 2005, Petrovic et al. 2009, Mohamed 
Nor et al. 2019).

Bakanae disease is the most important disease of rice caused 
by Fusarium species. Fusarium fujikuroi is the main causal agent, 
but other species of the FFSC, such as Fu. andiyazi, Fu. annulatum, 
Fu. sacchari, Fu. subglutinans and Fu. verticillioides have also 
been reported to be associated with Bakanae symptoms (Ploetz 
2001, Amatulli et al. 2010, Wulff et al. 2010, Hsuan et al. 2011, Kim 
et al. 2014). The disease causes abnormal plant development and 
infected plants either eventually die or lose the ability to produce 
grain (Kim et al. 2014).

Head blight disease, scab or tombstone occurs in wheat and 
barley heads, and is induced predominantly by Fu. graminearum. 
The disease disrupts the development of kernels and causes 
discolouration and grain weight loss (McMullen et al. 2012).

Pitch canker affects Pinus species and is caused by Fu. 
circinatum (Steenkamp et al. 2012, Pfenning et al. 2014). The 
fungus can infect the vegetative and reproductive parts of plants. 
Disease symptoms include wilting and discolouration of leaves, 
branch dieback, mortality of female flowers and mature cones, 
damping-off of seedlings and seed deterioration (Wingfield et al. 
2008).

Malformation of mango refers to abnormal growth of 
vegetative and reproductive parts of the mango plant caused by Fu. 
mangiferae, Fu. mexicanum, Fu. sterilihyphosum and Fu. tupiense 
(Britz et al. 2002, Otero-Colina et al. 2010, Lima et al. 2012).

Pokkah boeng occurs in sugarcane and is caused by species 
of the FFSC, such as Fu. sacchari, Fu. proliferatum and Fu. 
madaense. Disease symptoms include chlorosis and necrosis of 
leaves, death of the top of the plant and stalk rot (Costa et al. 2019).

Human and animal infections
Fusarium s. lat. contains highly relevant species in human 
and veterinary medicine, mostly opportunistic agents affecting 
immunocompromised hosts, commonly involved in keratitis, 
skin infections, and onychomycosis, and also associated with 
deep-seated and disseminated, often fatal infections. Clinically 
relevant fusarioid fungi are distributed in several Fusarium species 
complexes i.e., FCSC, FFSC, FIESC, FOSC, FSAMSC, and also 
in the closely related genera Bisifusarium and Neocosmospora 
(Dignani & Anaissie 2004, Chang et al. 2006, O’Donnell et al. 2009, 
2010).

Mycotic keratitis can be caused by Fu. fujikuroi, Fu. oxysporum 
s. lat., and several species of Neocosmospora (N. falciformis, 
N. gamsii, N. keratoplastica, N. lichenicola, N. metavorans, N. 
petroliphila, N. solani, N. suttoniana and N. tonkinensis) (Chang et 
al. 2006, Walther et al. 2021, Boral et al. 2018, Oliveira dos Santos 
et al. 2020). A history of ocular trauma is the major predisposing 
factor for mycotic keratitis caused by these fungi. However, contact 
lens usage and the presence of primary viral or bacterial eye 
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infections are also linked to mycotic keratitis (Oliveira Dos Santos 
et al. 2020, Harbiyeli et al. 2021, Walther et al. 2021). Successful 
treatment of mycotic keratitis depends on timely diagnosis and 
appropriate initial therapy. However, in the case of mycotic keratitis 
and endophthalmitis caused by filamentous fungi, diagnosis may 
be prolonged and keratoplasty or even enucleation of the infected 
eye is required (Erdem et al. 2018, Hof 2020).

Disseminated fusariosis is mainly caused by species of 
Neocosmospora and Fu. oxysporum s. lat. (Hoenigl et al. 2021). 
Immunocompromised individuals are mostly infected through 
physical trauma or by inhalation of microconidia. The fungi 
disseminate hematogenously and affect different parts of the 
body, especially the lungs and sinuses (Nucci et al. 2018). These 
infections are often fatal (Guarro 2013).

Skin infections caused by species of Bisifusarium, Fusarium 
s. str., and Neocosmospora, can be seen as subcutaneous 
nodules or necrotic, ulcerated lesions (Gupta et al. 2000b). 
Immunosuppression and traumatic injury are the main predisposing 
factors for these infections (Tram et al. 2020, Khalid et al. 2021). Even 
though these infections can be resolved by applying appropriate 
antifungal therapy, surgical debridement, skin transplantation and 
even amputation may be required to prevent further dissemination 
(Goussous et al. 2019). In some cases, patients do not survive due 
to septicemia or secondary infections (Tram et al. 2020, Khalid et 
al. 2021).

Onychomycosis is rarely caused by species of Bisifusarium, 
Fusarium s. str. or Neocosmospora (Uemura et al. 2022). Risk 
factors for onychomycosis can include climate, age, chronic skin 
illness, footwear, history of peripheral vascular diseases, diabetes 
and immunosuppression. Onychomycosis caused by non-
dermatophyte species might make systemic dissemination of the 
fungus easier in case of immunosuppression (Girmenia et al. 1992, 
Gupta et al. 2000a).

Species of Fusarium s. lat. occasionally cause infections in 
animals. They can cause opportunistic infections in aquatic animals 
(Smyth et al. 2019, Cafarchia et al. 2020, Mallik et al. 2020), and 
insects (O’Donnell et al. 2012), keratitis in horses (O’Donnell et al. 
2016), meningoencephalitis, invasive sinusitis and facial mycetoma 

in dogs (Evans et al. 2004, O’Donnell et al. 2010). Animal diseases 
associated with toxigenic Fusarium species were summarised by 
Nelson et al. (1994). Soil and sand are thought to be the main 
sources of infections as well as mycotoxins obtained from animal 
feed (Wu 2007, Sáenz et al. 2020).

Research interests

There are 25 152 publications and 363 128 citations from 2011–
2021 related to Fusarium s. lat. in the Web of Science (Fig. 9) 
with the top 10 most cited articles listed in Table 6. Most of the 
publications focused on the impact of mycotoxins on plants, humans 
and animals, as well as epidemiology, diagnosis and management 
of infections caused by Fusarium species (Fig. 10).

Disease management
Species of Fusarium s. lat. that are involved in plant diseases 
are mostly resistant to fungicides and fumigants. Additionally, 
many Fusarium species are facultative pathogens with a saprobic 
phase and can survive for long periods in soil and plant debris. 
Therefore, the main approach to preventing diseases is to increase 
host resistance. Breeding programs to obtain resistant cultivars, 
eradication of infected plants and local quarantine procedures 
to prevent the spread of the disease to unaffected areas are 
recommended. Farm hygiene procedures such as using disease-
free planting materials, and improving soil health to suppress fungal 
growth and reduce the intensity of the disease are recommended 
for disease control (Moore et al. 2001, Dita et al. 2018).

Clinical aspects
Treatment of mycotic keratitis caused by Fusarium s. lat. mainly 
relies on the use of natamycin (5 %) and voriconazole (1 %) 
(Jiang et al. 2020). In the case of unavailability of natamycin, a 
combination of liposomal amphotericin B and voriconazole has 
also been shown to be effective (Boral et al. 2018). Alternative 
treatments such as chlorhexidine (0.02 %) eye drops, and collagen 
cross-linking gave promising results (Zhu et al. 2018, Kunt et al. 
2020, Oliveira Dos Santos et al. 2021). High-dose intravenous 

Fig. 9. Trends in research of Fusarium in the period 2011–2021. The figure shows citations for only 10 000 records.
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amphotericin B, voriconazole or posaconazole are recommended 
for the treatment of invasive fusariosis (Pound et al. 2011, Hoenigl 
et al. 2021, Khalid et al. 2021). Combined therapy is widely used 
primarily because of the severe nature of infections (Hoenigl et 
al. 2021). Onychomycosis by Fusarium s. lat. can be treated with 
terbinafine and itraconazole, however, recurrence may happen 

(Tosti et al. 2003). The wide range of antifungal drug resistance 
among Fusarium s. str. and Neocosmospora species is one of the 
main difficulties to control infections by these agents. To overcome 
this problem, the efficiency of novel antifungal agents, host-
pathogen interactions, as well as drug-drug interactions remain 
relevant for future investigations.

Table 6. Top 10 cited articles related to Fusarium published in the period 2011–2021.
Rank Article title No. of citations References
1 The top 10 fungal pathogens in molecular plant pathology 1 769 Dean et al. (2012)
2 Mycotoxins: Occurrence, toxicology, and exposure assessment 785 Marin et al. (2013)
3 Impact of mycotoxins on humans and animals 608 Zain (2011)
4 A polycationic antimicrobial and biocompatible hydrogel with microbe membrane 

suctioning ability
552 Li et al. (2011c)

5 Masked mycotoxins: A review 512 Berthiller et al. (2013)
6 Climate change, plant diseases and food security: an overview 420 Chakraborty & Newton (2011)
7 A unified effort to fight an enemy of wheat and barley: Fusarium head blight 399 McMullen et al. (2012)
8 Occurrence, toxicity, and analysis of major mycotoxins in food 392 Alshannaq & Yu (2017)
9 Current situation of mycotoxin contamination and co-occurrence in animal feed-focus on 

Europe
392 Streit et al. (2012)

10 Production and characterization of antifungal compounds produced by Lactobacillus 
plantarum IMAU10014

365 Wang et al. (2012b)

Fig. 10. Network visualisation of keywords of the publications related to Fusarium. The larger the text and the circle the more often the subject has been cited.
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Toxins
Secondary metabolites of fungi can play a role in fungal 
pathogenesis, but in the case of mycotoxins, they might also 
contaminate food and feed produced by these plants. A variety of 
mycotoxins i.e., trichothecenes, fumonisins, beauvericin, enniatin, 
fusaric acid, fusarin and moniliformin are known to be produced 
by species of different Fusarium complexes, mainly species from 
the FFSC, FSAMSC and FIESC (Desjardins 2006, Sy-Cordero 
et al. 2012, Wang & Xu 2012, Proctor et al. 2020). Among these 
mycotoxins, trichothecenes can be produced by many species 
of the FSAMSC and FIESC. This mycotoxin class includes 
diacetoxyscirpenol (DAS), T-2 toxin, deoxynivalenol (DON), 
3-acetyl-deoxynivalenol (3- ADON), 15-acetyl-deoxynivalenol 
(15-ADON), and nivalenol (NIV). Trichothecenes were shown 
to be toxic to animals and humans (Bertero et al. 2018, Ji et al. 
2019, Proctor et al. 2020), and can act as virulence factors in the 
development of plant diseases, such as wheat head blight by Fu. 
graminearum (Proctor et al. 1997). The trichothecenes NIV and T-2 
have an immunosuppressive effect on humans and animals (Zain 
2011, Ji et al. 2019). A correlation was found between DON and 
Fusarium head blight disease caused by Fu. pseudograminearum 
(Kazan & Gardiner 2017). Nivalenol is produced mainly by Fu. 
graminearum and Fu. cerealis (syn. Fu. crookwellense). It can 
be detected in barley, maize, rice, wheat, and cereal products (Ji 
et al. 2019). Several types of grains have been found to contain 
T-2 toxin, one of the most acutely toxic trichothecenes. Major 
producers of the T-2 toxin are Fu. langsethiae followed by Fu. poae 
and Fu. sporotrichioides (Ji et al. 2019). Another important group 
of mycotoxins are the fumonisins, mainly produced by species of 
the FFSC, such as Fu. annulatum (as Fu. proliferatum) and Fu. 
verticillioides (Pitt 2014). Fumonisins have often been isolated from 
corn and its products and they have severe effects both in humans 
and animals (Summerell & Leslie 2011). Zearalenone is produced 
by Fu. culmorum, Fu. graminearum, and Fu. sporotrichioides and 
can cause estrogenic effects in farm animals (Zain et al. 2011). For 
further reading about the effects of other mycotoxins produced by 
fusarioid taxa (e.g., fusarins, fusaric acid, moniliformin, enniatins, 
beauvericins, cyclosporins, vasinfectin-A) see Zain (2011), Bertero 
et al. (2018) and Ji et al. (2019).

Taxonomy and phylogeny
As in many other fungal groups, Fusarium taxonomy has not been 
exempted from conflicts and disputes, and also required revision, 
especially after the wide use of molecular techniques and the 
One Fungus = One Name declaration (Hawksworth et al. 2011, 
Taylor 2011). Currently, two opposing systems exist, one that 
argues for a purely cladistic, comprehensive generic definition, 
without acknowledging any synapomorphies for morphological 
recognition (Geiser et al. 2013, 2021, O’Donnell et al. 2020); and a 
second alternative (as applied here) based on the combination of 
available genetic, morphological and physiological data to define 
narrower, morphologically recognisable taxonomic units (Lombard 
et al. 2015, Crous et al. 2021a). According to the latter treatment, 
species previously described in the Fu. dimerum SC, Fu. buxicola 
SC, Fu. staphyleae SC, Fu solani SC and Fu. ventricosum SC were 
reclassified in the genera Bisifusarium, Cyanonectria, Geejayessia, 
Neocosmospora, and Rectifusarium, respectively. Furthermore, 
three additional genera were recognised within Fusarium s. lat., 
namely Luteonectria, Nothofusarium, and Setofusarium. Further 
studies using whole genome data and typifying the described 
taxa will further improve the delimitation of genera in Fusarium 
s. lat. and provide a more stable nomenclature for taxonomists, 

plant pathologists, medical mycologists, students, and regulatory 
authorities.

Despite the divergent and conflicting generic taxonomic 
approaches, species-level taxonomy has remained more or less 
stable, with several novelties proposed in later years, mostly 
helped by the proliferation of molecular phylogenetic studies and 
recent monographic treatments (O’Donnell et al. 2004, 2009, 2010, 
Lombard et al. 2019a, b, Sandoval-Denis et al. 2019, Xia et al. 
2019, Yilmaz et al. 2021).

Authors: H. Kandemir, M.M. Costa and M. Sandoval-Denis

5. Penicillium Link, Mag. Gesell. naturf. Freunde, Berlin 
3(1–2): 16. 1809.

Type species: Penicillium expansum Link

Classification: Ascomycota, Pezizomycotina, Eurotiomycetes, 
Eurotiales, Aspergillaceae.

Background

Penicillium was introduced by Link (1809) with three species, P. 
expansum, P. glaucum and P. candidum. Penicillium expansum 
[CBS H-7082 (neotype); CBS 325.48 = ATCC 7861 = ATHUM 2891 
= CCRC 30566 = FRR 976 = IBT 3486 = IBT 5101 = IMI 039761 = 
IMI 039761ii = MUCL 29192 = NRRL 976 = VKMF-275 (ex-neotype)]  
For much of its history, classification and identifications were based 
on morphology, which is notoriously difficult to interpret. Monographic 
treatments on the genus and its associated sexual morph 
(teleomorphic) genera Eupenicillium and Talaromyces included 
Thom (1930), Raper & Thom (1949), Pitt (1980) and Ramírez (1982). 
These works typically emphasised the need for standard working 
methods to delineate and classify species more accurately.

The early days of DNA sequencing and phylogenetic analyses 
revealed that Penicillium was polyphyletic, segregating into two 
clades defined by Eupenicillium and Talaromyces (LoBuglio et al. 
1993, Berbee et al. 1995). Peterson (2000) noted that subgeneric 
classifications based on conidiophore branching patterns were not 
consistent with phylogenetic clades. Frisvad & Samson (2004) 
stabilised the taxonomy of Penicillium subgenus Penicillium in their 
revision where they introduced the polyphasic species concept 
characterising species based on morphological, extrolite and DNA 
sequence data.

The move to single-name nomenclature in the International 
Code of Nomenclature for algae, fungi, and plants (ICNafp; McNeill 
et al. 2012) allowed the opportunity for Houbraken & Samson 
(2011) to redefine Penicillium. Based on a four-gene phylogeny, 
they reviewed generic concepts in Trichocomaceae, redefined 
Penicillium to include several other genera like Chromocleista, 
Eupenicillium, Eladia, Hemicarpenteles, Torulomyces, and 
Thysanophora, adding to already synonymised genera 
Aspergillopsis, Carpenteles, Citromyces, Coremium, Floccaria, 
Pritzeliella, Hormodendrum and Walzia, and introduced the family 
Aspergillaceae to accommodate for example Aspergillus and 
Penicillium. In addition, they showed that Talaromyces formed a 
monophyletic clade with most Penicillium subgenus Biverticillium 
species in Trichocomaceae. These Penicillium names were 
subsequently transferred to Talaromyces by Samson et al. (2011). 
Finally, Houbraken & Samson (2011) introduced a new subgeneric 
classification dividing Penicillium into two subgenera and 25 
sections. Visagie et al. (2014b) updated the “accepted species 
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list”, becoming the first of its kind that incorporated DNA reference 
sequences. It followed on from previous lists published by Pitt 
& Samson (1993) and Pitt et al. (2000), but in principle, the 354 
species accepted all had reference sequences available needed 
for their identification. This review also proposed standardised 
working methods specifying growth medium formulations, 
incubation conditions, PCR and sequencing protocols and 
suggested the use of tub as a secondary identification marker for 
species identifications. In the following years, many new species 
were introduced and necessitated an update to the species list in 
which Houbraken et al. (2020) accepted 483 Penicillium species 
(501 accepted on 14 April 2022). A large sequencing effort also 
means that an almost complete dataset for ITS, tub, cal and rpb2 is 
available for at least the ex-type strain of each species. Building on 
the proposed subgeneric and sectional classification (Houbraken & 
Samson 2011), a new series classification was proposed resulting 

in Penicillium now containing two subgenera, 32 sections and 89 
series. More recently, Visagie et al. (2024) provided an update on 
taxonomic revisions and new species published since Houbraken 
et al. (2020), which brought the number of accepted species in 
Penicillium to 535 until 31 December 2022 (currently 598)..

Ecological and economic significance
Food mycology and ecology

Penicillium is one of the most common fungal genera occurring 
worldwide in a diverse range of habitats, from soil to vegetation, 
air, indoor environments and various food products. Its species play 
important and various roles, such as the production of speciality 
cheeses, Camembert or Roquefort (Thom 1906, Nelson 1970, Giraud 
et al. 2010), and fermented sausages (Ludeman et al. 2010, Magistà 
et al. 2017), decomposition of organic materials, causing devastating 

Fig. 11. Trends in research of Penicillium in the period 2011–2021.

Table 7. Top 10 cited articles related to Penicillium published in the period 2011–2021.
Rank Article title No. of citations References

1 Thoughts and facts about antibiotics: where we are now and where we are heading 555 Bérdy et al. (2012)

2 Curcumin nanoparticles: preparation, characterization, and antimicrobial study 467 Basniwal et al. (2011)

3 Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and 
Penicillium expansum

420 He et al. (2011)

4 Identification and nomenclature of the genus Penicillium 393 Visagie et al. (2014b)

5 Occurrence, toxicity, and analysis of major mycotoxins in food 392 Alshannaq & Yu (2017)

6 Current situation of mycotoxin contamination and co-occurrence in animal feed-
focus on Europe

392 Streit et al. (2012)

7 Food fermentations: microorganisms with technological beneficial use 377 Bourdichon et al. (2012)

8 Production and characterization of antifungal compounds produced by Lactobacillus 
plantarum IMAU10014

365 Wang et al. (2012b)

9 Phylogeny of Penicillium and the segregation of Trichocomaceae into three families 316 Houbraken & Samson (2011)

10 50-plus years of fungal viruses 312 Ghabrial et al. (2015)
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Fig. 12. Network visualisation of keywords of the publications related to Penicillium. The larger the text and the circle the more often the subject has been 
cited.

rots as pre- and postharvest pathogens on food crops (Samson et 
al. 2010), production of a diverse range of mycotoxins (Frisvad et al. 
2004). The biggest claim for the genus is the production of penicillin, 
which revolutionised medical approaches to treating bacterial 
diseases (Fleming 1929, Thom 1945).

In general, Penicillium species are strictly aerobic, nutritionally 
undemanding, mostly saprobes and able to grow in a wide range 
of physicochemical environments. A few are capable of invading 
plants or animals, but none is obligately parasitic. Some examples 
are fruit pathogens (P. expansum on apples and mainly responsible 
for patulin contamination in fruit juices (Yu et al. 2020)); P. digitatum 
and P. italicum on citrus fruits (Papoutsis et al. 2019), species 
able to grow at very low water activity and low temperatures (P. 
brevicompactum, P. chrysogenum, and P. olsonii), and at low 
oxygen tension (P. roqueforti). They are fast-growing fungi, 
producing a high number of exogenous dry-walled spores that 
are easily disseminated by air. Most species show optimal growth 
at moderate to low temperatures and are capable of growth at 
water activities (aw) below 0.9. Additional species important in food 
mycology are P. paneum, and P. carneum. These two species are 
peculiar for their rapid growth and formation of velutinous colonies 
and they are unique for their high tolerance to propionic acetic 
and lactic acid (Perrone & Susca 2017). Although P. roqueforti 
is well known for cheese production like Roquefort, Stilton and 

Gorgonzola, it is an important spoilage microorganism of airtight-
stored grain and relevant accumulation of roquefortine C in grains 
(Petersson & Shnürer 1999). Recently five different domesticated 
populations have been identified by genomic studies in P. roqueforti 
(Dumas et al. 2020, Crequer et al. 2023). The emblematic species 
P. camemberti, used as a starter species in the production of many 
cheeses, is regarded as a domesticated species derived from the 
contaminant species P. commune (Giraud et al. 2010, Panelli et al. 
2012). Penicillia represents 50 to 90 % of fungal species occurring 
on dry-cured meat, especially on the surface of ripening products, 
such as dry-fermented traditional sausages, with the prevalence of 
P. nalgiovense, followed by P. olsonii, P. chrysogenum, P. commune, 
P. solitum and a recently described species P. salamii (Perrone et al. 
2015, Magistà et al. 2017). The halotolerant P. chrysogenum was 
shown in some studies to improve the quality of ham by promoting 
proteolysis and contributing to the development of the typical ham 
flavour (Comi & Iacumin 2013), while P. commune has been cited 
as responsible for the phenol acid defect (off-odour). Although most 
moulds found on cured meat products are non-toxigenic, strains of 
P. nordicum and P. verrucosum are reported for ochratoxin A (OTA) 
risk in these products, especially P. nordicum as a well-adapted 
species of NaCl-rich and protein-rich food, and represent the most 
commonly occurring ochratoxigenic species on dry-cured meat 
products (Iacumin et al. 2009, Scaramuzza et al. 2015). In addition, 
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Penicillium species with interesting technological properties 
were also observed in the fermentation of various table olives 
products (Bavaro et al. 2017). Although the detected level of toxic 
metabolites of fungi in table olives was very low, they are a potential 
source of fungal toxic metabolites due to Penicillium spoilage 
(Medina-Pradas & Arroyo-López 2015). Recently, a new species 
P. gravinicasei in sect. Cinnamopurpurea, has been reported as 
being involved in the seasoning of cheese in caves (Anelli et al. 
2018). Recently P. brevicompactum was studied for the first time as 
a potential pigment producer using submerged fermentation, and 
it was demonstrated to be a safe source of natural pigments with 
interesting properties for the food industry (Fonseca et al. 2022a).

Research interests

There are 9 592 publications and 130 850 citations from 2011–2021 
in the Web of Science (Fig. 11), with the top 10 most cited articles 
included in Table 7. Most publications focused on taxonomy and 
secondary metabolites from Penicillium (Fig. 12).

Extrolites
Penicillium can produce many small molecule extrolites (Frisvad 
2015). Despite this, genome sequencing has shown that it is only 
10–20 % of the SMs that can potentially be produced on common 
laboratory media (Grijseels et al. 2016, Nielsen et al. 2017).

Important drugs produced by Penicillium species include the 
cholesterol-lowering compactin (= mevistatin) produced primarily 
by P. solitum (Frisvad & Filtenborg 1989, Chakravari & Sahal 2004; 
under the incorrect producer-name P. citrinum), the antifungal 
griseofulvin produced by P. janczewskii and P. griseofulvum 
(Petersen et al. 2014), the immunosuppressive mycophenolic acid 
produced industrially by P. brevicompactum (Wu et al. 2020b), 
adenophostin produced by P. brevicompactum (Takahashi et al. 
1993), the antibiotic penicillin produced industrially by P. rubens 
(Houbraken et al. 2011a), and the immunosuppressive bredinin 
produced by P. brefeldianum (Iwata et al. 1977, Ishikawa et al. 
1980). Many other bioactive compounds have been isolated from 
Penicillium species (Frisvad & Samson 2004, Frisvad et al. 2004, 
Nicoletti & Trincone 2016) and some may be important future drugs.

Important mycotoxins produced by Penicillium species 
include the nephrotoxin ochratoxin A produced by P. verrucosum 
(Frisvad 1985, Pitt 1987) and P. nordicum (Larsen et al. 2001), 
the nephrotoxin citrinin produced by P. verrucosum, P. expansum 
and P. citrinum (and many other species) (Hetherington & Raistrick 
1931, Harwig et al. 1973, Houbraken et al. 2011b), penicillic 
acid produced primarily in cereals by species in series Viridicata 
(Frisvad 2018), and patulin produced primarily by P. expansum in 
pomaceous fruits but also by many other species (Frisvad 2018).

Authors: G. Perrone, C.M. Visagie and J.C. Frisvad

6. Trichoderma Pers., Neues Mag. Bot. 1: 92. 1794.

Type species: Trichoderma viride Pers.

Classification: Ascomycota, Pezizomycotina, Sordariomycetes, 
Hypocreales, Hypocreaceae.

Background

Trichoderma is a hyperdiverse and cosmopolitan genus with 
the number of species exponentially increasing since it was first 

described in 1794, from one species in 1930, five in 1960, 25 in 1990, 
120 in 2010, to ca. 460 in 2022 (Index Fungorum and MycoBank). 
Trichoderma species are most known for biological control properties 
against phytopathogens and used in biotechnology (e.g., enzyme 
production) (Fig. 13). In agriculture, Trichoderma has also been 
utilised to promote plant growth, protect and alleviate plants from 
abiotic stressors (e.g., drought or extreme salinity), and even 
bioremediate or remove contaminants from soils (Harman et al. 2004, 
Hermosa et al. 2012, Khan & Mohiddin 2018). In biotechnology, its 
applications range from biofuel/bioethanol production, animal feed 
and textile manufacturing, to nanotechnology (Bhat 2000, Polizeli 
et al. 2005, Dhawan & Kaur 2007, Gajbhiye et al. 2009, Fayaz et 
al. 2010, Elamawi et al. 2018). The efficacy of this genus comes 
from the diversity of enzymes and secondary metabolites that it 
produces. For example, more than 600 enzymes are in BRENDA, 
The Comprehensive Enzyme Information System (as of April 2022), 
compared to ca. 1 500 in Aspergillus, ca. 900 in Fusarium, and 80 
in Cercospora. In addition, more than 1 000 compounds, including 
secondary metabolites, have been identified in Trichoderma 
(Zeilinger et al. 2016, Zhang et al. 2021b).

The number of enzymes and secondary metabolites produced 
by Trichoderma is possibly a result of its ability to colonise different 
types of substrata and compete against other microorganisms in a 
variety of natural habitats and ecosystems (Samuels 1996, 2006, 
Druzhinina et al. 2011, Chaverri & Samuels 2013, Contreras-
Cornejo et al. 2016). For example, Trichoderma has been found 
inhabiting terrestrial and marine/aquatic soils, travelling in air, 
decomposing plant material, parasitising nematodes and other 
fungi, growing endophytically in living plant tissues, and, less 
commonly, causing infections in immunocompromised humans 
(Garo et al. 2003, Rubini et al. 2005, Andersen et al. 2011, Gazis 
& Chaverri 2015, Hatvani et al. 2019, Ogaki et al. 2020, Nafady 
et al. 2022). In addition, Trichoderma species have been found in 
most parts of the world, even in extreme northern and southern 
latitudes, and from moist tropical or subtropical forests to arid, 
temperate or boreal ecosystems (Samuels 2006, Kubicek et al. 
2008, Gazis & Chaverri 2015, Cummings et al. 2016, Ogaki et 
al. 2020).

Until recently, it was thought that the majority of Trichoderma 
spp. were saprobes because they were typically found in soils 
or decaying plant material. However, it is now accepted that its 
main nutritional mode is mycotrophy, cryptically parasitising or 
antagonising e.g., fungi in the soil or immersed in decomposing 
wood, in addition to growing directly on other fungal sporocarps 
(Kubicek et al. 2011, Atanasova et al. 2013, Chaverri & Samuels 
2013). It has been hypothesised that endophytically, Trichoderma 
acts with similar mechanisms, providing potential benefits to the 
plant (e.g., abiotic and biotic stress protection and alleviation) 
(Bailey et al. 2006, Qin et al. 2016, De Silva et al. 2019b) or waiting 
as latent saprobes for the plant to die (Parfitt et al. 2010).

Morphologically, the asexual morph of Trichoderma is 
characterised by complex conidiophores that generally branch in 
a pyramidal fashion (i.e., the basal branches are longer than those 
at the tips), with hyaline phialides formed on the exposed fertile 
branches, and conidia that are usually smooth, rarely ornamented, 
typically ellipsoidal to nearly oblong, rarely globose, and mostly 
green or hyaline, rarely yellow. If chlamydospores are formed, 
they are typically globose to subglobose and are terminal or 
intercalary. There are some exceptions where the morphology of 
the conidiophores is much simpler, i.e., acremonium-, gliocladium-, 
or verticillium-like (e.g., T. pulvinatum, T. virens, or T. citrinum, 
respectively).
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Relatively few species of Trichoderma have a known sexual 
morph (previously known as Hypocrea). When known, they form 
cushion-shaped, brightly or lightly coloured (e.g., whitish, yellowish, 
ochre to reddish brown, dark green to almost black), fleshy 
stromata composed of pseudoparenchymatous tissue or highly 
compacted hyphae, generally up to 5 mm diam, although stromata 
of some species may be several centimetres wide. Perithecia are 
fully immersed in the stroma and paraphyses are absent. Asci are 
cylindrical, normally containing eight, 1-septate ascospores that 
disarticulate at the septum early in their development, producing 16 
part-ascospores. Part-ascospores may be smooth to ornamented 
(spinulose or warted), generally dimorphic, green or hyaline, and 
rarely yellowish.

Persoon (1794) originally described Trichoderma as a 
“gasteromycete” and Fries erected Hypocrea in 1825. It was several 
years later that Tulasne & Tulasne (1860) and Brefeld (1891) 
proved the link between Trichoderma and Hypocrea by following 
Trichoderma hyphae to the stroma and by isolating ascospores 
into pure cultures, respectively. Bisby (1939) recognised only 
one species, T. viride. Rifai (1969) was one of the first to suggest 
the complex taxonomy of the genus, dividing it into nine “species 
aggregates,” i.e., T. aureoviride, T. hamatum, T. harzianum, T. 
koningii, T. longibrachiatum, T. piluliferum, T. polysporum, T. 
pseudokoningii, and T. viride. He regarded each species aggregate 
as comprising more than one morphologically cryptic species. Rifai 
also concluded that asexual characters alone might not be useful 
in its taxonomy.

Before Rifai’s critical taxonomic revision, Dingley (1952, 1957) 
had already published the first “modern” treatments of Hypocrea 
when she described, characterised, and illustrated several 
species including their asexual morphs. Dingley identified all the 
Hypocrea asexual morphs as being typical of T. viride, despite their 
differences which were evident in her illustrations. Some years later, 
Doi produced substantial Hypocrea monographs, and described 
many more species from Japan, Papua New Guinea, and South 
America (e.g., Doi 1966, 1969, 1972, 1975, 1976). In his works, 
Doi described and illustrated sexual and asexual morphs. By the 
early 1990s, Bissett was discussing the implications of basing a 
Trichoderma classification on Rifai’s species aggregates (Bissett 
1991a) because some were narrowly defined species, whereas 
others could be interpreted as having relatively large numbers of 
species. For example, he suggested that more than 20 distinct 
species could be assigned to each of the morphological species T. 
hamatum, T. koningii, and T. viride (Bissett 1984, 1991a, b, c, 1992). 
He then revised the taxonomy and recognised five sections: sect. 
Hypocreanum, sect. Longibrachiatum, and sect. Pachybasium; 
sect. Saturnisporium, and sect. Trichoderma (Bissett 1984, 1991a, 
b, c, 1992). These sections are still used (e.g., Vizcaino et al. 2005, 
Samuels et al. 2012, Qin & Zhuang 2016, Zhang et al. 2022). 
More recent significant Trichoderma taxonomic treatments include 
Samuels et al. (1998, 2012), Chaverri & Samuels (2003), Chaverri 
et al. (2003a), Lu et al. (2004), Overton et al. (2006), Jaklitsch et 
al. (2006, 2008), Jaklitsch (2009, 2011) and Jaklitsch & Voglmayr 
(2015). In addition, smaller studies added many new species (e.g., 
Chaverri et al. 2002, 2003a, 2011, 2015, Chaverri & Samuels 2003, 
Zhu & Zhuang 2015, Qin & Zhuang 2016b, c, Zhang & Zhuang 
2017).

The introduction of DNA sequencing and phylogenetics 
revolutionised the study of Trichoderma systematics. The ITS 
nrDNA region was the first marker to be used in the late 1990s 
(Kuhls et al. 1997, Ospina-Giraldo et al. 1998, 1999, Lieckfeldt et 
al. 1999, Dodd et al. 2000, Lieckfeldt & Seifert 2000, Lee & Hseu 

2002). Then, in the mid to late 2000s, additional markers/genes 
were added (e.g., endochitinase, ECH42; translation elongation 
factor 1-alpha, tef1; mitochondrial small subunit rDNA; actin, act; 
DNA-directed RNA polymerase second largest subunit, rpb2; and 
calmodulin, cal) (Kullnig et al. 2001, Kullnig-Gradinger et al. 2002, 
Chaverri & Samuels 2003, Chaverri et al. 2003b). This decade 
was the beginning of the exponential growth in the number of new 
species described. Still today, the suggested secondary barcodes 
for Trichoderma taxonomy are tef1 and rpb2 (Chaverri et al. 2015, 
Cai & Druzhinina 2021), as it is well-accepted among Trichoderma 
taxonomists that the ITS region is not able to distinguish species. 
In general, tef1 gives support to terminal clades and rpb2 to the 
backbone of the genus phylogeny (Chaverri & Samuels 2013, 
Chaverri et al. 2015, Robbertse et al. 2017, Cai & Druzhinina 
2021). However, Trichoderma systematists still recommend the 
use of several genes (Chaverri et al. 2015, Cai & Druzhinina 
2021). GenBank’s database of DNA sequences from Trichoderma 
types is well curated, containing most of the described species 
(Robbertse et al. 2017, Cai & Druzhinina 2021). A decrease in 
the cost of genome sequencing has made it possible to produce 
many Trichoderma genomes, with about 85 genomes on the Joint 
Genome Institute’s MycoCosm website (https://mycocosm.jgi.doe.
gov) and 32 on GenBank. This new genomic data pave the way to 
discover novel and improved markers for taxonomy and species 
circumscription. For additional information on taxonomic history 
and resources for Trichoderma, see reviews in Samuels (1996, 
2006), Samuels & Hebbar (2015), and Cai & Druzhinina (2021).

Ecological and economic significance

Trichoderma is ubiquitous and was thought to only inhabit the soil 
and decomposing plant material (Kubicek et al. 2011, Atanasova 
et al. 2013, Chaverri & Samuels 2013). In the soil, species of 
Trichoderma may be found as chlamydospores or may be actively 
parasitising nematodes, oomycetes, or other fungi (Samuels 
et al. 2002, Rubini et al. 2005, Samuels 2006, Gazis & Chaverri 
2015, Nafady et al. 2022). In rotting wood, they may be saprobic 
or mycotrophic on other fungi immersed in the wood. However, 
Trichoderma spp. have also been found as endophytes in roots, 
and more recently in stems of some tropical trees in natural forests 
such as Coffea, Hevea, Micrandra, and Theobroma (Samuels et al. 
2006, Gazis & Chaverri 2010, Yu et al. 2015c, Kwasna et al. 2016, 
Skaltsas et al. 2019, Rodriguez et al. 2021). In most cases, the 
nutritional mode is cryptic because the species are not obviously 
growing on other fungal sporocarps, and thus, it is challenging 
to determine if they are mycotrophs or saprotrophs. The ability 
of some Trichoderma species to colonise almost systemically in 
plant tissues has been demonstrated experimentally in planta. 
For example, Bailey et al. (2006, 2008) and Pujade-Renaud et 
al. (2019) inoculated planting soil and seeds with endophytic 
Trichoderma spp., i.e., T. lentiforme, T. hamatum, T. neotropicale, 
and T. koningiopsis, and demonstrated that the fungi were able to 
colonise seedling roots, stems and, in some cases, leaves.

The mycotrophic ability of many Trichoderma spp. has 
made this group one of the most used in the biological control of 
phytopathogens. The T. harzianum complex possibly contains most 
species used as bio fungicides (Chaverri et al. 2015). Members 
of this complex have been used to control fungi, e.g., Alternaria, 
Botrytis, Corynespora, Curvularia, Fusarium, Moniliophthora, 
Phyllosticta, Rhizoctonia, Sclerotinia, Sclerotium, and Zymoseptoria 
(Sempere & Santamarina 2007, John et al. 2010, Crozier et 
al. 2015, You et al. 2016, Soto et al. 2018, Baiyee et al. 2019, 
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Kerdraon et al. 2019, Silva et al. 2021, Navarro et al. 2022, Yadav 
& Ghasolia 2022); oomycetes, e.g., Pythium and Phytophthora 
(Benhamou & Chet 1997, Ahmed et al. 1999, Chowdappa et al. 
2013); Spongospora (O’Brien & Milroy 2017); and nematodes, e.g., 
Meloidogyne (Sharon et al. 2007). The antifungal mechanisms in 
Trichoderma can be divided mainly into direct parasitism, where 
e.g., fungal cell-wall degrading enzymes are produced; and 
antibiosis due to the secretion of secondary metabolites (SMs), 
including volatile organic compounds (VOCs) (Ghorbanpour et al. 
2018, Köhl et al. 2019). Examples of wall-degrading enzymes are 
proteases, endochitinases, β-1,3-glucanases, polygalacturonases, 
xylanases, and cellulases (Hermosa et al. 2013, Ghorbanpour et 
al. 2018). Secondary metabolites include polyketides, pyrones, 
terpenes, metabolites derived from amino acids, and polypeptides 
(Schuster & Schmoll 2010), while volatile compounds are acids, 
alcohols, aldehydes, esters, ethers, hydrocarbons, ketones and 
different classes of terpenes (Cruz-Magalhaes et al. 2019, Rajani 
et al. 2021).

The benefits of Trichoderma are not restricted to mycotrophy 
but also expand to other plant-beneficial effects such as induced 
systemic resistance (ISR), plant growth promotion, and abiotic 
stress protection and alleviation. For example, jasmonic acid, 
ethylene, hydrophobin-like SSCP orthologues, and higher 
expression of pathogenesis-related enzymes, such as chitinases, 
β-1,3-glucanase, and peroxidases, among others, are associated 
with ISR (Hermosa et al. 2012). Additional information on 
Trichoderma and ISR can be found in reviews by Harman et 
al. (2004), Shoresh et al. (2010), Hermosa et al. (2012), and 
Mendoza-Mendoza et al. (2018). Some mechanisms involved 
in plant growth promotion by Trichoderma are auxin signalling 
(Contreras-Cornejo et al. 2009) and production and activity of 
indole acetic acid and ACC deaminase which then manipulate the 
phytohormone regulatory network (Gravel et al. 2007, Hermosa et 
al. 2013). Reviews by Harman et al. (2004), Hermosa et al. (2012) 
and Mendoza-Mendoza et al. (2018) contain additional information. 
Involvement of Trichoderma in plant resistance to heat, salinity, 
and drought has been attributed to the production of heat-shock 
proteins, n-acetyl-β-hexosaminidase, Kelch-repeat domain protein 
related to protein-protein interactions, and alleviation of damage by 
reactive oxygen species (ROS), water-use efficiency and secretion 
of phytohormonal analogues (Hermosa et al. 2013, Kashyap et al. 
2017, Mona et al. 2017). There is also evidence that secondary 
metabolites play an important role in plant stress tolerance by 
coordinately working to bring growth regulation and protecting 
membranes from ROS (Mona et al. 2017, Phukhamsakda et al. 
2018b, 2019, Macabeo et al. 2020, Garcia et al. 2022).

Fungal cellulases currently dominate the industrial applications 
of cellulases, and T. reesei is the main industrial source of cellulases 
and hemicellulases that depolymerise biomass into simple sugars 
that are then used in biofuels, including ethanol (Lynd et al. 2002, 
Himmel et al. 2007, Bischof et al. 2016). Cellulases from Trichoderma 
spp. have also been applied in the pulp and paper, textile, and food 
industries (Schuster & Schmoll 2010). Transformation techniques 
facilitating the genetic engineering of T. reesei became available 
in the early 1990s (see review in Bischof et al. 2016), making this 
species among the first hosts for the expression of mammalian 
proteins (Harkki et al. 1989). Currently, about 11 % of all enzyme 
formulations registered by the Association of Manufacturers and 
Formulators of Enzyme Products are produced using T. reesei as 
the expression host (see review and fig. 1 in Bischof et al. 2016). 
Additional enzymes produced by Trichoderma spp. are pectinases, 
xylanases, chitinases, lipases, proteases, amylases, manganese 

peroxidases, and laccases, which are used in various industries 
such as animal feed, antimicrobial purposes, biorefineries, 
detergents, detoxification of pollutants, fruit juice clarification, 
leather, medicine, and waste management (Gautam & Naraian 
2020).

Research interests

The number of publications and citations linked to Trichoderma is 
on an upward trend (Fig. 13). The research interests continue to 
be related to their plant beneficial abilities and industrial enzyme 
production. There are 9 380 publications and 117 855 citations from 
2011–2021 in the Web of Science (Fig. 14), with the top 10 most 
cited articles included in Table 8. The highest cited article “Induced 
systemic resistance by beneficial microbes” (Pieterse et al. 2014) 
reviews the beneficial interactions between microbiomes and 
plants, with a focus on roots. In this review, the roles of Trichoderma 
in induced systemic resistance, modulation of root immunity, and 
disease-suppressive soils are discussed. The next six articles in 
the ranking are related to enzyme production for the biofuel and 
biorefinery industries (Table 8).

Future perspectives

With advances in the sequencing and availability of more than 80 
Trichoderma genomes, it will now be possible to mine efficiently 
for bioactive natural products (e.g., secondary metabolites and 
proteins) and to better understand the ecology of Trichoderma 
(Katz & Baltz 2016, Ziemert et al. 2016). For example, genome 
mining of T. afroharzianum T-22 (labelled as T. harzianum in the 
publication of Chen et al. 2019a) identified and characterised a 
cryptic iterative polyketide synthases (IPKS)-containing cluster that 
synthesises tricholignan A, which has been shown to reduce iron 
(III) and promote plant growth under iron-deficient conditions (Chen 
et al. 2019a). Chen et al. (2019a) used heterologous reconstitution 
and biochemical studies to unravel the biosynthetic pathway. In 
addition, genome mining could be used to explore how, why, or 
what Trichoderma is using to become a successful plant symbiont. 
For example, the detection of sets of genes encoding proteins 
involved in phytohormone biosynthesis and signalling (Guzmán-
Guzmán et al. 2019).

Trichoderma could also be an important component in a 
strategy to produce crops more resilient to the effects of climate 
change, declining soil fertility, pollutants in soils, fungicide 
resistance, and phytopathogens (Harman et al. 2004, Hermosa et 
al. 2012, Kashyap et al. 2017, Mohapatra et al. 2022). Innovative 
research on plant-beneficial Trichoderma should also be geared to 
understand interactions with other inhabitants in the microbiome, 
including endophytes. For example, there is increasing evidence 
that Trichoderma is a core component in healthy endophytobiomes 
of some tropical trees in their natural habitats (Gazis & Chaverri 
2015, Skaltsas et al. 2019, Aldrich-Wolfe et al. 2020, Rodriguez 
et al. 2021, Fonseca et al. 2022b). However, little is known about 
how Trichoderma artificially inoculated in plants may interact with 
other fungi in the plant endo- or rhizosphere. There is evidence of 
non-target effects (e.g., toxicity and competitive displacement) by 
several biocontrol species or isolates. For example, Naseby et al. 
(2000) found that the fungistatic VOCs produced by Trichoderma 
cf. harzianum also had a negative impact on plant growth at high 
doses. Szczepaniak et al. (2015) inoculated soils with T. cf. viride 
together with a bacterial consortium of 195 species. After one year, 
only 73 bacterial species were recovered from the consortium, 
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Fig. 14. Network visualisation of keywords of the publications related to Trichoderma. The larger the text and the circle the more often the subject has been 
cited.

Fig. 13. Trends in research of Trichoderma in the period 2011–2021.

suggesting an antagonistic effect. Similarly, other species of 
Trichoderma may reduce the germination of arbuscular mycorrhizal 
fungal spores (McAllister et al. 1994, Brimner & Boland 2003). 
In contrast, the inoculation of Trichoderma spp. in natural soils 
significantly increased the fungal rhizospheric community (Naseby 
et al. 2000, Cordier & Alabouvette 2009). For more on this topic, 
see the review by Jangir et al. (2019).

The correct identification of Trichoderma continues to be 
problematic. In the Web of Science, more than 4 000 publications 
identified the species used as T. harzianum. It is now accepted among 

Trichoderma systematists that T. harzianum s. str. is mostly found 
in temperate regions, especially Europe, and with limited biocontrol 
potential. Those used in biocontrol studies belong to others in the T. 
harzianum species complex, e.g., T. afroharzianum, T. guizhouense, 
T. lentiforme, and T. simmonsii (Chaverri et al. 2015). This problem 
is aggravated by the fact that many sequences in GenBank are 
incorrectly identified (pers. obs.), even though the tools for a correct 
identification by doing BLAST with type sequences and relatively 
informative secondary barcodes (tef1 and rpb2) are available 
(Robbertse et al. 2017, Cai & Druzhinina 2021). Additionally, even 
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deposited whole genomes are incorrectly identified. For example, 
the genome of Trichoderma isolate T6776 was deposited with the 
name “T. harzianum” (Baroncelli et al. 2015). When extracting the 
rpb2 and tef1 regions from that genome, the correct identification is T. 
afroharzianum (pers. obs.). More studies on the genomics, ecology, 
biological control, or biotechnology of Trichoderma should include 
a robust identification. This could be advanced by, for example, 
increasing the number of Trichoderma systematists that can 
advocate for better taxonomy and provide more solid journal article 
peer reviews (see review in Cai & Druzhinina 2021, which includes a 
section on the taxonomy impediment facing Trichoderma).

Author: P. Chaverri

7. Botrytis P. Micheli ex Pers., Neues Mag. Bot. 1: 120. 
1794.

Type species: Botrytis cinerea Pers.

Classification: Ascomycota, Pezizomycotina, Leotiomycetes, 
Helotiales, Sclerotiniaceae.

Background

Botrytis is a large genus of plant pathogenic hyphomycetes infecting 
numerous host plants (Holz et al. 2007). Botrytis species have been 
reported to attack 596 genera of vascular plants representing over 
1 400 plant species (Elad et al. 2016). Botrytis species are found 
ranging from tropical and subtropical to cold temperate zones or 
even deserts (Elad et al. 2007, 2016). Diseases by Botrytis species 
cause 10 to 100 billion USD in annual losses worldwide (Boddy 
2015). The estimated average cost to control disease is around 18 
USD/acre while management costs, depending on the importance 
of Botrytis diseases, can be up to approximately 57 USD/acre 
(Steiger 2007).

Botrytis was introduced in Von Haller (1768) and Botrytis 
cinerea is the type species. There are species of Botrytis that cause 
significant losses in agriculture, floriculture and horticulture but the 
most common and most important species is Botr. cinerea (Droby & 
Lichter 2004). Botrytis cinerea is responsible for considerable losses 
in crops, notably bulbous crops, grape vines and legume crops and 
it causes post-harvest spoilage of many fruits (Droby & Lichter 

2004, Jackson 2014). Botrytis cinerea was voted by researchers 
and the scientific community to be the second most important plant 
pathogen infecting over 200 plant species (Anderson 1924, Beever 
& Weeds 2004, Capieau et al. 2004, Choquer et al. 2007, Mirzaei et 
al. 2007, Dean et al. 2012). However, Botrytis cinerea is also used 
for the production of sweet dessert wines (Sauternes) (Magyar 
2011).

Botrytis species can produce both sexual and asexual morphs. 
The asexual morph produces copious amounts of conidia, although 
the survival time of conidia is normally short and depends on 
environmental conditions (Kerssies et al. 1995, Beever & Weeds 
2004, Blanco et al. 2006, Carisse et al. 2012, Nassr & Bakarat 
2013, Hahn 2014). The sexual morph of Botr. cinerea was first 
induced under laboratory conditions by Faretra & Antonacci (1987). 
Sexual morph compatibility is controlled by a single mating-type 
locus with mat-1 and mat-2 alleles (Faretra et al. 1988). Sclerotia, 
large melanised hyphal aggregates, occur with sexual reproduction 
and they are long-term survival structures (Hahn 2014). In addition, 
Botrytis can produce chlamydospores that can survive periods of 
up to 3 mo during drought (Urbasch 1983).

Intensive research on Botrytis has been carried out by Elad et al. 
(2004) with a combination of genome sequences. A comprehensive 
review of Botrytis species diversity was published by Walker (2016) 
and additional information was provided by Fillinger & Elad (2016). 
They recognised 74 species records in Species Fungorum (2022). 
The type species (Botr. cinerea) is also an important model organism 
that has been used for understanding the development of fungicide 
resistance and plant-pathogen interactions (Staats et al. 2005, 
Amselem et al. 2011, Hahn 2014, Valero-Jiménez et al. 2019).

Ecological and economic significance

Botrytis species on bulb crops
Several Botrytis species are pathogens in bulb crops. Botrytis 
squamosa and Botr. allii are the most important fungal diseases 
pathogenic to onions and are causal agents of botrytis neck rot 
(Lorbeer 1992, 1997, Lacy & Lorbeer 1995).
 
Botrytis species in legume crops
Grey mould caused by Botr. cinerea is ubiquitously distributed and 
results in significant production losses. It is also a severe problem 
for lentils in Australia, India, Syria, and Morocco (Beniwal et al. 

Table 8. Top 10 cited articles related to Trichoderma published in the period 2011–2021.
Rank Article title No. of citations References
1 Induced systemic resistance by beneficial microbes 1 089 Pieterse et al. (2014)
2 Bioethanol production from agricultural wastes: an overview 901 Sarkar et al. (2012)
3 Expansion of the enzymatic repertoire of the CAZy database to integrate 

auxiliary redox enzymes
681 Levasseur et al. (2013)

4 The challenge of enzyme cost in the production of lignocellulosic biofuels 607 Klein-Marcuschamer et al. (2012)
5 Novel enzymes for the degradation of cellulose 601 Horn et al. (2012)
6 A review of lignocellulose bioconversion using enzymatic hydrolysis and 

synergistic cooperation between enzymes – Factors affecting enzymes, 
conversion and synergy

571 Van Dyk & Pletschke (2012)

7 How does plant cell wall nanoscale architecture correlate with enzymatic 
digestibility?

515 Ding et al. (2012)

8 Mycorrhiza-induced resistance and priming of plant defenses 439 Jung et al. (2012)
9 Plant-beneficial effects of Trichoderma and of its genes 432 Hermosa et al. (2012a)
10 Fungal cellulases 416 Payne et al. (2015)
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1993). When conditions are conducive Botr. cinerea causes grey 
mould that can infect the entire crop which is a serious concern in 
Australia, Argentina, Bangladesh, India, Nepal and Pakistan (Karki 
et al. 1993, Haware 1998, Pande et al. 2002). The disease occurs 
worldwide (Nene et al. 1984, Pande et al. 2002).

Botrytis on major crops
Botrytis cinerea is a major pathogen causing post-harvest fruit 
decay in table grapes with infection leading to grape decay during 
storage (Coertze & Holz 1999, 2002). Botrytis cinerea is also 
present at the harvest stage of tomatoes (Chastagner et al. 1978). 
Botrytis species cause post-harvest rots on kiwifruit, which develop 
mainly during cold storage (Brook 1992). Fruit rot in strawberries is 
a worldwide problem (Blacharski et al. 2001).

Research interests

There are 6 968 publications and 103 497 citations from 2011–2021 
in the Web of Science (Fig. 15), with the top 10 most cited articles 
included in Table 9. Most publications focused on fungal disease 
caused by Botrytis cinerea and disease management (Fig. 16).

Disease management
Rapid conidial germination and infection, with mycelium growth 
able to occur under a wide range of microclimate conditions, leads 
to severe disease management problems all around the world (Elad 
et al. 2007). Disease management can use physical technologies 
to control Botr. cinerea modifying several parameters such as 
absolute and relative gas pressure, sonication, temperature, and 
UV irradiation (Crisosto et al. 2002, De Simone et al. 2020). The 
main physical methods investigated against grey mould decay 
in table grapes are listed in De Simone et al. (2020). Chemical 
technologies to control Botr. cinerea have been widely used but for 
long-term storage, there may be negative developmental effects 
in humans and animals (Youssef et al. 2015, Carter et al. 2015). 

Sulphur dioxide (SO2) is the main method used to control the Botr. 
cinerea spoilage of post-harvest fruit commodities (De Simone et al. 
2020). Several succinate dehydrogenase inhibitors (SDHIs) have 
been introduced as chemical alternatives with inhibition rates of 
80.1–94.4 % for Botr. cinerea in table grapes (Avenot & Michailides 
2010, Vitale et al. 2016). Levels of CO2 from 5–10 % failed to 
prevent the development of Botr. cinerea (Uota 1957, Laszlo 
1985). The main chemical methods in both liquid and gas forms 
investigated against grey mould decay in table grapes are listed 
in De Simone et al. (2020). Leroux et al. (2002a, b) and Walker 
et al. (2013) have shown effective resistance management of 
Botrytis cinerea (grey mould) by using anti-Botrytis fungicides and 
Hahn (2014) listed major fungicides for use against Botr. cinerea. 
Multisite inhibitors have been used for long-term control but these 
methods now have low effectiveness when compared to active 
site-specific compounds (Edgington 1984). The control of Botr. 
cinerea by using microbial resources or antimicrobial compounds 
of biological origin has been widely accepted as an eco-friendly 
approach free of synthetic chemicals (Russo et al. 2017, Linares-
Morales et al. 2018, Raveau et al. 2020). Research has proved 
that some raspberry cultivars can be inhibitory to Botr. cinerea 
thereby avoiding latent infections (Williamson & Jennings 1992). 
These findings suggest that cultivar selection will play a major role 
in future Botrytis management strategies. In addition, Trichoderma 
harzianum and T. viride are known for their antifungal effects and 
have controlled grey mould in field experiments (Mukherjee & 
Haware 1993, Haware 1998).

Toxins
Culture filtrates of Botr. cinerea can be phytotoxic when applied to 
plant tissue (Rebordinos et al. 1996). The toxic compounds were 
identified as botcinolide (a highly substituted lactone) and botrydial 
types (a tricyclic sesquiterpene) (Cutler et al. 1993, Colmenares et 
al. 2002).

Fig. 15. Trends in research of Botrytis in the period 2011–2021.
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Taxonomy and phylogeny
Initially, ITS sequences were used for Botrytis but showed limited 
phylogenetic information and could not resolve relationships 
between species (Holst-Jensen et al. 1998). Staats et al. (2005) 
used glyceraldehyde-3-phosphate dehydrogenase (gapdh), heat 
shock protein 60 (hsp60) and rpb2 to build a phylogenetic tree and 
to test congruence between different phylogenetic trees. Staats 
et al. (2007) used ethylene-inducing proteins 1 and 2 (nep1 and 
nep2) as phylogenetically informative markers and O’Gorman et 

al. (2008) mentioned that gapdh and β-tubulin (tub) genes helped 
lead to the revival of a long-lost species while hsp60 was used for 
uncharacterised endophytic isolates. Khan et al. (2013a) used ITS, 
ribosomal intergenic spacer (IGS), and gapdh to identify Botrytis 
species infecting onions. Garfinkel (2021) stated that sequence 
data for the gapdh, hsp60, rpb2, nep1 and nep2 genes are 
necessary for identifying new species of Botrytis.

Author: S. Tibpromma

Table 9. Top 10 cited articles related to Botrytis published in the period 2011–2021.
Rank Article title No. of citations References
1 The top 10 fungal pathogens in molecular plant pathology 1 769 Dean et al. (2012)
2 Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum 

and Botrytis cinerea
603 Amselem et al. (2011)

3 Fungal small RNAs suppress plant immunity by hijacking host RNA interference 
pathways

594 Weiberg et al. (2013)

4 Phosphorylation of a WRKY transcription factor by two pathogen-responsive 
MAPKs drives phytoalexin biosynthesis in Arabidopsis

444 Mao et al. (2011)

5 Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and 
Penicillium expansum

420 He et al. (2011)

6 Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates 
jasmonate and ethylene signaling synergy in Arabidopsis

404 Zhu et al. (2011b)

7 Production and characterization of antifungal compounds produced by 
Lactobacillus plantarum IMAU10014

365 Wang et al. (2012b)

8 The microbial ecology of wine grape berries 360 Barata et al. (2012)
9 Plants send small RNAs in extracellular vesicles to fungal pathogen to silence 

virulence genes
333 Cai et al. (2018)

10 Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic 
responses toward Botrytis cinerea infection

291 Birkenbihl et al. (2012)

Fig. 16. Network visualisation of keywords of the publications related to Botrytis. The larger the text and the circle the more often the subject has been cited.
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8. Pichia E.C. Hansen, Centbl. Bakt. ParasitKde, Abt. I 
12(19): 538. 1904.

Type species: Pichia membranifaciens (E.C. Hansen) E.C. Hansen

Classification: Ascomycota, Saccharomycotina, Pichiomycetes, 
Pichiales, Pichiaceae.

Background

The genus Pichia is one of the oldest yeast genera described and 
studied by pioneers of yeast research. This genus was described 
by Hansen (1904) for a non-sugar-fermenting yeast, which he 
had isolated from gelatinous material on the roots of an elm tree 
attacked by a fungus. Hansen originally described the yeast 
as Saccharomyces membranifaciens in 1888 and later in 1904 
transferred it to a newly established genus as Pi. membranifaciens 
(reviewed in Kurtzman 1998). Hansen developed techniques for 
obtaining and maintaining pure yeast cultures (reviewed in Barnett 
& Lichtenthaler 2001). The development of these techniques made 
studies and descriptions of new species possible because isolated 
pure cultures could be maintained and re-investigated (compared 
with potential new species). Some strains from the period of the 
pioneering research 1880–1900 are still available, including 
Hansen’s strain of Pi. membranifaciens, which was preserved in 
several culture collections. In the following years, the number of 
species described in the genus has increased to 12 in the work by 
Guilliermond (1920). The authors usually examined characteristics 
of colony growth (colour, size and shape), growth in liquid 
culture and the microscopic appearance of vegetative cells and 
filaments, including ascospores. One peculiar micromorphological 
characteristic of the genus Pichia is the shape of ascospores with 
a ring or ledge, which is also visible in the light microscope. This 
shape of spores was called hat-shaped or galeate. The size and 
position of the ledge varies between species.

Since Hansen established the genus Pichia, the definition 
of this taxon has changed considerably to accommodate the 
ever-increasing number of new species assigned to the genus. 
Lodder (1972) listed 35 Pichia species in the second edition of the 
compendium “The Yeasts, a Taxonomic Study”, whereas Kreger-
van Rij (1984) included 56 species in the third edition. Physiological 
tests, electron microscopy, biochemical comparisons and 
characteristics of DNA were used to redefine Pichia. This resulted 
in a series of merging and splitting of species with members of 
Debaryomyces, Hansenula, Issatchenkia, Komagataella, Williopsis, 
and Yamadazyma (reviewed in Kurtzman 1998). For example, 
Hansenula and Pichia were separated from each other primarily 
based on a single physiological test, the ability to assimilate nitrate 
as a sole source of nitrogen (reviewed in Kurtzman 1998). The shape 
of ascospores and the position of the ledge was the characteristic 
of Issatchenkia. Williopsis, which was characterised by Saturn-
shaped ascospores (spherical with an equatorial ring), was merged 
with Hansenula and later reinstated (reviewed in Kurtzman 1998). 
The type of coenzyme Q separated Debaryomyces, Issatchenkia 
and Yamadazyma. Early application of partial rRNA sequences 
separated several former Hansenula species, and new genera 
Komagataella, Kurashia, Nakazawaea, and Ogataea were 
proposed to accommodate them. Using the percentage of DNA 
relatedness (DNA-DNA re-association) as a taxonomic marker, 
Kurtzman (1984) transferred nearly all Hansenula species to 
Pichia and separated species with hat-shaped and Saturn-shaped 
spores between Pichia and Williopsis, respectively. The concept 

of the large genus Pichia was retained until broad sequencing of 
the D1/D2 domains of the large subunit nrRNA gene (LSU) and 
subsequent analyses convincingly demonstrated that Pichia was 
polyphyletic (Kurtzman & Robnett 1998).

Subsequent multi-gene (Kurtzman et al. 2008) and whole-
genome (Shen et al. 2019) phylogenetic analyses demonstrated 
that the core of Pichia (where the type species Pi. membranifaciens 
is placed) is distantly related to most of the aforementioned genera, 
except for Issatchenkia. Several biotechnologically important 
species were renamed following the reclassification of Pichia. 
Hansenula was abandoned, and the yeast known as Hansenula 
anomala was transferred to a new genus Wickerhamomyces 
(Kurtzman 2011b); Wickerhamomyces anomalus was conserved 
against older nomenclatural synonyms (Daniel et al. 2012). Pichia 
pastoris was renamed as Komagataella pastoris (Kurtzman et al. 
2008, Kurtzman 2009, 2011a). Another biotechnologically important 
species Candida utilis appeared to be conspecific to Pichia jadinii 
and the latter was transferred to Cyberlindnera as Cyberlindnera 
jadinii (Kurtzman 1998, Kurtzman et al. 2008). Yeast genera that 
include former species of Pichia are Ambrosiozyma, Barnettozyma, 
Cyberlindnera (formerly also Lindnera), Hyphopichia, 
Komagataella, Kregervanrija, Kurashia, Meyerozyma, Millerozyma, 
Nakazawaea, Ogataea, Peterozyma, Phaffomyces, Priceomyces, 
Saturnispora, Scheffersomyces, Starmera, Wickerhamomyces, 
Yamadazyma, and Zygoascus (Kurtzman et al. 2008, Kurtzman 
2011a). A few phylogenetically related to the genus Pichia (Pichia 
clade, Kurtzman et al. 2008) asexual yeasts are still classified in 
Candida (Daniel et al. 2014).

Ecological and economic significance

Yeasts within Pichia have a few remarkable phenotypic traits. Many 
species are thermotolerant, growing at and above 37 °C (Kurtzman 
2011c). Pichia cecembensis and Pi. kudriavzevii can grow above 
40 °C (Kurtzman 2011a). Pichia kluyveri, Pi. kudriavzevii, and Pi. 
membranifaciens can grow at or below pH 2 and resist high osmotic 
pressure (Peter et al. 2017, Vicente et al. 2021). An overview of 
yeasts in natural habitats is provided in the chapters of the book 
series Yeasts in Natural Ecosystems cited below (Buzzini et al. 
2017a, b).

Like with many other ascomycetous yeasts, species of Pichia 
can be found on substrates visited or modified by insects. Many 
Pichia species have been reported to be associated with slime 
fluxes of trees (Phaff & Starmer 1987, Peter et al. 2017). However, 
most of these species were reclassified and transferred to other 
genera Barnettozyma, Cyberlindnera, Kodamaea, Komagataella, 
Meyerozyma, Millerozyma, Ogataea, and Wickerhamomyces 
(Peter et al. 2017), and only two species, Pi. exigua and Pi. 
scutulata remained in the genus (Kurtzman 2011c). Rotting tissues 
of cacti and fruits harbour a diverse community of yeasts (Ganter 
et al. 2017, Peter et al. 2017). Pichia cactophila is a ubiquitous 
cactophilic yeast, whereas several other species, Pi. barkeri, Pi. 
cephalocereana, Pi. deserticola, Pi. eremophila, Pi. heedii, and 
Pi. insulana have a narrow geographic (and host) distribution 
range (Ganter et al. 2017, Yurkov 2017). Several former Pichia 
species, presently classified in Starmera and Yamadazyma, also 
inhabit decaying cactus tissues (Ganter et al. 2017). Ripe and 
decaying fruits attract many insects that vector yeasts, including Pi. 
cecembensis, Pi. nakasei, Pi. membranifaciens, Pi. kudriavzevii, 
and Pi. occidentalis (Kurtzman 2011c, Ganter et al. 2017). Some 
species were also found in rotting wood (Cadete et al. 2017). Several 
previously reported insect-associated Pichia spp. are now classified 
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in the genera Cyberlindnera, Kuraishia, Meyerozyma, Millerozyma, 
Ogataea, Scheffersomyces, Starmera, and Wickerhamomyces 
(Blackwell 2017). A few species, including Candida californica, 
C. pseudolambica, Pi. kluyveri, Pi. membranifaciens, and Pi. 
occidentalis are associated with insect larvae (Scheidler et al. 2015, 
Steyn et al. 2016, Becher et al. 2018, Dmitrieva et al. 2021, Cho & 
Rohlfs 2023). Though ascomycetous yeasts are not abundant on 
plant surfaces, Pi. kudriavzevii and Pi. manshurica were reported 
as inhabitants of this substrate (Limtong & Kaewwichian 2015, 
Limtong & Nasanit 2017, Opulente et al. 2019). Aquatic habitats, 
marine and freshwater, including tap water, house appliances and 
wastewater, harbour the following species: Pi. fermentans, Pi. 
kluyveri, Pi. kudriavzevii, and Pi. occidentalis (Babič et al. 2017, 
Hagler et al. 2017, Libkind et al. 2017). Two species Pi. kudriavzevii 
and Pi. terricola were isolated from migratory birds (Moschetti et 
al. 2017), but this is not the primary substrate for the two species. 
Most soil-borne yeasts are basidiomycetes (Yurkov 2018) but the 
ascomycetous Pi. fermentans, Pi. kluyveri, Pi. membranifaciens, 
and Pi. terricola were reported from soils, particularly agricultural, 
like orchards (Vadkertiová et al. 2017). Other common soil 
species belong to genera where former Pichia species have been 
placed, namely Barnettozyma, Cyberlindnera, Meyerozyma, and 
Wickerhamomyces (Yurkov 2018).

Surfaces of berries and fruits harbour ascomycetous yeasts 
that multiply with fruit ripening following the increasing availability 
of sugars coming through the cuticle. Some of these yeasts later 
end up in fruit juice or wine. Yeast proliferation may have a negative 
impact on the quality of grapes. For instance, sour rot of grapes 
(leaking juice from grape berries and distinctive vinegar smell) is 
caused by several filamentous fungi and yeasts that are transmitted 
to berries by insects, e.g., wasps and drosophila flies. In addition to 
Metschnikowia species that are commonly associated with sour rot, 
Pi. kudriavzevii, Pi. membranifaciens, and Pi. kluyveri, are believed 
to contribute to this fruit disorder (Barata et al. 2012).

Pichia fermentans (syn. Candida lambica), Pi. kluyveri, Pi. 
manshurica, Pi. membranifaciens (syn. C. valida), Pi. occidentalis 
(syn. C. sorbosa), Pi. terricola, and Candida californica, which is 
phylogenetically placed in the Pichia clade, were named among 
largely aerobic non-Saccharomyces yeasts in grape must and 
wine fermentations (Jolly et al. 2014). Formerly classified in the 
genus Pichia, Meyerozyma guilliermondii and Wickerhamomyces 
anomalus also occur on grapes and in wine. These yeasts are 
present in grape must and the initial stages of spontaneous wine 
fermentations. Some of these yeasts may survive in later stages of 
fermentation thanks to higher ethanol and acid tolerance. Because 
of predominantly aerobic growth and poor fermentation capabilities, 
these yeasts can be used in the production of low-alcoholic wines 
(Jolly et al. 2014, Vicente et al. 2021). Pichia kluyveri is one of the 
most frequently used species to produce beverages with reduced 
alcohol concentration (Vicente et al. 2021). This yeast has also 
been successfully employed in beer, cider, durian, and tequila 
fermentations (Gibson et al. 2017, Capece et al. 2018, Sannino et 
al. 2019, Vicente et al. 2021). Owing to the limited ability to ferment 
glucose, this yeast produces a number of flavour compounds 
(e.g., fruity esters and higher alcohols) through modification of hop 
compounds (Capece et al. 2018).

Yeast metabolites largely affect wine properties such as taste, 
aroma and colour. Co-fermentation of wine with Saccharomyces 
cerevisiae and Meyerozyma guilliermondii may improve colour 
stability (reviewed in Jolly et al. 2014). Ferments produced 
by yeasts, e.g., beta-glucosidases from Pichia terricola and 
Wickerhamomyces anomalus, can release bound volatile 

compounds and have a positive effect on wine quality. Esters, 
higher alcohols, glycerol and acids produced by yeasts during wine 
fermentation also influence its sensory quality, either positively or 
negatively (off-flavour). Pichia kluyveri can produce substantial 
amounts of higher alcohols, esters (Méndez-Zamora et al. 2020) 
and volatile thiols, compounds that give a typical character to some 
grape varieties, like Sauvignon Blanc (reviewed in Jolly et al. 2014). 
Mixed fermentations with Saccharomyces cerevisiae and Pichia 
fermentans produced wines with increased concentrations of some 
volatile compounds and polysaccharides, improving both wine taste 
and body (reviewed in Jolly et al. 2014). Wine spoilage through the 
production of compounds negatively changing the taste or aroma 
(off-flavour) is a major concern for winemakers. Yeasts of the genus 
Pichia were reported to have both positive and negative impacts 
on wine spoilage. Pichia manshurica and Pi. membranaefaciens 
release compounds which could produce off-flavours and odours 
(Perpetuini et al. 2020).

Yeasts of the genus Pichia do not belong to prominent spoilage 
yeasts in the wine industry. On the contrary, these yeasts were 
used for biological control of spoilage yeasts. Several species such 
as Pi. cactophila, Pi. eremophila, Pi. fermentans, Pi. kluyveri, Pi. 
kudriavzevii, Pi. manshurica, Pi. membranifaciens, Pi. occidentalis, 
Pi. scutulata, and Pi. terricola produce antimicrobial compounds 
known as killer toxins, small proteins encoded by selfish 
extrachromosomal DNA or RNA virus-like particles (Klassen et al. 
2017). The ability to secrete killer toxins is strain-specific. Not only 
yeasts are sensitive to killer toxins. Other target organisms include 
filamentous fungi, bacteria and protozoa that may compete in certain 
natural habitats with the killer yeast (Klassen et al. 2017). Toxins 
of Pi. kluyveri and Pi. membranifaciens have been demonstrated 
to be active against a wide variety of food and beverage spoilage 
yeasts, including Brettanomyces bruxellensis, but also to 
occasionally inhibit some Saccharomyces strains in wine (Klassen 
et al. 2017, Vicente et al. 2021). Formerly classified in Pichia, 
Babjeviella inositovora, Millerozyma acaciae, Millerozyma farinosa, 
and Wickerhamomyces anomalus possess well-characterised killer 
toxins. Other frequently mentioned in the literature as Pichia spp. 
killer yeasts include Cyberlindnera jadinii, Kodamaea ohmeri and 
Komagataella pastoris (Klassen et al. 2017).

Among opportunistic human pathogens, Pichia kudriavzevii is 
the fifth most common cause of candidemia (Cooper 2011) and 
responsible for about 1–6 % of yeast infections in humans (Stavrou 
et al. 2019). This yeast is also known under the names Issatchenkia 
orientalis and the former asexual morph name, Candida krusei. 
Treatment of infections caused by this yeast can be problematic 
due to the species showing intrinsic resistance to fluconazole, 
the most used antifungal drug (Stavrou et al. 2019, Jaimu et al. 
2021). Although this dimorphic ascomycetous yeast is widespread 
in natural and anthropogenic sources (see above) and is found 
in healthy individuals (Inacio & Daniel 2017), Pi. kudriavzevii can 
cause life-threatening infections in immunocompromised patients, 
including persons with traumatic injuries and in surgical care (Jaimu 
et al. 2021). Genome sequences of 30 Pi. kudriavzevii strains 
were highly similar, suggesting that environmental, industrial, and 
clinical strains are not genetically distinct (Douglass et al. 2018). 
Another clinically relevant Pichia species are Pi. norvegensis and 
Candida inconspicua, which are phylogenetically placed in the 
genus Pichia and closely related to Pi. cactophila (Kurtzman 2011a, 
Lachance et al. 2011). The two species are difficult to differentiate 
using conventional biochemical markers and C. inconspicua was 
probably mistaken for Pi. norvegensis (Mixão et al. 2019). Although 
infections caused by these fluconazole-resistant yeasts are rare 
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(Stavrou et al. 2019), a 10-fold increase of C. inconspicua cases in 
HIV patients has been reported (Mixão et al. 2019).

Research interests

There are 7 969 publications and 102 697 citations from 2011–
2021 in the Web of Science (Fig. 17), with the top 10 most cited 
articles included in Table 10. Fermentation (natural, industrial) and 
research on yeast physiology (e.g., pathways and their regulations) 
received substantial attention from researchers during the last 
decade. Yeast biotechnology remains the focus of many studies on 
enzymes, accumulation of lipids for biofuel production and growing 
yeast biomass on a variety of agricultural and industrial waste 
substrates (Fig. 18). The composition, dynamics and interactions 
of yeast communities in natural and artificial environments is an 
important topic for the food industry and winemaking, as reflected 
in the network visualisation of keywords (Fig. 18). The range of 
applications includes biocontrol of spoilage using antagonistic 
interactions of yeasts using killer toxins and co-fermentation with 
mixed starter cultures, and the effects on the final product.

Pichia fermentans (also known as Candida lambica) has 
been isolated from a variety of foods and fruit juices. This yeast 
is a spoilage organism of orange juice and brined green olives 
(reviewed in Kurtzman 2011c). The species has been successfully 
used for biocontrol of brown rot of apples. Only a few human 
infections caused by Pi. fermentans are known (Pfaller et al. 2004, 
Vervaeke et al. 2008). 

Pichia kluyveri is common in natural fermentations of agricultural 
products such as coffee beans (Kurtzman 2011c). This yeast is 
used to produce low-alcoholic beer, wine and other beverages (see 
above). Some strains of the species can grow at 37 °C, but the 
species is not considered to be clinically relevant. A single strain 
of Pi. kluyveri was isolated from an oral lesion of a cancer patient 
(Aslani et al. 2018). 

Pichia kudriavzevii (also known as Candida krusei and 
Issatchenkia orientalis) is widely distributed in nature (see above). 
This yeast is also frequently encountered in natural fermentations, 
like cocoa and cassava starch (e.g., Daniel et al. 2009). The species 
was reported among biotechnology-relevant oleaginous yeasts for 
biodiesel production from cheap substrates. As noted above, Pi. 
kudriavzevii is also a common clinical isolate.

Pichia manshurica is common in natural fermentations, 
including rotting plant material (Kurtzman 2011c). Kurtzman (2011b) 
indicated that past ecological studies that reported the occurrence 
of Pi. membanifaciens may have also included Pi. manshurica, 
due to high phenotypic similarity of the two species. The species 
was reported among biotechnology-relevant oleaginous yeasts 
for biodiesel production from cheap substrates. The clinical 
importance of Pi. manshurica is unknown but the species can grow 
at 37 °C. Pichia membranifaciens is widespread in nature (see 
above) but shows a limited spectrum of assimilated carbon sources 
(Kurtzman 2011c). This yeast is commonly found in rotted fruits 
and fermented beverages (e.g., Kombucha), but is also regarded 
as a food and beverage spoilage organism (Kurtzman 2011c). 
Because this species does grow at 37 °C, its clinical importance 
is unlikely. This yeast is promising for the conversion of biodiesel-
derived waste (Chatzifragkou et al. 2011). Several asexual species 
phylogenetically related to Pichia are still classified as Candida spp. 
(Lachance et al. 2011), e.g., C. californica (fruits and drosophila 
flies), C. ethanolica (fodder yeast grown on ethanol), C. inconspicua 
(Italian cheese), and C. pseudolambica (plants, insects).

In addition to the already mentioned applications and properties 
of species of Pichia, the below-mentioned yeasts significantly 
contributed to the citations to the genus Pichia. Many publications 
focused on the genetic manipulation and tools for the expression of 
proteins in Komagataella pastoris and related species, also known 
as the Pichia pastoris model. This model is widely used to produce 
proteins of medical interest, like antibodies and antimicrobial 
peptides.

Fig. 17. Trends in research of Pichia in the period 2011–2021.
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Table 10. Top 10 cited articles related to Pichia published in the period 2011–2021.
Rank Article title No. of citations References
1 Not your ordinary yeast: non-Saccharomyces yeasts in wine production 

uncovered
465 Jolly et al. (2014)

2 The microbial ecology of wine grape berries 360 Barata et al. (2012)
3 Microbial xylanases: engineering, production and industrial applications 268 Juturu & Wu (2012)
4 Oral mycobiome analysis of HIV-infected patients: identification of Pichia as 

an antagonist of opportunistic fungi
204 Mukherjee et al. (2014)

5 Biotechnological conversions of biodiesel derived waste glycerol by yeast 
and fungal species

203 Chatzifragkou et al. (2011)

6 Advances in recombinant antibody manufacturing 201 Kunert & Reinhart (2016)
7 Mechanistic insights into selective autophagy pathways: lessons from yeast 195 Farre & Subramani (2016)
8 Production of recombinant proteins by yeast cells 182 Çelik & Çalık (2012)
9 Antimicrobial and probiotic properties of yeasts: from fundamental to novel 

applications. Frontiers in microbiology
154 Hatoum et al. (2012)

10 A double WAP domain-containing protein Es-DWD1 from Eriocheir sinensis 
exhibits antimicrobial and proteinase inhibitory activities

153 Li et al. (2013b)

Fig. 18. Network visualisation of keywords of the publications related to Pichia. The larger the text and the circle the more often the subject has been cited.
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Selected former Pichia species

Komagataella pastoris (formerly Pichia pastoris) has become a 
highly successful system for the expression of heterologous genes. 
A program to convert abundant methanol to a protein source for 
animal feed that started in the 1960s developed into what is today 
two important biological tools: a model eukaryote used in cell biology 
research and a recombinant protein production system (Cregg et 
al. 2000). To date well over 200 heterologous proteins have been 
expressed in K. pastoris. This yeast was developed as a source of 
single-cell proteins because it can reach high cell densities growing 
on either glucose or methanol under fermentation conditions. 
This ability was used to produce large quantities of medically 
and industrially important proteins (e.g., antibodies, antimicrobial 
peptides) and enzymes. The species became a model organism 
for synthetic biology, studies on organelles and the metabolism of 
eukaryotic cells (Gasser & Mattanovich 2018). Most nodes in the 
network visualisation of keywords (red, blue, purple, and yellow) 
refer to research on Komagataella (Fig. 18).

Pichia pastoris was reassigned to Komagataella following the 
phylogenetic analysis of ribosomal gene sequences (Yamada et 
al. 1995a, Kurtzman et al. 2008, Kurtzman 2009). Discovery of 
two more species, K. pseudopastoris (Dlauchy et al. 2003) and K. 
phaffi (Kurtzman 2005), which were practically indistinguishable 
by reactions on the standard fermentation and assimilation tests 
commonly used in yeast taxonomy, raised the question of which 
yeast is being used in studies of gene expression (Kurtzman 2009). 
Multi-gene sequence analyses demonstrated that commercial 
Pichia pastoris strains commonly used in gene-expression 
research belong to a different species, namely K. phaffii (Kurtzman 
2009). With the isolation of new strains and the re-analysis of old 
Pi. pastoris strains, seven species of Komagataella are known 
today (Naumov et al. 2018). Komagataella species are common in 
slime fluxes in Canada, the USA and Europe (Péter et al. 2017b, 
Naumov et al. 2018).

Wickerhamomyces anomalus (formerly Pichia anomala, 
Hansenula anomala) is frequently associated with food and feed 
products, either as a production organism or as a spoilage yeast 
(Passoth et al. 2006). Physiologically, this species has several 
extraordinary traits, namely the ability to grow under low pH, 
high osmotic pressure, and low oxygen tension (Passoth et al. 
2006). This yeast contributes to the production of wine aroma. 
Wickerhamomyces anomalus was used as a biocontrol agent to 
inhibit the development of moulds in airtight stored grains and 
spoilage yeasts in wines. The ability to secrete killer toxins has 
been demonstrated in many strains and the known toxins differ 
considerably with respect to their activity spectrum, molecular 
characteristics, chemical properties, and stability (Passoth et al. 
2006, Klassen et al. 2017). The physiological properties of these 
yeasts were extensively studied with respect to the regulation of 
aerobic and anaerobic growth and fermentation on different carbon 
sources (Passoth et al. 2006). Wickerhamomyces anomalus 
produces ethanol under oxygen limitation, while in completely 
aerobic cultures only a little ethanol is produced (the opposite of the 
Crabtree effect). This yeast was named among promising species 
for low-alcohol and non-alcoholic beers (Gibson et al. 2017). Most 
green nodes in the network visualisation of keywords may refer to 
research on W. anomalus.

The placement of Pichia anomala in Wickerhamomyces 
following multigene phylogenetic analysis (Kurtzman et al. 2008) 
has raised concern about whether these results argued for the 
placement of this yeast in a new genus or an earlier described 

genus Hansenula (Kurtzman 2011b, Daniel et al. 2012). The species 
was described by Hansen in 1891 as Saccharomyces anomalus 
and 45 more taxonomic synonyms exist for this yeast (Kurtzman 
2011b). Because of the uncertain origin of old type material (two 
neotypes of Hansenula anomala) or the absence thereof for older 
names Saccharomyces anomalus and S. sphaericus, the genus 
Hansenula was considered invalid (Kurtzman 2011b). Pichia and 
Hansenula were phenotypically almost indistinguishable and 
polyphyletic in phylogenetic analyses (Kurtzman 1998, 2011a, b). 
Because type material of the type species of Pichia existed and 
that of Hansenula did not, it was unclear to which phylogenetic 
clade the name Hansenula should be attributed. Therefore, the 
genus where Pichia anomala was placed received a new name 
Wickerhamomyces, and that name was conserved against the 
name Hansenula (Daniel et al. 2012).

Scheffersomyces stipitis (formerly Pichia stipitis) and some 
other xylose-fermenting yeasts are particularly interesting for 
biotechnology because of their ability to convert lignocellulose to 
ethanol. Members of the genus Scheffersomyces formerly known 
as Pi. segobiensis, Pi. stipitis and Candida shehatae are the best-
known species. The genetics of xylose utilisation pathways were 
extensively studied in Scheffersomyces stipitis. Natural habitats 
of xylose-fermenting yeasts include decaying wood and wood-
inhabiting insects (Blackwell 2017, Péter et al. 2017b). Less known 
and distantly related to the genus Pichia, the genus Spathaspora 
shares the metabolic trait of xylose fermentation (Martinez-Jimenez 
et al. 2021).

Ogataea polymorpha (formerly Pichia angusta, Hansenula 
polymorpha) is an important yeast in industrial biotechnology. 
Ogataea species are methylotrophic yeasts that can grow on 
methanol as a sole source of energy. The growth on methanol 
involves the oxidation of methanol into formaldehyde and hydrogen 
peroxide by the peroxisomal enzyme alcohol oxidase (Saraya et 
al. 2012). The number of peroxisomes depends on the growth 
substrate. This feature made O. polymorpha a good model 
organism to study peroxisome biology (Saraya et al. 2012). Another 
interesting physiological trait is the ability to assimilate nitrate as 
the sole source of nitrogen. Molecular mechanisms and transport 
of nitrate were studied in this yeast. This species is attractive for 
biotechnology because of its thermotolerant nature (Peter et al. 
2017, Buzzini et al. 2018) and the ability to grow at temperatures 
reaching (and exceeding for some strains) 50 °C. Together with 
Komagataella pastoris and K. phaffi, Ogataea polymorpha and O. 
methanolica are the most frequently used yeasts for heterologous 
protein production. Many species of Ogataea were isolated from 
plant exudates (slime fluxes), decaying plant material (rotting wood 
and cacti) or in association with insects (Peter et al. 2017, Stefanini 
2018).

Cyberlindnera jadinii (formerly Pichia jadinii, Candida utilis, 
Torulopsis utilis, Torula utilis) is a well-known fodder yeast and 
industrial producer of single-cell protein (SCP). Yeast biomass is 
used as a nutrition and source of proteins and vitamins in animal 
husbandry and human foods. Industrial utilisation of Cyberlindnera 
jadinii started in Germany during World War I, when common 
protein sources became scarce (reviewed in Barnett 2004). The 
yeast efficiently assimilates pentoses (xylose and arabinose), 
organic acids alcohols, and can grow on hardwood hydrolysates 
from the pulp industry, agricultural waste, molasses and oils 
(Buerth et al. 2016). Cyberlindnera jadinii is rich in glutamic 
acid and for this reason, it has been used to replace the flavour 
enhancer monosodium glutamate, MSG (Ritala et al. 2017). 
There is an interest in using this species for the expression of 
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heterologous genes, but the wide application of the yeast retarded 
due to polyploidy of Candida utilis strains (reviewed in Buerth et al. 
2016). A common food or feed additive (with FDA GRAS status), 
Cyberlindnera jadinii is well suitable for medical uses as it can 
transit gastrointestinal tract without losing viability by virtue of 
acid and temperature tolerance. This edible yeast can be utilised 
as a probiotic or probably as an antagonist to Candida albicans 
(reviewed in Buerth et al. 2016).

The yeast presently known as Cyberlindnera jadinii was 
originally described as Torula utilis, though the name Torula was 
already used for some moulds (reviewed in Barnett 2004). The 
species was reclassified as Torulopsis utilis in 1934 and later in 
1952 as Candida utilis (reviewed in Barnett 2004). Biochemical 
and physiological studies, and research using properties of DNA, 
including DNA relatedness, single- and multi-gene phylogenies, 
suggested that Candida utilis is conspecific to Pichia jadinii 
(reviewed in Barnett 2004, Kurtzman et al. 2008). The name 
Candida utilis was abandoned in favour of Pi. jadinii, which was 
later reclassified as Cyberlindnera jadinii. Astonishingly, the 
improper and obsolete name “Torula yeast” can still be found in the 
modern literature for Cyberlindnera jadinii.

Millerozyma farinosa (formerly Pichia farinosa) is a widely 
distributed halotolerant yeast (Peter et al. 2017, Buzzini et al. 
2018). Strains have been isolated from such diverse substrates 
as agricultural products, food (e.g., miso, soy mash), animal dung 
and petroleum, as well as from clinical samples (Kurtzman 1998). 
Strains of M. farinosa show killer properties.

Meyerozyma guilliermondii (formerly Pichia guilliermondii, 
Candida guilliermondii) and closely related Meyerozyma caribbica 
(formerly Pichia caribbica) are widespread species isolated from a 
variety of substrates that include soil, plants, food sources, industrial 
applications and clinical samples. Meyerozyma caribbica is utilised 
for biocontrol of post-harvest decay in fruits (Cao et al. 2013a). 
This yeast was reported to degrade mould toxin patulin and reduce 
its concentration in apples (Cao et al. 2013a, Zheng et al. 2018). 
Meyerozyma guilliermondii can produce the vitamin riboflavin (B2) 
as well as a sweetener xylitol (Kurtzman 2011c, Averianova et al. 
2020). This yeast is also present in some traditional fermentations. 
Meyerozyma guilliermondii is considered an opportunistic human 
pathogen and has been reported to represent on average 2 % 
of clinical yeast isolates, a prevalence similar to that of Pichia 
kudriavzevii (Stavrou et al. 2019). Similar to several prominent 
human pathogens, Meyerozyma guilliermondii possesses genetic 
machinery to adapt and survive in the human host (Stavrou et al. 
2019). The two Meyerozyma species also show resistance to azole 
drugs (Stavrou et al. 2019).

Author: A. Yurkov

9. Cryptococcus Vuill., Rev. Gén. Sci. Pures Appl. 12: 741. 
1901.

Type species: Cryptococcus neoformans (San Felice) Vuill.

Classification: Basidiomycota, Agaricomycotina, Tremellomycetes, 
Tremellales, Cryptococcaceae.

Background

The first descriptions of Cryptococcus date to the 1890s when the 
German physicians Otto Busse and Abraham Buschke described a 
yeast infection of a woman’s tibia. The obtained culture was described 

as Saccharomyces hominis (Busse 1894, Buschke 1895). Sanfelice, 
an Italian researcher, described in 1894 a similar yeast in fermenting 
peach juice and, subsequently, he observed that the cultured yeast 
behaved pathogenic when injected in mice (Sanfelice 1894). A few 
years later, the French mycologist Jean-Paul Vuillemin observed that 
the S. hominis isolates were unable to produce ascospores which 
led him to move the species to the genus Cryptococcus and re-
named it Cryptococcus hominis. The yeast described by Sanfelice as 
Saccharomyces neoformans was transferred to Cryptococcus and 
the ex-type strain is preserved in the CBS culture collection as CBS 
132. Unfortunately, the Cr. hominis ex-type strain was not preserved, 
hence Cr. neoformans became the valid species name. Until the 
late 1970s, Cryptococcus yeasts were a relatively rare encounter 
in medical clinics until the HIV pandemic started. In 1950, three 
serotypes were recognised based on the serological properties of 
the polysaccharide capsule and were named serotypes A, B and C 
(Evans 1950). The fourth serotype named D was described nearly 
two decades thereafter (Wilson et al. 1968). In 1970, an atypical 
Cryptococcus isolate from an infection, in what is now known as the 
Democratic Republic of Congo was described by Vanbreuseghem 
& Takashio (1970) as Cr. neoformans var. gattii. A few years 
thereafter, Kwon-Chung et al. (1982) described the sexual phase of 
Cr. neoformans, and with the dual nomenclature at that time, it was 
named Filobasidiella neoformans with two varieties, var. neoformans 
(for serotype A and D isolates) and var. gattii (for serotype B and 
C isolates). With the adoption of the “One Fungus = One Name” 
principle, all taxa were later placed in the genus Cryptococcus, with 
Filobasidiella becoming a synonym of Cryptococcus (Liu et al. 2015c, 
d). Presently, seven species are recognised in the Cr. neoformans/
Cr. gattii complex (Hagen et al. 2015), namely Cr. neoformans, 
Cr. deneoformans, Cr. bacillisporus, Cr. gattii, Cr. deuterogattii, Cr. 
decagattii and Cr. tetragattii. Note that this taxonomy proposal has 
been fiercely debated (Hagen et al. 2017, Kwon-Chung et al. 2017). 
Recently, another lineage of Cr. gattii was discovered in Zambia 
(Farrer et al. 2019), but its taxonomic status is not yet settled. 
Cryptococcus species are phylogenetically more closely related to 
Tremellomycetes (Basidiomycota) than to the baker’s yeast (Bahn 
et al. 2020).

Research interests

There are 6 909 publications and 95 586 citations from 2011–2021 
in the Web of Science (Fig. 19), with the top 10 most cited articles 
included in Table 11. The research interests of Cryptococcus yeasts 
focus on improving the taxonomy, epidemiology, antifungal therapy, 
understanding the yeast interaction with the immune system of 
different host populations, cell wall characteristics, and the role of 
extracellular vesicles in the cryptococcal pathogenesis (Fig. 20). 
From the clinical perspective, the top-cited papers mainly include 
extensive reviews highlighting the human killer fungal pathogens, 
that include Cryptococcus yeasts, covering aspects from the 
microbiological characteristics to clinical aspects of cryptococcosis; 
molecular and cellular characteristics to the modulation of the 
immune response when faced with cryptococcosis; the role 
of sulphonamides and other carbonic anhydrase inhibitors as 
promising compounds in the treatment of infections caused by 
Cryptococcus and other microorganisms. Finally, a review of the 
biology and chemistry of the newest and conventional antifungals, 
highlighting particularities in the Cryptococcus infections is also a 
highly cited topic.

A recent study on the global incidence of cryptococcosis 
observed alarmingly high numbers of disease occurrences, 
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especially among immunocompromised humans in sub-Saharan 
Africa and parts of Asia and South America (Rajasingham et al. 
2017). Using the global cryptococcal antigenaemia prevalence as 
a benchmark, 60 % of people with a CD4 cell count < 100 cells 
μL-1 were found to be positive, with 278 000 (range 195 500–340 
600) people positive for cryptococcal antigen globally, and 223 100 
(range 150 600–282 400) individuals with cryptococcal meningitis 
globally in 2014. Importantly, sub-Saharan Africa accounted for 
73 % of the estimated cryptococcal meningitis cases in 2014 
leading to 162 500 cases (range 113 600–193 900). Annual global 
deaths from cryptococcal meningitis were estimated at 181 100, 
with most (135 900) in sub-Saharan Africa. Cryptococcal meningitis 
was found to be responsible for 15 % of AIDS-related deaths 
(Rajasingham et al. 2017).

Other topics addressed in the top-cited papers include the 
biological mechanisms used by Cryptococcus to impact the 

extinction of wild animal hosts, the environmental changes and 
altered epidemiological dynamics of fungal emerging diseases; the 
physiological properties of the extracellular vesicles, testing current 
hypotheses on the mechanisms of vesiculogenesis, and their 
role in fungal pathogenesis; the reclassification of Cryptococcus 
species from an integrative analysis of molecular, biological and 
epidemiological data that led to the recognition of Cr. gattii/Cr. 
neoformans as a species complex; and the Cryptococcus cell 
wall and capsule, including details of its composition, synthesis, 
regulation, immune recognition, and therapy.

In the 5th edition of “The Yeasts, a Taxonomic Study” (TYTS, 
Kurtzman et al. 2011), 70 species were listed in the genus 
Cryptococcus (Fonseca et al. 2011), but it has been known for a 
long time that the genus in this context was highly polyphyletic (e.g., 
Fell et al. 2000). In 2015, a taxonomic revision of the genus based 
on a multigene-based phylogeny limited the genus to species of 

Fig. 19. Trends in research of Cryptococcus in the period 2011–2021.

Table 11. Top 10 cited articles related to Cryptococcus published in the period 2011–2021.
Rank Article title No. of citations References
1 Hidden killers: human fungal infections 2 175 Brown et al. (2012)
2 Emerging fungal threats to animal, plant and ecosystem health 1 678 Fisher et al. (2012)
3 Global burden of disease of HIV-associated cryptococcal meningitis: an updated 

analysis
863 Rajasingham et al. (2017)

4 Immunity to fungal infections 729 Romani (2011)
5 Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria 

and fungi
520 Brown et al. (2015)

6 Structure-based drug discovery of carbonic anhydrase inhibitors 472 Supuran (2012)
7 The biology and chemistry of antifungal agents: A review 417 Kathiravan et al. (2012)
8 Recognition of seven species in the Cryptococcus gattii/Cryptococcus neoformans 

species complex
397 Hagen (2015)

9 Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet 
underappreciated aspect of microbial life

386 Deatherage & Cookon (2012)

10 The fungal cell wall: structure, biosynthesis, and function 365 Gow et al. (2017)
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the Cr. neoformans/Cr. gattii complexes and some phylogenetically 
related species and, hence, the remainder were transferred to 
29 other genera (Liu et al. 2015c, d; see also www.theyeasts.
org). Species previously classified in the polyphyletic genus 
Cryptococcus are known for several biotechnological applications. 
Data from TYTS shows that several species formerly classified 
in Cryptococcus produce endoxylanases (e.g., Naganishia 
adeliensis, N. albidosimilis, N. albida, Saitozyma podzolica), 
pectinases (N. albida), amylases (S. flava), epoxide hydrolases (S. 
podzolica), and are interesting as oleaginous yeasts that produce 
for example cacao butter equivalents (Cutaneotrichosporon 
oleaginosus also known as Apiotrichum curvatum), tolerate or 
accumulate heavy metals (Vanrija humicola, S. podzolica), degrade 
phenolic compounds (Solicoccozyma terrea), produce extracellular 
polysaccharides (Papiliotrema flavescens, P. laurentii) or might be 
used as biocontrol agents (N. albida) (Ykema et al. 1988, Fonseca 
et al. 2011, Smirnou et al. 2015, Bracharz et al. 2017a).

Authors: E.C. Francisco, F. Hagen and T. Boekhout

10. Alternaria Nees, System der Pilze und Schwämme 72. 
1816.

Type species: Alternaria alternata (Fr.) Keissl. (bas. Torula alternata 
Fr., syn. Alternaria tenuis Nees)

Classification: Ascomycota, Pezizomycotina, Dothideomycetes, 
Pleosporales, Pleosporaceae.

Background

Alternaria is a large genus of dematiaceous hyphomycetes with 
837 species epithets listed in Index Fungorum (2023), of which 
589 species epithets are legitimate (Hongsanan et al. 2020a, 
Wijayawardene et al. 2020). Presently, about 366 accepted 
species are mainly classified into 28 sections, but not all of them 
have been clarified based on molecular phylogeny (Woudenberg 
et al. 2014a, Lawrence et al. 2016, Jayawardena et al. 2019, 
Hongsanan et al. 2020a, Wijayawardene et al. 2020). Alternaria 
species are widely distributed in the environment and show a 
diverse ecological lifestyle that includes saprobic, endophytic, and 
pathogenic to plants and animals. Most species, however, are 
serious phytopathogens causing several severe diseases (e.g., 
leaf and stem blight, leaf blotch, leaf spot, stem canker, and stem 
end rots) on a wide range of crop products often with significant 
economic losses (Thomma 2003, Polizzotto et al. 2012, Kustrzeba-
Wójcicka et al. 2014, Woudenberg et al. 2014a, Ariyawansa et al. 
2015a, Lawrence et al. 2016, Jayawardena et al. 2019, Marin-Felix 
et al. 2019a, Nishikawa & Nakashima 2020). Species in sections 
Alternantherae, Alternaria, Brassicicola, Crivellia, Gypsophilae, 
Nimbya, Porri, Radicina and Sonchi are usually causal agents of 
pre- and post-harvest diseases and may be both host and non-host 
specific (Mamgain et al. 2013, Woudenberg et al. 2014b, 2015, Zhu 
& Xiao 2015, Lawrence et al. 2016, Meena et al. 2016, Tralamazza 
et al. 2018).

Phytotoxins are produced during the plant infection process 
and, although they are not necessary for establishing diseases, 
they are essential virulence factors and participate in the intensity 

Fig. 20. Network visualisation of keywords of the publications related to Cryptococcus. The larger the text and the circle the more often the subject has been 
cited.
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of disease symptoms (Thomma 2003, Meena et al. 2017). Some 
Alternaria species produce potential phytotoxins that can be used 
in biotechnological applications as efficient producers of active 
biological compounds, as biocontrol agents of pests and weeds 
against serious plant pathogens or as mycoherbicides (Sharma & 
Sharma 2014, Woudenberg et al. 2015, Lawrence et al. 2016, Kaur 
& Kumar 2019, Dalinova et al. 2020b).

Mycotoxins have also been described in Alternaria species 
which are a risk to human and animal health worldwide (Barkai-
Golan 2008, Lopes et al. 2013, Mirhendi et al. 2013, Chowdhary 
et al. 2014a, Kustrzeba-Wójcicka et al. 2014, Woudenberg et al. 
2014a, Lawrence et al. 2016, Lyskova et al. 2017, Cardona et 
al. 2020). Alternaria spores are commonly reported as airborne 
allergens causing mainly respiratory disorders and some species 
have also been reported to provoke infections, though usually in 
immunocompromised patients (Pastor & Guarro 2008, De Hoog 
et al. 2020). Alternaria species implicated in opportunistic human 
diseases (alternariosis) have always been identified as Al. alternata 
and Al. infectoria as causative agents of phaeohyphomycosis 
and infection of the cornea, nails, oral, sinus and skin in humans 
(Lawrence et al. 2016).

Alternaria was introduced as a monotypic genus by Nees von 
Esenbeck in 1816 to accommodate the dematiaceous hyphomycete 
forming chains of phaeodictyospores, with a beak of tapering apical 
cells, and was initially typified with Al. tenuis. Although years later, 
Al. tenuis was considered conspecific with Torula alternata (Fries 
1832) and they were both synonymised with Al. alternata, which is 
currently recognised as the type of the genus (Keissler 1912). The 
genus is characterised mainly by its asexual morph, which shows 
inconspicuous conidiophores, mono- or polytretic conidiogenous 
cells, producing commonly large brown or dark dictyoconidia or 
phragmoconidia, with a terminal conical narrowing or “beak” at 
the apex, solitary or in chains; although species with meristematic 
growth are also known (Simmons 2007, Woudenberg et al. 2014a, 
Lawrence et al. 2016). Its sexual morph, only known for species 
of seven Alternaria sections, is characterised by small dark brown 
ascomata containing bitunicate asci and muriform ascospores 
(Woudenberg et al. 2014a, Ariyawansa et al. 2015a, Lawrence et al. 
2016). The sexual morph of Alternaria has been linked to the genera 
Lewia, Allewia and Crivellia (Rossman et al. 2015). Phylogenetic 
results obtained by Woudenberg et al. (2014a) demonstrated 
that these genera formed internal clades within Alternaria. Thus, 
Lewia, Allewia and Crivellia were synonymised under Alternaria 
together with the genera Brachycladium, Chalastospora, Chmelia, 
Embellisia, Nimbya, Sinomyces, Teretispora, Ulocladium, Undifilum 
and Ybotromyces (Woudenberg et al. 2014a, Ariyawansa et al. 
2015a). Based on taxonomic nomenclature (Article 57.2 of the 
International Code of Nomenclature for algae, fungi and plants; 
McNeill et al. 2012), Rossman et al. (2015) recommended to use 
Alternaria instead of Lewia, Allewia and Crivellia due to Alternaria 
being introduced earlier, widely used and the number of its species.

Taxonomic classification and revisions of Alternaria have been 
discussed by various authors (Elliott 1917, Simmons 1967, 1992, 
2007, Joly 1964, Pryor & Gilbertson 2000, Pryor & Bigelow 2003, 
Hong et al. 2005, Lawrence et al. 2012, 2013, 2016, Woudenberg 
et al. 2014a, b, 2015). Extensive morphology-based taxonomic 
investigations on the genus were carried out by Emory G. 
Simmons (1920–2013), which were summarised in his monograph 
on Alternaria species identification (Simmons 2007). Based on 
the sporulation patterns and conidial morphology, Simmons 
(2007) recognised 275 species, which were divided into species-
groups, each one typified by a representative species. However, 

handicaps to the correct identification of Alternaria species are 
the overlapping of morphological features among taxa and their 
plasticity, particularly when growing in vitro. Several molecular 
studies have been intended to establish relationships among 
morphological-based species and found that several species-
groups described by Simmons were, in fact, representatives of 
monophyletic lineages that correlate with the currently established 
sections within the genus (Hong et al. 2005, Lawrence et al. 
2012, 2013, Woudenberg et al. 2014a). Taxonomic traits and 
species composition of all Alternaria sections are summarised 
in Lawrence et al. (2016). However, molecular identification of 
Alternaria species is still a challenge because the conventional 
gene markers, such as the nrDNA barcodes and other functional 
genes (act, tub, cal, chitin synthetase, among many others), have 
failed to discriminate between species particularly belonging to 
the small-spored Alternaria sections, such as sect. Alternaria or 
sect. Infectoriae (Woudenberg et al. 2015, Lawrence et al. 2016, 
Poursafar et al. 2017, Patriarca et al. 2019). Consequently, whole-
genome sequencing technologies have become essential tools to 
distinguish most of the described species (Lawrence et al. 2013, 
Woudenberg et al. 2015). The genomes of Alternaria spp. in 
sections Alternaria and Brassicicola are currently publicly available 
at the National Center for Biotechnology Information (NCBI) 
(Woudenberg et al. 2015).

Ecological and economic significance

Few fungal taxa can match the global impact that Alternaria has on 
natural ecosystems and its effects on human activities and health. 
Alternaria species are common saprobes on a wide range of 
substrates (e.g., dead plants, paper, and foods) and more than 120 
saprobic species have been restricted to the sections Alternaria, 
Infectoriae, and Ulocladioides (Thomma 2003, Lawrence et 
al. 2016). As saprobic fungi, along with other microorganisms, 
Alternaria species take part in the decomposition and mineralisation 
of plant residues through cellulolytic activity (Thomma 2003).

Alternaria has also been isolated from various asymptomatic 
plant tissues as endophytic fungi. Several studies have 
demonstrated the endophytic capability of Alternaria species 
living inside plant tissue without pathogenesis induction (Ma et 
al. 2010, Chen et al. 2011a, Polizzotto et al. 2012). However, it is 
still doubtful whether the fungus is living as an endophyte during 
the inactive latent period of weak pathogen or the influence of the 
host’s health. Only saprobic species were revealed as endophytes 
(Ma et al. 2010, Lawrence et al. 2016). Alternaria stands out by 
the ability to cause diseases not only in plants but also in animals, 
including humans, and by the production of numerous secondary 
metabolites with a wide range of effects on different organisms.

Plant diseases

Alternaria species are reported to cause diseases in many 
economic plants from families such as Apiaceae, Asteraceae, 
Brassicaceae, Cyperaceae, Fabaceae, Poaceae, Rosaceae, 
Rutaceae, Solanaceae, Vitaceae, among others. They can infect 
more than 4 000 host plants, and Al. alternata can infect close 
to 100 plant species (Farr & Rossman 2022). Most Alternaria 
species are foliar pathogens, but they also attack flowers, stems, 
roots, and fruits, causing different kinds of lesions (Thomma 2003, 
Woudenberg et al. 2015, Lawrence et al. 2016, Marin-Felix et al. 
2019a). The most common Alternaria diseases are detailed below.
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Leaf spot: it is common on the surface of lower and older leaves on 
a variety of crops, including tomato, cabbage, fava bean, potato, 
cucumber and other vegetables, but also ornamental plants (Batta 
2003, Michereff et al. 2012, Agamy et al. 2013, Behairy et al. 2014, 
Shoaib et al. 2014, Matić et al. 2020). Lesions are characterised 
by small dark circular spots with light brown centres, surrounded 
by dark concentric rings. Severely infected leaves turn yellow, wilt 
and fall, and can even show large necrotic areas (Batta 2003). It is 
a frequent disease in warm (20–32 °C) and moist (dew) weather 
regions. The main causal agents are Alternaria alternata, Al. 
arborescens species complex, Al. brassicae, Al. brassicicola, Al. 
cinerariae, and Al. cucumerina (Batta 2003, Reis & Boiteux 2010, 
Gannibal 2011, Blagojević et al. 2020, He et al. 2020a, Matić et al. 
2020, Zhang et al. 2020d).

Leaf blight: the disease affects mature leaves near the crown 
of the plant and lesions first appear as small brown spots, often 
with a yellow halo, which progress to form large, irregular, brown 
spots. Severe infections can produce early defoliation, flower-bud 
abortion, premature ripening, and seed shrivelling, affecting yield 
and production (Akhtar et al. 1994, 2004). Temperatures between 
15 and 25 °C and persistent leaf wetness by rain or dew promote 
infection (Shrestha et al. 2005b). Vegetables and cereals like wheat 
(Perelló et al. 1996), barley (Khudhair et al. 2014), tomato (Akhtar 
et al. 2004), onion (Karthikeyan et al. 2005) and mustard (Shrestha 
et al. 2005b) are only some of those most frequently affected. 
Species that are more frequently associated with this kind of lesion 
are Alternaria alternata, Al. brassicae, Al. cucumerina, Al. dauci, Al. 
palandui, Al. triticina, and Al. triticimaculans, among others (Perelló 
et al. 1996, Akhtar et al. 2004, Karthikeyan et al. 2005, Shrestha et 
al. 2005b, Khudhair et al. 2014).

Early blight: it is one of the most common diseases on tomatoes 
and potatoes, with Al. solani, Al. tomatophila, and Al. alternata 
being the main pathogens (Adhikari et al. 2017). Apart from 
the leaves, they can also affect fruits and seedling stems or 
stems of older plants, reducing crop yield by up to 79 % (Gwary 
& Nahunnaro 1998, Chaerani & Voorrips 2006, Adhikari et al. 
2017). The infection is provoked in a wide range of environmental 
temperatures (8–32  °C), but with high levels of free moisture or 
near-saturation humidity (Adhikari et al. 2017). The most common 
symptoms include small dark spots that progress to larger spots 
with target-like concentric rings on leaves, sunken and dry brown 
areas on stems, and leathery and black spots on fruits. These are 
visible 2–3 d after infection, and spore production occurs 3–5 d 
later completing the cycle (Chaerani & Voorrips 2006).

Leaf blotch and fruit spot: Alternaria alternata f. sp. mali is commonly 
known as a causal agent of leaf blotch and fruit spot disease on 
apples worldwide (Harteveld et al. 2013, Woudenberg et al. 2015, 
Gur et al. 2017). However, multiple small-spored Alternaria species 
(e.g., Al. arborescens, Al. longipes and Al. tenuissima) have also 
been implicated in alternaria leaf blotch on apples (Harteveld et 
al. 2013, 2014a). Alternaria leaf blotch is one of the most severe 
diseases on apples in Asia (e.g., China, India, Israel, Iran, Japan, 
and South Korea), Australia and USA, causing defoliation of 15–
25 %, or up to 80 % crop losses in some countries when conditions 
are conducive (Horlock 2006, Soleimani & Esmailzadeh 2007, 
Harteveld et al. 2013, 2014a, Sofi et al. 2013, Gur et al. 2017). The 
infection is provoked during winter and spring weather seasons and 
influenced by high relative humidity, the location of the orchards, 
mean temperature, cumulative amount of rain and mean rainfall 

(Harteveld et al. 2014b). The symptom of alternaria leaf blotch 
initially appears on leaves as circular to irregular brown spots that 
become larger in zonate circular or crescent-shaped rings and are 
lined with a dark brown to purple margin (Harteveld et al. 2013, 
2014a, Gur et al. 2017). Fruit spot diseases are characterised by 
small, slightly sunken, light to medium brown spots (Persley & 
Horlock 2009, Harteveld et al. 2013).

Purple leaf blotch disease, caused by Alternaria porri on 
onions and leeks (Allium spp.), is a major foliar fungal disease in 
all Allium growing countries. This disease causes leaf damage and 
yield losses of up to 2.5–97 % during monsoon season (warm and 
humid environments) (Suheri & Price 2001, Gothandapani et al. 
2015, Hahuly et al. 2018). The disease symptoms are difficult to 
distinguish from stemphylium leaf blight and are easily misidentified 
(Suheri & Price 2001, Hahuly et al. 2018). The symptoms appear 
on the older leaves and flower stalks as initially small whitish 
necrotic lesions, becoming larger elliptical, sunken purple lesions, 
subsequently turning brown and darker, with a yellow to pale brown 
margin (Suheri & Price 2001, Hahuly et al. 2018).

Stem canker: Alternaria arborescens (syn. Al. alternata f. sp. 
lycopersici) has been reported as the causal agent of stem canker 
on tomatoes worldwide, causing sustainable economic losses 
(Thomma 2003, Esmailzadeh et al. 2008, Woudenberg et al. 2015, 
Shao et al. 2020). Alternaria arborescens produced a host-specific 
AAL-mycotoxin and damages leaves and stems of tomatoes 
by forming necrotic spots on leaves and dark-brown concentric 
cankers on stems (Grogan et al. 1975, Witsenboer et al. 1992, 
Thomma 2003, Somma et al. 2011, Shao et al. 2020). The infection 
progresses rapidly in high humidity and temperatures (0.995 aw at 
30 °C) (Vaquera et al. 2014, Tomazonia et al. 2019).

Human and animal diseases

Alternaria has been associated with a wide range of human and 
animal syndromes. Although it is commonly known as an agent of 
allergic processes, it is currently considered an emerging pathogen 
able to cause infections in immunocompromised patients, although 
infections in immunocompetent individuals have been also reported 
(Sood et al. 2007, Pastor & Guarro 2008, Dessinioti et al. 2013, 
Hattab et al. 2019, De Hoog et al. 2020). Since Alternaria spores 
are one of the prevailing constituents in air, they are associated with 
respiratory disorders such as allergic sinusitis, bronchial asthma, 
pneumonitis or rhinitis (Pastor & Guarro 2008, Revankar & Sutton 
2010, Klimek et al. 2015, Levetin et al. 2016). Immunosuppressed 
populations, particularly those who have undergone transplants, 
cancer treatments or have primary or acquired immunodeficiency, 
are especially susceptible to cutaneous and subcutaneous 
infections by Alternaria species (Kpodzo et al. 2011, González-Vela 
et al. 2014, Ferrándiz-Pulido et al. 2018, Iturrieta-González et al. 
2019), but other types of infections have been also reported, such 
as ocular mycosis, cerebral and disseminated infections (Konidaris 
et al. 2013, Mirhendi et al. 2013, Cardona et al. 2020, McGirr et al. 
2020). There are also documented cases of alternariosis, ranging 
from cutaneous to systemic infections, in cats, dogs, horses, and 
other animals (Dedola et al. 2010, Seyedmousavi et al. 2013, 
Avsever et al. 2017, Dworecka-Kaszak et al. 2020, De Hoog et al. 
2020).

The most reported species are Alternaria alternata, Al. 
infectoria, Al. tennuissima and Al. chartarum (De Hoog et al. 2020). 
However, the real spectrum of pathogenic Alternaria species is still 
obscure because, in as many as 50 % of the cases of alternariosis 



40

Bhunjun et al.

reported, the identification of clinical isolates has not been carried 
out or was based only on morphological features or ITS barcode 
analysis (Pastor & Guarro 2008, Bajwa et al. 2017, Ferrándiz-
Pulido et al. 2018).

Toxin production

Alternaria is one of the major mycotoxigenic fungi with about 
70 described toxins (phytotoxins and mycotoxins) that play an 
important role in fungal pathogenicity and food safety (Escrivá et al. 
2017, Pinto & Patriarca 2017).

Phytotoxins: They are formed during the infection and two categories 
have been recognised: (i) The “host-specific toxins”, which affect 
a small group of specific plants, and their formation and activity 
are usually a prerequisite for successful colonisation of the plant 
host; examples of these toxins are produced by different Alternaria 
alternata pathotypes (Meena et al. 2019, Dalinova et al. 2020b). (ii) 
The “non-host specific toxins”, to which a wider range of plants are 
sensitive, but they cause relatively mild phytotoxic effects and their 
formation is not necessary for successful colonisation of the host 
(Thomma 2003, Dalinova et al. 2020b). Many phytopathogenic 
Alternaria species produce nonspecific toxins that often target basic 
cellular processes, so they are regarded as potent mycotoxins, 
but may also exhibit other types of biological activities (i.e., 
antimicrobial, insecticidal or cytotoxic activity) that enhance the 
survival of the fungus in competition with other (micro-)organisms 
for the substrate (Meena et al. 2017, Dalinova et al. 2020b).

Mycotoxins: Food contamination by mycotoxins occurs naturally, 
however, under certain environmental conditions, handling, 
transport and storage, and even refrigeration conditions mycotoxins 
may accumulate in vegetable foods and be harmful to humans 
and animals (Escrivá et al. 2017). Although Alternaria alternata is 
regarded as the major mycotoxin producer in the genus, others like 

Al. citri, Al. solani, Al. longipes, Al. arborescens and Al. infectoria, 
which are present in seeds, fruits, vegetables, and pet foods, are 
also relevant mycotoxin producers and all represent a serious 
threat to health worldwide (Barkai-Golan 2008, Jackson & Al-
Taher 2008, Ostry 2008, Streit et al. 2013, Puntscher et al. 2018). 
Alternaria mycotoxins like alternariol, its methyl ether, as well as 
altertoxins seem to induce long-term toxicity effects (genotoxicity, 
carcinogenicity, mutagenicity, etc.), in contrast to tenuazonic acid, 
which is the only Alternaria mycotoxin that exhibits pronounced 
acute toxicity causing haematological disorders to oesophageal 
cancer (Escrivá et al. 2017, Pinto & Patriarca 2017, Dalinova et al. 
2020b). Despite these harmful effects, Alternaria mycotoxin content 
in feed and food products is not currently regulated by any country. 
This is due not only to a lack of comprehensive toxicological 
information from different foodstuffs but also to a lack of research 
into their toxicity in vivo (Lee et al. 2015, Dalinova et al. 2020b).

Research interests

There are 6 446 publications and 73 134 citations from 2011–2021 
in the Web of Science (Fig. 21), with the top 10 most cited articles 
included in Table 12. The majority of the publications focused on 
disease management (antifungals and resistances), parasite-host 
interactions of Alternaria species in plants and humans, bioactive 
compounds production, and taxonomy (Fig. 22).

Disease management
There are various strategies in the management of Alternaria 
diseases in plants, including the use of healthy and treated seed in 
hot water, 3–4-yr crop rotations, sanitation, weed control, shallow 
planting, use of balanced nutrients, proper plant density, proper 
drainage in the field, plant debris management and application of 
chemical treatments. Of note, however, is that no single method 
or approach in current use is feasible, viable, stable, or effective 
in dealing with any host-pathogen system (Saharan et al. 2016). 

Fig. 21. Trends in research of Alternaria in the period 2011–2021.
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Common pathogenic fungal strains, including Alternaria, are often 
resistant to fungicides (Iacomi-Vasilescu et al. 2004, Fairchild et 
al. 2013, Mallik et al. 2014, Yang et al. 2019b). Different strategies 
have been proposed for reducing strain resistance, including mixing 
fungicides or using chemosensitisers (Brent & Hollomon 2007, 
Shcherbakova et al. 2020). However, with the focus on sustainable 
agriculture for the replacement of synthetic and toxic substances 
with environmentally friendly alternatives, research is currently 

in the direction of finding effective bioagents as antagonists 
against Alternaria, such as Chaetomium globosum or different 
Trichoderma species (Gveroska & Ziberoski 2011, Saharan et al. 
2016, Ajayabhai et al. 2018, Ashwini 2019, Shafique et al. 2019); or 
looking for compounds with potent antifungal activity, such as plant 
extracts (Latif et al. 2006, Meena & Sharma 2012), ionic liquids 
(Karaman et al. 2020) or natural agents in nanoformulations like 
peppermint oil (Pandey et al. 2020) or silver nanoparticles plus 

Table 12. Top 10 cited articles related to Alternaria published in the period 2011–2021.
Rank Article title No. of citations References
1 Phytoalexins in defense against pathogens 533 Ahuja et al. (2012)
2 Alternaria redefined 441 Woudenberg et al. (2013)
3 Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells 

and modulate innate immunity
410 Buck et al. (2014)

4 Next-generation systemic acquired resistance 379 Luna et al. (2011)
5 IL-33-responsive lineage-CD25+CD44hi lymphoid cells mediate innate type 2 immunity 

and allergic inflammation in the lungs
372 Bartemes et al. (2012)

6 The danger signal, extracellular ATP, is a sensor for an airborne allergen and triggers 
IL-33 release and innate Th2-type responses

322 Kouzaki et al. (2011)

7 Fungi and allergic lower respiratory tract diseases 305 Knutsen et al. (2012)
8 Lung type 2 innate lymphoid cells express cysteinyl leukotriene receptor 1, which 

regulates Th2 cytokine production
275 Doherty et al. (2013)

9 Interferon and IL-27 antagonize the function of group 2 innate lymphoid cells and type 2 
innate immune responses.

245 Moro et al. (2015)

10 Reference genes for accurate transcript normalization in citrus genotypes under 
different experimental conditions

228 Mafra et al. (2012)

Fig. 22. Network visualisation of keywords of the publications related to Alternaria. The larger the text and the circle the more often the subject has been 
cited.
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a cyanobacterium (Mahawar et al. 2020). However, currently, the 
easiest, most financially viable, environmentally friendly, and safest 
way is the use of tolerant or resistant cultivars (Saharan et al. 2016), 
so that research is also focused on the development of Alternaria 
disease-resistant crops (Ceasar & Ignacimuthu 2012, Fatima et al. 
2019, Meena & Samal 2019, Haque et al. 2020).

Because no optimal treatment has been defined for Alternaria 
human infections, multiple therapeutic options have been used, 
including thermotherapy with a successful outcome (Torres-
Rodriguez et al. 2005). However, it always depends on the status 
of the patient concerned and the extent of the disease. Cutaneous 
and subcutaneous alternarioses commonly require surgical 
debridement in association with antifungal therapy (Pastor & Guarro 
2008, Derber et al. 2010). The most used antifungal therapy includes 
itraconazole, voriconazole, and posaconazole (Chowdhary et al. 
2014d, Bajwa et al. 2017, Ferrándiz-Pulido et al. 2018). However, 
due to hepatic impairment as a side effect reported for voriconazole 
(Schuermans et al. 2017) or significant drug interaction when using 
itraconazole (Mori et al. 2009), currently, posaconazole seems to 
be the treatment of choice for these infections (Bajwa et al. 2017, 
Schuermans et al. 2017). This correlates with the results of in vitro 
antifungal testing in several studies (Badali et al. 2009, Alastruey-
Izquierdo et al. 2011, Gonzalez-Vela et al. 2014). Other drugs 
that show different degrees of effectiveness are amphothericin 
B, terbinafine or anidulafungin (De Hoog et al. 2020), but more 
in vitro and in vivo studies are required. Nevertheless, the lack of 
a standardised methodology for in vitro studies or for the correct 
identification of Alternaria species, and the difficulties in getting 
good sporulation of clinical isolates are handicaps in the advance 
of these studies.

Parasite-host interaction
The interaction between plants and pathogens induces stress 
response and, subsequently, the development of an intricate 
defence system associated with the activation of defence genes, 
synthesis and secretion of various molecules. In plant infections 
by Alternaria, the production of phytoalexins like camalexin, 
kauralexins, zealexins, brassinin, and scopoletin (Ahuja et al. 2012, 
Pedras et al. 2014, Sun et al. 2014, N’Guyen et al. 2021), or enzymes 
like chitinases and ß-1,3-glucanases (Fanta et al. 2003) have been 
extensively studied to elucidate their role in the host interaction 
and pathogenesis of these fungi (Thomma 2003, Meena & Samal 
2019). In the same way, the interaction of Alternaria with human 
host cells induces an immune response and research is imperative 
to understand the fungal biology and details of mechanisms that 
may protect or drive diseases in humans (Bartemes & Kita 2018). 
The respiratory system is the most common entry for fungi, and 
thus several studies have focused on the characterisation of allergic 
immune responses against Alternaria through the study of innate 
and adaptive response, particularly lymphoid response involved 
in innate type 2 immunity, production of interleukins, toll-like 
receptors, among others (Bartemes et al. 2012, Kita 2015, Hayes 
et al. 2018). However, only the approaches of integrating genomic, 
proteomic and metabolomic insights will allow an understanding 
of the complex biology of host-pathogen interaction and allow the 
proposal of innovative strategies for mitigating or even eradicating 
Alternaria diseases.

Producers of active biological compounds
More than 300 secondary metabolites produced by Alternaria 
species have been isolated and structurally characterised (Lou et 
al. 2013, Song et al. 2019b, Dalinova et al. 2020a). In addition to 

their toxicogenic effects on plants and animals described previously, 
these molecules show other biological activities that attract the 
attention of scientists in various fields (biotechnologists, chemists, 
pharmacologists, plant pathologists, etc.), who investigate a wide 
range of applications. These molecules are used as prototypes 
of active chemical pesticides against bacteria (hydroxybostrycin, 
macrosporin, radicin, altenusin, porric acid, etc.), insects 
(tenuazoic acid and its synthetic derivatives, altenaene, destruxin 
B), downy mildews (compounds of diketopiperazine dipeptides), 
phytopathogenic moulds (helvolic acid, herbarin A, etc.), and 
weeds (cyclic tetrepeptide tentoxin, tenuazonic acid, radicinin, 
etc.). However, they are also the base for development of new 
drugs as anti-tumour agents (alterporriols, depudecin, destruxin B, 
etc.), anti-leukemic (α pyrone derivatives), anti-bacterial (altenusin, 
brassicicolin, etc.), antiparasitic (depudecin, altenusin) or antiviral 
(altertoxin V, tetrahydroalternasol C, etc.). A promising molecule 
produced by several Alternaria species and of medical interest is 
altenusin. It has been recently patented in China as a component 
of medicines for non-alcoholic fatty liver disease, obesity or type 
2 diabetes; it is also able to inhibit tau-protein aggregation, a 
key compound associated with the development of Alzheimer’s 
disease (Lou et al. 2013, Zheng et al. 2017, Dalinova et al. 2020b). 
Therefore, considering the number of Alternaria molecules still 
needing to be characterised and the large number of species for 
which secondary metabolite patterns have never been determined, 
the potential of this genus as a source of interesting compounds 
is high.

Taxonomy and phylogeny
The taxonomy of Alternaria continues to be a subject of debate. 
Based on several phylogenetic investigations carried out in the 
last decades, the genus has undergone important taxonomic 
changes and numerous, morphologically well-defined genera 
have been found to be congeneric with Alternaria (i.e., Allewia, 
Brachycladium, Chalastospora, Chmelia, Crivellia, Embellisia, 
Nimbya, Pseudoalternaria, Sinomyces, Teretispora, Ulocladium, 
Undiphilum and Ybotromyces) (Pryor & Gilbertson 2000, Lawrence 
et al. 2012, 2013, Woudenberg et al. 2013, Ariyawansa et al. 2015a, 
Rossman et al. 2015). Based on the phylogeny of SSU, LSU, ITS, 
gapdh, rpb2 and tef1, Woudenberg et al. (2013) emended the 
generic circumscription of Alternaria, and numerous well-supported 
internal clades were elevated to the taxonomic status of section, 
some of them correlated with the above-mentioned genera as well 
as some of Simmons’ morphological species-groups. Therefore, 
in addition to six monophyletic lineages, the genus currently 
comprises 28 sections, each with a type specimen (Woudenberg et 
al. 2013, Lawrence et al. 2016, Al Ghafri et al. 2019, Jayawardena 
et al. 2019). However, because the phylogenetic relationships 
among closely related species could not be resolved by those 
markers, not even the ITS standard barcode for fungi, multi-gene 
analyses combining different loci have been used to resolve 
species boundaries in different sections; i.e., ITS, Alt a-1, endoPG, 
gapdh, OPA10-2, rpb2 and tef1 for sect. Alternaria (Woudenberg et 
al. 2015); ITS, ATPase and gapdh for sect. Chalastospora (Marin-
Felix et al. 2019a); combinations of three to five loci (ITS, ATPase, 
gapdh rpb2 and tef1) for sections Infectoriae and Pseudoalternaria, 
depending on the authors (Deng et al. 2018, Poursafar et al. 2018, 
Iturrieta-González et al. 2019, Marin-Felix et al. 2019a); ITS, Alt a-1, 
gapdh, rpb2 and tef1 for sect. Porri (Woudenberg et al. 2014); ITS, 
gapdh and rpb2 for sect. Radicina (Marin-Felix et al. 2019a); and 
ITS, Alt a-1 and gapdh for sect. Sonchi (Lawrence et al. 2012, Deng 
et al. 2014). Unfortunately, there is no consensus on the molecular 
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approach for identifying Alternaria species, especially those small-
spored species involved in crop diseases, food contamination 
and human infections. To that end, polyphasic approaches have 
been carried out in recent investigations, integrating datasets on 
morphological features, molecular analyses, secondary metabolite 
profiling or experimental host range determination by inoculation 
tests (Ozkilinc et al. 2018, Patriarca et al. 2019, Nishikawa & 
Nakashima 2020). With this integrative approach, Somma et al. 
(2019) suggested that the sect. Infectoriae be defined as a separate 
genus from Alternaria. However, further efforts are needed to 
provide a more solid taxonomic system that allows correct species 
identification of these so relevant fungi.

Authors: J. Gené, I. Iturrieta-González and R. Phookamsak

11. Phytophthora de Bary, J. Roy. Agric. Soc. England, ser. 
2, 12: 240. 1876.

Type species: Phytophthora infestans (Mont.) de Bary

Classification: Oomycota, Peronosporomycetes, Peronosporales, 
Peronosporaceae.

Background

Phytophthora belongs to phylum Oomycota, related to other 
heterokonts like brown algae rather than in the fungal kingdom like 
most filamentous plant pathogens. Index Fungorum (2022) lists 352 
species epithets, 223 of which are recognised species with an ex-
type isolate and available sequence data (Abad et al. 2023b). Most 
species are plant pathogens with single to numerous hosts ranging 
from field crops, fruit trees, ornamentals and in natural ecosystems 
(Erwin & Ribeiro 1996, Hansen et al. 2012, Jung et al. 2015a, 
Burgess et al. 2021), causing a range of symptoms depending on 
the species, including root rot, stem and branch cankers, leaf blight 
and fruit rot (Erwin & Ribeiro 1996).

Sporangia, which can be caducous or persistent, produce 
zoospores, the infective propagule, that encysts and germinates 
to penetrate the host (Erwin & Ribeiro 1996). The majority of 
species are soil pathogens with persistent sporangia, while most 
Phytophthora causing diseases in aerial plant parts have caducous, 
air-borne sporangia. Phytophthora reproduces sexually by forming 
oospores; heterothallic species require two mating types while 
homothallic species are self-fertile. Oospores are often thick-walled 
and are thought to be a vital survival structure for over-wintering 
and/or surviving drought (González et al. 2019, Gyeltshen et al. 
2021), although there is mounting evidence that many species 
persist within dead fragments of their hosts (Jung et al. 2013). 
Zoospores are motile and require free water to find and infect a 
host and are best suited to moist environments, especially those 
causing aerial diseases. However, some of the most significant 
impacts are in Mediterranean climates, where the relatively warm 
moist winter favours infection, and then plants cannot survive the 
long dry summer with compromised root systems (Dunstan et al. 
2020, González et al. 2020).

De Bary introduced Phytophthora in 1876, with the type 
species, Phytophthora infestans, one of the first plant pathogens 
to be described. It was the causal agent of potato leaf blight and 
famine in the mid-19th century. Over the following 110 years, 60 
more species were described, mainly causing diseases in plants 
of economic importance (Erwin & Ribeiro 1996). Most of these 
species have a global distribution associated with agriculture. 

Species were described based on the morphology of sporangia, 
their proliferation, oogonia, antheridia, oospores and the presence 
of chlamydospores and hyphal swellings or aggregations. 
Waterhouse (1963) classified species into six groups depending 
on whether the sporangia were papillate, semi-papillate or non-
papillate and whether the antheridial attachment was amphigynous 
or paragynous. The seminal paper by Cooke et al. (2000) on the 
molecular phylogeny of Phytophthora based on ITS sequences 
divided the genus into 10 phylogenetic clades. These clades have 
been robust as additional nuclear and mitochondrial genes (Blair 
et al. 2008, Robideau et al. 2011, Martin et al. 2014, Yang et al. 
2017b) have been added to the phylogenies and have laid the path 
for the description of numerous new taxa, many of which were 
morphologically indistinct but phylogenetically distant (Brasier et al. 
2003, Burgess et al. 2009). While historically, new species recovery 
and descriptions were from agricultural settings, since 2000 most 
new species are from natural ecosystems.

Ecological and economic significance

Phytophthora species cause numerous economically significant 
plant diseases and also serious diseases within natural ecosystems; 
many species are cosmopolitan, while others are more host-
specific. Below we consider the diseases caused by the most cited 
Phytophthora species.

Late blight of potatoes (and tomatoes) is caused by Phytophthora 
infestans, a predominantly aerial Phytophthora species infecting 
leaves and stems, favouring moist, cool environments (Grünwald 
& Flier 2005). Under ideal conditions, plants die within a few days. 
Rain washes sporangia into the soil where zoospores infect tubers. 
Phytophthora infestans is a poor saprophyte in the absence of a 
host and is killed off by frost and hot conditions. However, it can 
overwinter within infected tubers in a field. Globally, late blight 
causes around 10 % of crop loss annually and is especially severe 
in the Indo-Gangetic Plain (Savary et al. 2019).

Phytophthora root rot

Several species from the Phytophthora megasperma complex have 
been described, including Phy. rosacearum and Phy. sansomeana 
(Hansen et al. 2009). Following the description of a related species, 
Phy. crassamura (Scanu et al. 2015), many isolates of Phy. 
megasperma recovered from woody plants globally have been 
reassigned to Phy. crassamura. True Phy. megasperma is probably 
limited to Fabaceae. Phytophthora medicaginis (Phytophthora root 
rot of lucerne) and Phy. trifolii (Phytophthora root rot of clover) 
were considered subspecies of Phy. megasperma before being 
formally described (Hansen & Maxwell 1991). Interestingly, Phy. 
megasperma resides in clade 6 of the Phytophthora phylogeny, 
as does Phy. crassamura and Phy. rosacearum, while Phy. 
sansomeana, Phy. medicaginis and Phy. trifolii reside in clade 8 
(Yang et al. 2017b). Phytophthora root rot of soybeans caused 
by Phytophthora sojae is one of the most studied Phytophthora 
diseases (Tyler 2007). The symptoms include damping-off of 
seedlings and then root rot of older seedlings. Management costs 
and annual crop losses amount to 1–2 billion US dollars. It has a 
very narrow host range and a global distribution.

Phytophthora stem rot of cowpea caused by Phytophthora 
vignae was first described in Australia and has a narrow distribution 
limited to Australia and Asia. It causes stem rot, leaf spots and 
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may ultimately destroy root systems. Natural hosts predominantly 
include (Fabaceae) Vigna unguiculata and V. sinensis. In 
Queensland, Australia, it is associated with significant disease 
and can cause catastrophic loss and complete loss in susceptible 
commercial crops (Davis et al. 1994).

Red stele or red core root rot is the most important disease of 
garden strawberries (Fragaria × ananassa) (Ho & Jong 1988). It 
is caused by Phytophthora fragariae and has been reported in 
most regions except Africa and South America. The only other 
natural host of this pathogen is boysenberry (Rubus ursinus var. 
longanobaccus). Resistance has been uncovered in strawberries 
and used to breed resistant varieties (Al-Khayri & Islam 2018). 
Chemical control is usually used, but there is good evidence that 
integrated cultural and biological control could reduce the use of 
fungicides (Norman et al. 1996).

White tip is a significant disease of leeks (Allium porrum) caused 
by Phytophthora porri, with the most significant impacts during wet 
and cold periods (Smilde et al. 1996). The pathogen has a wide 
distribution, causing diseases in Africa, Asia, Oceania, Europe 
and North America (Declercq et al. 2010). The pathogen typically 
causes leaf blight and impacts the bulbs, collar and roots of Allium 
species, although also associated with Campanula, Daucus, 
Dianthus, Gladiolus, Hyacinthus, Lactuca and Tulipa species.

Lima Bean downy mildew is a destructive disease caused by 
Phytophthora phaseoli. At least six races have been identified, 
leading to severe disease outbreaks in the eastern United States 
(Evans et al. 2007). The impacts are most evident and destructive 
on pods, but the pathogen also infects shoots, leaves, and petioles. 
Symptoms include early irregularly shaped and purplish lesions on 
the leaves. The disease appears most commonly under humid 
conditions. This species has a wide distribution in the eastern 
United States and a limited distribution in Central America, 
Africa, Asia and Europe. Known natural hosts include Phaseolus 
lunatus, Phaseolus limensis, and Phaseolus vulgaris, although it 
has caused symptoms on a range of agricultural hosts following 
artificial inoculations (Erwin & Ribeiro 1996).

Black shank of tobacco, caused by Phytophthora nicotianae 
(syn. Phy. parasitica), mainly affects the roots and basal stem area; 
however, all parts of the plant can become infected (Panabieres et 
al. 2016). Roots become blackened and decayed, and in the final 
stages of the disease, the stem begins to turn black. The disease 
is predominantly managed with good hygiene, crop rotations and 
chemical control. Breeding new varieties of tobacco for resistance 
to the pathogen has had limited commercial success, although it 
is an area of ongoing research (Bao et al. 2019). Phytophthora 
nicotianae has been extensively researched as an important 
global pathogen; it has a wide distribution and host range including 
agriculture, horticulture and ornamental species, where it can affect 
the roots, stems, trunk, leaves, fruits and pods (Panabieres et al. 
2016).

Pink rot of potatoes is caused by Phytophthora erythroseptica, a 
species with a global distribution but a very narrow host range. The 
tubers become infected while in the soil, but symptoms develop 
during storage. Avoiding the wounding of tubers during harvest and 
handling and rapid cooling and storage below 10 °C will reduce 
the impact (Salas et al. 2000). Management within the field is more 
difficult as the pathogen is resistant to common fungicides such 

as metalaxyl (Taylor et al. 2002). Phytophthora cryptogea is often 
also isolated alone or in association with Phy. erythroseptica from 
symptomatic tubers.

Root and stem rot is a common disease of numerous cultivated 
flowers, annual crops and ornamentals. Two of the pathogens often 
recovered in these situations are Phytophthora cryptogea and Phy. 
drechsleri; both are cosmopolitan species with numerous hosts 
(Erwin & Ribeiro 1996). These species are more often recovered from 
managed landscapes than from natural ecosystems. Several related 
species have now been described from the Phy. cryptogea species 
complex, including Phy. pseudocryptogea, which appears to be more 
common in natural ecosystems than Phy. cryptogea (Safaiefarahani 
et al. 2015). Isolates previously classified as Phy. drechsleri based 
on morphology have now been described as new species, many of 
which are not closely related to Phy. drechsleri (Burgess et al. 2009).

Phytophthora blight

Phytophthora capsici is a caducous species causing Phytophthora 
blight in vegetable crops, including capsicum and various other 
Solanaceae and Cucurbitaceae. The pathogen affects fruit and 
stems and causes root rot, stunted growth, and death of older plants 
(Hausbeck & Lamour 2004). Disease incidence and severity have 
increased significantly in recent decades, and very little natural 
resistance has been found in most crops. Disease management 
depends on cultivation, sanitation, and fungicides (Lamour et al. 
2012). Many records of Phy. capsici in the tropics, especially those 
associated with woody hosts, are most likely records of a related 
species, Phy. tropicalis (Aragaki & Uchida 2001).

Diseases of fruits and pods

There are several Phytophthora diseases of fruits and pods, stem 
cankers, leaf diseases and root rot of important tropical crops such 
as cocoa, coconut, durian, rubber and taro (Erwin & Ribeiro 1996, 
Drenth & Guest 2004). Some species such as Phy. palmivora have 
a global distribution, while others have a more limited distribution; 
for example, Phy. meadii which is limited to Asia and the Pacific. 
While several species can cause the same symptoms on the same 
tree species, some of the best-known diseases include black stripe 
of rubber, bud rot and nut fall of coconut caused by Phy. heveae, 
taro leaf blight caused by Phy. colocasiae, bud rot of oil palm 
caused by Phy. palmivora, pod rot of rubber caused by Phy. meadii 
and black pod disease of cocoa caused by Phy. megakarya (Erwin 
& Ribeiro 1996, Drenth & Guest 2004).

Brown rot of citrus fruit caused by Phytophthora hibernalis was 
first described in Western Australia in 1926, although the disease 
had been known since 1916 (Carne 1926). It is now known to 
have an almost global distribution on Citrus species and other 
Rutaceae, and it is doubtful Phy. hibernalis originated in Australia. 
The most effective control is the use of fungicides in orchards (also 
to control other Phytophthora diseases of Citrus) and postharvest 
treatments (Adaskaveg & Förster 2014). Phytophthora boehmeriae 
also causes brown rot of citrus fruit and a variety of other diseases, 
including cotton boll blight. Phytophthora boehmeriae has a more 
limited distribution than Phy. hibernalis, and has not been reported 
in most of Europe or North America (Erwin & Ribeiro 1996).

Gummosis of citrus trees is the leading cause of stunted growth 
and mortality globally. The most common species associated with 
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this disease is Phytophthora citrophthora, one of the first species 
described (Leonian 1925). This disease has been extensively 
studied, especially cultural and chemical control (Cacciola & di 
San Lio 2008). Resistant rootstocks (Matheron et al. 1998) and 
phosphite use (Matheron & Matejka 1988) are common control 
measures.

Sudden oak death

Phytophthora ramorum causes a significant disease of oak 
species on the west coast of North America known as sudden oak 
death. The pathogen spreads through aerial spores under moist 
conditions and causes significant bleeding cankers on trunks and 
branches, foliage dieback and death. In North America, there are 
sporulating hosts such as California bay laurels (Umbellularia 
californica), where the pathogen infects leaves and produces 
significant inoculum, and dead-end hosts such as tanoak 
(Lithocarpus densiflorus) and coast live oak (Quercus agrifolia), 
where infection often leads to death (Rizzo et al. 2002). Ramorum 
blight is common on numerous woody ornamentals, in particular 
Rhododendron (Grünwald et al. 2008). Within Europe, Phy. 
ramorum does not cause disease of oaks; however, it has been 
reported in commercial nurseries in over 20 countries (Grünwald 
et al. 2008), and it causes a significant decline of Japanese larch 
(Larix kaempferi) plantations (Brasier & Webber 2010) in the 
UK. Phytophthora kernoviae also causes significant disease in 
Rhododendron spp., Fagus grandifolia and Vaccinium spp. in the 
UK (Brasier et al. 2005). As Phytophthora kernoviae has limited 
impact on native species in New Zealand, it is hypothesised to be 
the species’ origin (Gardner et al. 2015).

Port-Orford cedar root disease

Phytophthora lateralis is an invasive soilborne pathogen responsible 
for Port-Orford cedar root disease (Chamaecyparis lawsoniana) in 
the USA, first noted in Washington State in the 1920s. The disease 
causes distinct colour changes in the foliage and mass collapse. 
The pathogen is found throughout the natural range of Port-Orford 
cedar in the USA, in Europe and from old growth C. obtusa in 
Taiwan (Hansen 2015). The pathogen spreads readily through 
contaminated water, organic material, infected earth-moving 
equipment, and nursery stock. The disease is managed within 
the USA by mapping the pathogen distribution and controlling 
its spread and replanting with resistant cultivars identified within 
infected forests and from a breeding program (Hansen et al. 2000).

Phytophthora dieback

Phytophthora cinnamomi is one of the world’s most devastating 
plant pathogens; it has a vast host range and a global distribution 
(Burgess et al. 2017). Phytophthora cinnamomi is the only 
oomycete and one of the only three plant pathogens listed as one 
of the 100 worst invasive alien species (Lowe et al. 2000). The 
pathogen was first described as the causal agent of stripe rust of 
Cinnamomum burmannii in Sumatra in 1922, and while the origin 
is unknown, most evidence points to a natural distribution in the 
uplands in south-east Asia (Arentz & Simpson 1986). While Phy. 
cinnamomi is a destructive plant pathogen of tree crops such as 
avocado and woody ornamentals, perhaps the most significant 
destruction is seen in Mediterranean climates where it causes 
Phytophthora dieback in susceptible Proteaceae communities in 
the Cape Floristic region of South Africa (Nagel et al. 2013) and 

the Southwest Botanical Province of Western Australia (Shearer 
et al. 2007). The most effective chemical control within managed 
landscapes is systemic fungicides (Coffey 1987) while preventing 
the spread into new areas is the primary control strategy for natural 
ecosystems (Cahill et al. 2008). As Phy. cinnamomi is a poor 
saprophyte, some success in eradication has been achieved using 
fallow periods (Dunstan et al. 2020).

Alder dieback is a serious root and collar rot disease of Alnus 
species throughout large regions of Europe and parts of North 
America. The disease is caused by Phytophthora alni (homoploid 
triploid hybrid) and the parental organisms Phy. multiformis 
(allotetraploid hybrid) and Phy. uniformis (diploid species) (Husson 
et al. 2015). Phytophthora alni is found throughout Europe and 
is associated with root and collar rot of riparian, nursery, and 
shelterbelt Alnus glutinosa and other Alnus species, including A. 
incana and A. cordata. Phytophthora uniformis occurs sporadically 
throughout parts of Europe in association with Phy. alni and is found 
in North America in Alaska and Oregon, where it is associated with 
declining Alnus rubra (Sims et al. 2015). Phytophthora multiformis 
has been found in fewer countries in Europe (Husson et al. 2015). 
The pathogens have significant impacts on riparian and forest 
ecosystems and are dispersed through water movement and 
flooding cycles, poor hygiene and infected plant material (Elegbede 
et al. 2010). Alders resistant to the disease have been identified, 
and screening and breeding have been proposed to help manage 
the disease (Chandelier et al. 2016).

Kauri dieback, caused by Phytophthora agathidicida, is a serious 
soil-borne disease of the keystone ecological species kauri (Agathis 
australis) in the rare podocarp forests of northern New Zealand. 
The pathogen has a devastating impact causing mass collapse and 
large bleeding cankers of the collar and trunk (Scott & Williams 
2014). The disease has significant ecosystem impacts due to the 
loss of kauri, including large ancient trees and the subsequent 
loss of a range of rare understory species dependent upon the 
unique soil and ecological characteristics created by established 
kauri. Kauri has significant ecological and cultural roles for New 
Zealand’s indigenous people. Maori groups have led a range of 
responses to manage kauri dieback, involving traditional knowledge 
(mātauranga Māori) and contemporary approaches (Lambert et al. 
2018). The disease is managed using forest hygiene and chemical 
control, including injections of the systemic chemical control agent 
phosphite (Bradshaw et al. 2020c).

Red needle cast of radiata pine is an important disease of exotic 
forestry within New Zealand caused by Phytophthora pluvialis. 
The disease can cause needle banding and casting of radiata pine 
(Pinus radiata) and Douglas fir (Pseudotsuga menziesii) during 
seasons with conducive high rainfall environmental conditions, 
although it causes minimal symptoms during dry years (Dick et 
al. 2014). The pathogen does not infect or colonise woody tissue; 
however, the cumulative impact of needle casting can significantly 
impact wood development and commercial forestry (Hood et al. 
2014, Scott & Williams 2014). Within New Zealand, the pathogen 
is effectively managed with chemical control using aerial copper 
application and screening and breeding for resistance (Rolando et 
al. 2017). Phytophthora pluvialis is also known to cause casting 
and productivity impacts in Douglas fir and Pinus species in North 
America (Oregon), although it is unknown to have severe impacts 
on natural forestry ecosystems in that region (Reeser et al. 2013).
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Canker and root rot of woody trees

There are several cosmopolitan Phytophthora species with a broad 
host range and almost global distribution; Phy. cambivora, Phy. 
niederhauseri, Phy. syringae, Phy. nicotianae, Phy. cinnamomi, 
Phy. mutivora and Phy. plurivora. These are pathogens of trees 
and woody perennial shrubs in agriculture, ornamentals and 
natural ecosystems. Phytophthora multivora (Scott et al. 2009) and 
Phy. plurivora (Jung & Burgess 2009) are within the Phy. citricola 
species complex only recognised using molecular taxonomy. 
Phytophthora citricola was first recognised as a disease of Citrus 
spp. and many records from other hosts are incorrect. Phytophthora 
cambivora is commonly associated with cankers of chestnuts in 
Europe (Vettraino et al. 2005). Phytophthora niederhauserii was 
only recently described but already has an extensive host and 
geographic range and is common in orchards (Abad et al. 2014).

Research interests

There are 6 909 publications and 69 739 citations from 2011–2021 
in the Web of Science (Fig. 23), with the top 10 most cited articles 
given in Table 13. The majority of the most cited publications 
focus on taxonomy, genomics, infection processes and molecular 
plant-microbe interactions and how these could be manipulated to 
aid disease management, the global movement of Phytophthora 
species and biological invasions, especially into natural ecosystems 
(Fig. 24). The highly cited papers are from the start of the decade, 
but similar themes remain essential today. Phytophthora species 
continue to be important pathogens in managed landscapes and 
natural ecosystems and are, in some cases, becoming tolerant of 
the fungicides used to control them (Hollomon 2015). The increasing 
impact of Phytophthora pathogens in natural ecosystems has led 
to increased emphasis on landscape-level management of disease 
and DNA metabarcoding to establish the diversity and distribution 
of Phytophthora within the landscape (Burgess et al. 2019).

Genomics and molecular plant-microbe interactions
Due to their impact on numerous crops, Phytophthora is a 
commonly studied plant pathogen. There are six species, Phy. 
infestans, Phy. ramorum, Phy. sojae, Phy. capsici, Phy. cinnamomi 
and Phy. nicotianae, among the top 10 oomycete pathogens in 
molecular plant pathology (Kamoun et al. 2015). Effectors and 
proteins expressed by plant pathogens aid in the infection process. 
Pathogenic Phytophthora species are known to have an extensive 
effector repertoire and are the topic of numerous studies. The most 
highly cited paper among these looked at effectors from Phy. sojae 
and found that different effectors play an important role at different 
stages of the infection process (Wang et al. 2011). If the expression 
of effectors from early in the infection process is disrupted, 
transformants lose their virulence. Mycorrhizal fungi have a 
demonstrated protective effect against colonisation by soilborne 
pathogens such as Phytophthora. It is through that a modulation 
of plant defences occurs due to mycorrhizal priming of the plant 
defences (generalised induced resistance) (Jung et al. 2012).

Many oomycetes have large genomes, and the genes involved 
in host interactions are often polymorphic. These genome regions 
are highly adaptable and plastic, enabling them to adapt to new 
hosts and new environments (Raffaele & Kamoun 2012). One 
excellent example of this is Phy. infestans which has undergone 
major population shifts over time due to successive emergence and 
migration of lineages usually involving the displacement of existing 
less fit lineages (Cooke et al. 2012). The genome of one lineage 
that emerged and dominated in Great Britain over three years had 
extensive changes to the effector genes, enabling it to overcome 
resistance in some common potato varieties (Cooke et al. 2012).

Biological invasions and climate change
Numerous Phytophthora species associated with food crops 
have a cosmopolitan distribution, and many species true origin 
remains unknown. More recently, the most common pathway for 
introduction, especially for species that invade natural ecosystems, 

Fig. 23. Trends in research of Phytophthora in the period 2011–2021.
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has been through the nursery trade and live plant imports (Liebhold 
et al. 2012, Santini et al. 2013). While being significant agricultural 
pathogens, perhaps the greatest impact of introduced Phytophthora 
species has been in the natural environment (Sturrock et al. 2011, 
Fisher et al. 2012, Hansen et al. 2012). Sudden oak death caused 
by Phy. ramorum in the west coast USA (Rizzo & Garbelotto 2003), 
and Phytophthora dieback caused by Phy. cinnamomi in Australia 
(Cahill et al. 2008) have permanently changed the structure and 

function of impacted ecosystems. Sturrock et al. (2011) predicted 
that the impact of Phytophthora diseases would remain the same, 
or decrease, in warmer drier climates and increase in warmer 
wetter climates. These predictions have been supported by a 
species distribution model developed for Phy. cinnamomi using a 
global dataset of presence and absence records (Burgess et al. 
2017).

Table 13. Top 10 cited articles related to Phytophthora published in the period 2011–2021.
Rank Article title No. of citations References
1 Emerging fungal threats to animal, plant and ecosystem health 1 678 Fisher et al. (2012)
2 Mycorrhiza-induced resistance and priming of plant defenses 439 Jung et al. (2012)
3 The top 10 oomycete pathogens in molecular plant pathology 383 Kamoun et al. (2015)
4 DNA barcoding of oomycetes with cytochrome c oxidase subunit I and 

internal transcribed spacer
375 Robideau et al. (2011)

5 Genome evolution in filamentous plant pathogens: why bigger can be better 361 Raffaele & Kamoun (2012)
6 Climate change and forest diseases 359 Sturrock et al. (2011)
7 Live plant imports: the major pathway for forest insect and pathogen 

invasions of the US
347 Liebhold et al. (2012)

8 Biogeographical patterns and determinants of invasion by forest pathogens 
in Europe

323 Santini et al. (2013)

9 Transcriptional programming and functional interactions within the 
Phytophthora sojae RXLR effector repertoire

265 Wang et al. (2011b)

10 Genome analyses of an aggressive and invasive lineage of the Irish potato 
famine pathogen

237 Cooke et al. (2012)

Fig. 24. Network visualisation of keywords of the publications related to Phytophthora. The larger the text and the circle the more often the subject has been 
cited.
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Taxonomy and phylogeny
Until Cooke et al. (2000) published the first molecular phylogeny 
of Phytophthora, species descriptions had been based solely on 
morphological features, resulting in some species complexes that 
are now known to have been comprised of morphologically similar 
but phylogenetically unrelated species. There have been several 
phylogenetic studies including increasingly more Phytophthora 
species; Cooke et al. (2000) included 48 species from eight clades, 
this has increased to 82 species (Blair et al. 2008), then 109 species 
(Martin et al. 2014) and most recently 185 species representing 
10 clades (Yang et al. 2017b). The ITS and CO1 phylogenies of 
Robideau et al. (2011) are particularly cited as this publication 
included 1 205 isolates from 23 genera of oomycetes (not just 
Phytophthora), and it has thus been very useful for metabarcoding 
studies using environmental DNA. The most updated phylogeny 
based on type isolates and a complete revision of the genus has 
recently been published (Abad et al. 2023a).

Authors: T.I. Burgess and P. Scott

12. Rhizopus Ehrenb., Nova Acta Phys.-Med. Acad. Caes. 
Leop. -Carol. 10: 198. 1821.

Type species: Rhizopus stolonifer (Ehrenb.) Vuill.

Classification: Mucoromycota, Mucoromycotina, Mucoromycetes, 
Mucorales, Rhizopodaceae.

Background

Rhizopus constitutes an important genus within Mucorales with 11 
accepted species (Walther et al. 2019, Jayawardena et al. 2020) 
and around 150 epithets listed in Index Fungorum (2022). They are 
common post-harvest pathogens, human pathogens, and saprobes. 
They pose a threat to agricultural products by damaging the taste 
and appearance of crops such as strawberries and sweet potatoes. 
They are also opportunistic pathogens causing mucormycosis in 
immunosuppressed humans and the cause of some animal diseases. 
Furthermore, endosymbiotic bacteria residing in the hyphae of some 
Rhizopus species produce the phytotoxin rhizoxin which can lead 
to human poisoning (Partida-Martinez et al. 2007, Gryganskyi et al. 
2018). Rhizopus species have industrial and medical importance and 
occur worldwide. They are bio-industrial fermenters for food and are 
used in metabolite production. They are used to produce fermented 
products such as tempeh.

The conventional taxonomy of Rhizopus was primarily 
based on morphology and physiological characteristics. Similar 
to most Mucorales, the taxonomy of Rhizopus is based on 
asexual morphological characters and growth parameters. These 
characteristics included maximum growth temperature, sugar 
fermentation, and formation of acids. Organic acid patterns were 
used as a critical criterion for Rhizopus because it was shown that 
the ITS sequences had a clear relationship with acid production 
and that ITS was simple and effective for classification (Abe et al. 
2003). Inui et al. (1965) concluded that 10 characters were important 
in the taxonomy of Rhizopus which includes the characteristics 
mentioned above. Other characteristics include the formation of 
sporangia, chlamydospores, rhizoids, and the shape and colour of 
the sporangia (Zheng et al. 2007). Karyological studies of isolated 
species from Korean soil showed that chromosome numbers can 
vary from a minimum of eight (Rhiz. arrhizus) to a maximum of 16 
(Rhiz. stolonifer).

Even with the use of DNA sequence data, the classification 
of this genus remains contentious. Abe et al. (2006) provided the 
first molecular phylogenetic study of Rhizopus and separated 
the genus into three groupings which is congruent with the study 
of Schipper (1984); Rhiz. microsporus, Rhiz. stolonifer, and 
Rhiz. arrhizus. Later studies, based on ribosomal DNA (rDNA) 
and orotidine-5′-monophosphate decarboxylase gene (pyrG) 
sequences and morphology, either organised the genus into 10 
species and seven varieties or into eight species (Liu et al. 2007, 
Zheng et al. 2007). In the phylogenetic reconstruction of the genus, 
several inconsistencies in topology have been noticed depending 
on which genes are used and the phylogenetic methods utilised. 
These have been demonstrated in Gryganskyi et al. (2018). 
Phylogenomic analysis based on 192 orthologous protein-coding 
genes from whole-genome sequencing supports the findings of 
Liu et al. (2007). It suggests that there may be a reduction in the 
number of accepted species in the future as these species may be 
phylogenetically nested within Rhiz. delemar, Rhiz. stolonifer, Rhiz. 
arrhizus, or Rhiz. microsporus.

Ecological and economic significance
Postharvest pathogens

Rhizopus species are known pathogens of several crops such as 
strawberries, tomatoes, and sweet potatoes. They cause diseases 
such as Rhizopus soft rot, head rot, and Rhizopus blight. The 
common causative species are Rhiz. stolonifer, Rhiz. arrhizus, and 
Rhiz. microsporus. Typically, a wound is necessary for infection 
to occur. Aerial spores land on these wounds or cracks and then 
produce enzymes that degrade the host cells (Jayawardena et al. 
2020). Tomato which is highly consumed and is the second most 
important horticultural crop in the world (Alfaro-Sifuentes et al. 2019) 
is highly perishable and susceptible to mechanical damage during 
postharvest handling. It is estimated that 30 % of these fruits are 
lost due to postharvest disease of which 80 % are caused by Rhiz. 
stolonifer (Alfaro-Sifuentes et al. 2019). Soft rot by Rhizopus is also 
a devastating postharvest disease in sweet potatoes resulting in a 
2 % loss in the stored roots (Scruggs et al. 2016).

Rhizopus soft rot also affects peaches (Bautista-Baños et al. 2014). 
In Egypt and Brazil, postharvest diseases result in quality loss and 
rejection during sales (Bautista-Baños et al. 2014, Baggio et al. 
2017). Notably, in Egypt, the frequency of isolating Rhiz. stolonifer 
from diseased peaches in markets was 56.5 % (Bautista-Baños et al. 
2014). The presence of decayed fruits during postharvest handlings 
such as during transportation and storage can affect the quality and 
sale price of the fruit even if visible rotten fruits have been discarded 
and no apparent symptoms are seen. An increase of 1 % in the 
incidence of rots can reduce retail and wholesale prices by 1.24 % 
and 0.91 % respectively (Baggio et al. 2017).

Research interests

There are 3 353 publications and 51 691 citations from 2011–2021 
in the Web of Science (Fig. 25), with the top 10 most cited articles 
listed in Table 14. Most publications are related to the application of 
Rhizopus to produce secondary metabolites, human pathogenicity 
(Mucormycosis), and taxonomy (Fig. 26).

Production of lactic acid through fermentation
Lactic acid, known as 2-hydroxypropanoic acid, is an organic 
acid that can be used as a preservative, acidulant, or as inhibitor 
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of bacterial spoilage in foods (Ajala et al. 2020, 2021). This acid 
can be produced using fermentation processes or chemical 
methods. Fermentative methods enable the use of renewable 
carbohydrates, which are cleaner and more ecological. However, 
the choice of substrate is key as it determines the efficiency and 
cost of production. Rhizopus species can be used for both surface 
and submerged fermentation to produce lactic acid. This species 
is also widely used as the cells have better resistance to a high 
concentration of lactic acid than commonly used bacterial producers 
(Ajala et al. 2021). However, homofermentative lactic acid bacteria 
are significantly more efficient than fungi in converting sugars to 

lactic acid because of the production of other by-products such as 
ethanol and fumaric acid by the Rhiz. oryzae-based process (Abedi 
& Hashemi 2020).

Mucormycosis
Mucormycosis (also known as zygomycosis) is a rare and lethal form 
of fungal infection (Rodríguez-Lobato et al. 2017). The disease is 
primarily caused by Rhizopus species, with 70 % of mucormycosis 
associated with this genus (Andrianaki et al. 2018). Over the past 
few decades, mucormycosis has become the third most common 
fungal infection in patients having haematological malignancies 

Table 14. Top 10 cited articles related to Rhizopus published in the period 2011–2021.
Rank Article title No. of citations References

1 Zygomycosis in Europe: analysis of 230 cases accrued by the registry of the 
European Confederation of Medical Mycology (ECMM) Working Group on 
zygomycosis between 2005 and 2007

380 Skiada et al. (2011)

2 Biological activities of α-pinene and β-pinene enantiomers 321 Da Silva Rivas et al. (2012)
3 Pathogenesis of mucormycosis 283 Ibrahim et al. (2012)
4 A global analysis of mucormycosis in France: The RetroZygo Study (2005–2007) 271 Lanternier et al. (2012)

5 Synthesis, characterization and catalytic activity of gold nanoparticles biosynthesized 
with Rhizopus oryzae protein extract

240 Das et al. (2012)

6 One stop shop: backbones trees for important phytopathogenic genera: I (2014) 235 Hyde et al. (2014)

7 Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure 
and nanomechanical properties of gram-negative bacteria viz. Escherichia coli and 
Pseudomonas aeruginosa

223 Ramalingam et al. (2016)

8 Global epidemiology of mucormycosis 217 Prakash & Chakrabarti (2019)
9 The epidemiology and clinical manifestations of mucormycosis: a systematic review 

and meta-analysis of case reports
213 Jeong et al. (2019)

10 Daqu - A Traditional Chinese Liquor Fermentation Starter 173 Zheng et al. (2011b)

Fig. 25. Trends in research of Rhizopus in the period 2011–2021.
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or those having organ transplantation. The predominant species 
involved in this life-threatening disease are Rhiz. delemar and 
Rhiz. arrhizus (syn. Rhiz. oryzae). Other species are found in the 
genera Mucor, Lichtheimia, Rhizomucor, Apophysomyces, and 
Cunninghamella (Baldin & Ibrahim 2017). The main risk factors that 
make an individual prone to mucormycosis are neutropenia due to 
cancer treatment and diabetes mellitus especially those presenting 
with ketoacidosis, hematopoietic and organ transplantation (Baldin 
& Ibrahim 2017). The mortality rate of cutaneous mucormycosis 
is 31 % if a deep extension is present but primary cutaneous 
mucormycosis mortality is lower, especially in immunocompromised 
patients (Rodríguez-Lobato et al. 2017).

Disease management
Due to the devastating effect of Rhizopus species on postharvest 
crops, studies in controlling and managing the disease are crucial. 
Fungistatic mechanisms against Rhizopus rot such as antibiotics, 
antifungal activity, direct parasitism in pathogens, and induction of 
resistance of the host and competition by microbial antagonists have 
been suggested. Among these, the induction of disease resistance 
by other microbial agents of the host has been regarded as pivotal 
(Zhang et al. 2020). After treatment, resistance can be obtained 
through the production of antifungal substances, providing systemic 
and long-lasting resistance against the pathogenic organism. 
Chemical treatment methods are also used where the fruits are 
immersed in ethanol solutions and are effective in controlling decay 
by fungi. Other studies have tested several methods such as UV or 
β-aminobutyric acid (Özer Uyar & Uyar 2018).

Author: V.G. Hurdeal

13. Phanerochaete P. Karst., Bidr. Känn. Finl. Nat. Folk 48: 
426. 1889.

Type species: Phanerochaete alnea (Fr.) P. Karst.

Classification: Basidiomycota, Agaricomycotina, Agaricomycetes, 
Polyporales, Phanerochaetaceae.

Background

Phanerochaete was introduced by Karsten (1889) with Pha. 
alnea as the type. This genus is a saprobic homobasidiomycete 
on woody debris and logs (De Koker et al. 2003). Most species 
of Phanerochaete are associated with white-rot of wood and are 
widely distributed on fallen branches and logs, branches attached to 
trees, twigs, and even wood buried in the soil (Eriksson et al. 1978, 
Burdsall 1985). It is a large genus of the family Phanerochaetaceae, 
with 204 records in Index Fungorum (2022). Infraspecific names 
in Phanerochaete and additional new species are anticipated (De 
Koker et al. 2000).

Phanerochaete is a member of the corticioid fungi, and it is 
characterised by resupinate, membranaceous basidiomata with 
or without rhizomorphs, a monomitic hyphal system with primarily 
simple-septate generative hyphae, clavate basidia with four 
sterigmata, and smooth, thin-walled, inamyloid basidiospores 
(Eriksson et al. 1978, Burdsall 1985, Bernicchia & Gorjón 2010). 
The simplicity of the morphological characters of Phanerochaete 
and the existence of species with sporocarps that fulfil only some of 
these morphological criteria renders the limits of the genus uncertain 
(Floudas & Hibbett 2015). Other authors have also discussed and 
approached the taxonomy of Phanerochaete in different ways 
(Parmasto 1968, Eriksson et al. 1978, Jülich & Stalpers 1980, Xu 
et al. 2020, Chen et al. 2021a, Wang et al. 2021).

Molecular studies involving Phanerochaete based on ribosomal 
DNA (rDNA) sequences, revealed the phylogenetic distribution of 
resupinate forms across the major clades of mushroom-forming 
fungi, in which Pha. chrysosporium nested into the phlebioid clade 

Fig. 26. Network visualisation of keywords of the publications related to Rhizopus. The larger the text and the circle the more often the subject has been cited.
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in Polyporales (Binder et al. 2005). A DNA-phylogeny-based and 
morphology-based study to reconcile the polypores and genus 
concepts in the family Phanerochaetaceae (Miettinen et al. 2016), 
found the macromorphology of sporocarps and hymenophore 
construction did not reflect monophyletic groups, and Ceriporia 
inflata was combined into Phanerochaete. Amplifying nrLSU, nrITS, 
and rpb1 genes across the Polyporales revealed that eleven genera 
clustered into the family Phanerochaetaceae, and two families 
Hapalopilaceae and Bjerkanderaceae were placed as synonyms 
of Phanerochaetaceae (Justo et al. 2017). Recently, morphological 
studies and phylogenetic analyses found many new taxa of 
Phanerochaete s. str. and determined the taxonomic status of the 
new taxa within Phanerochaete (Wu et al. 2018c, Xu et al. 2020).

Ecological and economic significance

Phanerochaete is a genus that causes white rot on both softwood and 
hardwood and has attracted the attention of researchers for a long 

time (Floudas & Hibbett 2015). Phanerochaete are white-rot fungi 
that produce extracellular enzymes capable of completely degrading 
lignocellulose, the main component of wood and other plant cell 
walls (MacDonald et al. 2012) and the genus plays an important 
role in carbon cycling (Burdsall 1985). Phanerochaete species also 
have potential applications in the production of renewable chemicals 
and liquid fuel from wood, which is among the largest biomass 
resources that could be used to produce such chemicals (Lin & 
Tanaka 2006). The oxidative enzymes involved in wood degradation 
by Phanerochaete have also been shown to degrade a variety of 
persistent environmental pollutants, including chlorinated aromatic 
compounds, munitions, pesticides, and dyes (Cameron et al. 2000).

Ecology and distribution

Phanerochaete has been studied outside Europe (Burdsall 
1985) in North America and Asia (Wu 1990). Phanerochaete is 
widely distributed from boreal to tropical forests (Burdsall 1985). 

Fig. 27. Trends in research of Phanerochaete in the period 2011–2021.

Table 15. Top 10 cited articles related to Phanerochaete published in the period 2011–2021.
Rank Article title No. of citations References
1 Expansion of the enzymatic repertoire of the CAZy database to integrate 

auxiliary redox enzymes
681 Levasseur et al. (2013)

2 High-performance green flexible electronics based on biodegradable cellulose 
nanofibril paper

499 Jung et al. (2015b)

3 Untapped potential: exploiting fungi in bioremediation of hazardous chemicals 491 Harms et al. (2011)
4 Microbial decolouration of azo dyes: A review 480 Solis et al. (2012)
5 Extensive sampling of basidiomycete genomes demonstrates inadequacy of the 

white-rot/brown-rot paradigm for wood decay fungi
422 Riley et al. (2013)

6 Bioactive phenolic compounds: Production and extraction by solid-state 
fermentation. A review

367 Martins et al. (2011)

7 Lignocellulosic agriculture wastes as biomass feedstocks for second-generation 
bioethanol production: concepts and recent developments

316 Saini et al. (2015)

8 Fungal pretreatment of lignocellulosic biomass 257 Wan & Li (2012)
9 Lignin-degrading enzymes 230 Pollegioni et al. (2015)
10 Microbial decolorization and degradation of synthetic dyes: a review 206 Khan et al. (2013b)
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Fig. 28. Network visualisation of keywords of the publications related to Phanerochaete. The larger the text and the circle the more often the subject has 
been cited.

Phanerochaete species have been reported from America, Asia 
and Europe, New Zealand, and most of them are spreading in a 
limited region of Asia from the tropical southeast (Wu 1995, Dai 
2011, Liu & He 2016, Xu et al. 2020, Chen et al. 2021a, Wang et 
al. 2021).

Important species and applications of Phanerochaete

Phanerochaete chrysosporium is the most intensively studied 
white-rot basidiomycete and is a model wood-decay organism 
due to its frequent discovery in wood chip storage piles in Europe 
and North America (MacDonald et al. 2012). Phanerochaete 
chrysosporium grows rapidly, has an optimum growth temperature 
of around 40  °C and produces numerous conidia (Burdsall & 
Eslyn 1974). Adding tourmaline to Phanerochaete chrysosporium 
can accelerate the effect to enhance the bioremediation process 
of contaminated soil with polycyclic aromatic hydrocarbons 
(PAHs) and organochlorine pesticides (OCPs) (Wang et al. 
2014a). Phanerochaete chrysosporium may have potential use 
in industrial applications such as biopulping (Akhtar et al. 1998). 
Class II peroxidases and glyoxal oxidase, which are among the 
most important enzymes during lignin degradation, have been 
discovered in cultures of Pha. chrysosporium (Tien & Kirk 1983, 
Tien & Kirk 1984, Kersten & Kirk 1987). The use of white-rot fungi 
such as Pha. chrysosporium in decolourising textile wastewater 
has been widely reported (Lankinen et al. 1991, Cammarota & Sant 

Anna 1992, Bilgic et al. 1997, Young & Yu 1997, Tatarko & Bumpus 
1998, Gomaa et al. 2008, Faraco et al. 2009, Sharma et al. 2009, 
Janusz et al. 2017).

Research interests

There are 2 185 publications and 50 545 citations from 2011–
2021 in the Web of Science (Fig. 27), with the top 10 most cited 
articles listed in Table 15. Most of the publications focused on the 
use of lignin enzymes, and application in environmental pollution 
prevention and control, as well as taxonomy and diversity (Fig. 28).

Lignin enzymes
Lignin accounts for a large percentage of the energy that plants 
capture from the sun. It has been estimated that 25 % of the carbon 
fixed by photosynthesis is eventually transformed into lignin. This 
abundant polymer is a valuable potential resource and is the second 
most abundant renewable carbon source on earth. Lignin plays an 
important role in carbon recycling (Tien 1987). Lignin peroxidases 
were first discovered in Pha. chrysosporium (Tien & Kirk 1983, 
Paszczynski et al. 1986, Kirk & Farrell 1987, Janusz et al. 2017) The 
most obvious applications for ligninase are in the pulp and paper 
industry. The biological (or enzymatic) treatment of pulp can offer 
numerous advantages. Ligninase is potentially more selective in 
the removal of lignin than chemical processes. Studies with model 
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compounds, and to a limited extent with pulps, indicate that the 
ligninase is highly selective for aromatic substrates. Carbohydrates 
have not been degraded by the ligninase (Tien 1987).

Environmental pollution prevention and control
The versatile lignin-degrading white-rot fungus, Pha. chrysosporium, 
is a strong degrader in nature and mineralises partially or 
completely a wide variety of recalcitrant organic pollutants such as 
chlorophenols, nitrotoluenes and polycyclic aromatic hydrocarbons 
(Barr & Aust 1994). Xenobiotics which are degraded by Pha. 
chrysosporium also include various azo, heterocyclic and polymeric 
dyes (Paszczynski et al. 1992, Spadaro et al. 1992, Ollikka et al. 
1993). The quantities of contaminated sites with multi-elements 
have sharply increased (Cao et al. 2013b), due to anthropogenic 
activities such as rapid industrialisation and urbanisation (Sun et al. 
2011b, Lee et al. 2012, Xu et al. 2013a). Heavy metals/metalloids 
and organic pollutants are carcinogenic and mutagenic (Xu et 
al. 2012c, Zeng et al. 2013a) and they may arouse amplification 
effects through the food chain in organisms, threatening human 
health and natural ecosystems (Zeng et al. 2013b, Dai et al. 2021).

Taxonomy and phylogeny
Recent molecular studies demonstrate that Phanerochaete s. lat. is 
polyphyletic and distributed across several lineages in the phlebioid 
clade of the Polyporales and also the Hymenochaetales (De Koker 
et al. 2003, Greslebin et al. 2004, Wu et al. 2010, Floudas & Hibbett 
2015, Miettinen et al. 2016, Justo et al. 2017, Chen et al. 2018a). 
Revisiting the taxonomy of Phanerochaete based on a four gene 
dataset and extensive ITS sampling indicated that Phanerochaete 
s. lat. was polyphyletic and distributed across nine lineages in the 
phlebioid clade, in which six lineages could be assigned to described 
genera (Floudas & Hibbett 2015). Recent phylogenetic studies 
have also revealed morphologically cryptic taxa in Phanerochaete 
s. str. (e.g., Volobuev et al. 2015, Spirin et al. 2017, Phookamsak 
et al. 2019, Xu et al. 2020, Chen et al. 2021a, Wang et al. 2021).

Authors: C.L. Zhao, K.Y. Luo, D.Q. Wang and J.J. Li

14. Colletotrichum Corda, in Sturm, Deutschl. Fl., 3 Abt. 
(Pilze Deutschl.) 3(12): 41. 1831.

Type species: Colletotrichum lineola Corda

Classification: Ascomycota, Pezizomycotina, Sordariomycetes, 
Glomerellales, Glomerellaceae.

Background

Colletotrichum is one of the most common and most important 
genera of plant pathogenic fungi with currently 1 040 epithets listed 
in Index Fungorum (2024) and more than 300 accepted species; 
with both numbers constantly increasing (Jayawardena et al. 2021, 
Liu et al. 2022, Talhinhas & Baroncelli 2023).

Colletotrichum species cause diseases on fruits, leaves, stems 
and other aerial plant parts, commonly referred to as anthracnose 
(Udayanga et al. 2013). Other diseases caused by Colletotrichum 
species are for example leaf spot diseases, ripe rots and seedling 
blights (Yang et al. 2011, Cannon et al. 2012, Lima et al. 2013, 
Yan et al. 2015, Jayawardena et al. 2016). The symptoms caused 
are often dark sunken lesions or lesions with a dark margin (Than 
et al. 2008b). Germination and infection of Colletotrichum conidia 
require high relative humidity (≥ 95–98 %); pre-harvest disease is 

most serious in a warm environment (20–30 °C) (Khan & Hsiang 
2003, Boddy 2016, Ansari et al. 2018, Hyde et al. 2020a). Species 
of Colletotrichum can be seed-borne and may survive in soil as 
saprobes on dead plants or as endophytes in non-host species 
(Freeman et al. 2002, Cannon et al. 2012, Ranathunge et al. 2016). 
A list of Colletotrichum species and host families and up-to-date 
trees are provided by Talhinhas & Baroncelli (2023).

The asexual morph of Colletotrichum species produces aseptate, 
hyaline, straight or curved conidia endogenously from hyaline 
conidiogenous cells, often intermingled with straight dark setae, in 
an acervulus that is formed under the epidermis or cuticle of the 
host plant that breaks due to increased tension and subsequently 
the acervulus is exposed to the environment (Sutton 1992, Khan 
& Hsiang 2003, Wharton & Diéguez-Uribeondo 2004, Than et al. 
2008b, Huang et al. 2013a). Aseptate, hyaline ascospores formed 
in cylindrical to clavate asci in perithecia represent the sexual 
morph that was previously referred to as Glomerella and has only 
been observed in some of the species (Cannon et al. 2012, Damm 
et al. 2019). Conidia and ascospores may spread upon contact with 
water (dew, rain splash, irrigation) and via wind to new locations, 
new hosts or new plants or plant parts of the same host species 
(Ntahimpera et al. 1997). The plants are infected via appressoria 
that develop on the plant surface from the germinating spores and 
build up turgor pressure that enables infective hyphae to penetrate 
the cuticle or epidermis of the host (Chethana et al. 2021a). Further 
development depends on the production of host-induced virulence 
factors by the fungus (Kleemann et al. 2012, O’Connell et al. 2012).

Species of Colletotrichum are known to have different lifestyles 
and infection mechanisms, ranging from intracellular hemibiotrophy 
to subcuticular intramural necrotrophy (Perfect et al. 1999). Best 
studied is the hemibiotrophic lifestyle that is known from most of 
the species in the Col. destructivum, Col. graminicola and Col. 
orbiculare species complexes (Münch et al. 2008, O’Connell et 
al. 2012, Damm et al. 2013, 2014). These species have an initial 
biotrophic stage, in which host response is suppressed and the 
plants remain symptomless, and eventually switch to a necrotrophic 
stage, in which a significant number of plant cells are killed resulting 
in the development of symptoms (O’Connell et al. 2012).

Colletotrichum was introduced by Corda (1831), who observed 
rows of acervuli with curved conidia on dead stems of Apiaceae 
plants near Prague (today Czech Republic). Subsequently, 
hundreds of species were described from various host plants 
assuming Colletotrichum species to be strictly host-specific, until 
Von Arx (1957) reduced the number of species to 11 based on 
morphology. Von Arx (1957) regarded about 600 species that form 
straight cylindrical conidia as synonyms of Col. gloeosporioides. 
Since its description by Simmonds (1965), forms with straight 
conidia and acute ends were regarded as Col. acutatum and those 
with round ends as Col. gloeosporioides; both species being the 
most frequently reported and regarded as anthracnose pathogens 
of numerous host plants.

However, with the introduction of phylogenetic species 
recognition, species were circumscribed based on multi-locus 
sequence data in combination with informative morphological 
characters as well as data on physiology, pathogenicity, cultural 
characteristics and secondary metabolites as far as available, 
referred to as a polyphasic approach (Cai et al. 2009). As a result, 
host-specificity of individual species of the genus was revealed to 
be species-dependent and morphology to be unreliable (Damm 
et al. 2012a, Weir et al. 2012). Upon their epitypification, Col. 
acutatum and Col. gloeosporioides in a broad sense were identified 
as species complexes with more than 20 closely related species 
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each and in a narrow sense revealed to be pathogens of a restricted 
host spectrum (Cannon et al. 2008, Phoulivong et al. 2010, Damm 
et al. 2012, Weir et al. 2012). Today, Colletotrichum species 
with more or less curved conidia are classified in the dematium, 
destructivum, graminicola/caudatum, spaethianum and truncatum 
species complexes (Crouch et al. 2009, Crouch 2014, Damm et 
al. 2009, 2014), and species with more or less straight conidia in 
the acutatum, agaves, boninense, dracaenophilum, gigasporum, 
gloeosporioides, magnum, orbiculare and orchidearum species 
complexes (Damm et al. 2012a, b, 2013, 2019, Weir et al. 2012, Liu 
et al. 2014, Bhunjun et al. 2021b). Further species complexes have 
recently been proposed (Liu et al. 2022, Talhinhas & Baroncelli 
2023). Species that had previously been regarded as synonyms 
of Col. gloeosporioides or strains that were previously identified 
as this species were allocated to many of these complexes (e.g., 
Damm et al. 2012a, 2014, 2019, Liu et al. 2014, 2016). Additionally, 
there are more than ten species that do not belong to any species 
complex and are referred to as singletons (Hyde et al. 2014, 
Jayawardena et al. 2021).

Ecological and economic significance

Colletotrichum is an important genus in both ecological and 
economic aspects. Colletotrichum species are widespread, 
especially in the tropics and subtropics, cause diseases of many 
different plant families and can infect every crop on earth, especially 
fruits, vegetables and ornamentals (Dean et al. 2012, Bhunjun et 
al. 2019, Jayawardena et al. 2020, Armand et al. 2023, Peng et al. 
2023, Talhinhas & Baroncelli 2023, Zhang et al. 2023b, c); some of 
the most important diseases are discussed below.

Anthracnose of fruits and fruit rots

Colletotrichum species are of high economic importance for the 
fruit industry by causing diseases on fruits (e.g., apple, citrus, 
grape and strawberry) like anthracnose and fruit rot that can cause 
yield losses of up to 100 % (Huang et al. 2013a, Leonberger et 
al. 2019, Dowling et al. 2020). Postharvest diseases of fruits are 
usually caused by several Colletotrichum species mainly belonging 
to the acutatum and gloeosporioides species complexes; most of 
these species are not host specific (Damm et al. 2012a, Weir et al. 
2012, Jayawardena et al. 2021). For example, bitter rot of apples 
in the Southeastern USA is caused by 12 different Colletotrichum 
species; at least 22 species mostly belonging to the above-
mentioned complexes are known from apples worldwide (Damm 
et al. 2012a, b, Weir et al. 2012, Bragança et al. 2016, Munir et 
al. 2016, Grammen et al. 2019, Moreira et al. 2019b). There 
are three important citrus diseases caused by Colletotrichum: 
post-bloom fruit drop (PFD), Key lime anthracnose (KLA) and 
postharvest anthracnose; the first two were almost exclusively 
reported from the Americas and are caused by Col. abscissum, 
Col. gloeosporioides and Col. limetticola, respectively (Damm et 
al. 2012a, Timmer & Peres 2015, Silva et al. 2017). Colletotrichum 
abscissum (often still referred to as Col. acutatum) is the main PFD 
pathogen and produces reddish-orange lesions with salmon-pink 
spore masses on citrus petals, which subsequently results in drop 
of fruitlets, while the calyces and floral buttons remain attached 
to the twigs, however, it does not cause postharvest anthracnose 
(Timmer & Peres 2015). Colletotrichum gloeosporioides is the most 
aggressive Colletotrichum species on citrus fruits in Europe and can 
be found on symptomatic leaves, fruits, petals and twigs of citrus 
species (Guarnaccia et al. 2017). At least 16 species belonging to 

the acutatum, boninense, dracaenophilum, gloeosporioides and 
truncatum species complexes have been reported associated 
with symptomatic citrus (Damm et al. 2012a, b, 2019, 2020, Crous 
et al. 2015, Liu et al. 2016a, Guarnaccia et al. 2017). Grape ripe 
rot is also caused by 16 Colletotrichum species in the acutatum, 
boninense and truncatum species complexes (Jayawardena et al. 
2018b, Echeverrigaray et al. 2020), while over 20 Colletotrichum 
species in various species complexes are known from strawberry 
(Farr & Rossman 2022).

Anthracnose of chili pepper

Chili (Capsicum annum) is the fourth most important cultivated crop 
in the world (Saxena et al. 2016) and one of the most important 
ingredients and spices of tropical and subtropical cuisines. 
Anthracnose is one of the major constraints in chili production 
throughout Asia, as well as in Australia and Brazil, causing 10–
80 % yield loss and reducing the marketability of the fruit (Than 
et al. 2008a, De Silva et al. 2019a). About 30 species are known 
from chili, belonging to the acutatum, boninense, gloeosporioides, 
spaethianum, truncatum, orchidearum and magnum species 
complexes (Diao et al. 2017, Mongkolporn & Taylor 2018, Damm 
et al. 2019, De Silva et al. 2017, 2019). Colletotrichum truncatum 
(syn. Col. capsici) was the most frequently isolated species from 
infected chili fruit in a survey in Asia (Indonesia, Malaysia, Sri Lanka, 
Thailand, Taiwan), followed by Col. scovillei and Col. siamense (De 
Silva et al. 2017). In a study from Korea, only Col. scovillei was 
found, which is absent in Australia (De Silva et al. 2017, Oo et al. 
2017). Pathogenicity tests on chili fruit showed that Col. scovillei 
and Col. javanense are highly aggressive (De Silva et al. 2019a).

Anthracnose of legumes

Legumes like common beans (Phaseolus vulgaris), soybeans 
(Glycine max) and lentils (Lens culinaris) are important sources 
of protein for human and animal nutrition. Anthracnose diseases 
can devastate up to 50 % of grain production (Boufleur et al. 
2021). Typical symptoms, for example of soybean anthracnose, 
are damping-off, dark spots on cotyledons, stems, petioles 
and pods and necrotic veins on leaves resulting in premature 
defoliation and grain germination, and pod rot (Boufleur et al. 
2021). Colletotrichum truncatum is the main anthracnose pathogen 
of many legumes (Damm et al. 2009), while Col. lindemuthianum 
(orbiculare complex), although reported from 28 plant genera (Farr 
& Rossman 2022), within the legumes is restricted to Phaseolus 
vulgaris and Phaseolus coccineus (Damm et al. 2013, Liu et al. 
2013a). Additional species are associated with beans, e.g., Col. 
spaethianum with common beans and Col. chlorophyti and Col. 
incanum with soybeans, while Col. musicola, Col. plurivorum and 
Col. sojae were reported from both hosts (Damm et al. 2019, Yang 
et al. 2012c, 2014, Bofleur et al. 2020). Based on sequence data, 
Boufleur et al. (2021) revealed 13 species belonging to at least 
nine species complexes to be associated with soybeans with 
different global distribution and different roles in disease incidence, 
as some had been predominantly isolated from either symptomatic 
or asymptomatic tissue. In contrast, the main pathogen of lentil 
anthracnose is Col. lentis which belongs to the destructivum 
complex; the only other species from lentils identified using 
sequence data is Col. nigrum (Liu et al. 2013a).

Several Colletotrichum species are also known as endophytes 
of plants (Cannon et al. 2012, Damm et al. 2012b, Liu et al. 2015a, 
Jayawardena et al. 2020, 2021, Bhunjun et al. 2024). Many of them 
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can switch their lifestyle from endophytic to pathogenic based on 
the physiological condition and genotype of the host plant and 
environmental factors (Photita et al. 2004, Promputtha et al. 2007, 
Hardoim et al. 2015, Da Silva et al. 2020b). Apart from being plant 
pathogens or endophytes, Colletotrichum species can also be 
pathogens of animals e.g., insects and humans. Several species, 
including Col. dematium, Col. fructicola, Col. gloeosporioides, 
Col. tropicale and Col. truncatum were reported to cause keratitis 
in humans (Buchta et al. 2019, Hung et al. 2020). Colletotrichum 
gloeosporioides (s. lat.) was reported to cause a deep tissue 
mycosis in a person in Australia (Figtree et al. 2013), a severe 
corneal infection (Rodriguez 2014) and a cutaneous infection (Lin 
et al. 2015).

Research interests

Colletotrichum was listed as one of the top 10 fungal pathogens in 
molecular plant pathology based on their scientific and economic 
importance (Dean et al. 2012), which is also reflected in the high 
number of publications and high citation rate. The Web of Science 
lists 4 767 publications and 46 970 citations from 2011–2021 (Fig. 
29). The 10 most cited articles are listed in Table 16. Most of the 
publications focused on certain species or species complexes, their 
identification and pathogenicity to specific plant hosts, molecular 
studies of the plant-pathogen interactions and diseases and their 
control (Fig. 30).

Taxonomy, phylogeny and identification
An accurate circumscription of the causal agent of a disease 
is the key to unambiguously identify it, understanding plant-
pathogen interactions, host range and distribution and thus 
providing the basis for effective disease control and prevention. 
After many decades of uncertainty in Colletotrichum systematics, 
an international initiative started in 2009 with the epitypification of 
the type species Col. lineola and several other important species 

with curved conidia, multi-locus phylogenetic studies especially of 
species from Amaryllidaceae and Poaceae, a critical revision of 
the current application of species names and recommendations 
for studying and identifying Colletotrichum species (Cai et al. 
2009, Crouch et al. 2009, Damm et al. 2009, Hyde et al. 2009, 
Yang et al. 2009). In the following years, a robust framework of 
more than 15 species complexes was established and many new 
species were revealed (Cannon et al. 2012, Crouch 2014, Damm 
et al. 2012a, 2012b, 2013, 2014, 2019, Weir et al. 2012, Liu et al. 
2014, Bhunjun et al. 2021b, Liu et al. 2022); the data on the new 
species are regularly fed in a multi-locus online identification tool 
(qbank.eppo.int/fungi/). This facilitated the accurate identification of 
known and the allocation of previously unknown pathogens and 
endophytes and resulted in numerous surveys on specific hosts, 
disease studies and first reports that often include new species 
discoveries and pathogenicity tests (e.g., Tao et al. 2013, Vieira et 
al. 2014, Sun et al. 2019, Damm et al. 2020, Alizadeh et al. 2022, 
Yang et al. 2023a). This process is progressing and a transition to 
genome-based systematics is foreseeable (O’Connell et al. 2012, 
Li et al. 2021b, Liu et al. 2022).

Colletotrichum species as model organisms to study 
plant-pathogen interactions
Colletotrichum species have been successfully used as model 
organisms to study plant-pathogen interactions because they can 
easily be manipulated in the laboratory and of the hemibiotrophic 
lifestyle of many species (Perfect et al. 1999, O’Connell et al. 2012, 
Baroncelli et al. 2017).

Initially, studies were based on morphological observations 
of hemibiotrophic growth of Colletotrichum species inside plants 
(O’Connell et al. 2012). The genetic basis of pathogenicity was 
investigated by manipulating individual genes, e.g., of Col. magnum 
(Freeman & Rodriguez 1993, Rodriguez & Redman 2008). Now 
whole or partial genomes and transcriptomes are sequenced 
encircling the molecular origins of pathogenicity, host susceptibility, 

Fig. 29. Trends in research of Colletotrichum in the period 2011–2021.
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individual responses, drawbacks and benefits on both sides 
increasingly tighter. Comparative genomics and transcriptomics 
demonstrate for example the shift from biotrophic to necrotrophic 
lifestyle of hemibiotrophic species like Col. graminicola, Col. 
higginsianum and Col. orbiculare on gene level (Kleemann et al. 
2012, O’Connell et al. 2012, Gan et al. 2013) and the thin line 
between pathogenic and beneficial interactions of closely related 

Colletotrichum species to Arabidopsis thaliana under phosphate 
deprivation (Hacquard et al. 2016, Hiruma et al. 2016).

The results of these studies also include the genome sequences 
of an increasing number of species, especially of those belonging to 
the acutatum, destructivum, graminicola and orbiculare complexes 
(O’Connell et al. 2012, Baroncelli et al. 2014a, b, Viswanathan et 
al. 2016, Gan et al. 2019a, b) that can be used to link different 

Fig. 30. Network visualisation of keywords of the publications related to Colletotrichum. The larger the text and the circle the more often the subject has 
been cited.

Table 16. Top 10 cited articles related to Colletotrichum published in the period 2011–2021.
Rank Article title No. of citations References
1 The top 10 fungal pathogens in molecular plant pathology 1 769 Dean et al. (2012)
2 The Colletotrichum gloeosporioides species complex 717 Weir et al. (2012)
3 Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by 

genome and transcriptome analyses
536 O’Connell et al. (2012)

4 Colletotrichum – current status and future directions 500 Cannon et al. (2012)
5 The Colletotrichum acutatum species complex 479 Damm et al. (2012a)
6 Root endophyte Colletotrichum tofieldiae confers plant fitness benefits that are 

phosphate status dependent
273 Hiruma et al. (2016)

7 One stop shop: backbones trees for important phytopathogenic genera: I (2014) 235 Hyde et al. (2014)
8 The Colletotrichum boninense species complex 231 Damm et al. (2012b)
9 Sequential delivery of host-induced virulence effectors by appressoria and 

intracellular hyphae of the phytopathogen Colletotrichum higginsianum
213 Kleemann et al. (2012)

10 Comparative genomic and transcriptomic analyses reveal the hemibiotrophic 
stage shift of Colletotrichum fungi

209 Gan et al. (2013)
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research and applied fields like evolutionary plant pathology, 
epidemiology and resistance breeding (www.colletotrichum.org/
genomics/). Studies of plant-pathogen interactions, for example, 
focusing on genes involved in pathogenicity or fungicide resistance 
are the basis for disease management.

Disease management
Colletotrichum species cause anthracnose and other diseases of 
numerous hosts, including important crops and cause high yield 
losses and quality reductions of economic importance. Diseases 
caused by Colletotrichum species are currently controlled by 
fungicides like azoxystrobin, mancozep, cabendazim, thiophanate 
methyl and triazoles (Dias et al. 2016, Nataraj et al. 2020, Damm et 
al. 2020, Poti et al. 2020). However, fungicide efficiency gradually 
decreases due to the development of resistance of the pathogens, 
which is based on variations in specific genes (Chen et al. 2013c, 
Poti et al. 2020). Biocontrol and resistance breeding offer more 
ecological and sustainable solutions.

There are many approaches of biological control of 
Colletotrichum species by other filamentous fungi like Trichoderma 
viride and Epicoccum dendrobii, by yeasts such as Saccharomyces 
cerevisiae and Cryptococcus laurentii, by bacteria like Bacillus 
subtilis or by essential oils of plants like thyme, sage and 
peppermint (Ghosh & Chakraborty 2012, Bautista-Rosales et al. 
2014, Ryu et al. 2014, Lopes et al. 2015, Morkeliūnė et al. 2021, 
Bian et al. 2021). Patel et al. (2019) screened bacterial strains for 
their antifungal activity against Col. falcatum, the causal agent of 
red rot of sugar cane. Most strategies against postharvest diseases 
focus on Col. acutatum, Col. gloeosporioides and Col. truncatum; 
promising results with yeast strains were achieved here, however, 
are not yet commercialised (Shi et al. 2021).

Pathogenicity tests are initially important to characterise a 
fungus as either a pathogen or an endophyte; they play a key 
role in resistance breeding programs against anthracnose, both 
to determine the aggressiveness of the Colletotrichum strains 
and to screen the host genotypes for anthracnose resistance 
(Mongkolporn & Taylor 2018). For example, to develop chili 
genotypes resistant to the three most important anthracnose 
pathogens, plant breeders transfer resistance genes from 
Capsicum chinense and Ca. baccatum into Ca. annuum 
(Mongkolporn & Taylor 2018). Genotypes of soybeans resistant 
to Col. truncatum have been reported in different countries. 
However, no studies involving other Colletotrichum species have 
been performed so far (Boufleur et al. 2021), and there is currently 
no breeding program for anthracnose-resistant soybean cultivars 
(Yang & Hartman 2015). Apart from the problem of multiple 
species being involved, more than one gene may also be involved 
in resistance, for example, soybeans against anthracnose caused 
by Col. truncatum (Nataraj et al. 2020).

However, several Colletotrichum species have been tested as 
potential biocontrol agents themselves, mostly as bioherbicides 
against weeds, such as species in the orbiculare complex (Damm et 
al. 2013). Colletotrichum gloeosporioides (s. lat.) was successfully 
used to control an obligate parasitic plant Arceuthobium tsugense 
(Askew et al. 2011), and the herbicidal activity of metabolites 
(colletochlorins) of Col. higginsianum against leaves of Sonchus 
arvensis and tomato was demonstrated (Masi et al. 2017).

Authors: U. Damm and R.S. Jayawardena

15. Trametes Fr., Fl. Scan.: 339. 1836.

Type species: Trametes suaveolens (L.) Fr.

Classification: Basidiomycota, Agaricomycotina, Agaricomycetes, 
Polyporales, Polyporaceae.

Background

The genus Trametes was established by Elias Magnus Fries treating 
Tra. suaveolens as the type (Fries 1836). Members of the genus 
are cosmopolitan in distribution and can be easily found in boreal, 
temperate, and tropical forest ecosystems (Gilbertson & Ryvarden 
1987, Ryvarden 1991, Carlson et al. 2014, Olou et al. 2020). 
Historically, many genera like Cerrena, Coriolopsis, Daedalea, 
Microporus, Fomitopsis, and Trametopsis were once placed within 
the genus Trametes by Corner (1989) based on characters like 
trimitic hyphal systems (Ko & Jung 1999, Tomšovský et al. 2006, 
Tomšovský 2008, Justo & Hibbett 2011). Ryvarden (1991) redefined 
the Trametes group and included most of the genera synonymised 
by Corner (1989) based on features like the trimitic hyphal system 
and white-rot type of wood decay.

With the advancement of molecular phylogenetic studies, Ko & 
Jung (1999) and Tomšovský et al. (2006) performed a detailed study 
and placed most species of Trametes in the core polyporoid clade 
suggesting that the genus is either paraphyletic or polyphyletic. 
Conflicts over the generic limit of Trametes, due to a lack of distinct 
morphological features, resulted in the genus consisting of a 
large number of nomenclatural combinations. There are 250 well-
recognised species of Trametes, according to Index Fungorum. 
Currently, the genus is circumscribed by the combination of features 
like a pileate basidiocarp with poroid hymenophore; smooth, thin-
walled, IKI-basidiospores, presence of trimitic hyphal system, and 
symptoms like a white-rot type of decay on hardwood and conifer 
wood (Gilbertson & Ryvarden 1987, Gomes-Silva et al. 2010, Justo 
& Hibbett 2011).

Traditionally, the genus has long been used in Chinese 
medicine (Knežević 2015, Soković et al. 2018). Several species 
of the genus are enriched with antioxidant, anti-inflammatory, 
antimicrobial, and anticancer properties (Yamaç & Bilgili 2006, 
Kamiyama et al. 2013, Knežević et al. 2015, Milovanovic et al. 
2015, Zhao et al. 2015g). Maniak et al. (2020) discovered a new 
class of low-molecular-weight hydrazide-hydrazones as laccase 
inhibitors in Tra. versicolor. Trametes versicolor is also used to 
produce higher amounts of divanillin, a bio-based aromatic building 
block for synthesising semi-aromatic polymers, and this is again 
polymerised with 2,7-diaminocarbazole and benzene-1,4-diamine 
to formulate divanillin-based poly-azomethines which show 
excellent thermal and mechanical properties (Garbay et al. 2020).

Ecological and economic significance

Trametes species are a common wood decay fungus due to their 
lignin degradation ability and can be found on several species of 
hardwood trees (Roy 1982, Levin & Castro 1998, Hapuarachchi et 
al. 2021). They are commonly known as a predator of natural forest 
ecosystems (Bari et al. 2016). Besides their usefulness as a wood 
decomposer in natural ecosystems, Trametes species are also 
used in the biodegradation of agricultural waste and bioremediation 
(Wang et al. 2012e, Carlson et al. 2014, Wu et al. 2016b).

Trametes species are well known to cause white rot decay of 
wood and details of this decay are given below:
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White rot decay of woods

Trametes species have a broad range of host plant species (Eaton 
& Hale 1993, Schmidt 2006). In the USA and the northern part of 
Iran, over 90 % of wood decay is due to Trametes species causing 
white rot disease (Gilbertson 1980, Bari et al. 2015). These fungi 
produce filamentous hyphae that are 20–30 times smaller than 
the invaded wood cell walls (Goodell et al. 2008). The filamentous 
hyphae initially infect the wood ray cells, and then gradually pass 
from one cell to another cell through the pits. In the growing stages 
when microclimatic conditions are favourable, the hyphae extend 
lengthwise through the lumen of the wood cells and secrete 
enzymatic and non-enzymatic metabolites for the degradation of 
wood cell wall for the acquisition of nutrients (Goodell et al. 2008). 
The enzymes responsible for decomposing lignin substances 
include lignin peroxidase, laccase, and manganese peroxidases, 
which cause oxidisation and mineralisation (Hatakka 1994, 
Hatakka et al. 2002, Karim et al. 2017). As a result, a bleached-
like appearance develops where fibres and parenchyma cells 
completely degrade the remaining vessels (Levin & Castro 1998). 
The wood becomes soft and stringy where the softened wood 
fibres can be easily separated allowing the wood to be peeled 
apart (Goodell et al. 2008). Besides the simultaneous degradation 
of lignin, the degradation of cell wall polysaccharides continues, 
leaving cells perforated with holes and erosion troughs (Eriksson 
et al. 1990). However, in the case of selective removal of lignin 
present in the middle lamellae and secondary wall there remains in 
higher quantities (Blanchette 1994).

Apart from wood decay, some Trametes species have also been 
used as biocontrol agents, such as Tra. versicolor used to control 
Fusarium oxysporum f. sp. lycopersici, Fusarium moniliforme, 
Alternaria solani, Rhizoctonia solani, Cercospora capsici, Botrytis 
cinerea, and Verticillium dahliae (Ruiz-Dueñas & Martınez 1996, 
Deketelaere et al. 2017, Mendieta et al. 2019).

Research interests

There are 2 834 publications and 46 427 citations from 2011–
2021 in the Web of Science (Fig. 31), with the top 10 most cited 
articles shown in Table 17. Most publications focused on fungal 
laccase (production, purification, characterisation, dye synthesis), 
bioremediation of hazardous chemicals, nutraceutical activities, as 
well as taxonomy (Fig. 32).

Laccase enzyme from Trametes species
Trametes species are good producers of the enzyme laccase. 
Studies have focused on the production of laccase from Tra. gallica 
(Dong et al. 2005), Tra. hirsuta (Rodríguez Couto et al. 2004, Rosales 
et al. 2005, Koroleva et al. 2002), Tra. modesta (Nyanhongo et al. 
2002), Tra. pubescens (Galhaup et al. 2002), Tra. trogii (Trupkin 
et al. 2003), and Tra. versicolor (Fåhraeus & Reinhammar 1967, 
Mikiashvili et al. 2005, Rodríguez Couto et al. 2003). Laccase is a 
promising biocatalyst with a wide range of applications, including 
chemical synthesis, bioremediation, delignification, biosensing, 
pulp bleaching, textile finishing, and wine preservation, etc. 
(Dwivedi et al. 2011, Fernández-Fernández et al. 2013). Laccases 
can polymerise natural phenols and aid in the development of novel 
cosmetic dyes, hair colouring materials, toothpaste, deodorants, 
mouthwashes, and other commodities (Dwivedi et al. 2011). These 
features make laccase a fascinating enzyme to investigate in 
terms of structure, function, and application (Dwivedi et al. 2011). 
Laccases mediate the oxidation process of various environmental 
contaminants including non-phenolic and phenolic compounds 
(Dwivedi et al. 2011). As storage and operational stabilities are 
routinely improved, immobilisation of laccase through adsorption, 
encapsulation, entrapment, self-immobilisation, and covalent 
binding offers various advantages for its applications over free 
enzymes in terms of reusability (Fernández-Fernández et al. 2013).

Fig. 31. Trends in research of Trametes in the period 2011–2021.
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Nutraceutical activities
Trametes versicolor has been widely studied and the acetone 
extract of the mushroom has been found to contain considerably 
higher antioxidant activity compared to other extracts like methanol, 
chloroform, and n-hexane (Kamiyama et al. 2013). The major 
compounds responsible for showing potent antioxidant activities 

of the mushroom include furfural, furfuryl alcohol, γ-butyrolactone, 
2-methoxy-4-vinylphenol, benzaldehyde, and 2,6-dimetoxy-
4-vinylphenol (Kamiyama et al. 2013, Soković et al. 2018). 
Methanolic extract of Tra. ochracea mushrooms contains higher 
antioxidants compared to the hexane extracts and the mushrooms 
are enriched with significant amounts of various compounds like 

Table 17. Top 10 cited articles related to Trametes published in the period 2011–2021.
Rank Article title No. of citations References
1 Untapped potential: exploiting fungi in bioremediation of hazardous 

chemicals
491 Harms et al. (2011)

2 Enzyme immobilization by adsorption: a review 477 Jesionowski et al. (2014)
3 Recent developments and applications of immobilized laccase 401 Fernandez-Fernandez et al. (2013)
4 The role of culinary-medicinal mushrooms on human welfare with a 

pyramid model for human health
341 Chang & Wasser (2012)

5 From the conventional biological wastewater treatment to hybrid 
processes, the evaluation of organic micropollutant removal: A review

338 Grandclement et al. (2017)

6 Enzymes as green catalysts for precision macromolecular synthesis 300 Shoda et al. (2016)
7 Structure-function relationship among bacterial, fungal and plant 

laccases
286 Dwivedi et al. (2011)

8 Biotechnological strategies to overcome inhibitors in lignocellulose 
hydrolysates for ethanol production: review

267 Parawira & Tekere (2011)

9 Potential applications of laccase-mediated coupling and grafting 
reactions: A review

238 Kudanga et al. (2011)

10 Lignin-degrading enzymes 230 Pollegioni et al. (2015)

Fig. 32. Network visualisation of keywords of the publications related to Trametes. The larger the text and the circle the more often the subject has been cited.
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phenols, alkaloids, flavonoids, steroids, saponins, tannins, resins, 
carbohydrates, and proteins (Melappa et al. 2015). Experiments 
performed by Knežević et al. (2015) revealed that the antioxidant 
activities of Tra. gibbosa and Tra. hirsuta were lower compared to 
that of Tra. versicolor. Cheng & Leung (2008) demonstrated that Tra. 
versicolor proteo-glucans exhibit immunostimulatory properties by 
promoting the synthesis of interferons, interleukin-6, macrophages, 
imunoglobulin-G, and T-lymphocytes. The laccase enzyme 
produced from Tra. versicolor showed promising antimicrobial 
properties against Gram-positive bacteria when encapsulated in 
a chitosan-nanobiochar matrix suggesting encapsulation as an 
effective method of keeping the enzyme stable and active for a 
variety of biological applications (Naghdi et al. 2019).

Bioremediation of hazardous chemicals
Trametes spp. are widely used for bioremediation purposes due 
to their poor specificity of catabolic enzymes, and the formation 
of long stretches of mycelial mats (Harms et al. 2011). These 
fungi potentially degrade organic molecules in the environment 
and considerably reduce the harmful effects related to various 
hazardous substances like metals, radionuclides, and metalloids 
through chemical alteration or by affecting chemical bioavailability. 
Trametes spp. mineralises various chloro-aromatics, and TNT 
(Harms et al. 2011). Trametes versicolor degrades different classes 
of chemicals (phenols, parabens, and phthalate) in a mixture of 
endocrine disrupting chemicals (EDCs) in a cost-effective process 
that enables its application in a water treatment process (Pezzella 
et al. 2017). García-Vara et al. (2021) showed that Tra. versicolor 
eliminates bentazone, a widely used herbicide in rice and cereal 
crops, an average of 48 % from water through the use of laccase 
and cytochrome P450 enzymatic systems. This fungus is potent for 
bioremediating diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea], 
present in polluted aquatic environments, converting it to two 
other non-toxic metabolites like 1-(3,4-dichlorophenyl)-urea and 
1-(3,4-dichlorophenyl)-3-methylurea under low- and high-nitrogen 
conditions (Mori et al. 2018). Significant breakdown of BPA and 
decolourisation of commercial colours can also be achieved 
through the use of Tra. versicolor (Manna & Amutha 2017). 
Species of Trametes absorb and accumulate cadmium and are 
applied in the removal process of heavy metals (Manna & Amutha 
2017). In semi-arid and Mediterranean habitats, Tra. versicolor 
decomposes atrazine mixed in low moisture and organic-matter 
rich calcareous clay soils up to 98 % and is a promising option 
for atrazine bioremediation (Bastos & Magan 2009). According to 
Morato (2013), Tra. versicolor degrades and reduces overall toxicity 
of a wide range of xenobiotic and recalcitrant contaminants like 
antibiotics (ofloxacin), antiepileptics (carbamazepine), analgesics 
and anti-inflammatory (ketoprofen and diclofenac), lipid regulators 
(clofibric acid), and an X-ray contrast agent (iopramide) in urban 
and hospital wastewater through their unspecific enzyme system.

Taxonomy and phylogeny
Phylogenetic reconstruction of the family Polyporaceae by the 
mtSSU rDNA region came into focus with the studies of Hibbett 
& Donoghue (1995), and Ko & Jung (1999), where the Trametes-
clade resided within the “core Polyporaceae group”. Later, Ko 
(2000) with the help of sequence data from two marker regions 
(ITS and mtSSU rDNA) divided the “core Polyporaceae group” into 
two subgroups, where subgroup “B” included the genus Trametes 
together with Coriolopsis polyzona, and other members of the 
genera Pycnoporus, and Lenzites that was further supported by the 
study of Rajchenberg (2011) incorporating several morphological 

and cytological features. Based on the data from two gene 
sequence regions (rpb2 and ITS rDNA), Welti et al. (2012) 
demarcated the Trametes-clade into three lineages viz. a lineage 
with members of the genus Trametes along with its type species, 
Tra. suaveolens, and Lenzites, and Coriolopsis; another lineage 
including some species of Trametes (Tra. lactinea, Tra. cingulata, 
Tra. menziesii, and Tra. ljubarskyi), together with the genus 
Pycnoporus; and a single lineage with Artolenzites elegans. Justo 
& Hibbett (2011) re-delimited the concept of the genus based on 
the data from ribosomal markers and protein-coding gene regions 
where the “trametoid clade” consisted of most of the Trametes 
species together with Coriolopsis polyzona, and species of genera 
Pycnoporus, and Lenzites. However, according to the studies of 
Justo & Hibbett (2011), designating the trametoid clade after the 
name Trametes suggested the necessity of incorporating more 
molecular sequence data together with a few novel nomenclatural 
combinations.

Authors: N. Roy and A.K. Dutta

16. Rhizoctonia DC., Fl. franç., Edn 3 (Paris) 5–6: 110. 
1815.

Type species: Rhizoctonia solani Kühn

Classification: Basidiomycota, Agaricomycotina, Agaricomycetes, 
Cantharellales, Ceratobasidiaceae.

Background

Rhizoctonia was first described by De Candolle in 1815 with R. 
crocorum as the original type species. Due to the confusion 
around what defined members of this genus, a re-definition of the 
genus concept was later provided by Ogoshi (1987) to include 
characteristics such as the absence of asexual spores (conidia) 
and rhizomorphs, hyphal branching from distal septa of vegetative 
hyphae, constriction at hyphal branching, and sclerotia with no 
cellular differentiation into rind or medulla. Three main groups 
are widely recognised as pathogens of crop plants worldwide: 
R. solani (Thanatephorus), R. zeae (Waitea), and Ceratorhiza 
(Ceratobasidium). While these groups share important attributes 
that define the genus Rhizoctonia, they can be differentiated 
based on vegetative characteristics. Members of Ceratorhiza have 
binucleate cell compartments, while R. solani and R. zeae are 
multinucleate. The salmon-coloured mature hyphae of R. zeae are 
distinguished from R. solani hyphae which are brown in culture.

Rhizoctonia solani is the most studied species of the three 
genera by virtue of its importance to agricultural production. It was 
first described on potato plants by Julius Kühn in 1858 and has since 
been associated with diseases of other economically important 
crops. The unique characteristics of R. solani make laboratory 
identification straightforward. Isolates are hyaline when young 
and become brown with age; the mycelia are made up of septate 
hyphae that branch at 90° angles with constrictions at the point 
of branching; hyphae consist of dolipore septa that permit cell-to-
cell movement of cytoplasmic organelles, mitochondria, and nuclei; 
and asexual forms do not produce conidia, clamp connections, 
rhizomorphs, or pigmentations other than brown. All members 
of this species have the same sexual morph (Thanatephorus 
cucumeris) (Homma et al. 1983, Ogoshi 1984, Neate & Warcup 
1985, Carling et al. 1994), and differentiation based on the sexual 
morph has yet to be reported.
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Earlier attempts to resolve the diversity existent within 
this species utilised hyphal anastomosis to group isolates into 
anastomosis groups (AG) (Parmeter et al. 1969) and the different 
AGs of R. solani are considered non-interbreeding populations 
(Anderson et al. 1972). Hyphae of isolates belonging to the same 
AG, when paired on a suitable growth medium, recognise and fuse 
and may undergo cytoplasmic and nuclei exchange. Fourteen AGs 
(AGs 1–13 and AG-B1) have been identified to date (Ogoshi 1987, 
Carling 1996, 1999), and additional characteristics have been 
used to further delineate subgroups within certain AGs. Aside from 
genetic diversity, host crop diversity within AGs and AG subgroups 
makes R. solani a remarkable pathogen (Table 18). For the 
binucleate Rhizoctonia spp., Ceratobasidium, 18 AGs have been 
identified (Sneh et al. 1991, Sharon et al. 2008), and for Waitea, 
two anastomosis groups, WAG-O (W. circinata var. oryzae, asexual 
morph R. oryzae) and WAG-Z (W. circinata var. zeae, asexual 
morph R. zeae), are currently defined (Oniki et al. 1985).

Ecological and economic significance

Diseases caused by R. solani have gathered more attention than 
those caused by other species of Rhizoctonia. Host range includes, 
but is not limited to, members of Poaceae, Fabaceae, Solanaceae, 
Asteraceae, and Brassicaceae, causing symptoms such as root 
rot, foot rot, seed rot, crown rot, stem rot, sheath blight, web 
blight, brown patch, etc. Below is a summary of some of the most 
important diseases of crop plants caused by Rhizoctonia spp.

Sheath blight of rice, (Oryza sativa) caused by R. solani AG1-1A, 
is an economically important disease of rice worldwide. Although 
first reported in Japan in 1910, the disease has become prominent 

in high-fertility rice-production systems around the globe (Eizenga 
et al. 2002). It is one of the most devastating diseases of rice in 
Eastern Asia and one of the leading causes of yield loss in rice-
producing states in the USA. Under favourable environmental 
conditions (high humidity and warm temperatures), yield losses, 
particularly on susceptible varieties, can be as high as 50 % (Lee 
& Rush 1983, Savary et al. 2000). There are no rice varieties with 
complete resistance to the pathogen, and resistance is quantitatively 
inherited (Hashiba 1984, Linscombe et al. 1992, Eizenga et al. 
2002), which has most likely hampered the development of rice 
varieties for use on a commercial scale. As a result, sheath blight 
management has relied mostly on an integrated approach involving 
a combination of cultural practices, such as field sanitation, nutrient 
management, crop rotation to non-hosts, and fungicides.

Crown and root rot of sugar beet (Beta vulgaris) is one of the 
most important diseases of sugar beet in the USA (Schneider & 
Whitney 1986) and has gained importance in sugar beet-producing 
areas in Europe (Buhre et al. 2009). In the USA, the disease is 
caused by two AGs of R. solani, AG-2-2 IIIB and AG-2-2 IV, although 
the former is generally more aggressive on sugar beet (Bolton et 
al. 2010, Windels & Brantner 2007). In Germany and other parts 
of Europe, AG-2-2 IIIB is the main subgroup causing crown and 
root rot in sugar beet (Büttner et al. 2002). Yield losses as high as 
50 % can occur (Herr 1996), and in Europe at least 36 000 ha of 
fields planted to sugar beet are affected on an annual basis (Garcia 
et al. 2001). In Europe, there are no fungicides registered for the 
control of the disease. Thus, control is mostly achieved through 
strategies that combine host resistance with agronomic practices 
like crop rotation (Herr 1996, Buhre 2009). In the USA chemical 
control is widely used and is the most effective method (Jacobsen 

Table 18. Anastomosis groups of Rhizoctonia solani and their host crops.

Anastomosis group (subgroups) Host crop References
AG-1 (1A, 1B, 1C, 1D, 1E, 1F) Rice, corn, soybean, bean, turfgrass, 

cabbage, lettuce, coffee, sorghum
Mukou et al. (1975), Martin & Lucas (1984), Jones & Belmar 
(1989), Yang et al. (1990), Herr (1992), Priyatmojo et al. (2001), 
Grosch et al. (2004)

AG-2- (1, t, Nt), AG-2- (2IIIB, 2IV, 
2LP, 3, 4)

Soybean, sugar beet, rice, turfgrass, corn, 
canola, wheat, tulip, tomato

Sumner & Bell (1982), Windels & Nabben (1989), Liu & Sinclair 
(1991), Muyolo et al. (1993a), Watanabe & Matsuda (1966), 
Engelkes & Windels (1996), Nelson et al. (1996), Schneider et 
al. (1997), Dorrance et al. (2003), Paulitz et al. (2006), Misawa 
& Kuninaga (2010)

AG-3 (TB, PT, TM) Potato, tobacco, soybean, tomato Meyer et al. (1990), Nelson et al. (1996), Windels et al. (1997), 
Woodhall et al. (2007), Misawa & Kuninaga (2010)

AG-4 (HGI, HGII, HGIII) Soybean, tomato, dry bean, peanut, cotton, 
potato, melon, broccoli, spinach

Windels & Nabben (1989), Muyolo et al. (1993b), Balali et 
al. (1996), Brenneman (1996), Rothrock (1996), Fenille et al. 
(2002), Kuramae et al. (2003)

AG-5 Potato, turfgrass, bean, soybean, sugar beet Martin & Lucas (1984), Balali et al. (1995), Nelson et al. (1996), 
Windels et al. (1997)

AG-6 (HG-I, GV) Non-pathogenic (mycorrhizal with orchids) Carling et al. (1999), Pope & Carter (2001)
AG-7 Soybean, potato, cotton, watermelon Baird et al. (1996), Carling et al. (1998), Abd-Elsalam et al. 

(2010)
AG-8-ZG (1, 2, 4, 5) Small grains (wheat, barley) Neate & Warcup (1985), Roberts & Sivasithamparam (1986)
AG-9 (TP, TX) Potato, lettuce, carrot Carling et al. (1987)
AG-10 Non-pathogenic MacNish et al. (1995)
AG-11 Wheat, lupin, soybean, cotton, potato, radish Carling et al. (1994), Sweetingham (1989), Kumar et al. (1999)
AG-12 Cauliflower, radish, mycorrhizal with orchids Carling et al. (1999), Pope & Carter (2001)
AG-13 Cotton Carling et al. (2002)
AG-BI (Bridging Isolate) Non-pathogenic None reported to date
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et al. 2001, Khan & Bradley 2010) for controlling the disease, 
although agronomic practices, such as rotation to non-hosts and 
host resistance, are also encouraged.

Rhizoctonia root rot and bare patch, caused by R. solani 
AG-8 and R. oryzae, is a major disease of direct-seeded cereals 
in Australia (MacNish & Neate 1996) and the Pacific Northwest 
region of USA (Weller et al. 1986, Paulitz et al. 2002) and is 
considered the most important disease limiting the adoption of no-
till technology (Schroeder & Paulitz 2006) in these regions. There 
is no single method for controlling Rhizoctonia root rot and bare 
patch, however, various combinations of available management 
methods can achieve the desired results. Tillage to disrupt 
pathogen networks (Pumphrey et al. 1987), elimination of green 
bridges (Roget et al. 1987, Smiley et al. 1992), and the application 
of nitrogen at seeding (MacNish 1985) are management practices 
that have proven effective.

Rhizoctonia root and hypocotyl rot is an important seedling 
disease of soybean (Glycine max) in continental America, 
particularly in the north-central region, where most of the USA 
soybean is grown (American Soybean Association 2021). 
Rhizoctonia seedling disease of soybean together with diseases 
caused by other seedling pathogens (Pythium, Fusarium, 
Phomopsis) are the second most important group of diseases 
limiting soybean yields in the USA and Ontario, Canada from 2015 
to 2019 (Bradley et al. 2021). Several AGs have been associated 
with this disease, however, isolates of AG-2-2 IIIB, AG-4 and AG-5 
(Liu & Sinclair 1991, Muyolo et al. 1993a, Nelson et al. 1996, Zhao 
et al. 2005, Ajayi-Oyetunde & Bradley 2017) are considered most 
aggressive on soybean seedlings. Resistant soybean cultivars are 
not commercially available (Bradley et al. 2001), and crop rotation 
alone may be insufficient to mitigate the risk of infection due to the 
host range (Nelson et al. 1996, Ajayi-Oyetunde & Bradley 2017) 
and longevity of infection propagules in soil. Thus, seed treatment 
fungicides are the method of choice for managing the disease 
(Dorrance et al. 2003).

Sharp eyespot of wheat caused by R. cerealis (sexual morph: 
Ceratobasidium cereale) is a stem-base disease of wheat (Triticum 
aestivum) in temperate regions of the world. The disease has 
attracted significant attention only in the past few decades owing 
to its wide geographical distribution across Europe, North America, 
Asia, and Africa, widespread use of wheat cultivars susceptible 
to the pathogen, global climate change, and its ability to infect a 
wide range of host crops (Cromey et al. 2005, Hamada et al. 2011). 
Rhizoctonia cerealis also causes disease on other members of the 
grass family (barley, oats, rye, turf grasses) (Tomaso-Peterson & 
Trevathan 2007, Lemańczyk & Kwaśna 2013), as well as on other 
crops, including sugar beet, cotton, potato, and some legumes 
(Kataria & Hoffmann 1988). While the impacts of the disease on 
yield can vary (Bateman et al. 2000), economic losses of over 150 
million US dollars have been reported in wheat production fields 
in China (Chen et al. 2008). Cultural methods such as delayed 
sowing, mulching, and straw management can reduce sharp 
eyespot severity in wheat fields (Colbach et al. 1997, Diao et al. 
1998, Miao et al. 1998, Bateman & Jenkyn 2001, Cromey et al. 
2006). Although resistance to sharp eyespot is quantitative (Cai et 
al. 2006b), and germplasm with complete resistance has not been 
identified, transgenic wheat lines with enhanced resistance to the 
pathogen have been developed (Chen et al. 2008, Li et al. 2011f). 
Despite this, there are no commercially available resistant wheat 
cultivars, and management has relied mostly on the application of 
fungicides.

Research interests

There are 3 938 publications and 46 317 citations from 2011–
2021 in the Web of Science (Fig. 33), with the top 10 most cited 
articles shown in Table 19. The major research themes cover 
fungal identification and disease management strategies such as 
biological control, host resistance through traditional breeding and 
biotech approaches, and other control methods (Fig. 34).

Due to the intractable nature of Rhizoctonia diseases, 
extensive research work on the biological control of Rhizoctonia 
diseases has been carried out for the most economically important 

Fig. 33. Trends in research of Rhizoctonia in the period 2011–2021.
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hosts. Plant-growth promoting rhizobacteria such as Pseudomonas 
and Bacillus (Brewer & Larkin 2005, Chen et al. 2010, Kumar et al. 
2012a, Haque & Khan 2021), Actinomycetes such as Streptomyces 
(Kulik 1996), as well as certain fungi including arbuscular 
mycorrhizae (Larkin 2008), Trichoderma (Boogert 1996, Grosch 
et al. 2006), Gliocladium, and hypovirulent strains of Rhizoctonia 
(Pascual et al. 2000, Sneh et al. 2004) have demonstrated varying 

levels of control of different Rhizoctonia species in both controlled 
environment and field conditions. In rice, control of R. solani by 
Pseudomonas fluorescens has been linked to the production 
of various antimicrobial metabolites, including chitinases, HCN, 
IAA, etc. (Radjacommare et al. 2004, Weller 2007), while various 
Bacillus spp. are known to produce pathogenicity-related proteins 
(He et al. 2002). In potatoes, Trichoderma species have shown 

Table 19. Top 10 cited articles related to Rhizoctonia published in the period 2011–2021.
Rank Article title No. of citations References
1 Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic 

fungi
202 Krishnaraj et al. (2012)

2 Pathogen-induced activation of disease-suppressive functions in the endophytic root 
microbiome

195 Carrión et al. (2019)

3 Effects of Bacillus amyloliquefaciens FZB42 on lettuce growth and health under 
pathogen pressure and its impact on the rhizosphere bacterial community

172 Chowdhury et al. (2013)

4 The evolution and pathogenic mechanisms of the rice sheath blight pathogen 166 Zheng et al. (2013)
5 Mitochondrial complex II has a key role in mitochondrial-derived reactive oxygen 

species influence on plant stress gene regulation and defense
157 Gleason et al. (2011)

6 Comparative transcriptomics reveals different strategies of Trichoderma mycoparasitism 146 Atanasova et al. (2013)
7 Constitutive expression of rice WRKY30 gene increases the endogenous jasmonic acid 

accumulation, PR gene expression and resistance to fungal pathogens in rice
142 Peng et al. (2012)

8 Role of bacterial communities in the natural suppression of Rhizoctonia solani bare 
patch disease of wheat (Triticum aestivum L.)

126 Yin et al. (2013)

9 Compost amendments enhance peat suppressiveness to Pythium ultimum, Rhizoctonia 
solani and Sclerotinia minor

118 Pane et al. (2011)

10 Biocontrol of Rhizoctonia solani damping-off and promotion of tomato plant growth by 
endophytic actinomycetes isolated from native plants of Algerian Sahara

110 Goudjal et al. (2014)

Fig. 34. Network visualisation of keywords of the publications related to Rhizoctonia. The larger the text and the circle the more often the subject has been 
cited.



64

Bhunjun et al.

acceptable levels of control of Rhizoctonia diseases in commercial 
applications (Brewer & Larkin 2005, Wilson et al. 2008). In wheat, 
the role of disease-suppressive soils has been investigated, and 
several bacteria have been associated with the suppression of root 
rot and bare patches (Barnett et al. 2006, Mendes et al. 2011, Yin 
et al. 2013). Despite the promise of Rhizoctonia disease control, 
biocontrol agents alone have not provided the level of control 
needed to mitigate high losses caused by Rhizoctonia species in 
field settings.

Host resistance is not available for the majority of Rhizoctonia 
diseases, and if available, resistance is quantitatively inherited, 
making traditional breeding methods tedious and lengthy. As a 
result, approaches to crop improvement for disease resistance other 
than traditional breeding methodologies have been investigated in 
a few crops. In rice, RNA interference (Tiwari et al. 2017), gene 
editing technologies such as CRISPR/Cas9 (Gao et al. 2018), and 
transcriptional regulation of gene expression (Singh et al. 2015b, 
Peng et al. 2016) have shown promise for the targeted control 
of sheath blight. Similarly, transgenic wheat lines with enhanced 
resistance to R. cerealis have also been developed but are yet to 
be deployed for sharp eyespot control.

Other aspects of Rhizoctonia biology that warrant further 
investigation include an in-depth understanding of its interaction 
with various hosts. Specifically, functional genomics approaches, 
such as transcriptomics, proteomics, and metabolomics, may be 
exploited to identify pathogenic determinants of infection and reveal 
the biochemical pathways underlying quantitative resistance in 
different host plants, which may ultimately lead to the identification 
of novel resistance mechanisms in different hosts.

Authors: O. Ajayi-Oyetunde and C.A. Bradley

17. Pleurotus (Fr.) P. Kumm., Führ. Pilzk. (Zerbst): 24. 1871.

Type species: Pleurotus ostreatus (Jacq. ex Fr.) P. Kumm.

Classification: Basidiomycota, Agaricomycotina, Agaricomycetes, 
Agaricales, Pleurotaceae.

Background

Pleurotus is a gill mushroom belonging to the family Pleurotaceae. 
Pleurotus was described by Paul Kummer in 1871, but over the 
years has been moved to many genera such as Favolaschia, 
Hohenbuehelia, Lentinus, Marasmiellus, Omphalotus, Panellus, 
Pleurocybella, and Resupinatus (Singer 1986). There are 771 
taxon names listed in Index Fungorum (2022), with 25 species 
recognised by He et al. (2019b). Macroscopic and microscopic 
morpho-characters and molecular data, including colour of the 
basidiomata, spore print, and type of hyphal system, all play an 
important role in the taxonomic classification of the genus (Guzmán 
2000). Identification of Pleurotus is difficult as it is based mostly 
on morphological characteristics of the basidiomata. Pleurotus is 
an edible mushroom, with Ple. ostreatus (oyster mushroom) as 
the most famous species and cultivated worldwide (Cohen et al. 
2002, Chang & Miles 2004). There are “species complexes” of 
commercial strains such as Pleurotus djamor (Zervakis et al. 2019), 
Ple. eryngii (Zervakis et al. 2001), Ple. ostreatus (Eger et al. 1979), 
and Ple. pulmonarius (Bao et al. 2005). The main morphological 
characteristics of Pleurotus are defined by pleurotoid basidiomata, 
decurrent lamellulae, smooth and elongated to cylindrical 
basidiospores, dimitic hyphal system with skeletal hyphae and 

generative hyphae, and presence of clamp connections (Largent 
1986, Seelan 2015).

Ecological and economic significance

Mushrooms play important roles in forest ecosystems. Wild 
strains and commercial strains of Pleurotus species can provide 
diverse ecological, environmental and economic services for local 
communities around the world. The ecosystem services provided 
by mushrooms also include provisioning services since many 
mushroom species are collected as food and for cultural services. 
Mushroom picking can also be a recreational and physical activity 
(Olah et al. 2020). Gathering Pleurotus sporocarps can also provide 
income for rural economies (Sánchez 2010). Pleurotus species 
can be found in both tropical and temperate areas (Chang & Miles 
2004, Laessoe & Petersen 2019), and species are widespread in 
hardwood forests around the world (Gunde-Cimerman 1999). Most 
species of Pleurotus cause white rot, growing on both decayed and 
dead hardwoods (Cohen et al. 2002, Tsujiyama & Ueno 2013). The 
mycelia of some Pleurotus species can produce adhesive knobs in 
asexual stages that can attack and consume nematodes (Thorn et 
al. 2000). Pleurotus is cultivated worldwide because they can grow 
with lignocellulosic waste materials that are easy to find. Thus, it is 
not expensive to cultivate Pleurotus for food.

Research interests

There are 4 025 publications and 45 475 citations from 2011–2021 
in the Web of Science (Fig. 35), with the top 10 most cited articles 
shown in Table 20. Most publications focused on biotechnological 
applications, and cultivation of Pleurotus (Fig. 36). Pleurotus 
sporocarps contain several bioactive compounds, have high 
nutritional value, potential medicinal value, and are important 
functional foods or nutraceuticals. However, the biochemical 
mechanisms of healing of disease remain largely unknown (Gregori 
et al. 2007), and future research should focus on ways forward in 
the therapeutic activities and cultivation of Pleurotus species.

Biotechnological applications of Pleurotus species
Pleurotus species are saprobes and can play an important role in 
managing organic wastes whose disposal has become a problem 
(Li et al. 2020e). Pleurotus species have important medical 
and bioactive properties, producing primary and secondary 
metabolites (Renuga Devi & Krishnakumari 2015, Mapook et al. 
2022). Bioactivities include hepatoprotective (Zhang et al. 2016a), 
antioxidant (Jayakumar et al. 2011, Zhang et al. 2016), antimicrobial 
(Schillaci et al. 2013), antiviral, anticancer, anti-inflammatory, anti-
ageing, anti-tumour, antimutagenic, antilipidemic, hepatoprotective, 
antihyperglycemic, hypotensive, and immunostimulant properties 
with nutraceutical and pharmaceutical applications (Gunde-
Cimerman 1999, Khan & Tania 2012, Patel et al. 2012, Wahab et 
al. 2014). Pleurotus ostreatus can produce extracellular laccase 
isoenzymes (Palmieri et al. 2000). Pre-treatment with Ple. ostreatus 
for enzymatic hydrolysis of rice straw found increased degrees of 
enzymatic solubilisation of holocellulose and cellulose fractions as 
the content of Klason lignin decreased (Taniguchi et al. 2000). The 
β-glucans contained in Ple. ostreatus have been clinically identified 
to possess immunostimulating properties (Patel et al. 2012). 
Kavanagh et al. (1951) reported that pleuromutilin was isolated in 
crystalline form from Ple. multilus and Ple. passeckerianus, which 
can be inhibitory for Staphylococcus aureus. Pleurotus djamor 
was able to inhibit gram-negative bacteria such as Vibrio cholera, 
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Escherichia coli and Pseudomonas sp. (Suresh et al. 2017). 
Pleurotus eryngii var. eryngii, Ple. eryngii var. ferulae, Ple. eryngii 
var. elaeoselini, and Ple. nebrodensis inhibited activity of bacterial 
strains of medical relevance such as Staphylococcus aureus, S. 
epidermidis, Pseudomonas aeruginosa, and Escherichia coli 
(Schillaci et al. 2013). Pleurotus species contain a high content 
of proteins, carbohydrates, fibre, minerals, vitamins, and low-fat 
content (Cohen et al. 2002, Bonatti et al. 2004). Pleurorus species 
have been used in traditional medicine for approximately 35 
disorders or diseases (Guzmán 2000). Pleurotus species are also 
becoming increasingly attractive as sources for the development of 
new drugs and functional foods development.

Cultivation of Pleurotus species
Mushrooms have been consumed by humankind for millennia, and 
have high value. Cultivation of mushrooms is important economically 
(Girmay et al. 2016). Pleurotus species are the largest group of 
cultivated mushrooms in the world, ranking second in the world 
mushroom market, and the most popular consumed. Pleurotus 
species can be cultivated on a number of low-cost agro-industrial 
and forestry wastes, and they thrive on hardwood by-products 
such as sawdust (Girmay et al. 2016, Thongklang & Luangharn 
2016), paper wastes (Girmay et al. 2016), pulp sludge, several 
agricultural wastes such as cocoa shell waste (Martínez-Carrera 
1998), corn (Dias et al. 2003, Naraian et al. 2009), cotton waste 
(Chang et al. 1981), cotton seed (Girmay et al. 2016), diverse plant 
leaves, grass (Girmay et al. 2016), cereal straw (Mehta et al. 1990), 

Fig. 35. Trends in research of Pleurotus in the period 2011–2021.

Table 20. Top 10 cited articles related to Pleurotus published in the period 2011–2021.
Rank Article title No. of citations References
1 Lignocellulosic agriculture wastes as biomass feedstocks for second-generation 

bioethanol production: concepts and recent developments
316 Saini et al. (2015)

2 Structure–function relationship among bacterial, fungal and plant laccases 286 Dwivedi et al. (2011)
3 Fungal pretreatment of lignocellulosic biomass 257 Wan & Li (2012)
4 Antioxidant properties of phenolic compounds occurring in edible mushrooms 250 Palacios et al. (2011)
5 Macro and trace mineral constituents and radionuclides in mushrooms: health benefits 

and risks
238 Falandysz et al. (2013)

6 Recent developments in mushrooms as anti-cancer therapeutics: a review 216 Patel & Goyal (2012)
7 Induction and transcriptional regulation of laccases in fungi 200 Piscitelli et al. (2011)
8 Fungal laccase, manganese peroxidase and lignin peroxidase: Gene expression and 

regulation
191 Janusz et al. (2013)

9 The amazing potential of fungi: 50 ways we can exploit fungi industrially 186 Hyde et al. (2019b)
10 Antioxidant properties and phenolic profile of the most widely appreciated cultivated 

mushrooms: A comparative study between in vivo and in vitro samples
182 Reis et al. (2012)
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sugarcane bagasse (Ragunathan et al. 1996), wheat straw (Zhang 
et al. 2002), coffee residues such as coffee grounds (Fan et al. 
2000), and hulls, stalks, and leaves of banana (Mondal et al. 1970). 
The production and consumption of Pleurotus have increased 
significantly in recent years (Chang 1999), with prices varying 
between 3.91 and 7.84 US dollars per kg depending on product 
presentation (Vargas et al. 2020). The article “Cultivation of Ple. 
ostreatus and other edible mushrooms” (Sánchez 2010) is ranked 
among the top 10 cited published articles. Oyster mushrooms 
are cultivated in a shorter growth time when compared with other 
edible mushrooms (Sánchez 2010). Pleurotus ostreatus is the 
most cultivated mushroom for food purposes and to obtain income 
(Cohen et al. 2002). Other commercial species reported include 
Ple. citrinopileatus (yellow oyster mushroom or golden oyster 
mushroom), Ple. cystidiosus (abalone mushroom or maple oyster 
mushroom), Ple. cornucopiae, Ple. djamor (pink oyster mushroom), 
Ple. florida (white oyster mushroom), Ple. flabellatus (red oyster 
mushroom), Ple. giganteus (giant oyster mushroom), Ple. ostreatus 
(tree oyster), Ple. pulmonarius (Indian oyster or Italian oyster), Ple. 
sapidus (black oyster mushroom), and Ple. tuber-regium (king 
tuber mushroom) (Samsudin & Abdullah 2019).

Author: M. Phonemany

18. Ganoderma P. Karst., Revue Mycol., Toulouse 3(9): 17. 
1881.

Type species: Ganoderma lucidum (Curtis) P. Karst.

Classification: Basidiomycota, Agaricomycotina, Agaricomycetes, 
Polyporales, Ganodermataceae.

Background

Ganoderma was established by Karsten (1881) with G. lucidum 
as the type species. Justo et al. (2017) treated Ganodermataceae 
as a synonym of Polyporaceae, while Cui et al. (2019) stated that 
Ganoderma was not included in Polyporaceae because their double-
walled basidiospores are quite different from Polyporaceae. Sun et 
al. (2022) treated Ganodermataceae as an independent family based 
on its remarkable morphological features. The genus Ganoderma 
has been divided into three subgenera known as Ganoderma 
(which includes two sections Ganoderma and Phaenema), Elfvingia, 
and Trachyderma. Ganoderma species delimitation is unique to 
laccate and non-laccate basidiocarps, truncated double-walled 
basidiospores, and an apical germinal pore (Moncalvo & Ryvarden 
1997, Ryvarden 2004). Kirk et al. (2008) mentioned that globally there 
are 80 species of Ganoderma, while Index Fungorum (2022) lists 489 
taxa (currently 495) and MycoBank records about 500 taxa (currently 
539) (Crous et al. 2004). The taxonomy of Ganoderma is unclear, 
and it can be a confusing genus to study due to the highly variable 
morphological features of the species (Ryvarden 2000, Chen et al. 
2012b, Papp et al. 2017, Hapuarachchi et al. 2019, Tchotet-Tchoumi 
et al. 2019). A high level of phenotypic plasticity of the basidiomes 
at the macroscopic level has led to considerable confusion in the 
taxonomy of Ganoderma (Pilotti et al. 2005). Its basidiome features 
are also influenced by the interaction of both intrinsic and extrinsic 
factors (Moore et al. 2008). Ganoderma has high genetic diversity 
and substantial morphological variation, even within species. 
Ganoderma morphology may alter due to the influence of climate, 
nutrition, vegetation, and geography (Wu & Dai 2005).

Ganoderma is a cosmopolitan genus and some of the species 
are pathogenic and grow as facultative parasites that can live as 

Fig. 36. Network visualisation of keywords of the publications related to Pleurotus. The larger the text and the circle the more often the subject has been cited.
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saprobes on decaying logs and stumps or associated with roots 
of living and dead trees (Moncalvo & Ryvarden 1997, Pilotti et al. 
2005, Singh et al. 2007). Diseases caused by Ganoderma species 
result in lower yields in economically important trees (Wong et al. 
2012). Most Ganoderma species are regarded as plant pathogens 
of trees, such as G. australe which is associated with Castanopsis 
spp. (Luangharn et al. 2017), G. boninense which is pathogenic 
to oil palm (Pilotti 2005), G. leucocontextum causes diseases in 
Cyclobalanopsis glauca trees (Li et al. 2015b), and G. tropicum, 
which grows in a solitary manner on living Dipterocarpus species 
(Luangharn et al. 2019).

Ganoderma species have been widely utilised as traditional 
medicines for millennia in Asia (Chang & Wasser 2012, Li et al. 
2015b, Zhou et al. 2015a, Hapuarachchi et al. 2018). Ganoderma 
species are economically important as they have potential nutritional 
and therapeutic values. Its highly prized medicinal value is widely 
researched (De Silva et al. 2012b, Hapuarachchi et al. 2018).

Ecological and economic significance

Ganoderma species are distributed in sub-tropical to tropical 
and temperate regions but are particularly diverse in tropical 
regions (Cao & Yuan 2013). They are important wood-decaying 
fungi. Most species are regarded as pathogens that possess a 
wide host range (Wong et al. 2012) with more than 44 species 
from 34 genera of host plants (Venkatarayan 1936). Ganoderma 
can cause severe diseases in economically important trees and 
perennial crops, especially in tropical countries (Pilotti 2005). 
Ganoderma species are white rot fungi and have ecological 
importance in the breakdown of woody plants. These fungi decay 
lignin, hemicellulose and cellulose resulting in a severe loss of 
woody plant strength (Ćilerdžić et al. 2017). Ganoderma possess 
lignocellulose decomposing enzymes useful for bioenergy 
production and bioremediation (Kües et al. 2015). There is a high 
degree of morphological variation, even within species, perhaps 

due to ecological factors (Pilotti et al. 2004).
Ganoderma has been used in traditional medicines for 

hundreds of years in Asian countries and is increasingly being 
used in pharmaceutical industries worldwide. However, these fungi 
are not edible, since their basidiomes are always corky, tough, 
and bitter in taste (Hapuarachchi et al. 2019). Over the past two 
decades, the Ganoderma industry has developed greatly and today 
offers thousands of products to the markets. Ganoderma products 
are available in many forms such as dried sporocarps, dietary 
supplements, spore capsules, and cosmetic products (Taofiq et al. 
2016a, b). Currently, G. lucidum is estimated to be worth more than 
2.5 billion US dollars in Asian countries such as China, Korea and 
Japan (Lai et al. 2004). Ganoderma tsugae is regarded as a healthy 
food as it enhances the immune system and improves metabolic 
functions (Lai et al. 2004, Singh et al. 2013). Ganoderma lucidum is a 
high-priced product which is used as ornamental in Bonsai products 
to decorate gardens, ornaments and many other art products. 
However, there are problems with the industry which prevent it from 
establishing an effective market (Hapuarachchi et al. 2018).

Research interests

There are 3 699 publications and 44 643 citations from 2011–2021 in 
the Web of Science (Fig. 37), with the top 10 most cited articles listed 
in Table 21. Most of the publications focused on valuable medicinal 
mushrooms and natural bioactive compounds (polysaccharides, 
triterpenoids, sterols, and secondary metabolites) for potential use 
in clinical perspectives applications (anticancer, antioxidant, anti-
tumour, immunomodulating) (Fig. 38).

The genus Ganoderma is economically important, as its 
members are regarded as valuable medicinal mushrooms (Dai et 
al. 2009, Chang & Wasser 2012). Ganoderma consumption has 
consistently been shown to have beneficial effects on human 
health and can be used to remedy a wide range of human diseases 
(Zong et al. 2012, Richter et al. 2015, Wang et al. 2015e).

Fig. 37. Trends in research of Ganoderma in the period 2011–2021.
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More than 400 bioactive compounds have been found in 
various Ganoderma species such as fatty acids, polysaccharides, 
protein, steroids, triterpenoids, and secondary metabolites (i.e., 
ganoderic acids, ganodermanondiol, ganodermanontriol, and 
ganodermadiol) (Shim et al. 2004, Qiao et al. 2005, Teng et al. 
2011, Richter et al. 2015). Those valuable natural compounds are 
used to treat and remedy many pathological diseases such as 
hypertension, hypercholesterolemia, bronchitis, asthma, diabetes, 

and cancer (Chang & Wasser 2012, De Silva et al. 2012a, Richter 
et al. 2015, Abate et al. 2020). Additionally, there are reports 
of several metabolic activities of G. lucidum performed in both 
in vitro and in vivo studies. The major consideration is given to 
therapeutic strategies (Chang et al. 2015, Vinay et al. 2015), the 
benefits that have been claimed for the use of mushrooms in 
treating cancer, and the prospects of using medicinal mushrooms 
(Wasser 2011).

Table 21. Top 10 cited articles related to Ganoderma published in the period 2011–2021.
Rank Article title No. of citations References
1 Ganoderma lucidum reduces obesity in mice by modulating the composition 

of the gut microbiota
702 Chang et al. (2015)

2 Immune evasion in cancer: Mechanistic basis and therapeutic strategies 637 Vinay et al. (2015)
3 Reviews on mechanisms of in vitro antioxidant activity of polysaccharides 399 Wang et al. (2015)
4 Anticancer polysaccharides from natural resources: A review of recent 

research
387 Zong et al. (2012)

5 The role of culinary-medicinal mushrooms on human welfare with a pyramid 341 Chang & Wasser (2012)
6 Genome sequence of the model medicinal mushroom Ganoderma lucidum 304 Chen et al. (2012b)
7 Tissue invasion and metastasis: molecular, biological and clinical 

perspectives
281 Jiang et al. (2015)

8 Antioxidative and immunomodulating activities of polysaccharide extracts 
of the medicinal mushrooms Agaricus bisporus, Agaricus brasiliensis, 
Ganoderma lucidum and Phellinus linteus

279 Kozarski (2011)

9 Current findings, future trends, and unsolved problems in studies of 
medicinal mushrooms

267 Wasser (2011)

10 Macro and trace mineral constituents and radionuclides in mushrooms: 
health benefits and risks

238 Falandysz & Borovička (2013)

Fig. 38. Network visualisation of keywords of the publications related to Ganoderma. The larger the text and the circle the more often the subject has been 
cited.
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Bioactive metabolites isolated from Ganoderma mushrooms 
have also shown potential success in cancer treatment as biological 
immunotherapeutic agents that stimulate the immune system 
against cancer cells (Kozarski 2011). Hence, pharmacologically 
active constituents of G. lucidum contribute to positive immune 
responses. Improved application methods and further clinical 
research on G. lucidum on human subjects are needed.

Author: T. Luangharn

19. Neurospora Shear & B.O. Dodge, J. Agric. Res., 
Washington 34: 1025. 1927.

Type species: Neurospora sitophila Shear & B.O. Dodge

Classification: Ascomycota, Pezizomycotina, Sordariomycetes, 
Sordariales, Sordariaceae.

Background

The genus Neurospora was first found in bakeries in France in 1843 
where it formed an asexual morph on bread, and later the discovery 
of sexual sporocarps by mycologists Cornelius L. Shear and Bernard 
O. Dodge placed this fungus in a new genus Neurospora (Shear 
& Dodge 1927). Members of this genus were first usually found in 
burned/unburned vegetation in terrestrial habitats or soil in tropical 
and subtropical regions but were later identified across the globe 
(Perkins et al. 1976, Perkins & Raju 1986, Perkins & Turner 1988, 
Turner et al. 2001, García et al. 2004). The sexual morph of this genus 
is characterised by dark brown ascospores with ornamented surfaces 
and the asexual morph is chrysonilia-like with both macroconidia 
and microconidia (Shear & Dodge 1927, Arx 1981a, b, Jacobson 
et al. 2004). There are three mating strategies in Neurospora viz.: 
homothallism, pseudohomothallism and heterothallism (Shear & 

Fig. 39. Trends in research of Neurospora in the period 2011–2021.

Table 22. Top 10 cited articles related to Neurospora published in the period 2011–2021.
Rank Article title No. of citations References
1 Cellobiose dehydrogenase and a copper-dependent polysaccharide 

monooxygenase potentiate cellulose degradation by Neurospora crassa
419 Phillips et al. (2011)

2 Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide 
monooxygenases

314 Beeson et al. (2012)

3 Fungal cell wall organization and biosynthesis 276 Free (2013)
4 Codon usage influences the local rate of translation elongation to regulate 

co-translational protein folding
273 Yu et al. (2015a)

5 DNA methylation and demethylation in mammals 266 Chen & Riggs (2011)
6 Non-optimal codon usage affects expression, structure and function of clock 

protein FRQ
250 Zhou et al. (2013)

7 Discovery of LPMO activity on hemicelluloses shows the importance of 
oxidative processes in plant cell wall degradation

249 Agger et al. (2014)

8 Quorum sensing in fungi - a review 215 Albuquerque & Casadevall (2012)
9 Extracellular electron transfer systems fuel cellulose oxidative degradation 215 Kracher et al. (2016)
10 A C4-oxidizing lytic polysaccharide monooxygenase cleaving both cellulose 

and cello-oligosaccharides
210 Isaksen et al. (2012)
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Dodge 1927, Tai 1935, Mahoney et al. 1969, Krug & Khan 1991). 
The traditional identification of Neurospora species is based on 
distinguishing ascospore wall ornamentation (García et al. 2004, Cai 
et al. 2006a). García et al. (2004) and Cai et al. (2006a) found that 
only using ascospore wall structure to distinguish Neurospora species 
results in species being polyphyletic in the Sordariales phylogenetic 
analysis. The mating strategy and ornamentation of the epispore 
are the most important characteristics to define the phylogenetic 
relationship in Neurospora (Whitehouse 1949, Taylor & Natvig 1989, 
Grognet & Silar 2015, García et al. 2004, Cai et al. 2006a).

The asexual growth and reproduction, the asexual-sexual 
transition, and sexual development and reproduction are well-
studied developmental phases of the life cycles of Neurospora 
(Lehr et al. 2014, Dunlap et al. 2007). In addition, Neurospora 
crassa is known as a model eukaryotic multicellular organism 
which is used in research for the one-gene–one-enzyme, genetics, 
developmental biology, and molecular biology (Beadle & Tatum 
1941, Cogoni & Macino 1999, Loros & Dunlap, 2001, Davis & 
Perkin 2002, Honda et al. 2020). Systematic sampling of natural 
populations of Neurospora was started in 1968 and the results 
were presented by Perkins et al. (1976). A comprehensive review 
of the genus Neurospora was presented with useful information on 
experimental laboratory studies, field-collection and analysing data 
together with ecology, geographical distribution, species status, 
genetic variation, and polymorphism was provided by Perkins and 
Turner (1988). Studies on biological and phylogenetic species of 
Neurospora (Dettman et al. 2001, 2003, 2006) helped to understand 
the clock variation within different ecotypes of Neurospora.

Ecological and economic significance

Among filamentous fungi, Neurospora species have been widely 
used as a model for clock variation studies (Koritala & Lee 2017). 
Several Neurospora species were listed as natural variant studies in 
Koritala & Lee (2017). Neurospora species are well-characterised, 
especially Neurospora crassa (Colot et al. 2006, McCluskey et al. 
2010, Koritala & Lee 2017). Neurospora species have multiple 
advantages and have been widely used as model species to 
understand the biological aspects of natural variations, viz. 
biochemistry, ecology, evolution, genetics, and circadian biology 
(Koritala & Lee 2017, Perkins et al. 1976, Turner et al. 2001).

Research interests

There are 2 456 publications and 44 091 citations from 2011–2021 
in the Web of Science (Fig. 39), with the top 10 most cited articles 
listed in Table 22. Most publications focused on a model for clock 
variation studies of Neurospora (Fig. 40).

Toxins
Neurosporin A and the salicylaldehyde sordarial are toxins produced 
by Neurospora species which have a defense mechanism (Zhao et 
al. 2017c, 2019c).

Fig. 40. Network visualisation of keywords of the publications related to Neurospora. The larger the text and the circle the more often the subject has been 
cited.
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Taxonomy and phylogeny
Huang et al. (2021c) referred to sequence data by Cai et al. (2006a), 
Wang et al. (2019d, e) and Vu et al. (2019) to build a phylogenetic 
tree and used combined sequence data from the markers LSU, ITS 
and tub. Based on a multi-gene analysis of Neurospora, Huang et 
al. (2021c) divided Sordaria into four clades within Sordariaceae. 
They mentioned that the positions of Neurospora and Sordaria 
species are usually unstable in single-gene or even multi-gene 
analyses. Thus, the morphology of Neurospora and Sordaria can 
be used to distinguish them.

Author: S. Tibpromma

20. Cladosporium Link, Mag. Ges. Naturf. Freunde Berlin 
7: 37. 1816.

Type species: Cladosporium herbarum (Pers.) Link

Classification: Ascomycota, Pezizomycotina, Dothideomycetes, 
Cladosporiales, Cladosporiaceae.

Background

Cladosporium is one of the largest genera of hyphomycetes with 
more than 750 species epithets listed in MycoBank, including 
about 250 recognised species. Species of Cladosporium are 
among the most common fungi worldwide, being isolated from 
almost any environmental source and geographic location 
(Bensch et al. 2012). Most species primarily occur in soil, food, 
paint, textiles and other organic matter (Ma et al. 2017, Iturrieta-
González et al. 2021) or colonise as secondary invaders leaf 
lesions caused by plant pathogenic fungi (Ellis 1971, 1976, Bensch 
et al. 2012, 2015). Several species are important pathogens of 
plants (Schubert 2005, Bensch et al. 2012, Rosado et al. 2019) 
or occur as hyperparasites on other fungi (Heuchert et al. 2005). 
Some are also able to affect animals and humans (De Hoog et al. 
2000, Sandoval-Denis et al. 2015, 2016, Yew et al. 2016, Batra et 
al. 2019, Velázquez-Jiménez et al. 2019). Cladosporium species 
are considered among the most widespread fungi in buildings 
and indoor environments as well as in outdoor and indoor air 
(Fradkin et al. 1987, Flannigan 2001, Horner et al. 2004, Bensch 
et al. 2018). With their relatively small conidia, usually formed in 
branched chains, they are well adapted to be spread easily in 
large numbers over long distances. Because many Cladosporium 
species are cosmopolitan agents of decay, deterioration, or may 
cause allergies or even diseases of plants, animals and human 
beings, and are often of high environmental impact, the genus is 
of special interest to researchers in a wide variety of disciplines 
(Bensch et al. 2012).

Cladosporium, a monophyletic genus residing in the 
Cladosporiaceae (Cladosporiales, Dothideomycetes; 
Abdollahzadeh et al. 2020), is well circumscribed by having a 
unique coronate structure of its conidiogenous loci and conidial 
hila, consisting of a central convex dome surrounded by a raised 
periclinal rim (David 1997, Braun et al. 2003, Bensch et al. 2012). 
Cladosporium was established by Link in 1816, who included 
four species of which Cl. herbarum was proposed as lectotype 
species by Clements & Shear (1931), a decision followed by 
De Vries (1952) and Hughes (1958). It developed to be one of 
the most heterogeneous genera of hyphomycetes as all kinds 
of unrelated dematiaceous hyphomycetes characterised by 

having amero- to phragmosporous conidia formed in acropetal 
chains have been assigned to Cladosporium s. lat. Various 
authors discussed the heterogeneity of Cladosporium s. lat. 
and proposed new, more natural circumscriptions of this genus 
(e.g., Von Arx 1981, 1983, Morgan-Jones & Jacobsen 1988, 
McKemy & Morgan-Jones 1990, Morgan-Jones & McKemy 1990, 
Braun 1995, Partridge & Morgan-Jones 2002, 2003). David 
(1997) revised Cladosporium species previously referred to as 
Heterosporium and demonstrated that the genus Cladosporium is 
well-characterised and easily recognisable by its unique structure 
of the conidiogenous loci and conidial hila. A few years later, the 
first attempts were made to revise and monograph Cladosporium 
s. lat. (Crous et al. 2001a). Braun et al. (2003) published results 
of the first molecular examination of Cladosporium s. lat., clearly 
confirming the strong heterogeneity of this genus. In the last two 
decades, various genera with cladosporium-like morphs could be 
separated from Cladosporium s. str. (De Hoog et al. 1995, Seifert 
et al. 2004, Heuchert et al. 2005, Crous et al. 2006a, 2007, 2017, 
Braun et al. 2008, Bezerra et al. 2017), based on re-assessments 
of morphological features and molecular data. Efforts to clarify the 
phylogeny and taxonomic structure of Cladosporium species and 
allied fungi have resulted in a modern redefinition of the genus 
(Crous et al. 2007, Schubert et al. 2007, Zalar et al. 2007, Bensch 
et al. 2010, 2012, 2018). Due to continuous isolations from a wide 
range of substrates, collected on various continents, the number 
of Cladosporium species has steadily increased (Crous et al. 
2014a, Bensch et al. 2015, Braun et al. 2015, Razafinarivo et 
al. 2016, Marin-Felix et al. 2017, Sandoval-Denis et al. 2016, Ma 
et al. 2017, Crous et al. 2018, Tibpromma et al. 2018a, Rosario 
et al. 2019, Iturrieta-González et al. 2021, Costa et al. 2022, 
Moharram et al. 2022, Chethana et al. 2023, Lee et al. 2023, 
Yang et al. 2023b). Sexual morphs, previously assigned to the 
genus Davidiella, are known for only a few species.

Within Cladosporium, three major species complexes 
are recognised: Cl. herbarum, Cl. sphaerospermum and Cl. 
cladosporioides species complexes. Morphological features used 
for the circumscription of these complexes have been summarised 
in Bensch et al. (2012, 2015) and Marin-Felix et al. (2017a). 
Most Cladosporium species can be referred to one of the three 
species complexes based on their morphology. However, within a 
given species complex, the differentiation of particular species of 
Cladosporium is often difficult based on morphological characters 
alone since many species have overlapping characteristics. 
Therefore, polyphasic approaches including multilocal 
phylogenetic analyses are necessary for species delimitations 
and proper identifications. Previous studies have already revealed 
the existence of numerous cryptic species in the three species 
complexes (Schubert et al. 2007, Zalar et al. 2007, Bensch et al. 
2010, 2018, Sandoval-Denis et al. 2016), but many more are to be 
expected.

Ecological and economic significance

Cladosporium cladosporioides
This species represents a species complex of morphologically almost 
indistinguishable, but phylogenetically distinct species (Bensch et 
al. 2010, 2018). Given their high morphological similarity, the use 
of a molecular approach for the correct identification of all these 
species is highly recommended. Cladosporium cladosporioides s. 
lat. is a common air- and soil-borne saprotroph and is frequently 
encountered as a contaminant. It has been isolated from food 
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sources such as cereal grain, coffee and peas, as fruit contaminants 
causing spoilage in low-temperature storage and from indoor 
environment sources such as water-damaged wood, wallpaper 
and plaster (Samson et al. 2019). It is one of the most predominant 
fungi in outdoor air (Fradkin et al. 1987), its spores being important 
in seasonal allergic diseases. Cladosporium cladosporioides rarely 
causes invasive disease in animals and humans, but is an important 
agent of plant disease, attacking both the leaves and fruits of many 
plants (Nam et al. 2015). It is found as a common endophytic 
fungus as well as a secondary invader on necrotic parts of many 
different host plants, including lesions caused by pathogenic fungi 
(Bensch et al. 2012). Some leaf-spotting races have been reported, 
but such host-specific pathogenicity is largely untested (Meneses 
et al. 2018, Robles-Yerena et al. 2019). Furthermore, this species 
is relevant as a potential biocontrol agent for plant diseases (Wang 
et al. 2013, Köhl et al. 2015, Torres et al. 2017). Cladosporium 
anthropophilum, a member of the Cl. cladosporioides species 
complex, represents a clinically relevant fungus, being the second 
most prevalent species identified in a set of clinical isolates from 
the USA after Cl. halotolerans (Sandoval-Denis et al. 2015, 2016).

Cladosporium herbarum
Cladosporium herbarum has been isolated from food sources, 
such as weathered cereal grain, mouldy fruit and vegetables, living 
and decaying plant material, cheese, butter and margarine and 
from indoor environment sources such as water-damaged wood, 
wallpaper and plaster (Samson et al. 2019). It is the most studied 
species in allergy research (Breitenbach 2008, Poll et al. 2009), but 
in recent studies (Segers et al. 2015, Bensch et al. 2018) none of 
the studied strains turned out to be Cl. herbarum. The closely allied 
and morphologically similar species Cl. allicinum proved to be one 
of the most common Cladosporium species in indoor environments 
instead (Segers et al. 2015, Bensch et al. 2018, Andersen et al. 
2021).

Cladosporium sphaerospermum
Similar to the other two species, Cladosporium sphaerospermum 
represents a species complex of morphologically similar and 
closely allied species. Cladosporium halotolerans proved to be 
the most common Cladosporium species in indoor environments 
and is very often isolated from house dust. It is commonly found 
both indoors and outside and is frequently encountered as a 
contaminant. It has been isolated from hypersaline water, from 
indoor environment sources such as water-damaged bathroom 
and basement walls, gypsum wallboard, inner roofing in attics 
and from human sputum and skin (Bensch et al. 2018, Samson 
et al. 2019). Cladosporium sphaerospermum and related taxa 
develop under low nutrient conditions and easily cope with 
humidity changes, both very characteristic for indoor situations. 
Sandoval-Denis et al. (2015) reported Cl. halotolerans as the 
most frequent Cladosporium species recovered from clinical 
samples in the USA.

Research interests

There are 2 641 publications and 38 580 citations from 2011–2021 
in the Web of Science (Fig. 41). The top 10 most cited articles 
are listed in Table 23. Most of the publications focused on the 
identification, diversity and phylogeny of Cladosporium species, 
their occurrence as airborne, endophytic and allergy-inducing 
microorganisms and their role in biodegradation, biodeterioration 
and indoor environments, their potential as biocontrol and antifungal 
agents and their produced metabolites (Fig. 42). Cladosporium 
fulvum, the causal agent of tomato leaf mould, which is frequently 
used as a model organism to study plant-pathogen interactions, 
does not belong in the genus Cladosporium but is Fulvia fulva 
(Videira et al. 2017), which belongs in the Mycosphaerellaceae, 
Mycosphaerellales.

Fig. 41. Trends in research of Cladosporium in the period 2011–2021.
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Disease management
There are only a few economically important diseases caused by 
Cladosporium species. Cladosporium leaf spot of spinach, caused 
by Cl. variabile, occurs to some extent almost every year but is rarely 
severe. Hot water as well as chlorine seed treatment effectively 
eliminates Cladosporium from spinach seed (Du Toit et al. 2005). 
Qol fungicides have also been shown to control this disease. 
Cladosporium cucumerinum, the causal organism of crown blight 
and scab or gummosis disease, is widespread among members 
of the Cucurbitaceae. Several fungicides can reduce the severity 
of this scab if applied on a schedule after the first bloom. Fairy ring 

leaf spot affecting carnations, caused by Cl. echinulatum, can be 
most effectively treated with sodium bicarbonate and Trichoderma 
virens (Sandoval et al. 2009).

Toxins
Several mycotoxins are known to be produced by Cladosporium 
species, viz., cladosporin, isocladosporin, emodin, cladosporid, 
cladosporol as well as several others, which represent antifungal, 
anti-bacterial or insecticidal compounds that have plant growth 
regulators or plant inhibiting activities while others are inhibitors of 
protein kinase C (Alwatban et al. 2016, Wang et al. 2013, 2015). 

Table 23. Top 10 cited articles related to Cladosporium published in the period 2011–2021.
Rank Article title No. of citations References
1 Fungal effectors and plant susceptibility 505 Lo Presti et al. (2015)
2 The genus Cladosporium 352 Bensch et al. (2012)
3 Fungi and allergic lower respiratory tract diseases 305 Knutsen et al. (2012)
4 Associations between fungal species and water-damaged building materials 213 Andersen et al. (2011)
5 Analysis of two in planta expressed LysM effector homologs from the fungus 

Mycosphaerella graminicola reveals novel functional properties and varying 
contributions to virulence on wheat

196 Marshall et al. (2011)

6 Receptor-like kinase SOBIR1/EVR interacts with receptor-like proteins in plant 
immunity against fungal infection

175 Liebrand et al. (2013)

7 Dual disease resistance mediated by the immune receptor Cf-2 in tomato 
requires a common virulence target of a fungus and a nematode

171 Lozano-Torres et al. (2012)

8 Two for all: receptor-associated kinases SOBIR1 and BAK1 163 Liebrand et al. (2014)
9 The genomes of the fungal plant pathogens Cladosporium fulvum and 

Dothistroma septosporum reveal adaptation to different hosts and lifestyles but 
also signatures of common ancestry

153 De Wit et al. (2012)

10 Fungal effector Ecp6 outcompetes host immune receptor for chitin binding 
through intrachain LysM dimerization

152 Sanchez-Vallet et al. (2013)

Fig. 42. Network visualisation of keywords of the publications related to Cladosporium. The larger the text and the circle the more often the subject has been 
cited.
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Cladosporinone was found as a new viriditoxin derivative and 
was studied for its cytotoxicity against the murine lymphoma cell 
line L5187Y (Liu et al. 2016f). Salvatore et al. (2021) provided a 
survey of bioactive natural compounds from Cladosporium species, 
including toxins.

Taxonomy and phylogeny
The most phylogenetically informative markers proved to be actA 
and tef1, while ITS sequences are usually identical for species of 
the same complex (Bensch et al. 2010, 2012, 2018, Sandoval-
Denis et al. 2016). Although ITS is a suitable locus to identify 
an isolate as belonging to the genus Cladosporium and to some 
extent to a species complex, additional loci are required to reach 
a conclusive species (or even species complex) identification. 
The use of a molecular approach is strongly recommended for 
correct identifications of the species in this complex fungal group. A 
sufficient number of isolates should be included in the phylogenetic 
analysis to ensure that the genetic diversity of a species is covered. 
As starting material, a reliable backbone tree should be used. It is 
not advisable to blindly go on the names in GenBank as many of 
the names of older sequences are outdated.

Authors: U. Braun and K. Bensch

21. Yarrowia Van der Walt & Arx, Antonie van Leeuwenhoek 
46: 519. 1981.

Type species: Yarrowia lipolytica (Wick. et al.) Van der Walt & Arx

Classification: Ascomycota, Saccharomycotina, Dipodascomycetes, 
Dipodascales, incertae sedis.

Background

Yarrowia species are widespread and have been isolated from 
various sources such as food, soil, insects, salt and fresh water 
as well as humans (Kurtzman et al. 2011, Groenewald et al. 2014). 
The first observation of the sexual morph of Yarrowia lipolytica, 
the type species, was made by Wickerham et al. (1970a, b) and 
described as Endomycopsis lipolytica. Yarrow (1972) transferred 
E. lipolytica to the genus Saccharomycopsis. Saccharomycopsis 
lipolytica appeared distinct from the other members of the genus 
because of the shape of its ascospores and the presence of 
coenzyme Q-9. Based on this, the genus Yarrowia was proposed 
by Van der Walt & Von Arx (1980) to accommodate Y. lipolytica. 
This species remained the only member of the genus for more than 
30 years until Groenewald & Smith (2013) illustrated the presence 
of the sexual life cycle of Candida deformans and proposed a new 
combination Yarrowia deformans. Most of the sexually reproducing 
Yarrowia species were found to be mainly heterothallic (Knutsen et 
al. 2007, Groenewald & Smith 2013) as asci are formed following 
the conjugation of complementary mating types. However, a few Y. 
lipolytica isolates were found to be self-sporulating.

In the past years, Yarrowia was expanded from comprising 
only one species to 14 species. Several studies included numerous 
phylogenetically closely related asexual Candida species as new 
combinations, and novel species were described (Kurtzman et al. 
2011, Groenewald & Smith 2013, Nagy et al. 2014, Crous et al. 
2017a). The currently described Yarrowia species are Y. deformans, 
Y. lipolytica, Y. parophonii and Y. porcina having a sexual morph 
and the asexual reproducing species Y. alimentaria, Y. bubula, 
Y. brassicae, Y. divulgata, Y. galli, Y. hollandica, Y. keelungensis, 

Y. osloensis, Y. phangngaensis and Y. yakushimensis. Candida 
hispaniensis, although not yet proposed as a new combination 
within Yarrowia, clusters with the rest of the Yarrowia species in 
most phylogenetic studies. Most species of Yarrowia can assimilate 
only a few carbon compounds and are almost indistinguishable 
physiologically from one another (Kurtzman et al. 2011, Groenewald 
& Smith 2013, Nagy et al. 2014, Crous et al. 2017a).

The currently most used and best method to describe novelties 
and distinguish among species of this genus is by sequence 
analysis of the D1/D2 domains of LSU nrRNA gene and the ITS 
regions (Kurtzman & Robnett 1994, 1995, 1998, Fitzpatrick et al. 
2006, James et al. 2006, Kurtzman et al. 2011, Groenewald & 
Smith 2013, Nagy et al. 2014, Crous et al. 2017b, Liu et al. 2018b). 
Yarrowia is phylogenetically distantly related to most members of 
the Saccharomycotina yeast genera and present at the base of 
the Saccharomycetales. However, multigene and phylogenomic 
analyses that included a greater number of genera showed genera 
belonging to the families Lipomycetaceae, Dipodascaceae and 
Phaffomycetaceae to be basal to Yarrowia (Kurtzman et al. 2011, 
Kurtzman & Robnett 2013, Shen et al. 2018).

Yarrowia species are commonly found in food products such as 
meat (beef, pork, poultry) and dairy (cheeses, milk, yoghurt, butter, 
cream, and margarine), but they have also been isolated from fish, 
maize, traditional food, soil, insects (beetles), salt and fresh water, 
human tissue as well as petroleum storage tanks (Kurtzman et al. 
2011, Groenewald et al. 2014). Yarrowia has been described as 
an oleaginous genus indicating that strains can grow on a variety 
of hydrophobic substrates and those that contain high proportions 
of lipids (fat and/or protein). It is known that the type species Y. 
lipolytica can accumulate lipids intracellularly to 40 % of its cell dry 
weight (Beopoulos et al. 2011).

Economical and medical significance

It is clear from literature that Yarrowia species are widespread 
and play an essential role in the food industry (beneficial or 
undesirable), they have importance in medical fields and have 
industrial utility (Kurtzman et al. 2011, Groenewald et al. 2014). 
These characteristics together with the knowledge that Y. lipolytica 
is a “safe-to-use” organism, indicate that this genus has great 
ecological and economic significance (reviewed in Groenewald et 
al. 2014).

Food and food safety

Yarrowia lipolytica is a species commonly associated with food 
products (reviewed in Groenewald et al. 2014). It is a regular 
component of food and beverage microbiota, either with desirable 
and beneficial effects (Wyder et al. 1999, Encinas et al. 2000, 
Boekhout & Robert 2003, Ferreira & Viljoen 2003, Patrignani et al. 
2007) or occasionally it contributes to spoilage (Deak & Beuchat 
1987, 1996, Ismail et al. 2000, Boekhout & Robert 2003). However, 
for food safety concerns it is important to know that Y. lipolytica is 
regarded to be a “safe-to-use” organism.

Yarrowia species are often associated with (fermented) dairy 
products. These include a diversity of cheeses, milk from ewe, 
water buffalo and cow as well as yoghurt, butter, cream, margarine 
and traditional products such as kefir, nunu and amas (reviewed 
in Groenewald et al. 2014). Yarrowia lipolytica contributes to the 
organoleptic characteristics of cheese and is one of the top three 
most prevalent yeast species in cheese such as mould-ripened, 
smear-ripened, blue-veined and fresh cheeses. It is frequently 
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used as a cheese starter as it reduces ripening times, extends 
the shelf life and inhibits the growth of undesirable bacteria and 
green mould. However, there is sometimes a thin line between the 
desirable and beneficial effects and its occasional contribution to 
spoilage as it can produce off-flavours, affects the cheese texture 
negatively, increases the formation of biogenic amines and causes 
surface browning that affects appearance.

Yarrowia species also occur on red meat (e.g., Vienna, 
traditional sausages of southern Italy, Spanish and German 
fermented sausages, salami, ham, salted bacon, beef, biltong) 
and occasionally also in poultry and fish products (reviewed in 
Groenewald et al. 2014). Yarrowia alimentaria was found to co-
exist with Y. lipolytica in processed meat products (Nielsen et 
al. 2008). Yarrowia lipolytica was also reported from fermented 
products such as wine, must, cider, tempeh and sourdough, also 
in products at refrigeration temperatures such as soft drinks, juices, 
fruit concentrates, mayonnaise, salad dressings and salads, as 
well as in chilled and frozen, processed food. Whether Yarrowia 
species have a desirable or undesirable effect on the flavor and/
or texture of these products is not fully known. However, Y. galli 
was found to be a spoilage organism in non-processed chicken and 
processed chicken meat due to its lipolytic and proteolytic activities 
(Kurtzman et al. 2011).

Although Y. lipolytica is commonly associated with food products 
it can be hypothesised that some of the earlier identifications of 
this species in food may refer to closely related Yarrowia species, 
and previously known Candida species, that are physiologically not 
distinguishable from Y. lipolytica.

Industrial significance

The great variety of potential commercial applications of Y. lipolytica 
for a more biobased economy is extensively reviewed by Coelho et 
al. (2010), Groenewald et al. (2014) and Abeln & Chuck (2021) and 
it has several physiological properties of industrial significance. It 
has already been deployed in multiple industrial applications. These 
applications include (i) as a high-quality protein source for livestock 
feeding (Bamberg 2000) and production of cell protein (SCP), (ii) 
as a biotechnological production host for various organic acids and/
or hydrophobic substances, and (iii) as a heterologous production 
host for pharmaceutical and industrial proteins and enzymes, 
for the mass production of biofuels as well as for bioremediation 
purposes (reviewed in Groenewald et al. 2014, Abeln & Chuck 
2021). The affinity of Y. lipolytica towards hydrophobic substrates 
accelerated its industrial relevance to SCP and citric acid and its 
genetic accessibility makes Y. lipolytica an industrially-relevant 
versatile microbe that can produce a variety of valuable metabolites 
not limited to SCP and citric acid, but also carotenoids, erythritol, 

lipids, lipases, mannitol, etc. (Ledesma-Amaro & Nicaud 2016). 
Due to the advanced development of genetic tools and the early 
genetic accessibility of Y. lipolytica, this yeast was already used 
as a genetically modified organism to produce fatty alcohols 
(Wang et al. 2016g) and unusual fatty acids such as long-chain 
polyunsaturated fatty acids (Ledesma-Amaro & Nicaud 2016).

The listed current applications are just a selection but there 
is a great variety of potential commercial usage for this species. 
Yarrowia lipolytica probably has some close relatives with great 
potential that should be investigated further in order to be used 
towards more a bio-based economy.

Medical importance

Infections by Yarrowia species are very rare with only a few 
cultures originating from human sources. This is clear from the 
limited number of cases and publications indicating species of 
Yarrowia cause infections and public culture collections maintaining 
Yarrowia strains isolated from humans. It is also clear that it is 
mostly immunocompromised patients that have been infected. The 
low pathogenicity of Y. lipolytica was also illustrated by Walsh et 
al. (1989). Some Yarrowia species tested by Desnos-Ollivier et al. 
(2012) showed high Minimum Inhibitory Concentrations (MICs) 
to some antifungals (Table 24). Among the four ascomycetes 
isolates resistant to all antifungal drugs tested, were Y. lipolytica 
and C. hispaniensis. Unlike Y. lipolytica, C. hispaniensis is not 
known to be a potential human pathogen but it can also grow at 
37 °C (Desnos-Ollivier et al. 2012). Although Y. deformans was 
recovered twice from clinical materials, its inability to grow at 37 °C 
makes it unlikely to be an agent of systemic infection (Kurtzman 
et al. 2011). Jacques & Casaregola (2008) pointed out that the 
common occurrence of Y. lipolytica and probably related species 
on a variety of food products provide a ready source of inoculum 
to those people who may be susceptible to infection. Resistance to 
various antifungals may occur in Yarrowia species or close relatives 
but opportunistic infections by Y. lipolytica can be treated well or 
disappear even without treatment (Hazen 1995, Walsh et al. 2004, 
Belet et al. 2006, Groenewald et al. 2014); this might be the case 
for other opportunistic pathogenic Yarrowia species.

Research interests

There are 2 558 publications and 37 460 citations from 2011–
2021 in the Web of Science (Fig. 43), with the top 10 most cited 
articles shown in Table 25. Most of the publications focused on 
biotechnological applications, generic engineering and future 
processes (Fig. 44).

Table 24. Species tested by Desnos-Ollivier et al. (2012) and their corresponding MIC values to different antifungals.
C. hispaniensis Y. deformans Y. galli Y. phangngaensis Y. lipolytica

Fluconazole High MIC High MIC High MIC Low MIC High MIC
Itraconazole High MIC Low MIC Low MIC Low MIC High MIC
Posaconazole High MIC High MIC Low MIC Low MIC High MIC
Voriconazole High MIC High MIC High MIC High MIC High MIC
Caspofungin High MIC Low MIC Low MIC Low MIC High MIC
Amphotericin B High MIC High MIC High MIC High MIC High MIC
5FC High MIC High MIC High MIC Low MIC High MIC
Terbinafine High MIC Low MIC Low MIC High MIC High MIC
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(Bio-)industry
As Y. lipolytica is regarded to be a “safe-to-use” organism, the study 
of its use in the food and food-related industries, for Yarrowia-derived 
products or as a production host for biotechnological applications 
is warranted. Follow-up studies to explore the effectiveness of 
this species to be used as a probiotic (Liu & Tsao 2009) and its 
cell-free extract as a prebiotic (Kumura et al. 2009) was proposed 
and reviewed in Groenewald et al. (2014). Due to its immense 
capability to accumulate high concentrations of lipids intracellularly, 
Y. lipolytica featured in the first-ever commercial oleaginous yeast 
process (Abeln & Chuck 2021). As this species has numerous 
physiological properties of industrial significance, interest in 
exploring and developing Y. lipolytica for further usage in the (bio-)

industry is growing (reviewed in Coelho et al. 2010, Groenewald 
et al. 2014, Abeln & Chuck 2021), opening the door for more 
properties to be discovered and known properties to be explored. 
Advancing yeast lipid technology as a sustainable source of oil in 
the place of palm and soybean oil, as a novel route to advanced 
biofuels (Beopoulos et al. 2009, Blazeck et al. 2014, Abeln & Chuck 
2021), and to produce biofuels sustainably in the form of large 
biodiesel, will be an important research interest in coming years. 
It is clear that Y. lipolytica and probably some of its close relatives 
will play an important role in bio-processes, and especially due to 
its oleaginous ability multiple industrial applications to exploit this 
species should be considered.

Fig. 43. Trends in research of Yarrowia in the period 2011–2021.

Table 25. Top 10 cited articles related to Yarrowia published in the period 2011–2021.
Rank Article title No. of citations References
1 Value-added uses for crude glycerol - a byproduct of biodiesel production 659 Yang et al. (2012b)
2 Lipids of oleaginous yeasts. Part I: Biochemistry of single cell oil production 410 Papanikolaou (2011)
3 Engineering the push and pull of lipid biosynthesis in oleaginous yeast 

Yarrowia lipolytica for biofuel production
406 Tai & Stephanopoulos (2013)

4 Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and 
biofuel production

361 Blazeck et al. (2014)

5 Oily yeasts as oleaginous cell factories 353 Ageitos et al. (2011)
6 Production of omega-3 eicosapentaenoic acid by metabolic engineering of 

Yarrowia lipolytica
314 Xue et al. (2013)

7 Oil production by oleaginous yeasts using the hydrolysate from pretreatment 
of wheat straw with dilute sulfuric acid

313 Yu et al. (2011a)

8 Macromolecular organization of ATP synthase and complex I in whole 
mitochondria

310 Davies et al. (2011)

9 Lipids of oleaginous yeasts. Part II: Technology and potential applications 273 Papanikolaou & Aggelis (2011)
10 Microbial xylanases: Engineering, production and industrial applications 268 Juturu et al. (2012)
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Generic engineering and future processes
Yarrowia lipolytica was an early selection for whole genome 
sequencing. Kerscher et al. (2001) reported the sequence for the 
complete mitochondrial genome, which was then followed by the 
sequence of the complete nuclear genome (Dujon et al. 2004). It 
is also the most frequently genetically modified yeast (over 50 % 
of modified yeasts) due to the advanced development of genetic 
tools that can be applied to this species and due to its genetic 
accessibility. Approximately 70 % of the genetically engineered 
oleaginous yeasts cultured are of Y. lipolytica (Abeln & Chuck 
2021). Recent work has also demonstrated successful adaptive 
evolution strategies, increasing single cell oil (SCO) production at 
the expense of citric acid biosynthesis, a process that is still being 
improved (Juturu & Chuan 2012). Bigey et al. (2003) investigated 
the ability of Y. deformans to excrete powerful lipolytic enzymes 
that are active in a mostly aqueous environment and characterised 
several genes that code for these enzymes.

Oleaginous yeast processes, with Y. lipolytica as one of the 
main species involved, have been intensively investigated and 
brought to scale in times of crisis and uncertainty (Abeln & Chuck 
2021). With the many problems mankind is facing due to climate 
change, depletion of fossil resources and ecological damage 
affecting global food supply chains, Yarrowia species could play a 
vital role in multiple areas due to their extensive lipid production. It is 
essential that microbial processes are developed, scaled and ready 
to produce lipids on the industrial scale in the short to medium term 
and Yarrowia species, especially Y. lipolytica, can play a crucial role 
in achieving a sustainable future in these areas.

Author: M. Groenewald

22. Agaricus L., Sp. pl. 2: 1171. 1753.

Type species: Agaricus campestris L.

Classification: Basidiomycota, Agaricomycotina, Agaricomycetes, 
Agaricales, Agaricaceae.

Background

Agaricus is the type genus of Agaricaceae. It has a worldwide 
distribution extending to all continents except Antarctica (Zhao et 
al. 2011, Hyde et al. 2017b). Species of Agaricus are characterised 
by sporocarps with an annulate stipe and free lamellae that produce 
dark brown spore prints. They are saprobic and can be found in 
natural environments such as forests, grasslands and/or urban 
areas such as gardens, roadsides and pastures (Parra 2008). 
There are an estimated 600 species of Agaricus (He et al. 2022a). 
Many Agaricus species are edible, for example, Ag. arvensis, Ag. 
augustus and Ag. campestris (Li et al. 2021a). Agaricus species 
have long been collected in the wild and are preferred as food 
worldwide. Some of them are successfully cultivated. The best-
known species is Ag. bisporus, also called button mushrooms, 
which has been widely cultivated for at least 300 years (Kerrigan 
2016, Bhushan & Kulshreshtha 2018). Many species are of 
medicinal value as they can produce antimicrobial, antioxidant 
and anti-allergenic biocompounds (Kerrigan 2005, Stojković et al. 
2014).

Most monographs of Agaricus deal with species from temperate 
areas, such as those from Europe (Möller 1950, Pilát 1951, Konrad 
& Maublanc 1952, Kühner & Romagnesi 1953, Wasser 1980, 

Fig. 44. Network visualisation of keywords of the publications related to Yarrowia. The larger the text and the circle the more often the subject has been cited.



78

Bhunjun et al.

Cappelli 1984, Parra 2008) and North America (Kerrigan 1986, 
Singer 1986), although those from tropical areas have been treated 
by Heinemann (1956, 1978, 1980). With the advent of the molecular 
era, Agaricus has undergone systemic studies with evidence from 
single and/or multiple sequences (Mitchell & Bresinsky 1999, 
Challen et al. 2003, Geml et al. 2004, Kerrigan et al. 2005, 2008, 
Zhao et al. 2011, 2016b, Chen et al. 2017a, He et al. 2017a, 
Ortiz-Santana et al. 2021). The current taxonomic system for 
Agaricus is based on combined phylogenetic analyses, phenotypic 
characteristics and divergence times. The latest Agaricus taxonomic 
system recognises six subgenera and 26 sections (Zhao et al. 
2011, 2016, Chen et al. 2017a, He et al. 2017a, Ortiz-Santana et 
al. 2021). The phylogenetically informative characteristics including 
the structure of the annulus (superior vs inferior; simple vs double 
or two-layered), odour, discolouration of context when cut or rubbed 
and Schäffer reaction (aniline × nitrogen acid) are the major criteria 
for the infrageneric classification of Agaricus. Agaricus is the first 
genus in ranking fungi with divergence times and using divergence 
times as an additional criterion to be accepted in fungal systematics 
studies (Hongsanan et al. 2017, Hyde et al. 2017a, Liu et al. 2017a, 
Zhao et al. 2017b, Tedersoo et al. 2018, Ji et al. 2022).

Economic significance

Agaricus is a diverse genus with high economic potential. Agaricus 
bisporus and Ag. subrufescens are the most widely cultivated 
species for both edible and medicinal value. Several recently 
described species are also edible and can be cultivated. For 
example, Ag. flocculosipes and Ag. sinodeliciosus are two edible 
species originally found in Thailand and China (Zhao et al. 2012a, 
Wang et al. 2015i). Not all Agaricus species are edible and some 
are poisonous, for example, species of section Xanthodermatei. 
They can cause serious gastrointestinal irritation which requires 
treatment (Gill & Strauch 1984, Hender et al. 2000, Boxshall et al. 
2021).

Agaricus bisporus
The global edible mushroom market is estimated to be worth 
42 000 million US dollars per year and is expected to exhibit a 
compound annual growth rate (CAGR) of 9.5 % from 2021 to 2028. 
Agaricus bisporus accounts for 61.8 % of the world’s total edible 
mushroom production and was worth 28 500 million US dollars 
in 2020 (Willis 2018, Grand view research 2022). Due to its high 

protein, low calories and nutrition-rich features (Table 26, accessed 
from U.S. Department of Agriculture, FoodData Central, on 21st 
February 2022), there is an increased demand for this product.

Agaricus subrufescens
Agaricus subrufescens, also called almond mushrooms, was 
wrongly named Ag. blazei for a long time (Kerrigan 2005). It is 
widely cultivated for its medicinal value. The bioactive compounds 
isolated from the basidiomes or mycelia proved to be antimicrobial, 
antioxidant and anti-allergenic (Wisitrassameewong et al. 2012, 
Stojković et al. 2014). The reported beneficial properties are listed 
in Table 27.

Agaricus flocculosipes
Agaricus flocculosipes was originally found in Thailand and 
Mayotte Island and later found in China (Zhao et al. 2012a, Gui et 
al. 2015). This taxon is potentially cultivatable as it is presumably 
heterothallic and is a member of section Arvenses, indicating its 
edibility (Zhao et al. 2012a). Thongklang et al. (2014) successfully 
cultivated this species in Thailand and it has good potential as a 
new mushroom in the market.

Agaricus sinodeliciosus
Agaricus sinodeliciosus was originally found in northwestern China 
(Wang et al. 2015i). It is widely collected and consumed by the local 
people in the Xinjiang and Qinghai provinces, even before it was 
formally named. Studies have focused on its cultivation including 
the offspring analysis and habitat microbial communities (Zhou et 

Table 26. Nutritional value of Ag. bisporus (white button mushrooms) per 100 g.
Nutritional components Amount/per 100 g Nutritional components Amount/per 100 g
Protein 2.89 g Riboflavin 0.444 mg
Calcium, Ca 5 mg Niacin 3.88 mg
Iron, Fe 0.23 mg Vitamin B-6 0.077 mg 
Magnesium, Mg 10.2 mg Biotin 9 µg
Phosphorus, P 93 mg Folate 35 µg
Potassium, K 373 mg Vitamin D (D2 + D3) 0.02 µg
Sodium, Na 6 mg Ergosta-7-enol 1.63 mg
Zinc, Zn 0.51 mg Ergosta-5,7-dienol 5.84 mg
Copper, Cu 0.389 mg Ergosta-7,22-dienol 1.54 mg
Manganese, Mn 0.054 mg Ergosterol 56 mg
Selenium, Se 20 µg Ergothionine 4 mg
Thiamin 0.065 mg Energy 31 kcal

Table 27. Medicinal properties reported for Agaricus subrufescens.
Medicinal properties References
Tumour growth reduction Pinto et al. (2009), Jumes et al. (2010)
Immunomodulatory activities Niu et al. (2009), Ramberg et al. 

(2010)
Immunostimulatory effects Endo et al. (2010), Førland et al. 

(2010, 2011)
Antimicrobial activities Bernardshaw et al. (2005, 2006)
Antiviral activities Bruggemann et al. (2006), Faccin et 

al. (2007)
Anti-allergy effects Ellertsen & Hetland (2009)
Antioxidant activities Lavitschka et al. (2007)
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al. 2017a, Ling et al. 2019). Some isolates are domesticated and 
suitable for bagged and industrialised facility cultivation (Xu et al. 
2021).

Agaricus xanthodermus
Species of section Xanthodermatei are poisonous and can cause 
gastrointestinal irritation. Agaricus xanthodermus is from this 
section and is frequently consumed (Kerrigan 2016). Phenols are 
thought to be the main toxic agents in the basidiomes. A study 
from Australia indicated that the concentration of the phenols 
varies between basidiomatal structures, different developmental 

stages, and different nutritional substrates (Boxshall et al. 2021). 
Awareness should always be given when collecting Agaricus in the 
wild for food.

Research interests

There are 2 668 publications and 34 079 citations from 2011–2021 
in the Web of Science (Fig. 45). The top 10 most cited articles are 
listed in Table 28. Most publications mostly focused on medicinal 
properties and systematics (Fig. 46).

Fig. 45. Trends in research of Agaricus in the period 2011–2021.

Table 28. Top 10 cited articles related to Agaricus published in the period 2011–2021.
Rank Article title No. of citations References
1 Crystal structure of Agaricus bisporus mushroom tyrosinase: Identity of the tetramer 

subunits and interaction with tropolone
485 Ismaya et al. (2011)

2 In vitro and in vivo antioxidant activity of ethanolic extract of white button mushroom 
(Agaricus bisporus)

327 Liu et al. (2013b)

3 A review of chemical composition and nutritional value of wild-growing and cultivated 
mushrooms

322 Kalac (2013)

4 A comprehensive review on tyrosinase inhibitors 317 Zolghadri et al. (2019)
5 Tissue invasion and metastasis: Molecular, biological and clinical perspectives 281 Jiang et al. (2015)
6 Antioxidative and immunomodulating activities of polysaccharide extracts of the 

medicinal mushrooms Agaricus bisporus, Agaricus brasiliensis, Ganoderma lucidum 
and Phellinus linteus

279 Kozarski et al. (2011)

7 Chemical composition and nutritional value of the most widely appreciated cultivated 
mushrooms: An inter-species comparative study

267 Reis et al. (2012a)

8 Current findings, future trends, and unsolved problems in studies of medicinal 
mushrooms

267 Wasser (2011)

9 Antioxidant properties of phenolic compounds occurring in edible mushrooms 250 Palacios et al. (2011)
10 Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms 

governing adaptation to a humic-rich ecological niche
234 Morin et al. (2012)
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Medicinal properties

Many bioactive compounds have been isolated from Agaricus 
species and these attract researchers to explore their medicinal 
values (Wasser 2011). Polysaccharides isolated from Ag. bisporus 
and Ag. subrufescens are antioxidative and immunomodulating-
active (Kozarski et al. 2011). Tyrosinase isolated from Ag. bisporus 
is important in browning reactions in the food industry and medicinal 
use as an anticancer agent (Ismaya et al. 2011, 2017).

Authors: M.Q. He and R.L. Zhao

23. Kluyveromyces Van der Walt, Antonie van Leeuwenhoek 
22: 271. 1956.

Type species: Kluyveromyces marxianus (E.C. Hansen) Van der 
Walt

Classification: Ascomycota, Saccharomycotina, Saccharomycetes, 
Saccharomycetales, Saccharomycetaceae.

Background

Our current understanding of the genus Kluyveromyces bears only 
a passing resemblance with its original conception. Van der Walt 
(1956) created Kluyveromyces to accommodate a fermentative 
species with the unique property of forming asci containing up to 
100 spores, in contrast to most other ascomycetous yeast species, 
which form up to four (rarely eight) ascospores. The genus was 
soon emended (Van der Walt 1965) to include several other 
species, some formerly assigned to Saccharomyces, on the basis 
of deliquescence of the ascus in combination with a vigorous 

fermentative ability and the formation of smooth ascospores. 
That definition persisted through the fourth edition of “The 
Yeasts, a Taxonomic Study” (TYTS, Lachance 1998), although 
the phylogenetic heterogeneity of the genus had already become 
abundantly clear. The possibility of defining the genus on a unique 
set of growth characteristics vanished with the discovery of a non-
fermentative species (Nagahama et al. 1999), and DNA sequence 
data were making it clear that most Kluyveromyces species could 
not be considered congeneric with the originally proposed type 
species, K. polysporus (Zhan 1994, James et al. 1997, Kurtzman & 
Robnett 1998). To avoid a nomenclatural catastrophe, Kurtzman et 
al. (2001) proposed the conservation of Kluyveromyces, but with K. 
marxianus as the new type species. Two-thirds of the species were 
reassigned to other genera in the family Saccharomycetaceae 
(Kurtzman 2003); this included the original type species, which was 
renamed Vanderwaltozyma polyspora.

Although one nightmare was averted, the changes have 
had a considerable impact on our ability to retrieve relevant 
literature, as exemplified by the fact that four of the references 
listed in Table 29 deal mostly with species that are no longer 
included in Kluyveromyces, as obsolete names continue to be 
applied. Noteworthy is the transfer of K. thermotolerans (syn. 
Saccharomyces veronae) to the genus Lachancea, the continued 
use of names such as Candida kefyr, C. pseudotropicalis, K. 
fragilis, or even Saccharomyces fragilis, all of which are defunct 
synonyms of K. marxianus, or the use of K. marxianus to 
designate other species, including K. lactis and K. dobzhanskii. 
Such nomenclatural ambiguities may result in misleading 
assumptions about the expected properties of strains used in 
comparative studies (e.g., Alves et al. 2019). Details of these 
nomenclatural changes have been reviewed by Lachance (2007, 

Fig. 46. Network visualisation of keywords of the publications related to Agaricus. The larger the text and the circle the more often the subject has been cited.
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2011). The genus as it now stands consists of eight species 
(Freitas et al. 2020). All form evanescent asci which release up 
to four spheroidal, ovoid, or reniform ascospores that tend to 
agglutinate. The mitotic state is normally haploid and undergoes 
isogamous or mother-bud diploidisation prior to ascus formation. 
Most species form the iron-containing pigment pulcherrimin 
and assimilate lactose oxidatively, both of which are infrequent 
properties among ascomycetous yeasts. Three species, namely 
K. aestuarii, K. nonfermentans, and K. siamensis, form a distinct 
clade and are confined to marine sources. The most recently 
described, K. starmeri, is known only from Brazilian cacti. The 
remaining species are isolated with regularity in wild Drosophila 
species and their plant habitats. Kluyveromyces lactis and K. 
marxianus are also frequently isolated from cheese and other 

dairy products, due to their unique ability to ferment lactose. The 
taxonomy of K. lactis has received some attention in the past 
due to the polymorphic nature of the species. Lactose-negative 
biotypes are assigned to the variety drosophilarum; some of the 
biotypes were originally described as separate species and do 
show a small amount of divergence at the level of ITS sequences 
(Lachance 2011b).

Ecological and economic significance

As indicated in Fig. 48, two species, K. lactis and K. marxianus, 
attract much of the attention. The former serves as a rival model 
organism to Saccharomyces cerevisiae (Fukuhara 2006, Morrissey 
2010). Of prime interest is their shared ability to assimilate and 

Table 29. Top 10 cited articles related to Kluyveromyces published in the period 2011–2021.
Rank Article title No. of citations References
1 Production of liquid biofuels from renewable resources 1 257 Nigam & Singh (2011)
2 Selected non-saccharomyces wine yeasts in controlled multistarter 

fermentations with Saccharomyces cerevisiae
366 Comitini et al. (2011)

3 Extraction of genomic DNA from yeasts for PCR-based applications 247 Lõoke et al. (2011)
4 Past and future of non-saccharomyces yeasts: from spoilage microorganisms 

to biotechnological tools for improving wine aroma complexity
243 Padilla et al. (2016b)

5 Lachancea thermotolerans and Saccharomyces cerevisiae in simultaneous 
and sequential co-fermentation: a strategy to enhance acidity and improve 
the overall quality of wine

233 Gobbi et al. (2013)

6 Structure of yeast Argonaute with guide RNA 212 Nakanishi et al. (2012)
7 Biotechnological potential of inulin for bioprocesses 192 Chi et al. (2011)
8 Production of recombinant proteins by yeast cells 182 Çelik & Çalık (2012)
9 Efficient multiplexed integration of synergistic alleles and metabolic pathways 

in yeasts via CRISPR-Cas
175 Horwitz et al. (2015)

10 Inulin-type fructans: a review on different aspects of biochemical and 
pharmaceutical technology

159 Apolinario et al. (2014)

Fig. 47. Trends in research of Kluyveromyces in the period 2011–2021.
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ferment lactose combined with a GRAS (generally regarded as 
safe) status. As already noted, the former Kluyveromyces (now 
Lachancea) thermotolerans has also become a focal point.

Lactose utilisation and fermentation are confined to only about 
1 % of ascomycetous yeasts (Lyutova et al. 2021). Although 
β-galactosidase is present in several Kluyveromyces species, 
only K. lactis var. lactis and K. marxianus possess the respiration-
independent permeases required for uptake of lactose under low 
oxygen conditions, which allows them to metabolise the sugar 
by ethanol-yielding fermentation. The ability to ferment lactose 
has been used extensively to provide value added to whey, the 
major by-product of cheese making. Worldwide generation of whey 
approaches 200 million tonnes annually, equivalent to 10 million 
tonnes of lactose (Guimarães et al. 2010). A large proportion of 
recycled whey is dried into a protein powder for use primarily as 
animal feed, leaving behind a dilute lactose solution that has the 
potential to be converted to about 3.5 % of the bioethanol produced 
worldwide. Some industrial plants successfully execute the 
fermentation of whey permeate using K. marxianus. The process 
can be adapted to benefit small cheesemakers, allowing them to 
alleviate the environmental impact of whey disposal and even profit 
financially by generating potable alcohol products. Whey gin and 
vodka involving K. marxianus are available in several countries 
(Hughes et al. 2018). Kluyveromyces species are also the main 

source of commercial β-galactosidase (Zolnere & Ciprovica 2017).
Of much interest is the evolution of lactose genes among 

Kluyveromyces species. Naumov et al. (2006) demonstrated 
that the LAC4LC12 gene cluster is absent in the known biotypes 
of K. lactis var. drosophilarum, indicating that the variety lactis 
acquired the genes by introgression. Based on gene phylogenies, 
they identified K. marxianus as the most likely source. Varela et 
al. (2019) provided strong support for this by using chromosome-
size sequences to demonstrate the transfer of a 15-kb region from 
K. marxianus to K. lactis. The region contained LAC4 and LAC12 
as well as a flocculin gene that subsequently pseudogenised in K. 
lactis. They dated the acquisition of lactose genes by K. lactis to a 
time that coincides with the beginnings of dairy agriculture.

Kluyveromyces lactis as a model organism was chosen in 
the 1960s for its interesting sugar metabolism and the availability 
of heterothallic mating types, which would favour the design of 
genetic analyses (Fukuhara 2006). Interest in the species was 
further stimulated by the discovery of plasmids and killer systems 
that can be used in the expression and secretion of heterologous 
proteins. The species soon followed S. cerevisiae in having its 
genome sequenced. As a result of these attributes, K. lactis has 
figured prominently among yeasts used to produce recombinant 
proteins (Çelik & Çalık 2012). Its early use to produce bovine 
chymosin, the major component of rennet used in cheesemaking, 

Fig. 48. Network visualisation of keywords of the publications related to Kluyveromyces. The larger the text and the circle the more often the subject has 
been cited.
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established the species as a battle horse. Inserted genes can 
be put under the control of the inducible and repressible LAC4 
promoter, well understood after seven decades of β-galactosidase 
production. The yeast is even part of an easy-to-use commercial 
kit for heterologous gene expression. Among the approximately 
100 successfully expressed proteins figure interleukin-1β, a 
granulocyte colony-stimulating factor, a hepatitis B surface antigen, 
human serum albumin, and several enzymes such as D-amino acid 
oxidase, glucoamylase, lipase, xylanase, and esterase. Spohner et 
al. (2016) provided a detailed overview of the proteins along with 
the various genetic techniques that made this possible. Horwitz et 
al. (2015) demonstrated the feasibility of using the CRISPR-Cas 
system to insert a complete novel metabolic pathway in yeast. The 
production of muconic acid was first acquired by the single-step 
integration of six large DNA fragments at three different locations in 
S. cerevisiae. The successful transformation of K. lactis, reported 
as the first use of the CRISPR-Cas system in the species served to 
show that its application is not limited to S. cerevisiae.

Kluyveromyces marxianus is a rare thermotolerant 
yeast

Less than a third of described yeast species share the ability to 
grow at 37  °C or above, and only a handful have maximum growth 
temperatures exceeding 40 °C. Kluyveromyces marxianus stands 
out by its ability to grow at temperatures up to 52 °C and it can 
produce ethanol at 50 °C (Banat et al. 1992). Matsumoto et al. 
(2018) attributed this unique property to a higher resistance to 
heat shock and a greater ability to deal with the elevated levels of 
reactive oxygen species triggered by high temperatures. A higher 
cellular concentration of trehalose compared to S. cerevisiae is 
also thought to play a role. In a broad review of the production of 
biofuels, Nigam & Singh (2011) singled out K. marxianus by virtue 
of its thermotolerance. Biofuel research is the target of intense 
research activity in view of humanity’s desperate need to wean 
itself off fossil fuels.

Kluyveromyces marxianus assimilates inulin due to a 
powerful exo-β-fructosidase capable also of invertase activity, as 
demonstrated in the former variety bulgaricus (Kushi et al. 2000). 
The potential significance of this property should be seen in the 
light of the biotechnology of β-fructans used by a wide variety of 
plants for energy storage (Chi et al. 2011). A simplistic taxonomy 
of β-fructans divides them into inulin, with β(2-1) bonds, and levan, 
with β(2-6) bonds (Apolinario et al. 2014). Inulin may constitute 
over 50 % of tuber biomass and is more readily converted to 
fermentable sugars than cellulose, starch, or xylan. Intact inulin 
may be used as a food ingredient for its properties as a low-calorie 
sweetener, a source of dietary fibre, or a prebiotic. Of major interest 
in biotechnology are methods for the extraction, purification, and 
transformation of inulin. Kluyveromyces marxianus may come in 
next as a source of enzyme for the production of fructose to be 
used directly or as an intermediate in the biosynthesis of other 
metabolites, including bioethanol. The yeast itself is also used in 
the direct transformation of inulin into biomass or ethanol.

Lachancea thermotolerans is gaining popularity in 
winemaking

Kluyveromyces species are among those that may appear as 
secondary components of spontaneous fermentations and are 

known to influence wine aroma (Padilla et al. 2016b). Of these K. 
lactis has been reported as a minor producer of volatile activity, but 
much of the interest is focused on a former member of the genus, 
L. thermotolerans. Comitini et al. (2011) found L. thermotolerans 
in mixed culture with S. cerevisiae to be unique in the ability to 
generate lactic acid, a low amount of volatile acidity, and a high yield 
of glycerol and 2-phenylethanol. Larger scale studies (Gobbi et al. 
2013) indicated that such mixed cultures result in a more complex 
profile, with notably spicier and more acidic notes. This is due in 
part to enzyme activity. Of five such enzymes, two were detected 
in L. thermotorans, namely β-glucosidase and carbon-sulfur lyase 
(Padilla et al. 2016b). The former enzyme catalyses the release of a 
vast array of terpenols and other floral flavour compounds, whereas 
the latter enzyme cleaves fruity thiols from non-volatile molecules. 
The species is notable for its ability to release 4-mercapto-4-
methylpentan-2-one and 3-mercaptohexan-1-ol in grape must, 
imparting wines with special floral notes. The release of lactic acid 
has also been put to use by Benito et al. (2015) as a substitute for the 
spontaneous and temperamental malolactic fermentation process. 
Schizosaccharomyces pombe consumes the malic acid and L. 
thermotolerans generates lactic acid. One should also mention the 
use of the species in the fermentation of sour beer (Domizio et al. 
2016), a product of growing interest in the world of artisanal brewing.

Research interests

There are 2 217 publications and 33 194 citations from 2011–2021 
in the Web of Science (Fig. 47), with the top 10 most cited articles 
shown in Table 29. The results presented in Table 29 exemplify 
the perils of performance metrics combined with the caprices of 
taxonomic nomenclature. As a result, some of the papers listed 
deal only peripherally with Kluyveromyces species. Of these, the 
report by Nakanishi et al. (2012) is concerned with the Argonaute 
protein of Vanderwaltozyma polyspora (formerly K. polysporus, 
original type species of the genus). The protein is a component of 
the RNA interference phenomenon. The species had been chosen 
in a previous study (Drinnenberg et al. 2009) due to its intermediate 
phylogenetic position with respect to S. cerevisiae, which does not 
engage in RNA interference. It is noteworthy that of the eleven 
species considered in that study, six were designated by names 
that were obsolete at the time of publication.

The report by Lõoke et al. (2011) explores a method for the 
extraction of DNA to be used for PCR amplification from yeasts. 
The study used the model species K. lactis, Ogataea (Hansenula) 
polymorpha, Schizosaccharomyces pombe, Candida albicans, 
Komagataella (Pichia) pastoris, and S. cerevisiae. Cells are heated 
in the presence of lithium acetate and sodium dodecyl sulfate, and 
DNA is precipitated with ethanol, redissolved in buffer, and debris 
is removed by centrifugation, resulting in a solution that is suitable 
for PCR amplification. Conspicuously absent is a simpler control 
where intact yeast cells are added directly to the reaction mixture 
(Lachance et al. 1999).

Author: M.A. Lachance

24. Mucor Fresen., Beitr. Mykol. 1: 7. 1850.

Type species: Mucor mucedo Fresen.

Classification: Mucoromycota, Mucoromycotina, Mucoromycetes, 
Mucorales, Mucoraceae.
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Background

Mucor is the largest genus within the order Mucorales (phylum 
Mucoromycota). The genus is one of the most studied groups of 
Mucorales and early diverging lineages of fungi (Jayawardena et 
al. 2020). More than 300 species have been described (Lima et 
al. 2020), but recent studies (e.g., Wijayawardene et al. 2018b) 
accept around 60 Mucor species while others suggest 50–76 valid 
taxa (Walther et al. 2020). The genus has 734 epithets in Index 
Fungorum (2022) which includes infra-specific taxa, invalid names, 
and synonyms. Mucor species are mostly saprobes, ubiquitous, and 
collected from a wide range of substrates such as soil and herbivore 
dung (Lima et al. 2020). The genus consists of coprophilous and 
non-coprophilous species which are involved in the decomposition 
of organic matter, and carbon and nitrogen cycles. They are also 
known to be opportunistic pathogens, causing cutaneous and 
subcutaneous mucormycosis (Lima et al. 2020).

Mucor species are valued for being fast-growing and have many 
biotechnological benefits. Most mucoralean species are mesophilic 
while some are psychrophiles. They are used in bioremediation, the 
production of biofuels, pharmaceuticals, and industrial enzymes. 
Some species have also been used for fermenting food, especially 
in Asian and African foods such as tempeh (Chai et al. 2019). 
This genus is one of the main causes of mucormycosis with 12 
species known to be involved in human infections. The infections 
range from cutaneous, and rhino cerebral, or have gastrointestinal 
manifestations. In plants, Mucor species can cause rot and soft rot. 
Mucor fragilis, Mu. piriformis, Mu. racemosus, and Mu. irregularis 
are known to cause postharvest diseases mentioned above. 
Infection is usually possible if the crop or fruit has wounds or cracks 
on the surface (Jayawardena et al. 2020).

Mucor species are characterised by the formation of 
non-apophysate sporangia with pigmented and ornamented 
zygosporangia walls, simple or branched sporangiophores, and 

Fig. 49. Trends in research of Mucor in the period 2011–2021.

Table 30. Top 10 cited articles related to Mucor published in the period 2011–2021.
Rank Article title No. of citations References
1 One stop shop: backbones trees for important phytopathogenic genera: I (2014) 235 Hyde et al. (2014)

2 Global epidemiology of mucormycosis 217 Prakash & Chakrabarti (2019)
3 Associations between fungal species and water-damaged building materials 213 Andersen et al. (2011)
4 DNA barcoding in Mucorales: an inventory of biodiversity 176 Walther et al. (2013)
5 Complex microbiota of a Chinese “Fen” liquor fermentation starter (Fen-Daqu), 

revealed by culture-dependent and culture-independent methods
146 Zheng et al. (2012)

6 Quantitative polymerase chain reaction detection of circulating DNA in serum for 
early diagnosis of mucormycosis in immunocompromised patients

141 Millon et al. (2013)

7 Obesity changes the human gut mycobiome 140 Rodriguez et al. (2015)
8 Chondroitin sulfate, hyaluronic acid and chitin/chitosan production using marine 

waste sources: characteristics, applications and eco-friendly processes: a review
137 Antonio Vazquez et al. (2013)

9 Survival outcomes in acute invasive fungal sinusitis: a systematic review and 
quantitative synthesis of published evidence

134 Turner et al. (2013)

10 Bioethanol production from sweet sorghum bagasse by Mucor hiemalis 115 Goshadrou et al. (2011)
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zygospores with opposed or tong-like suspensors (Nguyen et al. 
2019). Though the absence of rhizoids was considered a primary 
characteristic of Mucor, recent studies did notice the production of 
rhizoids in some species under specific environmental conditions. 
The sporangium produced is typically globose and contains a 
columella. The spores are normally ellipsoidal, round, or slightly 
elongated. Once the sporangiospores have been released, a 
collarette can be seen in most cases.

Previously, the taxonomic classification of Mucor largely 
depended on morphological characters, infertility tests mostly 
incorporating biological species and morphological species 
recognition. However, with the incorporation of DNA-based 
molecular phylogeny, it is noted that identification based solely on 
morphology can be problematic as the two may not be congruent 
(Hyde et al. 2023a). Primarily, ITS and LSU genetic markers are 
used for the delimitation of species within the genus. The use of 
protein-coding genes is not possible in all complexes as molecular 
data are not available. For the Mucor circinelloides group, recent 
studies and analyses have used protein-coding genes (Wagner et 
al. 2019).

Ecological and economic significance

Mucor rot is caused by species such as Mu. fragilis, Mu. irregularis, 
and Mu. racemosus but primarily by Mu. piriformis (Jayawardena 
et al. 2020). The disease affects crops such as strawberries and 
citrus fruits. One such fruit is mandarin which had a production 
value exceeding 500 million US dollars in 2014 (Saito et al. 2016). 
In Nigeria, Mucor species are responsible for 25 % of decayed 
fruits, and in Pakistan 1.65 % (Saito et al. 2016). Mucor rot produces 
similar initial symptoms to several other moulds (green mould and 
blue mould) (Jayawardena et al. 2020). In comparison to blue and 
grey mould, Mucor rot is less frequent and considered a minor 

problem (Sardella et al. 2016). Mucor rot causes significant losses 
in strawberry production and sales. Mucor species usually lead to 
soft rot disease in strawberries (Agyare et al. 2020). Over years, the 
occurrence of postharvest spoilage by this fungus has increased 
in countries such as the UK. It has been reported that spoilage by 
Mucor and Rhizopus is more common if harvested late (Dennis 
& Davis 1977, Agyare et al. 2020). Unlike other genera infecting 
strawberries, Mucor and Rhizopus cannot infect flowers. The white 
and ripe fruit are more susceptible to infection. Abiotic factors such as 
relative humidity, temperature, water availability, and factors such as 
the number of spores deposited on the fruit, impact the growth of the 
fungi (Kubicek & Druzhinina 2007, Agyare et al. 2020).

Research interests

There are 2 078 publications and 30 923 citations from 2011 to 2021 
in the Web of Science (Fig. 49), with the top 10 most cited articles 
listed in Table 30. Most publications are related to the taxonomy 
of Mucor, postharvest diseases, and human pathogenicity 
(mucormycosis) (Fig. 50).

Taxonomy and phylogeny
Delimitation of Mucor species primarily involves morphophysiological 
characters and molecular phylogeny based on ITS-LSU sequence 
data. Protein-coding genes are usually lacking in the phylogenetic 
inference of most species in this genus due to the unavailability of 
sequence data. For the Mucor circinelloides complex, Wagner et 
al. (2020) used a five-locus phylogeny (cfs, ITS, mcm7, rpb1, tsr1) 
to provide a phylogenetic tree and introduced several new species. 
Among the genes used, tsr1 had the highest resolution power but 
other markers are considered appropriate for species delimitation 
(Wagner et al. 2020).

Fig. 50. Network visualisation of keywords of the publications related to Mucor. The larger the text and the circle the more often the subject has been cited.
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Mucormycosis
Mucor irregularis is a common causative agent of mucormycosis 
globally (Prakash & Chakrabarti 2019). It is the main cause of 
cutaneous mucormycosis in Australia, China, India, Japan, and 
the USA. To date, more than 20 cases of cutaneous mucormycosis 
caused by Mu. irregularis have been reported in China. However, 
the causative agent of mucormycosis may vary depending on the 
geographical area (Liang et al. 2018a, Skiada et al. 2020). Studies 
reviewing the global incidence of the disease state that mucormycosis 
caused by Rhizopus, Mucor, and Lichtheimia species account for 
75 % of all cases (Skiada et al. 2020). Unlike other mucormycosis 
cases, this species mostly involves immunocompetent individuals. 
Main factors such as injuries and surgeries increase susceptibility 
to infections. The disease is characterised by progressive swelling, 
necrosis of the tissues, ulceration, and in severe cases leads to 
disfiguration (Liang et al. 2018a, Wang et al. 2019).

Author: V.G. Hurdeal

25. Verticillium Nees, Syst. Pilze (Würzburg): 56. 1816.

Type species: Verticillium dahliae Kleb.

Classification: Ascomycota, Pezizomycotina, Sordariomycetes, 
Trichosphaeriales, Trichosphaeriaceae.

Background

Verticillium is a large and heterogeneous hyphomycetous 
genus that was introduced by Nees von Esenbeck (1816) to 
accommodate the monotypic species V. tenerum. The type species 
is now accommodated in Acrostalagmus (Zare et al. 2004). In 
order to preserve the important plant pathogenic name Verticillium, 
V. dahliae was proposed as a neotype for this genus (Gams et al. 
2005). There are 274 records in Index Fungorum (2022) and 292 
records in MycoBank (Crous et al. 2004). However, this genus has 
changed dramatically, especially after molecular evidence became 
widely used for fungal taxonomy (Zare et al. 2000, 2001, 2004, 
2007, Gams & Zare 2001, Sung et al. 2001, Zare & Gams 2001a, b, 
Fahleson et al. 2004, Gams 2017). Gams (1971) introduced the sect. 
Prostrata and provided a key to some Verticillium species. Gams 
& Van Zaayen (1982) accepted four sections, viz. sect. Verticillium, 
sect. Nigrescentia, sect. Prostrata, sect. Albo-erecta, and a residual 
group. A key to these sections and detailed descriptions for some 
fungicolous Verticillium species were provided by Gams & Van 
Zaayen (1982). However, the sections singled out by Gams (1971) 
and Gams & Van Zaayen (1982) are still heterogeneous. Gams & 
Zare (2001) introduced the genera Haptocillium and Lecanicillium, 
while V. balanoides and V. lecanii were transferred to Haptocillium 
and Lecanicillium, respectively. In addition, V. chlamydosporium 
was synonymised under Pochonia chlamydosporia by Gams & 
Zare (2001). Zare & Gams (2001a) transferred several Verticillium 
species to Lecanicillium, and several were placed under the new 
genus Simplicillium. Verticillium nigrescens and V. theobromae 
were transferred to Gibellulopsis and Musicillium, respectively 
(Zare et al. 2007). Inderbitzin et al. (2011) provided conclusive 
phylogenetic analyses for this genus based on ITS, partial 
sequences of the protein coding genes act, tef1, gapdh and 
tryptophan synthase (ts). Ten species were accepted, viz. V. albo-
atrum, V. alfalfa, V. dahlia, V. isaacii, V. klebahnii, V. longisporum, 
V. nonalfalfae, V. nubilum, V. tricorpus, V. zaregamsianum. These 
10 species represent Verticillium s. str. An annotated checklist of 

epithets published in Verticillium and Acrostalagmus, some similar 
genera, and sexual morphs associated with verticillium-like asexual 
morphs was provided by Gams (2017).

Verticillium is characterised by having verticillate, septate, hyaline 
to brown conidiophores, monophialidic, hyaline conidiogenous 
cells, aseptate, or rarely 1-septate, hyaline, ellipsoidal or cylindrical 
with rounded ends, slimy conidia. Some species can produce 
chlamydospores, brown monilioid hyphae or microsclerotia (Zare et 
al. 2004, Seifert et al. 2011, Giraldo & Crous, 2019, Hyde et al. 2020d). 
It is similar to Chlorocillium, Gibellulopsis, Haptocillium, Lecanicillium, 
Leptobacillium, Musicillium, Ovicillium, Pochonia, Rotiferophthora, 
Simplicillium, Sphaerostilbella (Gams & Zare 2001, Zare & Gams 
2001a, b, 2016, Zare et al. 2001, 2007, Seifert et al. 2011, Giraldo & 
Crous 2019, Wei et al. 2019). A key to verticillium- and gliocladium-
like genera bearing one or several whorls of awl-shaped or flask-
shaped phialides was provided by Seifert et al. (2011).

Ecological and economic significance

Verticillium species are important plant pathogens and causal 
agents of wilt in many host plants. Verticillium albo-atrum and V. 
dahliae are the two species that cause the most economic damage, 
including wilt on a wide range of plant hosts, including high-value 
crops such as cotton, lettuce, mango, olive, potato and strawberry 
(Pegg & Brady 2002, Jimenez-Diaz et al. 2017, Jayawardena et al. 
2019), resulting in high yield losses.

There are seven plant-pathogenic species historically 
associated with the genus Verticillium, viz. V. albo-atrum, V. dahliae, 
V. fungicola (now known as Lecanicillium fungicola), V. nigrescens 
(now known as Gibellulopsis nigrescens, V. nubilum, V. theobromae 
(now known as Musicillium theobromae) and V. tricorpus (Pegg & 
Brady 2002, Barbara & Clewes 2003, Klosterman et al. 2009).

Verticillium species infect many important crops, e.g., banana, 
bean, beet, cherry, coffee, cotton, cucumber, eggplant, gold 
kiwifruit, lettuce, mango, muskmelon, olive tree, peach, pepper, 
potato, pumpkin, tomato, watermelon (Rudolph 1931, Himelick, 
1969, Bhat & Subbarao 1999, Pegg & Brady, 2002, Klosterman et 
al. 2009, Jayawardena et al. 2019). Because of their soil habitat, 
their ability to produce resting structures and their capacity to infect 
a wide range of hosts, Verticillium wilt is a challenge for agricultural 
production (Barbara & Clewes, 2003, Klosterman et al. 2009).

Research interests

There are 2 545 publications and 30 674 citations from 2011–2021 
in the Web of Science (Fig. 51), with the top 10 most cited articles 
listed in Table 31. Most of the publications focused on disease 
management, and research on pathogenic Verticillium species and 
Verticillium wilt (V. albo-atrum and V. dahliae), as well as taxonomic 
and phylogenetic studies (Fig. 52).

Verticillium wilt
Verticillium wilt is a common plant disease caused by Verticillium 
spp., especially V. albo-atrum and V. dahliae, and it is the most 
extensively researched area related to Verticillium species. 
Because Verticillium species infect such a large number of crops 
and ornamental plants, Verticillium wilt has caused economic 
losses of billions of dollars (Lazarovits & Subbarao 2009). Many 
studies have reported and introduced this widespread disease (Van 
Zaayen & Gams 1982, Bhat & Subbarao 1999, Barbara & Clewes 
2003, Klosterman et al. 2009, Hyde et al. 2014, Jayawardena et 
al. 2019).
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Disease management
Reducing the populations of microsclerotia in soil, which are resting 
structures produced by Verticillium spp., is an effective approach to 
reduce losses due to Verticillium wilt (Lazarovits & Subbarao 2009). 
Soil fumigation with methyl bromide plus chloropicrin was used in 
some areas and in some conditions it is useful (Klosterman et al. 
2009). However, soil fumigation can bring environmental pollution 
problems. Because of the wide host range of Verticillium species, 
crop rotation is not a good option for the management of Verticillium 
wilt (Klosterman et al. 2009). In some conditions, high nitrogen 
organic amendments and products containing volatile fatty acids 
(VFAs) can significantly reduce disease severity (Lazarovits & 
Subbarao 2009). Studies on the management of Verticillium wilt are 
ongoing, and an effective method that can be adapted to different 
environmental conditions and host plants is particularly needed.

Taxonomy and phylogeny
Because phylogenetic analyses are widely used in Verticillium, 
great changes have taken place in this genus (Zare et al. 2000, 
2001, 2004, 2007, Gams & Zare 2001, Sung et al. 2001, Zare & 
Gams 2001a, b, Fahleson et al. 2004, Gams 2017). There are 
many Verticillium species recorded in Index Fungorum (2022) 
and MycoBank, however, most of them have been synonymised 
or transferred to other genera (Gams & Van Zaayen 1982, Zare 
& Gams 2001a, b, Zare et al. 2001, 2004, 2007, Seifert et al. 
2011). The most conclusive study for this genus was carried out 
by Inderbitzin et al. (2011) and ten species were accepted in 
Verticillium s. str. However, it is necessary to recollect and epitypify 
the described taxa and amplify all the necessary genes for this 
genus.

Authors: C.G. Lin and J.K. Liu

Fig. 51. Trends in research of Verticillium in the period 2011–2021.

Table 31. Top 10 cited articles related to Verticillium published in the period 2011–2021.
Rank Article No. of citations References
1 Genome sequence of the cultivated cotton Gossypium arboreum 580 Li et al. (2014b)
2 Machine learning for high-throughput stress phenotyping in plants 360 Singh et al. (2016a)
3 Tomato immune receptor Ve1 recognizes effector of multiple fungal 

pathogens uncovered by genome and RNA sequencing
329 De Jonge et al. (2012)

4 Towards a natural classification and backbone tree for Sordariomycetes 326 Maharachchikumbura et al. (2015)
5 Comparative genomics yields insights into niche adaptation of plant vascular 

wilt pathogens
314 Klosterman et al. (2011)

6 Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer 
plant protection

277 Wang et al. (2016d)

7 Lignin metabolism has a central role in the resistance of cotton to the 
wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent 
transcriptional analysis and histochemistry

272 Xu et al. (2011b)

8 MYB72-dependent coumarin exudation shapes root microbiome assembly to 
promote plant health

269 Stringlis et al. (2018)

9 One stop shop: backbones trees for important phytopathogenic genera: I 
(2014)

235 Hyde et al. (2014)

10 Families of Sordariomycetes 159 Maharachchikumbura et al. (2016)
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26. Sclerotinia Fuckel, Jb. Nassau. Ver. Naturk. 23–24: 330. 
1870.

Type species: Sclerotinia libertiana Fuckel (syn. Scl. sclerotiorum)

Classification: Ascomycota, Pezizomycotina, Leotiomycetes, 
Helotiales, Sclerotiniaceae.

Background

Sclerotinia is a genus of plant pathogenic hyphomycetes with more 
than 200 epithets listed in Index Fungorum (2022). Sclerotinia 
was introduced by Fuckel (1870), based on the type species Scl. 
libertiana found on Sclerotium compactum in Germany. Despite the 
importance of Sclerotinia as a devastating plant pathogen, there 
are few studies on taxonomic classification available besides early 
monographic works on the Sclerotiniaceae (Whetzel 1945, Dumont 
& Korf 1971, Carbone & Kohn 1993, Holst-Jensen et al. 1997) and 
on the genus Sclerotinia (Kohn 1979a, b, Kohn et al. 1988). The 
complexity of Sclerotinia taxonomic classifications is illustrated 
by the recent reclassification of Clarireedia homoeocarpa (Scl. 
homoeocarpa), associated with dollar spot of turf grass (Salgado-
Salazar et al. 2018). Although there are 122 currently accepted 
Sclerotinia names, it has been universally accepted that Sclerotinia 
s. str. contains three valid species only: Scl. minor, Scl. sclerotiorum, 
and Scl. trifoliorum (Kohn 1979a, b, Kohn et al. 1988, Bolton et al. 
2006) and the vast majority of Sclerotinia diseases are caused by 
these three species. Sclerotinia asari and Scl. nivalis were later found 
as members of Sclerotinia based on DNA analyses (Wu & Wang 
1983, Saito 1997, Clarkson et al. 2017). However, recent research is 

exploring Scl. subarctica, a morphologically indistinguishable species 
related to Scl. sclerotiorum. Sclerotinia subarctica requires unique 
climatic conditions for germination and disease initiation than that of 
Scl. sclerotiorum (Clarkson et al. 2017). Additionally, Scl. subartica 
has been distinguished from three accepted Sclerotinia spp. through 
adapted qPCR primers (Leyronas et al. 2018). The genetic variability 
of Sclerotinia populations is 'typically' considered clonal (Lehner et al. 
2015, Steyn 2015), although, reports vary depending on the specific 
host plant, the origin of the isolate, climatic zones, and continuous 
availability of host crops (Lehner et al. 2017). This is illustrated by 
contrasting studies that have reported high variability and populations 
which are genetically and phenotypically distinct from one another 
(Attanayake et al. 2013, Aldrich-Wolfe et al. 2015). Due to the lack of 
contemporary studies on the taxonomy and classification of species 
in Sclerotinia, our understanding of species diversity and genetic 
relationships in this group remains obscure.

Plant pathogens in the genus Sclerotinia are among the few 
considered to be necrotrophs, deriving nutrients from killed host cells 
(Amselem et al. 2011). The active modulation of the host redox status 
and the subversion of the host (programmed) cell death pathways 
by Sclerotinia spp. appear to be crucial for disease development 
(Kim et al. 2008a, Amselem et al. 2011). A wide array of substances 
that facilitate a necrotrophic lifestyle are secreted, including cell-
wall-degrading enzymes and oxalic acid (OA) (Kim et al. 2008a, b). 
Oxalic acid is known to play a key role in pathogenesis and fungal 
development, as its absence renders non-pathogenic isolates 
incapable of infecting host plants and unable to produce sclerotia 
(Kim et al. 2008a). Furthermore, the absence of OA plays a role in the 
processes leading to the development of melanised hyphal masses 
associated with pathogen survival i.e., sclerotia. The formation of 

Fig. 52. Network visualisation of keywords of the publications related to Verticillium. The larger the text and the circle the more often the subject has been 
cited.
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sclerotial stromata is commonly associated with Sclerotinia and 
members of Sclerotiniaceae  (Willetts 1997, Bolton et al. 2006).

The most common pathogenic species, Scl. minor, Scl. 
sclerotiorum, and Scl. trifoliorum are distributed worldwide and 
occur on more than 440 different hosts, including numerous 
cultivated grains, oil- and protein seed, horticultural and vegetable 
crops (Bardin & Huang 2001, Heffer & Johnson 2007, Peltier et al. 
2012, Farr & Rossman 2022, Khan et al. 2022). Wild plant hosts, 
such as broad-leaved weeds and wildflowers, are also known hosts 
of Sclerotinia spp. (Boland & Hall 1994, Heffer & Johnson 2007). 
Common disease names are derived from the symptoms and signs 
observed on the respective host crop (Purdy 1979); for example, 
cottony rot (carrot), blight (groundnut), drop (lettuce), head rot 
(sunflower), stem rot (canola and soybean) and white mould 
(multiple crops) (Purdy 1979, McDonald & Boland 2004, Heffer & 
Johnson 2007, Peltier et al. 2012, Khan et al. 2022). Due to the 
extensive host range, there are no unique symptoms that belong 
to all the plants affected by Sclerotinia diseases. However, initial 
symptoms, depending on the host, include a bleached appearance 
of infected tissues or a watery soft rot, a general characteristic 
associated with necrotrophic fungi (Amselem et al. 2011, Kabbage 
et al. 2015). Subsequently, white cottony mycelial mats form, 
a characteristic sign of infection, and in severe scenarios, the 
complete necrosis and shredding of plant organs may be evident 
(Purdy 1979, Bolton et al. 2006). As the disease progresses, the 
cottony hyphae of the pathogen aggregate into clumps of mycelium 
that eventually mature into hard black melanised sclerotia (Willets 
& Bullock 1992). Sclerotia can be found on the outer surface of the 
diseased tissue, inside of soft host tissues or cavities such as floral 
receptacles, fruits, and the pith of stems.

Pathogenic species within Sclerotinia spend a significant portion 
of their life cycle in and on soil in the form of sclerotia. The survival 
efficiency of sclerotia is attributed to the melanised rind, playing an 
important role in protection from adverse conditions and microbial 
degradation, as well as in some cases a function in virulence (Bell 
& Wheeler 1986, Henson et al. 1999, Butler et al. 2009). Sclerotia 
can survive for prolonged periods, ranging from one to 10 years 
before viability starts to decline (Ben-Yephet et al. 1993, Barding & 
Huang 2001, Amselem et al. 2011). The size, shape, and weight of 
sclerotia are dependent on multiple factors, however, the host crop 
is one of the primary driving variables (Bolton et al. 2006, Taylor 
et al. 2018). The disease cycle is initiated through carpogenic or 
myceliogenic germination depending on conducive environmental 
conditions. Carpogenic germination produces apothecia, containing 
inoperculate asci with ellipsoid ascospores, which are forcibly ejected 
into the air. The production of both large and small ascospores within 
one ascus and differences between ascospore length/width was 
used for the early morphological identification of Scl. trifoliorum from 
Scl. sclerotiourum and Scl. minor (Kohn 1979, Ekins et al. 2005). 
Airborne ascospores are chiefly responsible for infecting above-
ground tissues, resulting in stem blights, stalk rot, head rot, pod rot, 
white mould, and blossom blights (Barding & Huang 2001, Bolton 
et al. 2006). In contrast, myceliogenic germination produces mycelia 
directly from sclerotia, able to infect crown and root tissues, causing 
crown and root rots (Barding & Huang 2001). Stipes (associated with 
carpogenic germination) have been observed on sclerotia which 
germinated myceliogenically, suggesting that sclerotia are capable 
of simultaneous dual-germination pathway events (Hao et al. 2003). 
Sclerotinia includes species that do not produce macroconidial 
asexual morphs, however, microconidia can be produced on hyphae 
or the apothecial hymenium. These microconidia might function as 
spermatia in some Sclerotinia species; however, they do not germinate 

and their role in the biology of these fungi is mostly unknown (Kohn 
1979, Willetts 1997). Infected seed and sclerotia-infested seed bags 
are associated with the long-distance dissemination of Sclerotinia 
spp. (Hoes & Huang 1976, Mueller et al. 1999). Dispersal of the 
pathogen among regions and on-farm can be due to farm equipment, 
animal or human activities, runoff irrigation water and plant residues 
(Schwartz & Steadman 1978, Adam & Ayers 1979, Barding & Huang 
2001). Localised in-field dissemination is associated with windblown 
ascospores and colonised plant material encountering healthy plant 
material (Ben-Yephet & Bitton 1985).

Ecological and economic significance

Sclerotinia species cause many significant diseases on 
economically important plants; three of the most well-known are 
detailed below.

Sclerotinia stem rot of soybean (Glycine max) caused by Scl. 
sclerotiorum is considered the second most important cause 
of yield loss in soybean-producing areas (Savary et al. 2019). 
When environmental conditions are conducive, Sclerotinia stem 
rot can reduce seed number and weight, seed quality and price 
discounts for foreign material (sclerotia) delivered at the grain 
elevator. Infected seeds are an important source of inoculum and 
can have reduced germination, and in some cases, oil and protein 
concentrations can be reduced (Peltier et al. 2012). The long-term 
survival of sclerotia in the soil is one of the biggest challenges 
for disease management (Peltier et al. 2012, Willbur et al. 2019). 
Selecting soybean cultivars with resistance to Sclerotinia stem rot 
is an important part of a disease management plan, although only 
partial resistance is available (Kim & Diers 2000, Chen & Wang 
2005, McCaghey et al. 2019). Stem rot is also associated with other 
leguminous crops, such as dry beans (Phaseolus vulgaris) and 
peanuts (Arachis hypogaea) (Purdy 1970, McCreary et al. 2016).

Sclerotinia stem rot of Brassica oilseeds caused by Scl. 
sclerotiorum is a damaging disease of oilseed brassicas (B. juncea, 
B. napus and others). Brassica crops are important commodities in 
Europe, North America, and Indo-Pacific region (India, Australia, 
and China), with oilseed rape, B. napus, accounting for 13 % of total 
world edible oil production (Taylor et al. 2017). The oil-rich seeds 
of oilseed rape are also processed as biodiesel and high-quality 
animal feed (Derbyshire & Denton-Giles 2016). Management of 
Sclerotinia diseases is still difficult as sown rapeseed cultivars do 
not have high levels of resistance, and fungicide-resistant strains 
are increasingly reported. Sclerotinia sclerotiorum does not exhibit 
a gene-for-gene response during interactions with the host unlike 
other B. napus pathogens such as Leptosphaeria maculans (syn. 
Plenodomus lingam) or Plasmodiophora brassicae, and therefore 
despite advances made in the understanding of the B. napus–Scl. 
sclerotiorum interaction, few control strategies using genetic tools 
have proven successful (Wytinck et al. 2022).

Sclerotinia stalk/stem and head rot of sunflower (Helianthus 
annuus) caused by Sclerotinia sclerotiorum is one of the most 
destructive diseases of sunflowers. Sclerotinia sclerotiorum 
causes the most damage to sunflowers in cool and humid 
production regions resulting in more than 50 % seed yield loss. 
This disease has been reported in all important sunflower-
producing regions of the world (Talukder et al. 2014). Unlike other 
hosts, sunflowers are vulnerable to infection by Scl. sclerotiorum 
both via floral and root infection, subsequently, causing head 
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and stalk/stem rot. Myceliogenic germination of sclerotia leads 
to infection of nearby sunflower roots result in basal stalk rot and 
wilt. Head rot occurs when sclerotia germinate carpogenically 
releasing airborne ascospores and infecting senescing florets. 
Cultivated sunflowers generally lack complete resistance to 
Scl. sclerotiorum, although differences in susceptibility exist 
yielding variation of host responses under various environmental 
conditions. However, in over 51 species of Helianthus, a diverse 
pool of potential sources of Sclerotinia resistance exists. 
Evaluation of wild germplasm has indicated that several wild 
perennial species possess high levels of resistance to Sclerotinia 
head rot and stalk rot (Seiler et al. 2017).

Research interests

There are 2 705 publications and 27 698 citations from 2011–
2021 in the Web of Science (Fig. 53), with the top 10 most 
cited articles listed in Table 32. Most publications focused 
on Sclerotinia sclerotiorum plant-pathogen interaction (host 
defense process, host resistance, pathogen virulence), disease 
management (disease suppression by cultural practices), fungal 
viruses (Sclerotinia ssDNA virus) and research on the host and 
pathogen genomes to understand host defences and defences 
and pathogen virulence. Shared research interests between 
Botrytis, Monilinia and Sclerotinia are often cited as they have 
shared taxonomic features belonging to the Sclerotiniaceace and 
may co-occur in field (Fourie et al. 2002).

Plant pathogen interaction
As necrotrophs, Sclerotinia spp. produce a wide array of 
degradative lytic enzymes (e.g., endo- and exo-pectinase, cellulase, 
hemicellulase, protease) as well as oxalic acid, believed to facilitate 
colonisation and host cell wall degradation. Oxalic acid contributes 
to numerous physiological processes (e.g., reduction in pH, acidity-
induced activation of enzymes, the elevation of Ca2+, guard cell 

regulation, vascular plugging with oxalate crystals) that augment 
fungal colonisation of host plants (Williams et al. 2011). Studies 
with OA-deficient mutants strongly suggest that OA is an essential 
pathogenicity determinant and a key factor governing the broad 
pathogenic success of Sclerotinia. Oxalic acid also aids Sclerotinia 
pathogenicity indirectly by acting as a signalling molecule, via 
manipulation of the host reactive oxygen system (ROS) (Williams 
et al. 2011, Heller & Witt-Geiges 2013). Understanding of host-
Sclerotinia interactions can contribute to the efforts of breeding for 
resistance.

Disease management
Diseases caused by Sclerotinia spp. require an integrated pest 
management program that includes a combination of cultural 
practices, cultivar selection with host resistance and crop rotation, 
chemical control, and biological control (Bardin & Huang 2001, 
Peltier et al. 2012). For economically important crops, targeted 
disease forecasting programs based on epidemiological data for 
fields have been developed, however, these programs are targeted 
for specific growing regions (Derbyshire & Denton-Giles 2016). 
Breeding programs are also exploring sources of partial resistance 
in wild relatives of cultivated plants, which can help reduce losses 
associated with Sclerotinia diseases (Taylor et al. 2017).
 
Biological control
Research groups in China, the USA, and New Zealand found that 
Scl. sclerotiorum hosts various mycoviruses, including double-
stranded RNA (dsRNA) viruses, positive-sense single-stranded 
RNA (+)ssRNA viruses, DNA viruses and negative-sense single-
stranded RNA (−)ssRNA viruses (Xie & Jiang 2014). Sclerotinia 
sclerotiorum hypovirulence-associated DNA virus 1 (SsHADV-1) 
was the first DNA mycovirus to be found to confer hypovirulence 
to the fungi infected (Yu et al. 2010). The investigation of different 
Scl. sclerotiorum-mycovirus interaction systems might supply 
new insights regarding virus-host interactions as well as control 

Fig. 53. Trends in research of Sclerotinia in the period 2011–2021.
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strategies for Sclerotinia diseases (Xie & Jiang 2014). Additionally, 
(−)ssRNA viruses are also known to be dangerous human viruses, 
however, the discovery of these viruses in fungi can provide a safe 
model system to study function and to screen antiviral compounds 
against them (Xie & Jiang 2014).

Authors: C. Salgado-Salazar and L. Rothmann

27. Rhodotorula F.C. Harrison, Proc. & Trans. Roy. Soc. 
Canada, ser. 3 21(5): 349. 1927.

Type species: Rhodotorula glutinis (Fresen.) F.C. Harrison

Classification: Basidiomycota, Pucciniomycotina, Microbotryomy-
cetes, Sporidiobolales, Sporidiobolaceae.

Background

The genus Rhodotorula was introduced by Harrison (1928), with 
Rho. glutinis (bas. Cryptococcus glutinis) as the type species. 
The genus has about 190 records registered in Index Fungorum 
(2022); however, several species have been transferred to other 
genera and a new generic concept was introduced by Wang et al. 
(2015b). In the most recent outline of fungi, Rhodotorula is placed 
in the family Sporidiobolaceae with about 15 accepted species 
(Wijayawardene et al. 2022). The recently introduced species, 
Rho. sampaioana (from subsurface waters, Argentina) and Rho. 
frigidialcoholis (from permafrost, Antarctica), were described by 
Tiwari et al. (2021) and Touchette et al. (2022), respectively.

Morphologically, Rhodotorula species are mainly characterised 
by having subglobose, ovoid, ellipsoid or elongate cells, occasionally 
producing pseudohyphae or true hyphae. Species produce red 
or yellow pigments and asexual reproduction is by multilateral or 
polar budding (Sampaio et al. 2011). Fermentative ability is absent 
but the capacity to assimilate several carbon sources has been 
reported. However, Rhodotorula species are positive for diazonium 
blue B (DBB) reaction and production of urease (Sampaio et al. 
2011). The genus description was emended to include the sexual 
morph Rhodosporidium, based on multi-gene phylogenetic 
analyses (Wang et al. 2015c), which revealed that some species 

of Rhodotorula were also described as having sexual reproduction 
by producing transversely septate basidia and ovoid basidiospores 
germinating by budding.

In the Global Biodiversity Information Facility (GBIF) (https://
www.gbif.org/species/2518125/metrics), there are 5 433 
occurrences registered in the database, with the most registrations 
(1 404) from Australia, and the years 2011 to 2016 having the highest 
numbers of registration (e.g., 379–508). Rhodotorula species have 
been mostly reported as environmental yeasts (i.e., saprobes and 
psychrophiles), being frequently isolated from plant material, soil, 
and water (Sampaio et al. 2011, Li et al. 2020b, Tiwari et al. 2021, 
Touchette et al. 2022). For instance, most of the species accepted 
by Wang et al. (2015b) were first isolated from plant materials and 
water obtained in the USA, Chile, Japan, and New Zealand, among 
other countries. However, some studies have reported some 
Rhodotorula species as opportunist pathogens, mainly among 
immunocompromised individuals (Sampaio et al. 2011, Ioannou et 
al. 2019), causing nosocomial and opportunist infections (Sampaio 
et al. 2011, Ioannou et al. 2019), with bloodstream, central nervous 
system, and ocular infections as the most commonly observed 
manifestations (Ioannou et al. 2019).

Importance in public health (pathogenesis)

Rhodotorula species have not been included as important 
etiological agents of mycosis (Sampaio et al. 2011). However, there 
are several case reports of Rhodotorula species causing disease, 
mainly in immunocompromised patients (Miceli et al. 2011, Wirth & 
Goldani 2012, Ioannou et al. 2019). Ioannou et al. (2019) reviewed 
cases of infections caused by Rhodotorula species in all five 
continents, with Asian, European and North American countries 
having the highest number of cases. Ioannou et al. (2019) showed 
that Rhodotorula infections usually manifest as fungemia, central 
nervous system (CNS) and ocular infections, as well as peritoneal 
dialysis-associated peritonitis. Rhodotorula mucilaginosa, Rho. 
glutinis, Rho. minuta, and Rho. marina were the most reported 
species in these infections. However, Rho. minuta and Rho. 
marina are not accepted as species of Rhodotorula (Wang et al. 
2015c), being treated in Cystobasidium (Yurkov et al. 2015) and 
Symmetrospora (Wang et al. 2015c), respectively.

Table 32. Top 10 cited articles related to Sclerotinia published in the period 2011–2021.
Rank Article title No. of citations References
1 Evolution of jasmonate and salicylate signal crosstalk 678 Thaler et al. (2012)
2 Genomic analysis of the necrotrophic fungal pathogens Sclerotinia 

sclerotiorum and Botrytis cinerea
603 Amselem et al. (2011)

3 Have biopesticides come of age? 348 Glare et al. 2011
4 50-plus years of fungal viruses 323 Ghabrial et al. (2015)
5 Plant immunity to necrotrophs 311 Mengiste (2012)
6 Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid 

suppresses host defenses by manipulating the host redox environment
277 Williams et al. (2011)

7 Crops that feed the World 2. Soybean-worldwide production, use, and 
constraints caused by pathogens and pests

238 Hartman et al. (2011)

8 A review of current knowledge of resistance aspect for the next-generation 
succinate dehydrogenase inhibitor fungicides

235 Sierotzki & Scalliet (2013)

9 New insights into mycoviruses and exploration for the biological control of 
crop fungal diseases

213 Xie & Jiang (2014)

10 Bacillus strains isolated from rhizosphere showed plant growth promoting 
and antagonistic activity against phytopathogens

208 Kumar et al. (2012)
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Different factors were observed in the Rhodotorula lifestyle 
acting as an opportunistic etiologic agent of infections. For example, 
Ioannou et al. (2019) outlined that fungemia is more frequent in 
male patients (with a mean age of 33.5 years) that had previous 
malignancy (mainly hematologic malignancies), or presented an 
immune depression condition (by AIDS or due to chemotherapy 
and organ transplant), or autoimmune diseases. Most of these 
infections were associated with the use of central venous catheter 
(CVC) and parenteral nutrition (Ioannou et al. 2019). These authors 
also observed a tendency in which AIDS patients have more 
common CNS infections, and the patients with ocular infections 
were preceded by trauma or surgery (Ioannou et al. 2019). The 
mortality rate of patients affected by Rhodotorula infection is 
around 10–15 % (Toun & Costa 2008, Miceli et al. 2011, Ioannou et 
al. 2019), but in some cases, such as for the CNS infections, overall 
mortality can reach 41 % (Ioannou et al. 2019); however, these 
rates should be treated independently and the characteristics of 
each patient need to be evaluated (Ioannou et al. 2019).

Research interests

There are 1 810 publications and 26 581 citations from 2011–2021 
in the Web of Science (Fig. 54), with the top 10 most cited articles 
listed in Table 33. Most of the publications focused on applied 
microbiology (e.g., biotechnology, food science, energy fuel), 
and some papers report the medical importance of Rhodotorula 
species.

Taxonomy and phylogeny
Since the introduction of Rhodotorula (Harrison 1928), and over 
subsequent years, species in this genus were mainly characterised 
based on morphology and physiology/biochemistry, including 
red-pigmented yeasts with no formation of ascospores (Sampaio 
et al. 2011). Later, Lodder (1934) included all yeasts producing 
carotenoid pigments in Rhodotorula. Following this treatment, 
little change was included in the generic concept of Rhodotorula 
(Lodder & Kreger-van Rij 1952, Lodder 1970). Another important 

fact was the increase in the number of Rhodotorula species, 
growing from seven (Lodder & Kreger-van Rij 1952) to 47 accepted 
species (Sampaio et al. 2011). One of the most important steps 
in Rhodotorula classification and taxonomy was the establishment 
of the genus as a basidiomycetous yeast and the sexual related 
species classified in Rhodosporidium (Lodder 1970). Sampaio 
et al. (2011) highlighted that Rhodotorula is polyphyletic with 
species classified into two subphyla (Pucciniomycotina and 
Ustilaginomycotina) and four classes (Microbotryomycetes, 
Cystobasidiomycetes, Ustilaginomycetes and Exobasidiomyetes). 
These authors recommended including species related to the type 
species, Rho. glutinis, from the order Sporidiobolales for a modern 
classification for this genus.

Wang et al. (2015b) conducted a large study of the classification 
of yeasts and related taxa and based on multi-locus phylogeny and 
morphological, physiological and biochemical information known 
over years, introduced a new generic concept to Rhodotorula and 
several species were transferred to other genera. The generic 
description of Rhodotorula was emended to include the sexual 
morph features of species previously treated in Rhodosporidium 
and 15 species were accepted in the genus. Rhodotorula was 
initially considered a polyphyletic genus, as highlighted by 
Sampaio et al. (2011), but its polyphyly was resolved by Wang 
et al. (2015b) based on DNA markers and the genus was placed 
in Sporidiobolaceae (Sporidiobolales); the same treatment was 
followed by Wijayawardene et al. (2022).

Environment and biotechnology
Rhodotorula species are frequently isolated from the environment 
(e.g., living as saprobes and mainly obtained from plants, soils, and 
water) (Sampaio et al. 2011, Li et al. 2020) and also reported from 
spoiled foods and beverages (Barata et al. 2012, Wirth & Goldani 
2012, Garnier et al. 2017). Species in this genus are among the 
most important fungi to be used in biotechnological processes 
(Kot et al. 2016) being known as “biotechnological machine” used 
in industries for the production of pigments, lipids, and enzymes 
capable of degrading rejected low-cost materials (Ageitos et 

Fig. 54. Trends in research of Rhodotorula in the period 2011–2021.
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al. 2011, Chatzifragkou et al. 2011, Saenge et al. 2011, Yu et al. 
2011a, Kot et al. 2016). Over the years, some researchers have 
focused on the potential of Rhodotorula species/isolates to be used 
in the production of oils (Ageitos et al. 2011, Chatzifragkou et al. 
2011, Saenge et al. 2011, Yu et al. 2011a, Mussagy et al. 2021), 
carotenoids and enzymes (Kot et al. 2016, Mussagy et al. 2021).

Carotenoids produced by Rhodotorula species are important 
in the food industry as pigments and diet supplements (Saenge 
et al. 2011, Kot et al. 2016). Because of the health benefits 
of carotenoids, they have also been used in cosmetic and 
pharmaceutical industries (Kot et al. 2016, Mussagy et al. 2021), 
with promising global markets (see the reports of “The Global 
Market for Carotenoids” in 2018 and “Yeasts, Yeast Extracts, 
Autolysates and Related Products: The Global Market” in 2017).

Diagnosis in human health
Similar to other yeasts already known as etiologic agents of mycosis, 
e.g., Candida and Cryptococcus species, Rhodotorula is a genus 
that needs attention during the treatment of hospitalised patients 
(Toun & Costa 2008, Miceli et al. 2011, Ioannou et al. 2019). Over 
the years, Rhodotorula isolates have been frequently reported as 
etiologic agents of human infections, mainly in immunocompromised 
patients (Toun & Costa 2008, Miceli et al. 2011, Arendrup et al. 
2013, Ioannou et al. 2019). Diagnostic methods broadly used for 
other mycoses, e.g., candidiasis and cryptococcosis, could also be 
used for the isolation and identification of Rhodotorula species. The 
molecular markers usually studied for analyses of DNA sequences 
are ITS and D1/D2 domain of the LSU rDNA regions (Arendrup et 
al. 2013). In addition, protein analysis by MALDI-TOF has been 
applied for yeast identification (Fraser et al. 2016). In 2013, a 
panel of experts proposed a clinical guideline for the diagnosis and 
management of rare invasive yeast infections, including important 
highlights for Rhodotorula species (Arendrup et al. 2013).

Virulence factors
Virulence factors of Rhodotorula species is an understudied topic. 
Some studies suggest that virulence is related to the capacity 
of Rhodotorula isolates to form biofilm on medical devices (e.g., 

catheter fragments) (Arendrup et al. 2013, Thomson et al. 2017, 
Maciel et al. 2019, Jarros et al. 2020, 2021). These studies showed 
that these isolates also have the potential to form biofilm and 
should be studied similarly to other medically important yeasts. 
For example, species of Candida are widely studied because of 
their medical importance, and their virulence factors are also 
well understood (Rocha et al. 2021). Other surveys showed that 
similar to Cryptococcus cells, Rhodotorula capsules may act as a 
resistance mechanism against phagocytosis (Yockey et al. 2019). 
The emergence of Rhodotorula species as opportunistic pathogens 
needs more attention.

Management of the disease
Rhodotorula species have been associated with healthcare workers 
and found in hospital environments (Khodavaisy et al. 2011, Sham 
et al. 2021). Due to their capacity to adhere to surfaces, medical 
equipment (e.g., flexible endoscopes) could also be a source 
of contamination (Arendrup et al. 2013, Ioannou et al. 2019). 
Good biosafety practices in the hospital environment could also 
minimise external contamination of patients. For the treatment of 
hospitalised patients due to Rhodotorula infection, amphotericin B 
is the most common antifungal drug used, followed by fluconazole, 
5-fluocytosine, itraconazole, voriconazole, and ketoconazole 
(Ioannou et al. 2019); however, there are reports of resistance of 
Rhodotorula species to azoles and echinocandins (Arendrup et al. 
2013, Yockey et al. 2019). Combined use of drugs is necessary in 
some cases (Ioannou et al. 2019). Ioannou et al. (2019) reported a 
high clinical cure rate for patients with Rhodotorula infection.

Author: J.D.P. Bezerra

28. Beauveria Vuill., Bull. Soc. Bot. France 59: 40. 1912.

Type: Beauveria bassiana (Bals.-Criv.) Vuill.

Classification: Ascomycota, Pezizomycotina, Sordariomycetes, 
Hypocreales, Cordycipitaceae.

Table 33. Top 10 cited articles related to Rhodotorula published in the period 2011–2021.
Rank Article title No. of citations References
1 Emerging opportunistic yeast infections 530 Miceli et al. (2011)
2 Neonatal gut microbiota associates with childhood multisensitized atopy and T cell 

differentiation
477 Fujimura et al. (2016)

3 The microbial ecology of wine grape berries 360 Barata et al. (2012)
4 Oily yeasts as oleaginous cell factories 353 Ageitos et al. (2011)
5 Oil production by oleaginous yeasts using the hydrolysate from pretreatment of 

wheat straw with dilute sulfuric acid
313 Yu et al. (2011a)

6 ESCMID and ECMM joint clinical guidelines for the diagnosis and management of 
rare invasive yeast infections

305 Arendrup et al. (2014)

7 Characterization of the fungal microbiota (mycobiome) in healthy and dandruff-
afflicted human scalps

250 Park et al. (2012b)

8 Potential use of oleaginous red yeast Rhodotorula glutinis for the bioconversion of 
crude glycerol from biodiesel plant to lipids and carotenoids

220 Saenge et al. (2011)

9 Terminal olefin (1-alkene) biosynthesis by a novel P450 fatty acid decarboxylase 
from Jeotgalicoccus species

219 Rude et al. (2011)

10 Biotechnological conversions of biodiesel derived waste glycerol by yeast and 
fungal species

203 Chatzifragkou et al. (2011)
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Background

The discovery of Beauveria bassiana dates back to the causal 
agent of white muscardine disease on silkworms that was found by 
an Italian entomologist, Agostino Bassi di Lodi (Bassi 1835, 1836). 
Beauveria bassiana was initially described as Botrytis bassiana 
by Giuseppe Gabriel Balsamo-Crivelli, in honour of Bassi’s 
discovery (Rehner 2005). Later, Vuillemin (1912) formally erected 
the genus Beauveria and designated Beauveria bassiana as the 
type species, in honour of Beauveria who had studied the fungus 
in 1911. Beauveria brongniartii was the second species described 
in this genus by the end of the 19th century (MacLeod 1954). Since 
then, many Beauveria species have been introduced from soil and 
arthropod hosts (Zimmermann 2007).

Beauveria originally was known as an anamorphic genus 
which was placed in Moniliacea (Moniliales, Hyphomycetes, 
Deuteromycotina) (Imoulan et al. 2017). Nowadays, multi-
loci phylogenies have necessitated the transfer of Beauveria 
to Cordycipitaceae (Hypocreales) (Sung et al. 2007, 
Maharachchikumbura et al. 2016a, b) and the sexual-asexual 
connection between Beauveria and Cordyceps has been 
established based on molecular analyses (Liu et al. 2002, 2001, 
Rehner et al. 2005, Shrestha et al. 2014). The sexual morph 
of Beauveria is characterised by brightly-pigmented, stipitate, 
fleshy stromata and semi-immersed, ovoid perithecia which are 
produced on the upper part of stromata and cylindrical asci with 
thickened apex and hyaline, filiform, multiseptate ascospores 
which disarticulate into cylindrical, one-celled secondary spores 
when mature (Khonsanit et al. 2020). The key diagnostic character 
of asexual Beauveria species is the basally inflated conidiogenous 
cells with a zig-zag rachis from which the conidia are produced (De 
Hoog 1972). Cultural and morphological characteristics present a 
low resolution on interspecific delimitation within Beauveria, due to 
the extensive overlap in conidial shape and dimensions (Imoulan 
et al. 2017). For a long time, many strains were consigned to 
Beauveria bassiana and Be. brongniartii, based on the shape of 
conidia, which included many cryptic species, leading to taxonomic 
confusion in Beauveria (Zimmermann 2007, Imoulan et al. 2017). 
Recently, some cryptic species of Beauveria were restudied 
employing both maximum likelihood and neighbor-net phylogenetic 
analyses based on combined markers (tef–rpb1–rpb2–ITS–Bloc) 
(Khonsanit et al. 2020). To date, 40 morphological species are 
accepted in Beauveria, including 25 species with sequence data 
(Hyde et al. 2020d).

Ecological and economic significance

Beauveria includes some of the most well-known species used in 
biological control against insect pests (Lacey et al. 2015, García-
Estrada et al. 2016). Beauveria species can persist in soil as 
dormant propagules; in plants as endophytes or associated with 
the rhizosphere (Ownley et al. 2008, Vega et al. 2009, Greenfield 
et al. 2016, Vega 2018); they are also plant disease antagonists 
(Dara 2019). Thanks to the great diversity in ecological niches and 
wide arthropod host range, this genus has huge potential in pest 
management with significant ecological and economic impacts.
Beauveria bassiana is the most widely used species and can 
infect insects belonging to over 521 genera (Imoulan et al. 2017). 
From its discovery 200 years ago as the cause of devastating 
disease in economically important silkworm, Be. bassiana became 
a popular entomopathogenic fungus used as an agent against 
various agricultural pests (Lacey et al. 2015, García-Estrada 

et al. 2016, Baron et al. 2019, 2020) with many mycopesticide 
products developed from Beauveria and available in niche markets 
(Zimmermann 2007). Beauveria, especially Be. bassiana and Be. 
brongniartii, were shown also to be effective against invasive insects 
causing damage to trees in natural habitats such as Eucalyptus 
weevil, Asian long-horned beetle, emerald ash borer and oak lace 
bug (Dara 2019). Beauveria species have been used also against 
insect vectors of protozoan and bacterial diseases to humans and 
animals such as Triatoma infestans (kissing bug) carrying Chaga’s 
disease that has infected over 20 million people in South America 
(Forlani et al. 2015); ticks carrying Borrelia burgdorferi, a bacterium 
causing Lyme disease (Kirkland et al. 2004). Beauveria bassiana 
has been used also against mosquito vectors of important human 
diseases such as malaria (Kikankie et al. 2010, Ragavendran et al. 
2017) and Zika virus (Deng et al. 2019).

Research interests

There are 3 620 publications and 26 077 citations from 2011–
2021 in the Web of Science (Fig. 55), with the top 10 most cited 
articles shown in Table 34. The publications cover the evolution 
and mechanisms of virulence, production of secondary metabolites 
and virulence-associated molecules, the interest for biocontrol and 
appropriate formulation for practical use, and also diversity and 
taxonomy.

Phylogeny and taxonomy
Beauveria includes many cryptic species with ambiguous 
morphological characters. The size and shape of conidia can 
be used to some extent to discriminate species but multigene 
phylogenies have been the basis for circumscribing new species 
during the last decade (Rehner & Buckley 2005, Rehner et al. 2011, 
Imoulan et al. 2017, Khonsanit et al. 2020). The species status of 
certain taxa might be doubtful as they were proposed based on a 
few samples with incomplete species sampling (Chen et al. 2018d). 
Future studies should include comprehensive data for the genus, 
and propose detailed morphometric analyses on conidia size and 
shape to propose new species.

Virulence and host specificity
Beauveria is well known for Be. bassiana, largely studied for its 
virulence and pathogenicity against arthropods (Xiao et al. 2012). 
The variation of virulence and host specificity are generally elusive 
with contrasting results. For example, some studies found a strong 
to intermediate association between hosts and genetic groups 
(Maurer et al. 1997, Chen et al. 2015f) while other studies (Wang 
et al. 2005, Meyling et al. 2009, Mei et al. 2020) found that genetic 
structure cannot be explained by host association but rather by 
geographic origins. The level of virulence can be highly variable 
between strains toward specific insect groups (Boston et al. 2020) 
without apparent association to population genetic structure. 
Variation in virulence seems to be due to the mutation and positive 
selection of some categories of genes, particularly toxin-producing 
genes (Zhang et al. 2020). Highly virulent strains seem to arise by 
gaining specific genes such as polyketide synthases (PKSs) and 
bacterial toxins (Xiao et al. 2012, Valero-Jiménez et al. 2016).

Toxins and secondary metabolite
Beauveria produces a diverse array of biologically active 
secondary metabolites that include non-peptide pigments and 
polyketides, non-ribosomally synthesised peptide antibiotics and 
other secreted metabolites implicated in insect pathogenesis and 
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virulence that have potential use in industrial, pharmaceutical 
and agricultural aspects (Rehner et al. 2012). These metabolites 
exhibit insecticidal, antiviral, antibacterial, antifungal, anticancer, 
anti-tumour, antiatherosclerotic, cytotoxic, herbicidal activities, etc. 
(Strasser et al. 2000 a, b, Gurulingappa et al. 2011, Sahab 2012, 
Lozano-Tovar et al. 2017, Cheong et al. 2020, Du et al. 2020). 
Some important mycotoxins derived from Beauveria species have 
been elucidated with chemical structure, synthesis mechanism, 
physicochemical properties and bioactive activity (Logrieco et al. 
2002, Zobel et al. 2016, Amobonye et al. 2020). Beauvericin and 
pyridovericin have significant cytotoxicity to a variety of cancer 
cell lines, showing high potential in cancer therapeutics (Strasser 
et al. 2000b, Wu et al. 2018b, Amobonye et al. 2020). Oosporein, 
bassianin and tenellin have ability to inhibit insect immunity, allowing 

the fungus to overcome and kill its hosts (Basyouni et al. 1968, Jeffs 
& Khachatourians 1997, Zibaee et al. 2011, Fan et al. 2013, Feng 
et al. 2015a, Mc Namara et al. 2019). The compound S-(-)-10,11-
dihydroxyfarnesic acid methyl ester (I) can inhibit melanin synthesis 
and does not irritate the skin or eyes of humans, for which it can be 
developed as cosmetic biomaterials (Son & Lee 2013). Additionally, 
batryticated silkworms infected by Be. bassiana have traditionally 
been used as folk medicine to treat stroke, urticaria, diabetes, etc. 
(Patocka 2016). Much research has been conducted to investigate 
the pharmacological activities, main compositions and clinical uses 
of batryticated silkworms (Hu et al. 2017).

Authors: D.P. Wei, J. Luangsa-ard and N. Kobmoo

Fig. 55. Trends in research of Beauveria in the period 2011–2021.

Table 34. Top 10 cited articles related to Beauveria published in the period 2011–2021.
Rank Article title No. of citations References
1 Insect pathogens as biological control agents: back to the future 623 Lacey et al. (2015)
2 Genomic perspectives on the evolution of fungal entomopathogenicity in 

Beauveria bassiana
370 Xiao et al. (2012)

3 Phylogeny and systematics of the anamorphic, entomopathogenic genus 
Beauveria

232 Rehner et al. (2011)

4 Insect pathogenic fungi: genomics, molecular interactions, and genetic 
improvements

168 Wang & Wang (2017)

5 Two hydrophobins are involved in fungal spore coat rodlet layer assembly and 
each play distinct roles in surface interactions, development and pathogenesis in 
the entomopathogenic fungus, Beauveria bassiana

161 Zhang et al. (2011)

6 Fungal secondary metabolites as modulators of interactions with insects and other 
arthropods

155 Rohlfs & Churchill (2011)

7 Additive contributions of two manganese-cored superoxide dismutases (MnSODs) 
to antioxidation, UV tolerance and virulence of Beauveria bassiana

137 Xie et al. (2012)

8 More than a colour change: insect melanism, disease resistance and fecundity 118 Dubovskiy et al. (2013)
9 Evolutionary interaction networks of insect pathogenic fungi 109 Boomsma et al. (2014)
10 A phylogenetically based nomenclature for Cordycipitaceae (Hypocreales) 89 Kepler et al. (2017)
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29. Puccinia Pers., Syn. Meth. Fung. 1: 225. 1801.

Type species: Puccinia graminis Pers.

Classification: Basidiomycota, Pucciniomycotina, Pucciniomycetes, 
Pucciniales, Pucciniaceae.

Background

Puccinia graminis on cultivated Triticum was designated as the 
type species of Puccinia by Cunningham (1931) and subsequently 
lectotypified by Jørstad (1958). Over the last century, Puccinia has 
typified taxonomic ranks up to the Pucciniomycotina.

Puccinia (Pucciniaceae) has almost 6 000 named species, 
which accounts for almost half of the known species of rust fungi 
(He et al. 2022a). Puccinia species are obligate plant pathogens on 
hosts in many plant families, especially Asteraceae, Cyperaceae, 
Fabaceae, Lamiaceae, Liliaceae s. lat., Malvaceae and Poaceae 
(Fig. 56). Some species of Puccinia cause rust diseases on 
agriculturally important hosts in the Poaceae and Asteraceae (Aime 
& McTaggart 2021) while others have been utilised as beneficial 
biological control agents for invasive weeds, e.g., Puccinia 
chondrillina, Pu. myrsiphylii and Pu. xanthii.

Most species of Puccinia form conspicuous, powdery, yellow 
to red pustules (uredinia) on leaves and stems. The rusty colour 
of uredinia reveals the etymology of both the name that applies to 

Fig. 56. Bubble plot of 3 214 species of Puccinia based on the telial host family. Bubbles are coloured by host at order rank, and size is proportional to the 
biodiversity of described rust fungi. 
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disease symptoms as well as the collective name for the Pucciniales 
(the order of rust fungi). Life cycles of Puccinia are variable, with 
species that produce between 1–5 different spore types, and 
species that complete their life cycle on one (autoecious) or two 
(heteroecious) host plants. The five spore stages of Puccinia are 
(i) spermogonia that exude hundreds of haploid spermatia, which 
fertilise other compatible spermogonia; (ii) aecia, which are formed 
adjacent to spermogonia after dikaryotisation (or fertilisation) and 
produce dikaryotic aeciospores that disperse new genotypes; (iii) 
uredinia, which are also dikaryotic and produce urediniospores, 
the primary means of inoculum that spread one genotype; (iv) 
telia, which produce teliospores that are 2-celled, with each cell 
dikaryotic and able to germinate and undergo karyogamy and 
meiosis; and (v) basidia, which are four-celled and produce haploid 
basidiospores.

Puccinia and related genera are the crown radiation of rust 
fungi, sharing a most recent common ancestor between 15–65 
million years ago (McTaggart et al. 2016b, Aime et al. 2018, Aime & 
McTaggart 2021). There are four main clades in the Pucciniaceae, 
each having species primarily on (i) Asteraceae, Cyperaceae 
and Fabaceae; (ii) Amaranthaceae and Poaceae; (iii) ferns, 
Apocynaceae, Araceae and Loranthaceae; and (iv) Poaceae (Van 
der Merwe et al. 2008, Dixon et al. 2010, Marin-Felix et al. 2017a). 
Puccinia is paraphyletic with respect to many other genera in the 
Pucciniaceae, such as Baeodromus, Ceratocoma, Cumminsiella, 
Desmella, Didymopsora, Dipyxis, Hapalophragmium, Macruropyxis, 
Uromyces and Stereostratum (Aime & McTaggart 2021). Many rust 
fungi, particularly species of Aecidium and Uredo, which have been 
described only from aecial and uredinial stages, respectively, will 
need recombination in Puccinia or other monophyletic genera, 
pending their taxonomic resolution.

Species of Puccinia on cultivated grasses have become 
model organisms to study the genomes of rust fungi (Aime et al. 
2017). The genomes of Pu. graminis (Duplessis et al. 2011), Pu. 
coronata (Miller et al. 2018), Pu. striiformis (Schwessinger et al. 
2018) and Pu. sorghi (Rochi et al. 2018) have been assembled to 
near-chromosome resolution. Fully phased nuclei of Pu. graminis 
f. sp. tritici have been used to support somatic hybridization of rust 
fungi (Li et al. 2019b, Wu et al. 2019c), and a phased genome of 
Pu. triticina has been used to support tetrapolar mating in Puccinia 
(Wu et al. 2020a).

Ecological and economic significance

There are 5 845 species names in Puccinia listed on MycoBank, of 
which 140 have been described in the last 10 years (accessed 12 
April 2022). The reduction in the discovery of new rust species may 
reflect that only rare and cryptic species remain to be discovered. 
Six examples have been chosen to illustrate the ecological and/or 
economic significance of Puccinia.

Leaf rust of peanut/groundnut (Arachis hypogaea) caused by 
Puccinia arachidis can significantly reduce pod and fodder yield, 
as well as oil quality. The rust co-evolved with its host in South 
America and the last 200 years has spread around the world to 
wherever A. hypogaea are cultivated. Spermogonia and aecia have 
not been reported for Pu. arachidis, which is considered brachycylic 
and autoecious. Puccinia arachidis spreads in the field by repeated 
cycles of urediniospores that are dispersed by wind and rain.

Crown rust of oats (Avena sativa) caused by Puccinia coronata 
and leaf rust of wheat (Triticum aestivum) caused by Puccinia 

graminis are two species that demonstrate the diagnostic 
difficulties and taxonomic confusion that surround the cereal rusts. 
Puccinia coronata has been reported from about 290 species of 
grass (Nazareno et al. 2018, Liu & Hambleton 2013). Puccinia 
graminis has been reported on hosts in 77 grass genera (Cummins 
1971). The emergence of the Ug99 race of Pu. graminis on wheat 
has been a threat to wheat production worldwide for more than 
a decade, with the potential to cause crop losses on widely used 
varieties that are not resistant (Singh et al. 2015a).

Puccinia coronata and Pu. graminis share some similar 
characteristics in that each (i) causes economic diseases on some 
cultivated grasses; (ii) is macrocylic and heteroecious; and (iii) has 
been divided into numerous formae speciales based on host identity. 
Taxonomic resolution of species of Puccinia on grasses remains 
mostly unresolved, by molecular methods alone or in combination 
with morphology, host range, host taxonomy, and geographic origin. 
One exception is the excellent work of Liu & Hambleton (2013), 
who used a polyphasic approach to resolving taxonomic issues 
in Puccinia coronata s. lat. The inevitable molecular phylogenetic 
solutions have been complicated by agriculture and the global 
movement of populations. Complex species or species complex 
well applies.

Orange rust of sugarcane (Saccharum spp. and cultivated hybrids) 
caused by Puccinia kuehnii is endemic in the southeast Asian and 
Oceania regions. Puccinia kuehnii is hemicyclic, producing only 
teliospores and urediniospores on Saccharum and some closely 
related grass genera (Erianthus, Sclerostachya, Narenga) (Ryan 
& Egan 1989). In 2000, Pu. kuehnii was responsible for the largest 
single-season loss (200 million AUS dollars) caused by a disease 
in the history of the Australian sugarcane industry (Magarey et al. 
2001).

Rust on Asteraceae (Asteroideae) caused by Puccinia 
lagenophorae is an example of an endemic Australian rust that 
has spread worldwide infecting about 150 species (Scholler et al. 
2011, McTaggart et al. 2014). Puccinia lagenophorae has spread 
to Europe (Mayor 1962), North America (Scholler et al. 2001) and 
South America (Delhey et al. 1988). Puccinia lagenophorae is an 
autoecious species that forms aecia and telia.

Rust of Noogoora burr (Xanthium pungens) caused by 
Puccinia xanthii was considered a biological control agent for this 
introduced weed in Australia prior to its detection in 1975 (Alcorn 
1976). Puccinia xanthii is native to North America where it is 
widespread and commonly infects Noogoora burr, Ambrosia trifida 
(giant ragweed), and other plants in the tribe Heliantheae of the 
Asteraceae (Morin et al. 1993). Puccinia xanthii is microcyclic and 
autoecious.

Research interests

Puccinia species were collectively listed in the top 10 plant 
pathogens based on socio/economic importance in a survey of 
plant pathologists conducted by Molecular Plant Pathology (Dean 
et al. 2012). There are 3 123 publications and 25 970 citations from 
2011–2021 in the Web of Science (Fig. 57), with the top 10 most 
cited articles shown in Table 35.

Research into Puccinia is dominated by studies on the wheat 
infecting Puccinia spp. This research covers the threats that cereal 
rusts pose to global food production (Huerta-Espino et al. 2011, 
Singh et al. 2011, Wellings et al. 2011, Savoury et al. 2019) as well 
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as insights into how these threats may be mitigated (Periyannan et 
al. 2013, Watson et al. 2018, Dinh et al. 2020).

Authors: R.G. Shivas and A.R. McTaggart

30. Cordyceps Fr., Observ. Mycol. (Havniae) 2: 316 
(cancellans). 1818.

Type species: Cordyceps militaris Fr.

Classification: Ascomycota, Pezizomycotina, Sordariomycetes, 
Hypocreales, Cordycipitaceae.

Background

Cordyceps is a hypocrealean entomogenous genus, parasitising 
several orders of arthropods from larva to adult stages (Sung 
et al. 2007, Shrestha et al. 2016, Araújo & Hughes 2016) and 

comprises 280 recognised species (Index Fungorum 2022). It is 
named after the Latin “cord” meaning club and “ceps” meaning 
head, as it describes the club-shaped stroma emerging from the 
insect larva as depicted in Cor. militaris. In the past, taxonomic 
classifications were mainly based on morphological characters on 
the host and were extensively studied by Kobayasi (1941, 1982) 
and Mains (1958). Less than two decades ago Cordyceps s. lat. 
belonged to the family Clavicipitaceae s. lat. characterised by the 
presence of cylindrical asci, thickened ascus apices, and filiform 
ascospores that often disarticulate into secondary ascospores 
(Mains 1958, Kobayasi 1941, 1982, Rossman et al. 1999, Sung 
et al. 2007).

This genus is the most diverse group of Clavicipitaceae 
s. lat. due to the large number of species and wide host range. 
Understanding the evolutionary relationships and host-switching 
over the past decades have come through molecular studies and 
these have provided stable phylogenies. The analyses of multi-gene 
sequences to reconstruct the phylogeny of Cordyceps, including 

Fig. 57. Trends in research of Puccinia in the period 2011–2021.

Table 35. Top 10 cited articles related to Puccinia published in the period 2011–2021.
Rank Article No. of citations References
1 The top 10 fungal pathogens in molecular plant pathology 1 769 Dean et al. (2012)
2 The global burden of pathogens and pests on major food crops 524 Savary et al. (2019)
3 Obligate biotrophy features unraveled by the genomic analysis of rust fungi 415 Duplessis et al. (2011)
4 The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production 390 Singh et al. (2011)
5 Evaluation of the antibacterial potential of liquid and vapor phase phenolic essential oil 

compounds against oral microorganisms
346 Wang et al. (2016e)

6 Global status of stripe rust: a review of historical and current threats 314 Wellings et al. (2011)
7 The two-speed genomes of filamentous pathogens: waltz with plants 240 Dong et al. (2015)
8 One stop shop: backbones trees for important phytopathogenic genera: I (2014) 235 Hyde et al. (2014)
9 The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust 

race Ug99
226 Periyannan et al. 

(2013)
10 Global status of wheat leaf rust caused by Puccinia triticina 217 Huerta-Espino et al. 

(2011)
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the morphologies of its sexual and asexual morph, led Sung et al. 
(2007) to split Cordyceps s. lat. into three families, Clavicipitaceae, 
Cordycipitaceae, and Ophiocordycipitaceae.

Cordyceps militaris, the type species, is nested in the 
Cordycipitaceae; it is a cosmopolitan species reported from North 
and South America, Europe and Asia (Mains 1958, Shrestha et 
al. 2005a). Most species in Cordyceps have been reported from 
several countries in Asia such as China, Japan, Korea, Nepal, 
Taiwan and Thailand, while others have been reported from 
Europe, South America (Columbia), and North America (Kobayasi 
& Shimizu 1978, 1982).

Cordyceps species are parasitic on spiders (Araneae) and 
insects belonging to orders Coleoptera, Diptera, Hemiptera, 
Hymenoptera, Lepidoptera and Orthoptera, in which infections 
occur at various stages of the arthropod life cycle from larvae 
to adults (Torres et al. 2005, Liang et al. 2008, Cabanillas et al. 
2013, Yan & Bau 2015, Tasanathai et al. 2016, Chiriví et al. 2017, 
Mongkolsamrit et al. 2018, 2020b, Crous et al. 2019b, Zha et al. 
2019). Cordyceps species are characterised by fleshy, pallid 
to bright yellow, orange or red stromata with crowded or loosely 
embedded perithecia. Three kinds of ascospore morphologies are 
known: (1) bola-shaped, whole ascospores characterised by a thin 
filamentous middle part and fusiform ends, like a skipping rope, 
(2) filiform, multiseptate, whole ascospores, and (3) filamentous, 
multiseptate ascospores disarticulating into part-ascospores 
(Tasanathai et al. 2016, Mongkolsamrit et al. 2018, 2020b, Crous 
et al. 2019b, Zha et al. 2019). The asexual morph associated 
with Cordyceps includes species in Isaria, Lecanicillium, and 
Evlachovaea.

Ecological and economic significance
Bioactive compounds and medicinal value

The past decades have witnessed an increasing interest in seeking 
bioactive compounds from Cordyceps species. Cordyceps militaris 
is a renowned traditional Chinese medicine and edible fungus, 
receiving considerable attention due to its plentiful bioactive 
compounds (Chiu et al. 2016). Experimental evidence has shown 
that Cor. cicadae (Isaria cicadae), Cor. takaomontana, Cor. pruinosa 
and Cor. kyushuensis possess similar biological activity and chemical 
composition as found in Cor. militaris and Ophiocordyceps sinensis 
(Lee et al. 2009, Ling et al. 2009, Kim et al. 2010, Deng et al. 2020, 
Nxumalo et al. 2020). The aforementioned Cordyceps species have 
been successfully cultivated in vitro and advanced progress has 
been made in their pharmacological research (Xiao et al. 2004, Gui 
& Zhu 2008, Hama et al. 2019, Li et al. 2019d, Zhao et al. 2019b).

Many pharmacological experiments have been conducted 
based on aqueous, ethanolic and methanolic extracts from 
sporocarps, cultured mycelia and fermentation broth (Zhou et al. 
2009). These crude extracts exert broad biological activities, such 
as anti-ageing, anti-bacterial, antifungal, antihypertensive, anti-
inflammatory, anti-lupus, antimalarial, anti-metastatic, antioxidant, 
antiproliferative, antithrombotic, anti-tumour, antiviral, hepatic-
protective, hypoglycaemic, hypolipidaemic, immunomodulatory, 
insecticidal, neuroprotective, renal-protective, etc. (Ng & Wang 
2005, Zhang et al. 2006, Lee et al. 2015, Kim et al. 2017, Jin 
et al. 2018, Hu et al. 2019, Ke & Lee 2019, Liu et al. 2019c). To 
understand the pharmacological mechanism of these raw extracts, 
an array of effective components has been purified and their 
structure and biological activities elucidated (Zhou et al. 2009, 
Zhao et al. 2014a). These components include adenosine, amino 
acids, carotenoids, cordycepic acid, cordycepin, cyclic dipeptides, 

ergosterol, fatty acids and their derivatives, lectins, nucleosides, 
nucleotides, phenolic compounds, polyamines, polysaccharides, 
proteins, proteoglycans, saccharides, steroids, sterols, sugar 
derivatives, terpenoids, vitamins and metal elements, volatile 
components, etc. (Cheng et al. 2011, Zheng et al. 2012, Dong et 
al. 2013, Cohen et al. 2014, Zhao et al. 2014a, Nallathamby et al. 
2015, Yin et al. 2018b, Zhu et al. 2016, Wang et al. 2017a, Lu et al. 
2019, Singpoonga et al. 2020, Zhang et al. 2020a).

Biological control

Cordyceps farinosa (syn. Isaria farinosa) and Cor. fumosorosea 
(syn. I. fumosorosea) are entomopathogenic fungi that have 
shown great potential in the control of a wide range of insect pests 
(Zimmermann 2008). Cordyceps fumosorosea under laboratory 
conditions was able to control the solanum whitefly Aleurothrixus 
trachoides, a polyphagous pest known to attack more than 70 crops 
worldwide. It is also effective against ambrosia beetles, Anisandrus 
dispar and Xylosandrus germanus (Coleoptera: Curculionidae: 
Scolytinae), which are significant pests of hazelnuts. There are 
important reports that nymphs and adults of Bemisia tabaci are 
also highly sensitive to Cor. fumosorosea (Avery et al. 2010, 
Mascarin et al. 2014, Murillo-Alonso et al. 2015, Tian et al. 2015). 
Due to its safety to non-target organisms and humans, despite its 
broad insecticidal activity and host range, Cor. fumosorosea has 
been commercialised for the management of various insect pests, 
causing a significant reduction in insect pest population (Ali et al. 
2010a, b, 2017, Huang et al. 2010).

Research interests

There are 2 073 publications and 23 831 citations from 2011–2021 
in the Web of Science (Fig. 58), with the top 10 most cited articles 
shown in Table 36. The publications are mostly about the bioactive 
compounds produced by Cor. militaris for pharmacological and 
therapeutic implications, as well as the potential use in biological 
control, diversity, and taxonomy.

Pharmacological and therapeutic implications
Cordycepin (3’-deoxyadenosine) is a crucial bioactive compound 
commonly found in Cordyceps species (Zheng et al. 2011a, Cohen 
et al. 2014). Clinical trials have shown that cordycepin exhibits 
therapeutic potential against many types of cancers (Khan & Tania 
2020). With these properties, cordycepin is considered an important 
supplement or substitute medicine drug for cancer treatment 
(Jin et al. 2018). The market price of cordycepin has reached 
more than 500 000 US dollars per kilogram (Yang et al. 2020). 
To satisfy market needs, the metabolic pathways and synthesis 
mechanism of some important compounds, such as carotenoid and 
cordycepin, including their antioxidant and anti-ageing activities 
have been elucidated (Liu et al. 2020b, Wang et al. 2020e, Zhu 
et al. 2020c), which could facilitate the mass production of target 
compounds. Additionally, the optimisation of culture conditions and 
the extraction process has enabled the harvest of more sporocarps 
and the production of more target bioactive compounds (Chou et 
al. 2020). Cordyceps species typically have fleshy sporocarps, for 
which different drying approaches have been exploited to prolong 
their shelf life and retain their commercial value (Wu et al. 2019e).

Toxins and other secondary metabolites
Although there has been a lot of research on the application of 
various bioactive metabolites isolated from Cordyceps spp. 
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to develop biocontrol agents or to use in traditional Chinese 
medicine, safety and health issues in the consumption and use 
of these fungi have long been a concern. Thus, research on their 
secondary metabolites (SMs) is considered beneficial to improving 
the safety of these fungal products. In the case of Cor. cicadae 
(syn. Isaria cicadae), its SMs mainly include nucleosides, amino 
acids, beauvericins, myriocin, and oosporein while trichothecene 
derivatives, isariotins, cyclopenta benzopyrans and PKs are found 
in Cor. tenuipes (syn. Isaria tenuipes, Paecilomyces tenuipes). 
Among them, beauvericins, myriocin, oosporein and many 
trichothecene derivatives are toxic compounds. Most of these 
SMs for pharmaceutical or beneficial uses are dependent on the 
dose and can show cytotoxicities, neurological toxicities and or 
toxicological effects in humans and animals (Zhang et al. 2019c, 
Chen et al. 2020a).

Taxonomy and phylogeny
Cordyceps is a genus with diverse sexual and asexual morph 
morphologies. The sexual morphs of Cordyceps vary in the structure 
of the stromata, possessing brightly coloured, fleshy stromata as in 
the type species, Cor. militaris or having pallid stromata as in the 
case of many spider pathogens. There is no evident morphological 
difference between species found in Cordyceps, Blackwellomyces, 
Flavocillium and Samsoniella in Cordycipitaceae (Mongkolsamrit et 
al. 2018, 2020b, Wang et al. 2020f). The sexual morphs are known as 
isaria-, evlachovaea-, or lecanicillium-like. Species used in traditional 
Chinese medicine, e.g., Cordyceps cicadae, known as “chanhua” 
or cicada flower, or producing a compound that could be used in 
medicine, e.g., Isaria sinclairii (syn. Cordyceps sinclairii) producing 
myriocin have turbulent taxonomic histories and proper identification 
of these species are imperative for further applications.

Authors: D.P. Wei, J. Luangsa-ard and S. Mongkolsamrit

Fig. 58. Trends in research of Cordyceps in the period 2011–2021.

Table 36. Top 10 cited articles related to Cordyceps published in the period 2011–2021.
Rank Article title No. of citations References
1 Tissue invasion and metastasis: molecular, biological and clinical perspectives 281 Jiang et al. (2015)
2 Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued 

traditional chinese medicine
275 Zheng et al. (2011a)

3 Recent developments in mushrooms as anti-cancer therapeutics: a review 216 Patel & Goyal (2012)
4 A review on the effects of current chemotherapy drugs and natural agents in treating 

non-small cell lung cancer
191 Huang et al. (2017)

5 Cordycepin: a bioactive metabolite with therapeutic potential 167 Tuli et al. (2013)
6 A phylogenetically-based nomenclature for Cordycipitaceae (Hypocreales) 139 Kepler et al. (2017)
7 Toll-like receptor 4-related immunostimulatory polysaccharides: primary structure, 

activity relationships, and possible interaction models
111 Zhang et al. (2016f)

8 Advances in fundamental and applied studies in China of fungal biocontrol agents for 
use against arthropod pests

106 Wang & Feng (2014)

9 Enhancement of the antioxidant capacity of chickpeas by solid state fermentation 
with Cordyceps militaris SN-18

101 Xiao et al. (2014b)

10 Induction of apoptosis by cordycepin via reactive oxygen species generation in 
human leukemia cells

83 Jeong et al. (2011)
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31. Trichophyton Malmsten, Arch. Anat. Physiol. Wiss. 
Med. 14. 1848.

Type species: Trichophyton tonsurans Malmsten

Classification: Ascomycota, Pezizomycotina, Eurotiomycetes, 
Onygenales, Arthrodermataceae.

Background

Trichophyton is a member of the best-known group of pathogenic 
fungi in medical mycology, the dermatophytes. Trichophyton 
species inhabit animals, humans and soil, including several 
anthropophilic, zoophilic, and geophilic species. Some species are 
distributed worldwide, while others are geographically restricted, 
such as Trichophyton concentricum, an endemic species located in 
the Pacific Islands, Southeast Asia, and Central America (Angra & 
Norton 2015). Trichophyton species are one of the most important 
etiological agents of superficial mycoses infecting hair, skin, and 
nails in humans. These mycoses are traditionally known as tineas 
or “ringworm”. Trichophyton species belong to Onygenales, family 
Arthrodermataceae with teleomorphs in the genus Arthroderma. 
The most prevalent etiologic agents are Tri. rubrum and Tri. 
mentagrophytes (Wu et al. 2013b). In humans, dermatophytes 
can infect the stratum corneum, nails and hair but rarely progress 
deeper than the basal layer (Toussaint et al. 2019). Occasionally, 
they can penetrate deeply and cause invasive infections involving 
hair follicles, subcutaneous tissue, and even lymph nodes 
(Cheikhrouhou et al. 2009, Lanternier et al. 2013, Rouzaud et al. 
2015). The same pattern is observed in animals, invading hairs, 
with lesions appearing in the head, neck and less commonly 
in the back, flank and limbs (as Tri. verrucosum in cattle), and 
inflammatory and necrotising lesions (Tri. simii in poultry) (Gugnani 
& Rhandawa 1973, Guo et al. 2020).

Identification of Trichophyton species is based mainly on their 
macro- and micromorphological characteristics, in addition to 
physiological tests, which are helpful in some cases, as evidenced 
by the use of the urease test to differentiate Tri. rubrum from Tri. 
mentagrophytes.

A brief history

The first records of infections attributed to Trichophyton date back 
to Roman times. They were reported by Celsus, who described 
a suppurative infection of the scalp (as “porrigo” currently known 
as “kerion of Celsus” or “kerion celsi”) in De Medicina (Celsus 
30 A.D.). Later, Cassius Felix called tinea the alopecic lesions 
observed on the head of humans. Then, in 1806, Alibert coined the 
term “teigne faveuse” or “favus” to describe the yellowish exudate 
observed in some tinea capitis (tinea favus for Tri. schoenleinii). 
Notwithstanding the above citations, it was Robert Remak who 
first described fungi as the causative agents of tinea, observing 
hyphae in tinea favosa, but these results were not published. 
Later, Remak self-inoculated the fungus on his hands and later 
recovered it in mycological culture, naming the agent Achorion 
schoenleinii (Tri. schoenleinii) in honour of his mentor Johann 
Lucas Schoenlein (Remak 1842). Gruby reported the current Tri. 
tonsurans as an agent related to endothrix (Gruby 1844). Malmsten 
proposed the new genus Trichophyton, with Tri. tonsurans as the 
type species (Malmsten 1848). A few years later, Robin reported 

Tri. mentagrophytes (Robin 1853). In 1910, Raymond Sabouraud 
published the first book, including a compilation of the species 
of the genus Trichophyton: “Les teignes” (Sabouraud 1910). 
Sabouraud also introduced the most famous isolation medium for 
fungal cultures, sabouraud dextrose agar (SDA). Nannizzi (1927) 
reported sexual status while Emmons (1934) published what we 
can consider the first taxonomic classification based on fungal 
structures.

Morphology in the genus Trichophyton

Trichophyton species present hyaline and septate hyphae in 
agar cultures. Some show spiral hyphae (Tri. mentagrophytes), 
antler-like hyphae or favic chandeliers (Tri. schoenleinii). Two 
types of aleuriospores (conidia) are produced, macroconidia and 
microconidia. Macroconidia are commonly club-shaped, around 
100 µm long, with blunt ends and several transverse septa. They 
are not frequently seen and their occurrence seems to depend 
on the culture medium used and the strain viability. Microconidia 
are hyaline, small, spherical to tear-shaped, solitary or grouped in 
clusters. They are usually abundant in mycological cultures. In skin 
and nail scrapings, Trichophyton species are commonly observed 
producing arthroconidia and hyphae.

Laboratory identification of the four most prevalent 
Trichophyton species

Trichophyton mentagrophytes
The taxonomy associated with Tri. mentagrophytes has been 
confusing. Until recently, Tri. mentagrophytes was a species 
complex, among which Tri. interdigitale was included as a variety 
(Tri. mentagrophytes var. interdigitale). Molecular studies have 
shown that both species correspond to separate taxa. According to 
some authors, Tri. mentagrophytes would be a zoophilic species, 
responsible for more inflammatory mycoses when infecting 
humans (Cabañes et al, 1996), while Tri. interdigitale appears to be 
an antrophophilic species (De Hoog et al. 2017).

Trichophyton mentagrophytes is a cosmopolitan species 
and is one of the most commonly isolated dermatophytes from 
animals, but also from humans. Macroscopically, colonies of Tri. 
mentagrophytes are flat with a cream-to-buff or tan, powdery 
surface. Sometimes, colonies can produce intensely pigmented 
colonies. Microscopically they produce abundant microconidia, 
some macroconidia and spiral hyphae. Microconidia are commonly 
round-subglobose, borne along the sides and ends of repeatedly 
branched hyphae to form clusters. Macroconidia, when present, 
are cylindrical, 20–50 × 7–10 μm, thin and smooth-walled and 
mainly three to four septa. Usually, these species react positively in 
the urease and hair perforation tests. 

Trichophyton interdigitale
Trichophyton interdigitale is considered an antrophophilic species. It 
is commonly isolated from tinea pedis and tinea unguium. Colonies 
are usually velvety, white to cream; reverse yellowish, pink or 
brown in the centre. Microconidia are subspherical to pyriform, 2 
μm diam, sessile, grouped in grape-like clusters or alongside the 
hyphae. Spiral hyphae and macroconidia are occasionally present 
in cultures (Campbell & Johnson 2013). The species is urease and 
hair perforation tests positive.
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Trichophyton rubrum
Trichophyton rubrum colonies are slow-growing, white, cottony to 
velvety, with a red to purple pigment on the reverse. They developed 
numerous microconidia, which are oval, pyriform to club-shaped, 
2–3 × 3–5 μm, formed along the sides of hyphae. Macroconidia are 
rare, but when present are cylindrical or cigar-shaped, multiseptate 
with smooth-thin walls, 40–55 × 6.0–7.5 μm. Urease negative, 
cannot perforate hair when grown in hair culture in vitro and can 
grow in the presence of cycloheximide.

Trichophyton tonsurans
Trichophyton tonsurans produces granular to velvety colonies, 
sometimes with surface cracks, white, cream to yellowish or brown, 

and reverse yellow or brown. Microconidia are clavate, subspherical, 
produced abundantly along the hyphae, sessile, and sometimes 
appear as inflated balloon shaped. Macroconidia are cylindrical 
to cigar-shaped, often somewhat thick-walled, 2–6(–10)-celled, 
10–65 × 4–12 μm, and usually distorted with age. Chlamydospores 
are formed in abundance. The urease test is positive and the hair 
perforation test is negative.

Classification

As with other dermatophytes, Trichophyton species can be 
grouped into three groups according to their habitat: geophilic 
(soil), zoophilic (animals), and anthropophilic (human). Geophilic 

Fig. 59. Trends in research of Trichophyton in the period 2011–2021.

Table 37. Top 10 cited articles related to Trichophyton published in the period 2011–2021.
Rank Article title No. of citations References
1 Concepts and principles of photodynamic therapy as an alternative antifungal 

discovery platform
375 Dai et al. (2012)

2 Toward a novel multilocus phylogenetic taxonomy for the dermatophytes 264 De Hoog et al. (2017)
3 Deep dermatophytosis and inherited CARD9 deficiency 215 Lanternier et al. (2013)
4 International Society of Human and Animal Mycology (ISHAM)-ITS reference 

DNA barcoding database-the quality controlled standard tool for routine 
identification of human and animal pathogenic fungi

175 Irinyi et al. (2015)

5 Mycology - an update. Part 1: Dermatomycoses: Causative agents, epidemiology 
and pathogenesis

162 Nenoff et al. (2014)

6 Comparative genome analysis of Trichophyton rubrum and related 
dermatophytes reveals candidate genes involved in infection

150 Martinez et al. (2012)

7 High terbinafine resistance in Trichophyton interdigitale isolates in Delhi, India 
harbouring mutations in the squalene epoxidase gene

145 Singh et al. (2018)

8 Terbinafine resistance of Trichophyton clinical isolates caused by specific point 
mutations in the squalene epoxidase gene

141 Yamada et al. (2017)

9 Comparative and functional genomics provide insights into the pathogenicity of 
dermatophytic fungi

137 Burmester et al. (2011)

10 Can Phlorotannins purified extracts constitute a novel pharmacological 
alternative for microbial infections with associated inflammatory conditions?

124 Lopes et al. (2012)
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species are saprotrophic and obtain nutrients from keratin present 
in the soil. An example is Tri. terrestre.

Zoophilic species tend to have species-specific parasitism but 
can also infect humans. Some examples of zoophilic agents are Tri. 
simii in monkeys, Tri. equinum in horses, and Tri. mentagrophytes 
in rodents.

Anthropophilic species are usually confined to humans but 
can also affect other animals. Examples of such species are Tri. 
rubrum, Tri. schoenleini, Tri. concentricum and Tri. tonsurans. 
The first proposal for classifying Trichophyton species and related 
fungi (Emmons 1934) placed dermatophytes into three genera 
based on asexual structures, Microsporum, Trichophyton and 
Epidermophyton. However, from 1960 onwards, several studies 
revealed that dermatophytes could reproduce sexually through 
ascospores (Griffin 1960, Nannizzi 1961); thus, they were classified 
as ascomycetes within the family Gymnoascaceae. Currah (1985) 
established a taxonomic classification scheme for keratinolytic 
fungi based on the morphology of the ascospores, the type and 
organisation of the peridium and the type of substrate on which 
these fungi develop (keratin or cellulose). The sexual morphs of 
dermatophytes (Arthroderma and Nannizzia) were classified within 
the family Arthrodermataceae belonging to the order Onygenales.

Recently, De Hoog and co-workers proposed a new 
classification scheme based on sequence data of five genes. 
In their molecular analyses, Trichophyton is accompanied by 
eight other genera: Arthroderma, Ctenomyces, Epidermophyton, 
Guarromyces, Lophophyton, Microsporum, Nannizzia, and 
Paraphyton. Trichophyton species are closely related, with low 
genetic variation (De Hoog et al. 2017).

Research interests

There are 2 588 publications and 21 756 citations from 2011–
2021 in the Web of Science (Fig. 59), with the top 10 most cited 
articles shown in Table 37. Trichophyton species implicated in 
infections in animals and humans are probably the most prevalent 
etiologic agents worldwide. Although infections by dermatophytes 
are not life-threatening diseases, they are contagious and prone 
to recurrence. It is estimated that about 20–25 % of the world’s 
population is affected by superficial mycosis (Havlickova et al. 
2008). A 30-year systemic review carried out in China focused on 
onychomycosis showed that Tri. rubrum (49.93 %) was the most 
prevalent etiological agent in onychomycosis, followed by Candida 
albicans (10.99 %) and Aspergillus (3.11 %) (Song et al. 2022). 
Another study in Canada showed that in 2 046 patients with proven 
onychomycosis, 51.7 % of the cases were caused by Tri. rubrum, 
followed by Tri. mentagrophytes with 19.6 % (Gupta et al. 2016). 
Furthermore, dermatophytoses have a high economic impact, both 
for the patient and for the health centres. Costs related to physician 
visits, treatments, creams and lotions for managing skin conditions 
(OTC/self-care products), and sick leaves were estimated at 802 
million US dollars in 2017, representing 11 % of total fungal infection 
costs (Benedict et al. 2019). Dermatophyte infections in animals 
are highly prevalent in some countries, becoming a public health 
and economic problem, and affecting livestock production. In India, 
a prevalence of 45–53 % in goats and dogs has been reported, 
with Tri. mentagrophytes being the most isolated agent (38 %)
(Begum & Kumar 2021). Similarly, a study in Nigeria that considered 
dermatophytoses in cattle reported the isolation of Tri. verrucosum 
at 54.2 %, followed by Tri. mentagrohpytes with 45.8 % (Dalis et al. 
2018).

Author: E. Álvarez-Duarte
32. Metarhizium Sorokīn, Veg. Parasitenk. Mensch Tieren 
2: 268. 1879.

Type species: Metarhizium anisopliae (Metschn.) Sorokīn

Classification: Ascomycota, Pezizomycotina, Sordariomycetes, 
Hypocreales, Clavicipitaceae.

Background

Invertebrate-pathogenic fungi in the genus Metarhizium commonly 
occur on a wide range of arthropod hosts worldwide. Historically 
known to only comprise asexual morph species, members of 
Metarhizium are known to have diverse asexual reproductive 
morphologies and life cycle stages (Bischoff et al. 2009, Kepler 
et al. 2012, Luangsa-ard et al. 2017, Mongkolsamrit et al. 2020a, 
Thanakitpipattana et al. 2020). It was known to cause the “green 
muscardine disease”, and was first described by Metchnikoff 
(1879) on a wheat cockchafer Anisoplia austriaca (scarab beetle, 
Coleoptera) in Russia (Zimmermann et al. 1995). The specific 
epithet of the type species, Metarhizium anisopliae was derived 
from the generic name of this beetle.

Tulloch (1976) monographed Metarhizium, accepting only two 
species, Met. anisopliae and Met. flavoviride. However, she also 
recognised two varieties based on the size of conidia, Met. anisopliae 
var. minus and Met. anisopliae var. anisopliae. Rombach et al. (1986) 
thereafter recognised a short-spored variety of Met. flavoviride. 
Further species were added occurring on various hosts from China, 
viz. Met. cylindrosporum, Met. guizhouense, and Met. pingshaense. 
With the advent of molecular phylogenetics to infer relationships 
among fungi, Driver et al. (2000) used ITS rDNA and RAPD 
patterns to study relationships within species of Metarhizium and 
recognised five additional varieties, viz. Met. anisopliae var. acridum, 
Met. anisopliae var. lepidiotae, Met. flavoviride var. pemphigi, Met. 
flavoviride var. acridum and Met. flavoviride var. novozealandicum. 
More informative genetic loci (tef1, tub, rpb1, rpb2) were used to 
better define species and understand relationships in Metarhizium 
and the varieties recognised by Driver et al. (2000) were elevated to 
species ranks accordingly. In 2006, Bischoff et al. recognised Met. 
frigidum as a separate species from Met. anisopliae that has closer 
affinities to Met. flavoviride. Subsequently, Bischoff et al. (2009) 
studied the collections of Met. anisopliae and recognised nine species 
in this species complex. In an extensive molecular phylogenetic 
study revising Cordyceps and the Clavicipitaceae, Sung et al. 
(2007) showed Metarhizium as a monophyletic clade that included 
species formerly classified in Nomuraea, Paecilomyces, Pochonia 
and Tolypocladium. A new genus Metacordyceps was established 
to accommodate cordyceps-like sexual morphs. Kepler et al. (2012) 
thereafter transferred additional species of Cordyceps to the genus. 
Following the concept of single nomenclature (One Fungus = One 
Name), Kepler et al. (2014) proposed to suppress Metacordyceps 
in favour of a broad concept of Metarhizium recognising taxa with 
uncertain placement in the basal clades. Several species were 
added over the last decade (Li et al. 2010, Montalva et al. 2016, 
Luangsa-ard et al. 2017, Lopes et al. 2018, Gutierrez et al. 2019, Luz 
et al. 2019, Thanakitpipattana et al. 2020, Yamamoto et al. 2020). 
Mongkolsamrit et al. (2020a) revisited the genus and recognised 19 
species from Thailand. In the reconstructed phylogeny based on six 
genomic loci, six genera were established for basal monophyletic 
clades, moving diverse species that were in previous revisions to 
various genera.
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Ecological and economic significance

Metarhizium species are extremely versatile and include species 
that are generalists. i.e., infecting a broad range of insect hosts 
(e.g., Met. anisopliae, Met. robertsii), while other species show host 
specificity (e.g., Met. acridum, Met. album). The asexual morph 
generalist species have been used for the biological control of a 
wide range of insect pests that damage economically important 
crops and are known to play multiple roles in nature, with the ability 
to switch to different kinds of lifestyles (St Leger & Wang 2020).

Multiple roles in nature

Metarhizium species have long been recognised for their biological 
control potential against arthropods due to their ability to invade 
the cuticles of insects and proliferate in the hemolymph. As early 
as 1879, fungi from this genus were being evaluated for control 
of wheat chafer beetles, Anisoplia austriaca, and sugar beet 
curculio, Cleonus punctiventris, in Ukraine and since then have 
been developed as biopesticides. Metarhizium species are also 
known to play multiple roles in nature, surviving as saprobes or 
rhizosphere-competent fungi, as well as plant endophytes (Vega 
2008, 2018, Vega et al. 2009, Greenfield et al. 2016) resulting in 
increased plant growth and providing increased tolerance against 
pests and diseases (Liao et al. 2017, Liu et al. 2017d). The benefits 
Metarhizium provides to host plants are varied: resistance to salt 
stress (Khan et al. 2012), antagonism towards plant pathogens 
(Sasan & Bidochka 2013, Keyser et al. 2016), and acquisition of 
insect-derived nitrogen (Behie et al. 2012, 2017, Behie & Bidochka 
2014, Barelli et al. 2019).

Transgenic fungi

Malaria is a serious infectious disease affecting humans and other 
animals caused by the bite of the mosquito Anopheles carrying 
the parasite Plasmodium falciparum. A genetically modified (GM) 

Metarhizium strain expressing a spider toxin represents a new 
army for malaria parasites within mosquitoes (Wang & St Leger 
2007, Fang et al. 2011). Studies on transgenic Metarhizium spp. 
have shown the potential to reduce malaria transmission in the 
world.

Research interests

There are 3 002 publications and 21 615 citations from 2011–2021 
in the Web of Science (Fig. 60), with the top 10 most cited articles 
shown in Table 38. The publications cover research on biological 
control using Met. anisopliae and related taxa, studies on virulence, 
toxins, plant-growth promoting qualities as endophytes and also 
diversity and taxonomy.

Field Management 
The use of Metarhizium against insect pests in agricultural 
ecosystems is one of the most successful and long-lasting biological 
control programs using an entomopathogenic fungus in the world. 
Their use has been extensively studied including in the laboratory 
and the field (Magalhães et al. 2000, Maniania et al. 2003, Peng et 
al. 2008, Hussain et al. 2011, Carolino et al. 2014, Iwanicki et al. 
2019), and they have attributes to promote plant growth.

Toxins and other secondary metabolites
Destruxins (Dtxs) are cyclic depsipeptides produced by Metarhizium 
spp. that are recognised as important virulence determinants 
and assumed to be an important virulence factor accelerating 
the death of insects (Dumas et al. 1994, Brousseau et al. 1996, 
Kershaw et al. 1999, Wang et al. 2004a, Golo et al. 2014). They 
are, by far, the most exhaustively researched toxins produced by 
entomopathogenic fungi. The ability to produce the toxin varies 
from species to species, and toxigenic species are capable of killing 
multiple orders of insects, whereas the nontoxigenic Metarhizium 
spp. have narrow host ranges (Wang et al. 2012a).

Fig. 60. Trends in research of Metarhizium in the period 2011–2021.
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Genomics
Annotated genomes of Metarhizium species, including Met. acridum, 
Met. anisopliae and Met. rileyi are valuable resources providing 
additional insights for the presence and identification of virulence 
genes, interactions with hosts and the development of species- 
and strain-specific assays to screen unique combinations of 
pathogenicity factors important for the development of biopesticides 
(Gao et al. 2012, Pattemore et al. 2014, Binneck et al. 2019, Tong et 
al. 2020). The genome of host-specific Met. acridum gave insights 
into the core metabolism of high virulence of this locust-specialistic 
fungus as compared to the generalist Met. anisopliae to provide an 
improved basis for designing mycoinsecticide strains. These genome 
sequences provide the basis for a comprehensive understanding of 
the interactions between fungus, plant and insect and thus contribute 
to our understanding of fungal evolution and ecology.

Habitats
Metarhizium species are commonly thought of as soil saprobes 
and are most frequently found in habitats with human disturbance 
like agricultural fields as compared to forest ecosystems (Meyling 
& Eilenberg 2007). Findings of Hu & St Leger (2002) suggest that 
these fungi form associations with plant roots in the rhizosphere 
and survive better in that environment than in surrounding potting 
soil over extended periods (Bruck 2005). Studies on the survival 
of Metarhizium in soils have focused on a diverse range of field 
crops, including sugar beet (Pingel et al. 1999), cabbage (Hu & St 
Leger 2002), maize (Pilz et al. 2011, Guerrero-Guerra et al. 2013), 
sugar cane (Milner et al. 2003, Vieira Tiago et al. 2012), strawberry 
(Klingen et al. 2015), peanut (Liu et al. 2016d), coffee (Moreira et 
al. 2019a), sweet potato (Putnoky-Csicsó et al. 2020) and tobacco 
(Yang et al. 2019a).

Taxonomy and phylogeny
About 60 species are recognised in Metarhizium (Index Fungorum 
2022). The use of morphological characters to identify Metarhizium 
species can be imprecise due to the overlap of dimensions of 
characters among species. Taxonomic classification has to rely 
heavily on multi-gene approaches to study cryptic speciation 
among closely related species. In species complexes recognised 

in Metarhizium there are 21 species in the Met. anisopliae species 
complex, and 13 species in the Met. flavoviride species complex. 
Metarhizium anisopliae culture CBS 130.71 isolated from Avena 
sativa root, a cereal crop, is considered the closest strain to 
Metchnikoff’s Metarhizium anisopliae in terms of geography 
(Mongkolsamrit et al. 2020a). Metarhizium is characterised by the 
production of conidia that are predominantly in various shades of 
green, but may also be white or in shades of brown or yellow. There 
are three kinds of phialide and conidiophore morphologies found in 
this genus. The first is the characteristic Metarhizium conidiophore 
wherein a palisade layer of conidiophores with cylindrical phialides 
that form a hymenium-like layer on an arthropod host is produced. 
Secondly, nomuraea-like phialides and conidiophore arrangement 
can be seen in species found on cicada nymphs, cicada adults 
and small planthoppers. Thirdly, the presence of paecilomyces-
like phialides in certain species, especially those that are found on 
animals (e.g., Met. granulomatis and Met. viride).

Authors: J. Luangsa-ard and S. Mongkolsamrit

33. Pythium Pringsh., Jahrb. Wiss. Bot. 1: 304. 1858.

Type species: Pythium monospermum Pringsh.

Classification: Peronosporomycetes, Oomycetes, Pythiales, 
Pythiaceae.

Background

The genus Pythium includes approximately 220 recognised species 
recorded from a broad diversity of hosts and substrates. The type 
species, Py. monospermum, was described from mealworms that 
had fallen into water (Pringsheim 1858) and subsequent early 
records of Pythium species were similarly from dead insects and 
algae in water (Schenk 1858, De Bary 1860, Lohde 1874). Hesse 
(1874) was the first to document Pythium as a plant pathogen in 
his study of Globisporangium debaryanum (syn. Py. debaryanum) 
as a seedling pathogen of various agricultural crops. Since then, 
Pythium species have been recorded as pathogens of algae, 

Table 38. Top 10 cited articles related to Metarhizium published in the period 2011–2021.
Rank Article title No. of citations References
1 Insect pathogens as biological control agents: back to the future 623 Lacey et al. (2015)
2 Genome sequencing and comparative transcriptomics of the model 

entomopathogenic fungi Metarhizium anisopliae and M. acridum
439 Gao et al. (2011)

3 Endophytic insect-parasitic fungi translocate nitrogen directly from insects to 
plants

220 Behie et al. (2012)

4 Development of transgenic fungi that kill human malaria parasites in mosquitoes 179 Fang et al. (2011)
5 Trajectory and genomic determinants of fungal-pathogen speciation and host 

adaptation
176 Hu et al. (2014b)

6 Insect pathogenic fungi: genomics, molecular interactions, and genetic 
improvements

168 Wang & Wang (2017)

7 The insect-pathogenic fungus Metarhizium robertsii (Clavicipitaceae) is also an 
endophyte that stimulates plant root development

163 Sasan & Bidochka (2012)

8 Fungal secondary metabolites as modulators of interactions with insects and 
other arthropods

155 Rohlfs & Churchill (2011)

9 Clarification of generic and species boundaries for Metarhizium and related fungi 
through multigene phylogenetics

148 Kepler et al. (2014)

10 Unveiling the biosynthetic puzzle of destruxins in Metarhizium species 146 Wang et al. (2012)
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crustaceans, fish, fungi (including other oomycetes), insects, 
mammals and nematodes (Van der Plaats-Niterink 1981, De Cock 
et al. 1987, Hatai 1988, Miura et al. 2010, Hyde et al. 2014). Host 
associations and interactions of many Pythium species are not well-
known and many species have been recorded only as saprobes 
in soil or water. Nevertheless, the fact that the genus is primarily 
known as plant pathogens testifies to its importance, especially in 
crop production, and food safety and security.

Pythium has a global distribution, with records originating from 
all continents and most major islands across the globe (Van der 
Plaats-Niterink 1981, Farr & Rossman 2022). With such a wide 
distribution, Pythium species have adapted to a diverse set of 
climates. Species like Globisporangium ultimum (syn. Py. ultimum) 
and Py. aphanidermatum are widespread in temperate climates 
including arid, Mediterranean, and tropical regions (Van der Plaats-
Niterink 1981, Farr & Rossman 2022). Globisporangium ultimum 
has even been reported in the sub-arctic zone (Johnson 1971). 
Other species appear to be more limited in their climatological 
tolerance or distribution, e.g., G. polare (syn. Py. polare) has only 
been recovered from the polar regions (Tojo et al. 2012), or Py. 
insidiosum, the causal agent of pythiosis in mammals, is generally 
limited to tropical and sub-tropical regions (Gaastra et al. 2010). 
Pythium species are mostly found in soil or water, and on parts of 
their hosts that occur in, or have been exposed to, these substrates. 
Accordingly, symptoms of plant diseases caused by Pythium 
species are usually typical of soilborne pathogens that directly affect 
below-ground plant parts, e.g., wilt, root rot and damping off (Martin 
& Loper 1999). Diseases of above-ground plant parts also occur, 
but these are relatively uncommon, e.g., fruit rots of cucurbits, 
solanaceous crops and durian (Tompkins et al. 1939, Anwar et al. 
2017, Solpot & Cumagun 2021, Türkölmez et al. 2021), snow rot or 
mould of grasses and mosses (Lipps & Bruehl 1980, Takamatsu & 
Ichitani 1986, Tojo & Newsham 2012, Bouket et al. 2015), and web 
blight of spinach (Liu et al. 2018a). Although Pythium species are 
commonly encountered in freshwater aquatic environments, a few 
species are also known from saline environments. These include 
Py. grandisporangium, a presumably saprobic species associated 
with decaying leaf litter in mangroves (Fell & Master 1975), and Py. 
porphyrae, the causal agent of red rot on Porphyra and Pyropia 
spp. (Kawamura et al. 2005, Diehl et al. 2017).

Reproduction in Pythium occurs asexually via zoospores, 
zoosporangia and hyphal swellings, or sexually via oogonia, 
antheridia and oospores. The shape of zoosporangia varies from 
filamentous or inflated filamentous, lobulate or toruloid, to (sub-)
globose or ovoid (Van der Plaats-Niterink 1981, Dick 1990, De 
Cock et al. 2015). Hyphal swellings may be indistinguishable 
from globose to sub-globose zoosporangia; however, hyphal 
swellings germinate directly to form hyphae, while zoosporangia 
produce motile zoospores (Van der Plaats-Niterink 1981). Amino 
acids and other components of root and seed extracts attract 
zoospores chemotactically towards suitable host material and 
induce encystment of zoospores once they arrive at the roots or 
seeds (Deacon & Donaldson 1993). Van West et al. (2002) showed 
that electrical fields generated by roots also play an important 
role in guiding zoospores to specific regions on the roots through 
electrotaxis. Once zoospores reach their target, they attach to the 
host, encyst by forming cell walls, and produce germ tubes that 
infect the host (Jones et al. 1991, Martin & Loper 1999).

During sexual reproduction, Pythium species produce oogonia 
that are fertilised by antheridia to form thick-walled sexual 
oospores (Van der Plaats-Niterink 1981). Most Pythium species 
are homothallic, i.e., compatible antheridia and oogonia are 

produced by single isolates. Some species have a heterothallic 
mating system where two compatible isolates are required for 
the production of sexual structures, although single isolates 
occasionally exhibit homothallic production of oogonia (Dick 
1990). Examples of heterothallic species include Py. catenulatum, 
Globisporangium heterothallicum, G. intermedium, G. polare and 
G. sylvaticum. The thick-walled oospores can withstand desiccation 
and are consequently important survival structures that allow for 
the persistence of Pythium species in soil for long periods under 
adverse conditions (Van der Plaats-Niterink 1981, Martin & Loper 
1999). Oospores can germinate either by producing zoosporangia 
with subsequent release of zoospores for dispersal and infection 
or by forming hyphae for infection or colonisation (Stanghellini & 
Burr 1973).

The paraphyly of Pythium was already recognised in early 
molecular phylogenetic studies with limited numbers of species 
(Briard et al. 1995, Cooke et al. 2000). Lévesque & De Cock (2004) 
conducted the first comprehensive phylogenetic investigation that 
included 96 species. They divided Pythium into 11 clades that 
grouped according to sporangial shape, with clades A–D including 
species with more or less filamentous or contiguous sporangia, 
clades E–J including species with globose sporangia, and clade 
K (also globose sporangia) forming a distinct clade. Later, Bala 
et al. (2010) introduced the new genus Phytopythium for species 
from clade K, while Uzuhashi et al. (2010) introduced the genera 
Elongisporangium (clade H) and Globisporangium (clades E–G, I, 
and J) and emended Pythium to include only the species from clades 
A–D. The introduction of Phytopythium has been well accepted in 
the scientific community, however, the revisions of Uzuhashi et al. 
(2010) have been met with some resistance and have not been 
widely implemented (Hyde et al. 2014). This reluctance partly stems 
from poor phylogenetic support for the relationships and distinction 
between Globisporangium and Elongisporangium in phylogenies 
based on conventional markers, i.e., ITS, 18S, 28S, cox1, cox2 and 
tub (Uzuhashi et al. 2010, Hyde et al. 2014). This lack of support 
was addressed in a recent phylogenomic study by Nguyen et al. 
(2022), who found strong support for the revisions of Uzuhashi et 
al. (2010), and made new combinations in Globisporangium and 
Elongisporangium to consolidate generic concepts in Pythium, and 
urged the scientific community to adopt these revisions. One of the 
remaining challenges in this regard is the paraphyly of Pythium s. 
str. (i.e., clades A–D) with regards to Lagena, and the relationships 
of these taxa with Pythiogeton (Hyde et al. 2014, Spies et al. 2016, 
Nguyen et al. 2022). In this overview, the name Pythium is applied 
in the broad sense (i.e., clades A–K) unless specified otherwise, 
but the names introduced by Bala et al. (2010), De Cock et al. 
(2015), Uzuhashi et al. (2010), and Nguyen et al. (2022) are used 
when referring to specific species from clades K (Phytopythium), H 
(Elongisporangium), and E–G and I–J (Globisporangium).

Ecological and economic significance

A search on the Web of Science identified six species with more 
than 100 publications during 2011–2021: Globisporangium 
ultimum (505 publications), Py. aphanidermatum (436 
publications), Py. insidiosum (292 publications), G. irregulare 
(176 publications), Py. oligandrum (116 publications), and Py. 
myriotylum (109 publications). These six species illustrate the 
three main ecological roles in which Pythium species have 
a significant economic impact, i.e., as plant pathogens (Py. 
aphanidermatum, Py. myriotylum, G. irregulare and G. ultimum), 
mycoparasites or biological control agents (Py. oligandrum), and 
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mammalian pathogens (Py. insidiosum). Four of these species 
were also mentioned in a publication on the top 10 oomycetes 
in molecular plant pathology, with G. ultimum featuring at the 
eighth position, Py. aphanidermatum ranking 27th, Py. oligandrum 
28th, and Py. insidiosum receiving votes, but not being ranked 
(Kamoun et al. 2015).

The fact that four of the six species mentioned above, and the 
two most published Pythium species are plant pathogens, shows 
the importance of this genus primarily as plant pathogens. Most 
plant pathogenic Pythium species are well adapted to infect and 
rapidly colonise young succulent tissues such as germinating 
seeds, seedlings, and feeder roots (Hendrix & Campbell 1973). 
For this reason, Pythium species are among the most important 
causal agents of seed and seedling diseases, such as damping-
off, on a wide range of crops, including cereals, oilseeds, forage 
crops, vegetables, ornamentals, and trees (fruit and forestry) (Van 
der Plaats-Niterink 1981). As plant cells mature, cell walls undergo 
secondary thickening, which reduces their susceptibility to Pythium 
(Hendrix & Campbell 1973). Consequently, Pythium infections on 
older plants and more herbaceous or woody crops are usually 
associated with feeder roots, resulting in root rot that translates 
to stunting of foliar growth or wilt (Hendrix & Campbell 1973, 
Martin & Loper 1999). In some cases, Pythium species have been 
associated with severe decline and death of mature plants, e.g., Py. 
aphanidermatum causing vine decline, a disease affecting mature 
cucumber and musk melon plants (Al-Sadi et al. 2011, Al-Mawaali 
et al. 2013). In fruit trees like apples and peaches, Pythium species 
play a significant role in replanting diseases. These diseases 
are characterised by uneven growth, reduced root systems and, 
in severe cases, death of young trees planted on soil previously 
planted to the same crop (Hendrix & Campbell 1973, Mazzola 
1998, Bent et al. 2009, Tewoldemedhin et al. 2011b).

The impact of plant diseases caused by Pythium species 
is difficult to assess since soilborne diseases usually involve a 
complex of organisms that may include Pythium along with true 
fungi such as Fusarium and Rhizoctonia, nematodes, and other 
organisms (You et al. 2020). Losses due to seedling diseases of 
soybean, caused by a complex of pathogens including Diaporthe, 
Fusarium, Pythium and Rhizoctonia species, have been estimated 
at 8 755 million US dollars across 28 states in the USA from 1996–
2016 (av. 420 million US dollars per year) (Bandara et al. 2020). 
Cook et al. (1980) observed 40 % yield increases in wheat when 
eliminating the effect of Pythium using the oomycete-selective 
fungicide, metalaxyl. Other studies applying fungicides to selectively 
suppress oomycetes have also highlighted Pythium as one of the 
main contributors to soilborne disease complexes of barley, apple 
trees and other crops (Harvey & Lawrence 2008, Tewoldemedhin 
et al. 2011b). In the USA and Ontario (Canada), annual losses 
due to seedling blight and root rot of maize caused by Pythium 
have been estimated at 25 million US dollars (Bickel & Koehler 
2021). Globisporangium irregulare can reduce the germination 
of subterranean clover by up to 60 % with a 50 % reduction in 
plant productivity (You et al. 2020). Losses due to soft rot of ginger 
caused by various Pythium species vary between seasons and 
countries but can be as high as 100 % (Le et al. 2014).

Several Pythium species are mycoparasites including Py. 
acanthicum, Py. oligandrum, Py. periplocum, G. nunn and G. 
acanthophoron (Lodha & Webster 1990, Jones & Deacon 1995, 
Ribeiro & Butler 1995). However, most published articles on 
Pythium for biological control of plant diseases are focused on 
Py. oligandrum. This species exhibits various modes of action for 
reducing disease, including antibiosis, direct parasitism, competitive 

exclusion from infection sites, and the induction of host resistance 
(Benhamou et al. 1999, 2001, Gerbore et al. 2014). Mycoparasitism 
of a wide range of plant pathogens has been illustrated, including 
species of Fusarium, Phytophthora, Pythium and Rhizoctonia, as 
well as parasites of animals such as roundworms (Benhamou et 
al. 1999, Luca et al. 2022). Furthermore, host resistance, induced 
by Py. oligandrum in plants, is non-specific and effective against 
various pathogens including bacteria, fungi and phytoplasmas 
(Gerbore et al. 2014). Martin & Hancock (1987) reported similar 
efficacy of Py. oligandrum seed treatment and the fungicide 
fenaminosulf against pre-emergence damping-off of beetroot 
caused by Py. ultimum. Under controlled conditions, Yacoub et al. 
(2016) demonstrated a 40–50 % reduction in wood necrosis caused 
by the trunk pathogen Phaeomoniella chlamydospora in grapevines 
whose root systems had been colonised by Py. oligandrum. The 
ability of Py. oligandrum to significantly reduce grapevine trunk 
disease incidence and severity has also been demonstrated in field 
trials (del Pilar Martínez-Diz et al. 2021a). In pepper (Capsicum 
annuum) plants inoculated with Verticillium dahliae, Py. oligandrum 
significantly reduced pathogen populations in the rhizosphere and 
non-rhizosphere soil and increased fresh fruit weight by 78 % (Al-
Rawahi & Hancock 1998). 

Pythium insidiosum is considered the only causal agent of 
pythiosis in mammals, a rare disease manifesting as granulomatous 
lesions or tumour-like growths mostly occurring in or on the skin or 
intestines, although infections of other organs or tissues such as lungs 
or bone have also been recorded (Gaastra et al. 2010). Pythiosis 
is most frequently encountered on horses, dogs, and humans, but 
has also been reported on cats, cattle, sheep and other mammals. 
The disease mainly occurs in tropical and sub-tropical climates, with 
some records from other temperate climates, in Oceania, Southeast 
Asia, Africa, and South, Central and North America (Gaastra et al. 
2010). Although pythiosis is rare and not contagious, infections tend 
to progress rapidly and can be fatal if not treated at an early stage. 
The most effective treatment seems to be excision or amputation to 
remove affected tissue (Chitasombat et al. 2020).

Research interests

There are 2 158 publications with 20 902 citations from 2011–2021 
in the Web of Science (Fig. 61), with the top 10 most cited articles 
shown in Table 39. Important research topics in these publications 
include the characterisation of Pythium species in various hosts 
and environments, as well as disease management and pathogen 
detection.

Characterisation of Pythium spp. associated with various 
hosts and environments
Surveys and first reports provide data on the global diversity, 
distribution and host ranges of Pythium species, and form the basis 
for the development or implementation of disease management 
strategies. In this capacity, such studies will remain important 
in Pythium research. Two of the most highly cited surveys of 
Pythium species over the past 12 years include that of Rojas et al. 
(2017a), who identified 54 Pythium species while investigating the 
diversity of oomycete species on soybeans in North America, and 
Tewoldemedhin et al. (2011a), who identified nine Pythium species 
as part of a fungal complex contributing to apple replant disease in 
South Africa. Both of these studies also performed pathogenicity 
trials to give an indication of the relative importance of the species 
recovered. These and most other published surveys of Pythium 
species made use of direct plating or baiting techniques to 
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recover Pythium isolates. Some more recent surveys have started 
implementing next-generation sequencing (NGS) technologies that 
can capture the diversity of Pythium species more fully (Redekar et 
al. 2019, Rojas et al. 2019, Navarro-Acevedo et al. 2021).

Disease management
Management of diseases caused by Pythium species relies heavily 
on the use of fungicides. The phenylamide fungicide metalaxyl (or 
its active isomer mefenoxam) has long been very effective as soil 
drench or seed treatment against Pythium diseases of many crops, 
such as apple trees, cucumber, maize, soybean, sugar beet and 
wheat (Cook & Zhang 1985, Utkhede & Smith 1991, Larkin et al. 
1995, Brantner & Windels 1998, Al-Sa’di et al. 2008). There are, 
however, various reports of fungicide resistance against metalaxyl 
in some Pythium populations (Cook & Zhang 1985, Brantner & 
Windels 1998, Moorman & Kim 2004, Chen & Van Vleet 2016). 
Matić et al. (2019) compared the sensitivity of Pythium species to 
azoxystrobin (strobilurin) and mefenoxam, and found considerable 
variation in the sensitivity of species to mefenoxam while almost 
all species were sensitive to azoxystrobin. Radmer et al. (2017), 
however, found reduced sensitivity of Pythium species to strobilurin 
fungicides in comparison to mefenoxam. Other fungicides that 
have shown some promise against Pythium species, either as 
alternatives or supplements to the abovementioned fungicides, 
include ethaboxam, fluopicolide, fosetyl-Al, phosphorous acid 
and zoxamide (Martinez et al. 2005, Lu et al. 2012, Weiland 
et al. 2014, Radmer et al. 2017, White et al. 2019, Scott et al. 
2020). Pythium species may vary in their sensitivities to different 
fungicides, e.g., in an investigation of Pythium species from 
maize and soybean, G. recalcitrans had reduced sensitivity to 
ethaboxam, but was the most sensitive to pyraclostrobin, while 
Py. oopapillum was highly sensitive to trifloxystrobin, but least 
sensitive to mefenoxam (Radmer et al. 2017). Oxathiapiprolin is 
a relatively new fungicide that has shown promise for controlling 
foliar diseases caused by Phytophthora species and the downy 
mildew genera (Miao et al. 2016). Investigations of the sensitivity of 
Pythium species toward this fungicide suggest that Phytopythium 

and some Globisporangium species (e.g., G. splendens and G. 
ultimum) are moderately sensitive, but many Pythium s. str. and 
Globisporangium species are not (Miao et al. 2016, 2020, Vargas 
et al. 2022). Further structural optimisation of oxathiapiprolin might 
yield a novel fungicide with better efficacy against Pythium (Miao 
et al. 2020).

Soil amendments with compost, seed meal, and other organic 
materials have received considerable attention in research on the 
management of soilborne diseases caused by Pythium and other 
pathogens. The mode of action for disease suppression is linked to 
the impact of these amendments on microbial populations in the soil, 
rhizosphere or spermosphere (Scheuerell et al. 2005, Bonanomi 
et al. 2010, Weerakoon et al. 2012, Hadar & Papadopoulou 
2012). Mazzola & Freilich (2017) argued for the harnessing of 
this effect to selectively enrich disease suppressive components 
of indigenous microbial populations for more sustainable soilborne 
disease management. The efficacy of soil amendments can be 
very dependent on the specific material, pathogen (species or even 
isolate), and host (Mazzola et al. 2009). Several studies over the 
past 12 years have investigated the disease suppressive ability 
of composts and are working towards identifying indicators of this 
ability (Pane et al. 2011, Vestberg et al. 2014, Mayerhofer et al. 
2021). Mayerhofer et al. (2021) compared the suppressiveness 
of 17 composts towards wilt of cress caused by G. ultimum, and 
identified 75 bacterial sequence variants that were associated with 
highly suppressive composts. Such sequence variants could be 
useful as indicators of disease suppressiveness to support targeted 
compost production for improved disease management.

Molecular detection
Rapid and sensitive molecular detection assays for pathogens are 
valuable tools for diagnostic purposes, as well as for monitoring 
pathogens in ecological studies and evaluations of management 
strategies. PCR-based detection and quantification assays have 
been developed for many plant pathogenic Pythium species, the 
mycoparasite Py. oligandrum, and the mammalian pathogen Py. 
insidiosum (Le Floch et al. 2007, Spies et al. 2011, Ishiguro et al. 

Fig. 61. Trends in research of Pythium in the period 2011–2021.
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2013, Schroeder et al. 2013, Keeratijarut et al. 2015). Schroeder 
et al. (2013) provided an overview of molecular detection and 
quantification techniques for Pythium species with a summary of 
published PCR and real-time PCR assays up to 2012. Over recent 
years, loop-mediated isothermal amplification (LAMP) has been 
gaining popularity for the development of Pythium detection assays, 
due to its rapidity and ease of use (Takahashi et al. 2014, Feng et 
al. 2015b, Li et al. 2017b). Since 2013, LAMP assays have been 
developed for the detection of several important Pythium species, 
including Py. aphanidermatum, Py. inflatum, Py. insidiosum, Py. 
myriotylum, G. irregulare, G. ultimum, Phytopythium helicoides, 
and Phytopythium. vexans (Fukuta et al. 2013, 2014, Ishiguro et 
al. 2013, Takahashi et al. 2014, Keeratijarut et al. 2015, Feng et al. 
2015b, 2018, 2019, Cao et al. 2016, Miyake et al. 2017, Shen et al. 
2017a, Htun et al. 2020, Wang et al. 2021). Some of these studies 
improved the sensitivity of the assays by incorporating a baiting 
or plating step prior to LAMP detection from infected water, soil or 
plant material (Feng et al. 2015b, Miyake et al. 2017). Recombinase 
polymerase amplification (RPA) is another isothermal amplification 
technique that is more and more being used for the development 
of detection assays of plant pathogens, including Phytophthora, a 
genus that is closely related to Pythium (Rojas et al. 2017b, Dai et 
al. 2019, McCoy et al. 2020). The advantages of RPA over LAMP 
include amplification at lower temperatures and simpler primer 
design requirements (Dai et al. 2019). Although RPA-based assays 
for Pythium species have not yet been published, this technology is 
likely to feature for Pythium detection in coming years.

Author: C.F.J. Spies

34. Funneliformis C. Walker & A. Schüßler, The 
Glomeromycota, A species list with new families and new genera 
(Gloucester): 13. 2010. emend. Oehl et al.

Type species: Funneliformis mosseae (T.H. Nicolson & Gerd.) C. 
Walker & A. Schüßler

Classification: Glomeromycota, Glomeromycotina, 
Glomeromycetes, Glomerales, Glomeraceae.

Background

Arbuscular mycorrhizal fungi (AMF), belonging to the phylum 
Glomeromycota, live in symbiosis with the majority of vascular 
land plant species. There is undeniable evidence that AMF, among 
others, increase plants’ water and nutrient supply, as well as their 
growth, yield, and tolerance to abiotic and biotic stresses (Smith & 
Read 2008). Funneliformis (Glomeraceae, Glomerales) is one of 49 
genera of Glomeromycota (Błaszkowski et al. 2023, Da Silva et al. 
2023). The genus was erected by Schüßler & Walker (2010) based 
on molecular evidence from SSU rRNA and the funnel-shaped 
spore base observed in 11 species originally described in the 
genera Endogone and Glomus. The type species, Fun. mosseae, 
was first described as E. mosseae (Nicolson & Gerdemann 1968), 
and then as Glomus mosseae Gerdemann & Trappe (1974). 
Species of Funneliformis usually produce spores blastically at tips 
of funnel-shaped or cylindrical sporogenous hyphae, occasionally 
spores are produced intercalary. The spores arise in soil singly or 
loose clusters, sometimes in compact glomerocarps. Oehl et al. 
(2011), based on molecular phylogeny of rDNA, and morphology of 
the spore base and the spore subtending hypha, transferred three 
of the 11 Funneliformis species mentioned above to a new genus, 
Septoglomus (S. africanum, S. constrictum, and S. xanthium) and 
six species of Glomus to Funneliformis. Recently, Fun. vesiculiferus 
was transferred to Rhizoglomus (Błaszkowski et al. 2018) and Fun. 
pilosus was described (Guillén et al. 2020), both actions were 
performed following morphological and molecular phylogenetic 
evidence. Oehl et al. (2011) left G. badium described by Oehl et al. 
(2005) in Glomus, despite Schüßler & Walker (2010) transferring 
this species to Funneliformis. Phylogenetically, G. badium is 
characterised by only one short (617 bp long) sequence covering 
partially the 18S nrRNA gene and the ITS1 region (Oehl et al. 
2011). Although Funneliformis currently comprises only 13 species 
(F. mosseae, F. coronatus, F. geosporus, F. caledonius, F. pilosus, 
F. fragilistratus, F. verruculosus, F. caesaris, F. dimorphicus, F. 
halonatus, F. kerguelensis, F. monosporus, F. multiforus), molecular 
inventories of AMF communities associated with plant roots and 
soil samples indicated numerous Operational Taxonomic Units 
(OTU) belonging to this genus (Geoffroy et al. 2017) as potential 
novel species waiting to be described.

Table 39. Top 10 cited articles related to Pythium published in the period 2011–2021.
Rank Article title No. of citations References
1 The top 10 oomycete pathogens in molecular plant pathology 383 Kamoun et al. (2015)
2 DNA barcoding of oomycetes with cytochrome c oxidase subunit I and internal 

transcribed spacer
375 Robideau et al. (2011)

3 Antifungal effects of silver nanoparticles (AgNPs) against various plant 
pathogenic fungi

252 Kim et al. (2012)

4 One stop shop: backbones trees for important phytopathogenic genera: I (2014) 235 Hyde et al. (2014)
5 Apple replant disease: Role of microbial ecology in cause and control 214 Mazzola & Manici (2012)
6 Ecology of root colonizing Massilia (Oxalobacteraceae) 148 Ofek et al. (2012)
7 Lipopeptides as main ingredients for inhibition of fungal phytopathogens by 

Bacillus subtilis/amyloliquefaciens
145 Cawoy et al. (2015)

8 Disruption of OPR7 and OPR8 reveals the versatile functions of jasmonic acid 
in maize development and defense

138 Yan et al. (2012)

9 Brassinosteroids antagonize gibberellin- and salicylate-mediated root immunity 
in rice

133 De Vleesschauwer et al. (2012)

10 A multi-phasic approach reveals that apple replant disease is caused by 
multiple biological agents, with some agents acting synergistically

110 Tewoldemedhin et al. (2011)
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Ecological and economic significance

Species of Funneliformis occur frequently and abundantly in different 
ecosystems (Sun et al. 2013, Geoffroy et al. 2017, Winagraski et 
al. 2019), even in aquatic environments (Queiroz et al. 2020). 
Funneliformis mosseae and Fun. geosporus are among the most 
widely distributed AMF in the world (Öpik et al. 2006, Furrazola et 
al. 2021, Stürmer & Kemmelmeier 2021). Because of their common 
occurrence and wide distribution, Funneliformis species certainly 
play an important role in influencing the productivity and condition 
of plants growing in cultivated and natural sites (Rodrigues & 
Rodrigues 2015). Countless experiments have revealed that among 
the Funneliformis species, F. mosseae significantly increased plant 
growth, nutrient absorption (Mirzaei et al. 2015, Sahodaran et al. 
2019), chlorophyll production (Tuo et al. 2015, Bahraminia et al. 
2020), resistance to pathogens (Qian et al. 2015, Lu et al. 2020), 
as well as tolerance to salinity (Mirzaei et al. 2015, El-Gazzar et al. 
2020), drought (Bahraminia et al. 2020), heavy metals (Degola et 
al. 2015, Berthelot et al. 2018) and hydrocarbons (Malicka et al. 
2021).

Funneliformis mosseae can coexist with communities of 
actinobacteria, producing high amounts of idole-3-acetil acid (IAA) 
(Lasudee et al. 2018), and yeasts, able to solubilize low-soluble 
phosphate sources and accumulate polyphosphates (Alonso et al. 
2008), mitigating the adverse effects of low nutrient and drought 
stress. Funneliformis mosseae also appeared to be important in 
bioactive compound production in medicinal and aromatic plants 
(Karimi et al. 2016, Weisany et al. 2016). Due to the various 
beneficial effects on plants and environment, as well as the 
abundant sporulation and the high colonisation potential, Fun. 
mosseae has been widely used in the production of biofertilizers 
and phytoremediation (Hassan et al. 2013, Huang et al. 2019).

Research interests

There are 1 452 publications and 20 832 citations from 2011–2021 
in the Web of Science (Fig. 62), with the top 10 most cited articles 

shown in Table 40. The most cited article was published by Latef & 
Chaoxing (2011) and it represents one of the most important topics in 
AM research – the role of AM fungi on plant growth, nutrient uptake, 
and tolerance to abiotic stresses like salinity, drought, and heavy 
metals. The importance of these fungi to enhance the growth and 
quality of horticultural crops such as tomatoes is considerable, as 
among the top 10 articles, five addressed this topic (Table 40). The 
mycorrhizal network is also a hot research topic (Walder et al. 2012). 
The connection between plants via the mycelial network allowing 
“talk” among plants mediated by the transfer of signals is in the 
spotlight and has already reached science fiction movies – Star Trek 
Discovery from CBS Television Studios INC – “USS Discovery Enters 
the Mycelial Network” to travel between dimensions and through 
space and time. The contributions to plant protection (Schausberger 
et al. 2012) and bioremediation (Yu et al. 2011b, Barnawal et al. 
2014) were also discussed in a large number of publications.

The most extensively studied species within the genus is 
Funneliformis mosseae. This species is deeply rooted in the history 
of AM research, and was named in honour of Dr Barbara Mosse, 
considered the mother of modern mycorrhizology. Using this 
species, Dr Mosse demonstrated for the first time, the connection 
between fructification (sporocarps) of this fungus and AM symbiosis 
in strawberry roots and later the role of AM fungi in plant nutrition 
(Mosse 1953, 1956, 1973). Funneliformis mosseae has been 
important to comprehend the molecular basis of AMF symbiosis. 
Furthermore, it was used as a model species for proteomic and 
transcriptomic studies of Glomeromycota (Zhang & Franken 2014, 
Sui et al. 2018, Lu et al. 2020, Zhang et al. 2020f). The complete 
sequence of Fun. mosseae mitochondrial (mt) genome showed 
intriguing characteristics: length (134 925 bp) greater than several 
mt fungal genomes, different types of introns and insertions in 
rnl, and alternative genetic codes in both initiation (GUG) and 
termination (UGA) codons (Nadimi et al. 2016).

Authors: B.T. Goto, F.A. de Souza, F. Magurno, J. Błaszkowski and 
M.B. de Queiroz

Fig. 62. Trends in research of Funneliformis in the period 2011–2021.
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35. Ustilago (Pers.) Roussel, Fl. Calvados, Edn. 2: 47. 1806.

Type species: Ustilago hordei (Pers.) Lagerh.

Classification: Basidiomycota, Ustilaginomycotina, 
Ustilaginomycetes, Ustilaginales, Ustilaginaceae.

Background

Ustilago is an important basidiomycetous genus of plant pathogens 
that mainly parasitises members of the grass family (Poaceae). 
The genus is classified in the family Ustilaginaceae in class 
Ustilaginomycetes and comprises approximately 200 species 
(Vánky 2012) with some of them causing major damage to 
important crops. The morphology of sori and spores, and the host 
range have been used as major features to distinguish among the 
various genera and species in Ustilaginaceae, and more recently 
molecular phylogenies have been used to circumscribe genera 
(Begerow et al. 2014, Hyde et al. 2014, Wang et al. 2015b). Ustilago 
s. str. is mainly restricted to hosts of the tribe Pooideae (Poaceae) 
and is further characterised by the absence of soral structures, 
such as a columella, spore balls, and sterile cells (McTaggart et 
al. 2012, 2016a). One of the major observations resulting from the 
molecular phylogenies is that the type species of the genus, U. 
hordei, a pathogen on barley, belongs to a different clade (Clade 
6) together with U. tritici, a pathogen of wheat, whereas the corn 
smut, U. maydis, arguably the most well-known Ustilago species 
belongs to Clade 2 (Wang et al. 2015b, McTaggart et al. 2016a). 
Various comparative genomics and phylogenomic investigations 
supported the phylogenetic separation of U. hordei and U. maydis 
(e.g., Bakkeren et al. 2008, Laurie et al. 2008, Kellner et al. 2011). 
For instance, Laurie et al. (2008, 2012) compared the genomes of 
barley and corn smuts and found that RNA silencing components 
were lost in the U. maydis genome, and species-specific presence 
of transposable elements occurred. More extensive comparative 
genomics studies need to include a broader taxonomic sampling 
to support these initial findings. The polyphyletic nature of Ustilago 
species also made taxonomic and nomenclatural reassessments 

needed. Several attempts were made to split or reorganise the 
genus; however, convincing data or clear species delimitations are 
lacking (Vánky 1987, Stoll et al. 2005). Thines (2016) proposed to 
conserve Ustilago with U. maydis, and this was further discussed 
by McTaggart et al. (2016a) who concluded that it is preferred 
to recognise Ustilago with its conserved type species U. hordei 
and to reintroduce the generic name Mycosarcoma, a genus 
originally proposed by Brefeld (1912), for the clade containing U. 
maydis (McTaggart et al. 2016a, Thines 2016). Eventually, the 
mycological community must decide on either proposal. In addition, 
asexually reproducing yeast-like taxa were described in the genus 
Pseudozyma (Bandoni 1985, Boekhout 2011), but later molecular 
phylogenetic studies found Pseudozyma to be polyphyletic, 
hence, several species have been reclassified in various hitherto 
sexually defined genera of Ustilaginales (Wang et al. 2015b). 
Additionally, genome analyses revealed mating and meiosis genes 
being present in most Pseudozyma species, indicating a sexual 
but maybe saprobic lifestyle (Steins et al. 2023). Importantly, 
Pseudozyma prolifica the type species of Pseudozyma, was found 
to be conspecific with U. maydis (Boekhout 1995, 2011, Begerow 
et al. 2000, 2014, Wang et al. 2015b).

Ecological and economic importance

Ecologically, smut fungi seem to be well adapted as biotrophic, 
host-specific parasites, without causing serious damage in natural 
populations. Even in cereals such as corn, oats or barley they only 
cause disease in parts of the clonal or inbred host population (e.g., 
Müller 2006, Thomas & Menzies 1997). Ustilago maydis causes 
hypertrophic tumour-like galls on corn cobs (Zea mays), and the 
introduction of hybrid corn races has strongly reduced the severity 
and economic loss from the disease (Pataky & Snetselaar 2006). 
In Mexico, the fungus-plant galls are known as huitlacoche and are 
considered a delicacy (Valverde et al. 1995, Juárez-Tracy et al. 
2007, Montiel et al. 2011). In 2007, 400 to 500 tons of huitlacoche 
were sold in Mexico (Villanueva 1997) and new markets elsewhere 
in South America and the USA are emerging.

Table 40. Top 10 cited articles related to Funneliformis published in the period 2011–2021.
Rank Article title No. of citations References
1 Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant 

enzymes activity and fruit yield of tomato grown under salinity stress
238 Latef & Chaoxing (2011)

2 Mycorrhizal networks: common goods of plants shared under unequal terms of 
trade

210 Walder et al. (2012)

3 Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops 204 Rouphael et al. (2015)
4 Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus 134 Song et al. (2015)
5 Insights on the impact of arbuscular mycorrhizal symbiosis on tomato tolerance 

to water stress
121 Chitarra et al. (2016)

6 ACC deaminase-containing Arthrobacter protophormiae induces NaCl stress 
tolerance through reduced ACC oxidase activity and ethylene production 
resulting in improved nodulation and mycorrhization in Pisum sativum

107 Barnawal et al. (2014)

7 Community structure of arbuscular mycorrhizal fungi associated with Robinia 
pseudoacacia in uncontaminated and heavy metal contaminated soils

105 Yang et al. (2015)

8 Enhanced dissipation of PAHs from soil using mycorrhizal ryegrass and PAH-
degrading bacteria

100 Yu et al. (2011b)

9 Mycorrhiza changes plant volatiles to attract spider mite enemies 88 Schausberger et al. (2012)
10 Increasing the productivity and product quality of vegetable crops using 

arbuscular mycorrhizal fungi: a review
85 Baum et al. (2015)
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Research interests

There are 1 260 publications and 20 809 citations from 2011–2021 
in the Web of Science (Fig. 63), with the top 10 most cited articles 
shown in Table 41. The high number of citations of Ustilago-based 
research is mainly because U. maydis has evolved as a model 
species to better understand fundamental and applied research 
issues in plant pathology related to biotrophic basidiomycetous 
fungi. Aspects studied are regulation of sexual and asexual 
reproduction, morphogenesis, interactions with the host, including 
signalling, the role of secreted effector molecules in virulence and the 
suppression of host immunity, and imaging of intracellular transport 
and interaction of organelles (Dean et al. 2012, Tanaki et al. 2012, 
Vollmeister et al. 2012, Rovenich et al. 2014, Schuster et al. 2016a, 

b). Several of the highly cited publications are reviews that address 
several of these aspects. Ustilago maydis was in the top 10 fungal 
plant pathogens according to votes given by an expert community 
(Dean et al. 2012). Ustilago maydis emerged as a model species 
because 1) it grows in culture using defined media; 2) it grows as 
a haploid budding yeast; 3) the infection cycle can be completed 
in the laboratory; 4) genetics tools are available for the targeted 
construction of mutants allowing homologous recombination and 
the construction of haploid, solopathogenic strains; 5) advanced 
microscopy tools allow imaging of cell components in a dynamic 
mode; and, 6) the genome is known (Kämper et al. 2006, Dean et 
al. 2012, Schuster et al. 2016a, b).

Ustilago and related species are also of biotechnological 
interest as they can produce itaconic acid (Haskins et al. 1955, 

Fig. 63. Trends in research of Ustilago in the period 2011–2021.

Table 41. Top 10 cited articles related to Ustilago published in the period 2011–2021.
Rank Article title No. of citations References

1 The top 10 fungal pathogens in molecular plant pathology 1 769 Dean et al. (2012)
2 One stop shop: backbones trees for important phytopathogenic genera: I (2014) 235 Hyde et al. (2014)
3 Biosurfactants: a sustainable replacement for chemical surfactants? 232 Marchant & Banat (2012)
4 Mitogen-activated protein kinase signaling in plant-interacting fungi: distinct 

messages from conserved messengers
169 Hamel et al. (2012)

5 Filamentous pathogen effector functions: of pathogens, hosts and microbiomes 151 Rovenich et al. (2014)
6 Evolution and genome architecture in fungal plant pathogens 121 Möller & Stukenbrock (2017)
7 Genome comparison of barley and maize smut fungi reveals targeted loss of 

RNA silencing components and species-specific presence of transposable 
elements

113 Laurie et al. (2012)

8 Multigene phylogeny and taxonomic revision of yeasts and related fungi in the 
Ustilaginomycotina

111 Wang et al. (2015b)

9 Fungal development of the plant pathogen Ustilago maydis 101 Vollmeister et al. (2012)
10 Two linked genes encoding a secreted effector and a membrane protein are 

essential for Ustilago maydis-induced tumour formation
100 Doehlemann et al. (2011)
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Tabuchi et al. 1981, Klement et al. 2012, Becker et al. 2020) and 
biosurfactants, such as mannosylerythritol lipids (Kitamoto et al. 
2001, Hewald et al. 2006, Marchant & Bawat 2012). A species 
formerly known as Candida/Pseudozyma antarctica, but that is 
now classified as Moesziomyces antarcticus, accumulates up to 
40 % fatty acids dry weight (Gill et al. 1977). Lipases (e.g., lipase B) 
produced by this species find broad application in lipid engineering 
and biotechnology (Chandra et al. 2020). Ustilago maydis was also 
found to be an efficient degrader of lignocellulosic plant biomass 
with a 57 % improvement in the release of general sugars and 22 % 
of glucose (Couturier et al. 2012). Ustilago maydis is also known 
as a producer of β-carotenes (Estrada et al. 2009). Pseudozyma 
flocculosa produces a glycolipid named flocculosin that might 
have the potential for biocontrol (Mimee et al. 2005, 2009). Further 
information on biotechnological applications of Ustilaginomycotina 
yeasts can be found in Boekhout (2011) and Kitamoto (2019).

Authors: T. Boekhout and D. Begerow

36. Rhizoglomus Sieverd. et al., Mycotaxon 129: 377. 2014.

Type species: Rhizoglomus intraradices (N.C. Schenck & G.S. 
Sm.) Sieverd. et al. [≡ Glomus intraradices N.C. Schenck & G.S. 
Sm. = Rhizophagus intraradices (T.H. Nicolson & N.C. Schenck) C. 
Walker & A. Schüßler]

Classification: Glomeromycota, Glomeromycotina, 
Glomeromycetes, Glomerales, Glomeraceae.

Background

During the last two decades, the evolutionary history of 
Glomeromycota forming glomoid spores was extensively improved, 
with paraphyletic and polyphyletic issues identified and solved 
(Morton & Redecker 2001, Schwarzott et al. 2001, Schüssler & 
Walker 2010, Oehl et al. 2011). All species with glomoid spore 
development were previously classified in Glomus (Gerdemann & 
Trappe 1974, Morton & Benny 1990). Since the acknowledgement 
of the lack of synapomorphic features in the glomoid spore 
development, the identification at the genus level of unknown 
glomoid species has been generally obtained through molecular 
and phylogenetic analysis (Błaszkowski et al. 2021a, b, 2023). Until 
2010, almost 100 species were classified in the genus Glomus, 
including species that are currently found in the genus Rhizoglomus 
(Schüssler & Walker 2010, Oehl et al. 2011, Sieverding et al. 2015). 
As a result, Glomus has a higher citation count than Rhizoglomus. 
However, those citations cover species that no longer belong to the 
genus Glomus (Wijayawardene et al. 2020, Index Fungorum 2022). 
Currently, Glomus comprises over 55 species (names), but only six 
hold phylogenetic positions based on a robust molecular data set 
(Błaszkowski et al. 2021a, b, 2023, Yu et al. 2022a), while most 
lack molecular confirmation and were placed as incertae sedis by 
Schüßler & Walker (2010). Schüssler & Walker (2010) resurrected 
the genus Rhizophagus for species in the Glomeraceae forming 
abundant spores in the roots of vascular plants. Rhizophagus 
populinus, described by Dangeard (1896) as a root-inhabiting 
fungus forming AM intraradical structures, was erected as the type 
species despite no material being available for the species. Glomus 
intraradices and species belonging to the phylogenetic group 
Glomus Group Ab were accommodated in the resurrected genus. 
Interestingly, the name Rhizophagus was already in use since 1793 
for a genus in the order Coleoptera (Insecta).

Later the genus Rhizoglomus was proposed by Sieverding 
et al. (2015) with Rh. intraradices as type species. Currently, 
Rhizoglomus comprises 22 species, 18 of which have been 
recognised by barcode sequences (i.e., 18S-ITS-28S, rpb1) and 
morphological characters of the glomerospores (Sieverding et 
al. 2015, Turrini et al. 2018, Corazon-Guivin et al. 2022). Spores 
of Rhizoglomus species present glomoid development, arising 
blastically at the end of sporogenous hyphae, but some species 
also produce intercalary spores (De Souza & Berbara 1999). 
Frequently, they produce abundant assemblages of spores in soil 
and roots, in loose or compact clusters comprising hundreds, or 
even thousands of spores (Błaszkowski et al. 2019). The spore 
wall consists of two to, more rarely, five layers, and the subtending 
hypha, which usually is cylindrical and generally has an open pore 
at the spore base (Błaszkowski et al. 2014, 2019, Kokkoris et 
al. 2023). Rhizoglomus root colonisation is characterised by the 
formation of vesicles, arbuscules and also intraradical spores in 
the root cortex (Błaszkowski 2012) of plants in terrestrial, including 
litterfall (Lima et al. 2023) and aquatic environments (Gomes et al. 
2022).

Ecological and economic significance

Bioenhancers and biofertiliser for plant performance

Rhizoglomus species are considered a generalist species of AM 
fungi in all kinds of environments (Öpik et al. 2010, Davison et 
al. 2011). They can improve nutrient and water use efficiency of 
symbiotically associated plants, promoting the growth and yield of 
a wide range of economically important crops, having an enormous 
interest as bio-enhancers of plant performance and biofertiliser for 
agricultural production, ecosystem restoration and biotechnology.

Although, AM fungi are obligate biotrophs – Rhizoglomus 
species can be grown aseptically in monoxenic systems 
associated with Ri T-DNA transformed roots of several 
dicotyledonous species. This system is the base for large-scale 
AM fungi contaminated-free inoculum production in bioreactors 
and is also a model for basic and applied studies of AM 
symbiosis. Rhizoglomus clarum and Rh. irregulare, two species 
produced in monoxenic culture, have shown field inoculation 
response for soybean, cotton, maize, potato and cassava crops 
(Ceballos et al. 2013, Cely et al. 2016, Hijri 2016, Barazetti et 
al. 2019, Kokkoris et al. 2019) among many other crops and 
timber species. Together with Rh. intraradices, these species are 
recognised for conferring a stronger tolerance to saline (Bharti & 
Garg 2019, He et al. 2019a) and drought stresses (Zuccarini & 
Savé 2016), improving phosphorus and nitrogen use efficiency 
(Abou El Seoud 2019, Lopes et al. 2019) and also acting as 
biocontrol agents of phytopathogens such as Fusarium spp. 
(Ismail et al. 2013b, Olowe et al. 2020). Due to these benefits, 
several inoculants using Rhizoglomus spp. are sold in different 
countries.

Research interests

There are 1 393 publications and 17 651 citations from 2011–2021 
in the Web of Science (Fig. 64), with the top 10 most cited articles 
shown in Table 42. Most publications focused on AMF symbiosis, 
plant performance and the environmental role of the AM fungi 
among other issues.
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Model organisms to study plant root symbiosis
The arbuscular mycorrhiza is an ancient symbiosis that is thought 
to have played a fundamental role in the transition of plants to 
terrestrial environment and has become widespread among 
vascular plants (Wang et al. 2010, Corradi & Bonfante 2012, 
Radhakrishnan et al. 2020). Bi-directional nutrient exchange is the 
key to the function of AM symbiosis – the fungus trades inorganic 
nutrients and water with the associated plant through specialised 
structures called arbuscules that develop temporally inside root 
cortical cells (Gutjahr & Parniske 2017), where symbiotically 
induced protein transporters are expressed (Balzergue et al. 2011, 
Casieri et al. 2012, Gutjahr et al. 2012, Tamura et al. 2012, Tian et al. 
2013, Basu et al. 2018, Kameoka et al. 2019, Plassard et al. 2019, 

Wipf et al. 2019). A deep comprehension of the regulation of the 
arbusculated cell would certainly open the possibility of engineering 
plants and root organ cultures for more efficient mycorrhization and 
inoculum production.

The core set of genes that control the genetic program and 
signalling pathway of the AM symbiosis is also essential for 
actinorhizal and legume-rhizobial symbioses (Hocher et al. 2011, 
Tromas et al. 2012, Bravo et al. 2016, Kamel et al. 2017). Contrary 
to AMF, these two younger symbioses have a restricted occurrence 
among plant families. Understanding and engineering the symbiosis 
genetic program might favor nitrogen-fixing rhizobial associations 
with any plant of interest, ending the nitrogen dependency of 
chemical fertilizer and overcoming yield limitations of several crops 

Fig. 64. Trends in research of Rhizoglomus in the period 2011–2021.

Table 42. Top 10 cited articles related to Rhizoglomus published in the period 2011–2021.
Rank Article title No. of citations References
1 Mycorrhizal ecology and evolution: the past, the present, and the future 843 Van der Heijden et al. (2015)
2 Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza 605 Maillet et al. (2011)

3
Phylogenetic reference data for systematics and phylotaxonomy of arbuscular 
mycorrhizal fungi from phylum to species level 440 Krueger et al. (2012)

4
Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant 
symbiosis 418 Tisserant et al. (2013)

5 A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy 305 Kloppholz et al. (2011)

6
Regulation by arbuscular mycorrhizae of the integrated physiological response to 
salinity in plants: new challenges in physiological and molecular studies 300 Ruiz-Lozano et al. (2012)

7

Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear 
Ca2+ spiking in Medicago truncatula roots and their production is enhanced by 
strigolactone 285 Genre et al. (2013)

8
Arbuscular mycorrhizal fungi as natural biofertilizers: let’s benefit from past 
successes 282 Berruti et al. (2016)

9
Carbon availability triggers fungal nitrogen uptake and transport in arbuscular 
mycorrhizal symbiosis 249 Fellbaum et al. (2012)

10
The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices 
(DAOM 197198) reveals functional tradeoffs in an obligate symbiont 216 Tisserant et al. (2012)
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with greater environmental benefits. The AM fungus Rhizoglomus 
irregulare together with legume plants Medicago truncatula, Lotus 
japonicum and bacteria from Rhizobium group are the main model 
organisms to study the AM symbiosis and nodulation in legumes, 
while rice is the model plant for Poaceae (Horváth et al. 2011, 
Casieri et al. 2012, Gutjahr et al. 2012, Harrison 2012, Ivanov et 
al. 2012, Tromas et al. 2012, Bravo et al. 2016, Dreher et al. 2017, 
Floss et al. 2017, Volpe et al. 2020).

Rhizoglomus irregulare as a model fungus for 
Glomeromycota genomic studies
Rhizoglomus irregulare is a model species for genomic studies in 
Glomeromycota. It was the first AM fungus to have its complete 
genome sequenced (Tisserant et al. 2013). This work and following 
studies on other Rhizoglomus genotypes shed light on important 
questions related to the metabolism and obligate biotrophic nature, 
genome organisation, mating-type genes, sexual status (sexual, 
parasexual or clonal), and intragenomic polymorphism (Halary et 
al. 2011, Corradi & Bonfante 2012, Ehinger et al. 2012, Riley & 
Corradi 2013, Spatafora et al. 2016, Corradi & Brachmann 2017, 
Koch et al. 2017, Chen et al. 2018, Kobayashi et al. 2018, Mathieu 
et al. 2018, Morin et al. 2019, Yildirir et al. 2020). Currently, there 
are 19 genome assemblies available in GenBank for Rh. irregulare 
and Rh. clarum (Kobayashi et al. 2018).

Environmental role of Rhizoglomus spp. symbiosis
Arbuscular mycorrhizal fungi are undoubtedly one of the most 
important rhizosphere microorganisms engaged in beneficial 
symbiosis with the root system of 72 % of vascular plants (Brundrett 
& Tedersoo 2018) which invest up to 20 % of the fixed carbon to 
sustain their fungal partner (Siddiqui & Pichtel 2008). Among the 
AMF species detected in environmental studies across various 
climatic zones and vegetation types globally, Rhizoglomus spp., in 
particular Rh. irregulare, rule the roost (Oehl et al. 2017, Malicka 
et al. 2022). Davison et al. (2015b) analysed 1 014 DNA samples 
from plant roots collected worldwide. The data from this publication 
revealed that within the various virtual taxa (VTs) detected, those 
representing Rhizoglomus (e.g., Rh. intraradices, Rh. irregulare, 
Rh. fasciculatum, Rh. vesiculiferum) were ranked among the most 
abundantly found. Kivlin et al. (2017) used 18S gene DNA sequences 
from GenBank to model the global distribution of Rh. irregulare and 
found that the distribution was influenced by climatic and resource 
variables. Considering the different continents, the distribution was 
driven by climate in North America and Eurasia, soil carbon in South 
America and climate and soil phosphorus in Africa.

Authors: B.T. Goto, F.A. de Souza, F. Magurno, J. Błaszkowski and 
M.B. de Queiroz

37. Acremonium Fr., Syst. Mycol. 3(2): 425. 1832.

Type species: Acremonium alternatum Link

Classification: Ascomycota, Pezizomycotina, Sordariomycetes, 
Hypocreales, Bionectriaceae.

Background

Acremonium is a ubiquitous fungal genus belonging to 
Bionectriaceae (Hypocreales), with more than 200 species epithets 
recorded in Index Fungorum (2022). This genus contains many of 
the simplest structured species of all filamentous asexual fungi. 

Most species of Acremonium are saprobes that are geographically 
widespread and reported to live in various substrates, including 
soil, sediment, dead plant material, rocks, marine organisms, foods 
and indoor air (Gams 1971, 1975, Domsch et al. 2007, Giraldo 
et al. 2012). It also accommodates endophytes or epiphytes of 
plants, animals, or other fungi (Gams 1971, 1975, Alfaro-García 
et al. 1996, Summerbell 2003, Lin et al. 2004, Domsch et al. 2007, 
Perdomo et al. 2011, Guarro 2012), saprotrophs on rotten materials 
(Weisenborn et al. 2010, Zhang et al. 2017b), or weak to virulent, 
facultative or obligate pathogens on plants or human beings 
(Niknam et al. 2017, Nasir et al. 2018, Rashed 2018, Zbiba et al. 
2018, De Hoog et al. 2015) and parasites on fungi, lichens, insects 
or arthropods (Weisenborn et al. 2010, Patil et al. 2011, Brackel et 
al. 2012, Sherief & Bhaskar 2018, Summerbell et al. 2018, Hou et 
al. 2023).

Acremonium was introduced by Link (1809) for a novel species 
that produces solitary spores at the ends of its fertile cells. This 
genus was named according to its morphological characteristics 
of “acro-”, which means “situated at the top”, and “mono-”, which 
means “single” (Link 1809, Summerbell & Scott 2015). After 
examination of Link’s herbarium material, Gams (1968) illustrated 
the type species, Ac. alternatum, producing conidia in chains from 
thin, tapering phialides, rather than single conidia. Subsequently, 
a morpho-taxonomic groundwork for Acremonium conceived by 
Gams (1971) further demonstrated that many species formerly 
referred to as Cephalosporium, which was characterised by the 
production of simple unbranched conidiophores and conidiogenous 
cells bearing at the tip a group or “head” of unicellular conidia, should 
be re-located in Acremonium (Gams 1971). Acremonium was 
reinterpreted as hyaline fungi that produce septate hyphae giving 
rise to narrow, tapered, mostly lateral phialides with unicellular 
conidia arranged in mucoid heads or unconnected chains, and 
differentiated conidiophores with or without verticillate branches 
which may be observed in some species (Gams 1971, 1975, Domsch 
et al. 2007, Perdomo et al. 2011, Summerbell et al. 2011, Hou et 
al. 2023). Based on morphological characteristics, Acremonium 
was subdivided into three sections: Simplex, Nectrioidea 
and Gliomastix (Gams 1971). After an extensive study of the 
Cephalosporium-related and acremonium-like genera, the number 
of Acremonium species increased rapidly with the addition of new 
species and new combinations that were morphologically similar 
to Acremonium but previously disposed under other genera, such 
as Gliomastix, Paecilomyces, Oospora, and Monosporium (Gams 
1971). Three additional sections, Chaetomioidea, Albolanosa, 
Lichenoidea, were added, for the acremonium-like asexual genera 
Chaetomium and Epichloe (Gams 1975, Morgan-Jones & Gams 
1982), and the section Lichenoidea was added for lichenicolous 
species (Lowen 1995). However, Acremonium has been perceived 
to be a heterogeneous taxon. Taxonomic placement at the species 
level is difficult based only on morphology, which is indicated by its 
association with diverse morphologically distinct sexual genera that 
are classified in different orders of Ascomycota (Wijayawardene et 
al. 2017b). Most of the sexually typified Acremonium members were 
identified as Nectria species (Gams 1971, Samuels 1973, 1976a, 
b, Lowen 1995), but the many genera of Hypocreales known from 
their sexual morphs, such as Epichloe, Emericellopsis, Hypocrea, 
Hypomyces, Mycoarachis, Nectriopsis, Nigrosabulum, Pronectria, 
Thielavia, even Gabarnaudia in Microascales, Lecythophora 
in Coniochaetales, and Pseudogliomastix in Sordariales also 
have Acremonium asexual morphs (Malloch & Cain 1970, Gams 
1971, Morgan-Jones & Gams 1982, Samuels 1976, 1988, Lowen 
1995, Tubaki 1973). Rapid progress in molecular phylogenetic 
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methods contributed to a substantial revision of acremonium-like 
genera and offers an effective approach to identifying species 
into different species or complexes (Glenn 1996, Summerbell et 
al. 2011, 2018, Giraldo et al. 2015, 2017, Giraldo & Crous 2019, 
Hou et al. 2023). Glenn (1996) provided a preliminary study of the 
phylogenetic relationships of Acremonium and other genera based 
on SSU sequences for the first time, indicating that the genus 
Acremonium is highly polyphyletic and previously recognised 
representatives have affiliations to at least three groups in distinct 
orders of Ascomycetes, including Hypocreales, Microascales and 
Sordariales. Summerbell et al. (2011) provided a DNA-based 
phylogenetic overview for more than 100 Acremonium species 
and related or similar taxa available in pure culture and further 
demonstrated that acremonium-like species are phylogenetic 
divergent. Epitypification of the type species, Ac. alternatum, linked 
Acremonium s. str. to the Bionectriaceae (Summerbell et al. 2011). 
Summerbell et al. (2018) revealed that many previously reported 
isolates from clinical and contaminated food were misidentified due 
to the high plasticity of morphological characters, and that very 
few historic identifications of Acremonium spp. from substrates of 
practical interest could be trusted.

Ecological and economic significance

Considering the importance of this genus to the agro-forestry, 
industrial and pharmaceutical industries, a concerted effort must be 
undertaken to fully elucidate the species of economic importance.

Plant disease

Numerous economically significant plants are infected by 
Acremonium species. Acremonium strictum is pathogenic to many 
monocotyledonous and dicotyledonous crops, and because of its 
ubiquitous prevalence in soil, it has negatively impacted many 
agricultural plants including Gossypium, Triticum and Zea (El-Shafey 
et al. 1979, Rashed 2018). Infection by Ac. strictum is commonly 
systemic (Bandyopadhyay 1987), causing plant wilt and abnormal 
leaf desiccation on one side of the midrib, discoloured vasculature 
of the stalk near the soil line (Specht 1989), and vasculature of 
the plant forms orange, red and brown bundles, usually resulting 
in death (Rashed 2018). In Argentina (Forbes & Crespo 1982), the 
USA (Natural et al. 1982) and India (Bandyopadhyay 1987), Ac. 
strictum (syn. Sarocladium strictum) was reported as one of the 
most common agents of sorghum wilt disease, incorrectly attributed 
to Cephalosporium acremonium. Symptoms initially appear on 
the lower leaves of corn plants before spreading upward. This 
disease frequently causes chlorosis, leaf necrosis, stem necrosis 
without plant lodging, barren plant and wilting symptoms (Natural 
et al. 1982, Bandyopadhyay 1987, Tagne et al. 2002), resulting 
in small, shrunken grains with reduced weight, poor germination, 
weak seedlings, and a 50 % reduction in grain yield in affected 
plants (Natural et al. 1982, Bandyopadhyay 1987). Acremonium 
sclerotigenum causes “Acremonium brown spot” on bagged apple 
fruit in China (Li et al. 2014a), and has resulted in up to 30 % 
annual yield losses in Shandong Province from 2010 to 2012, 
resulting in significant economic losses (Li et al. 2014). Additionally, 
Acremonium spp. are notorious as endophytes in stock farming. 
Cattle, sheep and rabbits feeding on tall fescue grasses infected by 
acremonium-like endophytes may have reduced growth and milk 
production, and show intolerance to heat (Morgan-Jones & Gams 
1982, Hill et al. 1990, Putnam et al. 1991, Hoveland 1993).

Food spoilage

Acremonium is frequently isolated from a variety of foods, and it is 
well established as being among the food-spoiling microorganisms 
(Summerbell & Scott 2015). Numerous Acremonium species were 
isolated from food-related sources, such as Ac. atrogriseum from 
noodles, Ac. charticola from rotten apples, Ac. egyptiacum from stored 
wheat, Ac. sclerotigenum from fish meal and lenticel in apple peel 
(Gams 1971, Summerbell & Scott 2015). Some acremonioid fungi 
were also reported from corked wine, rice, spoiled bottles of mineral 
water, postharvest peaches, Brazil nut or stored apples (Gams 1971, 
Abdel-Hafez 1987, Fujikawa 1997, Fernández-Trujillo 1997, Alvarez-
Rodríguez 2002). However, considering many Acremonium species 
are also plant endophytes, those species reported from food sources 
are perhaps the components of plant stems contacted with food.

Clinical pathogen

Over 300 clinical cases have been linked to Acremonium-related 
species within various reports (Pérez-Cantero 2020). Human clinical 
cases involving Acremonium species, particularly Ac. kiliense 
(currently Sarocladium kiliense), Ac. egyptiacum and Ac. strictum, 
are frequently reported, mainly associated with mycetomas, and 
other serious lung or catheter-related bloodstream infections 
(Negroni et al. 2006, Geyer et al. 2006, Virgilio et al. 2015, Etienne 
et al. 2016, Niknam et al. 2017). Onychomycoses, or following 
traumatic inoculation, infections resulting in fungemia, ocular 
infections (keratitis), cutaneous and subcutaneous infections and 
mycetoma have also been commonly detected (Gupta et al. 2000a, 
Perdomo 2011, Summerbell et al. 2018, Pérez-Cantero & Guarro 
2020). Locally invasive infections such as arthritis, osteomyelitis, 
peritonitis, sinusitis, and less frequently central nervous system 
infections have also been frequently reported in recent years (Guarro 
et al. 1997, 2009, De Hoog et al. 2000, Gupta et al. 2000a, Das et 
al. 2010, Pérez-Cantero & Guarro 2020). The most common clinical 
manifestation caused by infections of acremonium-related species is 
fungaemia (Pérez-Cantero 2020). Chile and Colombia reported an 
outbreak of Ac. kiliense (Sarocladium kiliense) bloodstream infection 
in more than 50 oncology patients who received contaminated anti-
nausea medication during 2013–2014 (Etienne et al. 2016).

Cephalosporin producer

Cephalosporins were originally discovered from the fungus 
Cephalosporium acremonium isolated from seawater near sewage. 
This fungus was later reclassified as Acremonium chrysogenum 
(Lemke & Brannon 1972) and more recently as Ac. strictum. 
Cephalosporins together with penicillins belong to the family of 
beta-lactam antibiotics, which are among the most widely used anti-
infectious drugs (Tollnick et al. 2004). In industry, cephalosporin C 
(CPC) as one of the metabolites of Ac. chrysogenum, is the major 
resource for the production of 7-amino cephalosporanic acid (7-
ACA), an important intermediary in the synthesis of many first-
line anti-infectious cephalosporins-antibiotics (Hu & Zhu 2016). 
Currently, genetic engineering on Acremonium spp. has developed 
into a potent technique for manipulating antibiotic-producing strains 
and obtaining mutant strains with high yields (Hu & Zhu 2016).

Research interests

There are 1 060 publications and 17 481 citations from 2011–2021 
in the Web of Science (Fig. 65), with the top 10 most cited articles 
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listed in Table 43. Most of the publications focused on secondary 
metabolites of Acremonium species (in vitro, cercosporin toxin 
biosynthesis, host-species interaction), as well as taxonomy.

Metabolites
Acremonium species are rich sources of novel bioactive secondary 
metabolites and over 350 metabolites with a wide range of 
biological activities have been obtained from Acremonium fungi. 
The majority of these metabolites are isolated from saprobic 
species; however, an increasing number of interesting metabolites 
have been reported from endophytic or marine-derived species 
(Tian et al. 2017). For example, Ac. chrysogenum (syn. 
Cephalosporium acremonium) derived from the sea, produces the 

beta-lactam antibiotic cephalosporins that have been marketed 
(Hamilton-Miller 2000). Acremonium lolii produces tremorgenic 
alkaloids that cause ryegrass staggers (a neurological disorder) 
in livestock grazing on this endophyte-infected perennial ryegrass 
(Lolium perenne) (Fletcher & Harvey 1981, Rowan 1993, 
Ball et al. 1995). These metabolites display a wide range of 
biological activities including antimicrobial, cytotoxic, anti-tumour, 
immunosuppressive, antioxidant, anti-inflammatory, antimalarial, 
phytotoxic, tremorgenic, antiviral, neuritogenic, insecticidal, 
enzymes-inhibiting and other bioactivities that can be used for 
the development of pharmaceuticals, agrochemicals and food 
additives (Tian et al. 2017). Additionally, genetic engineering, 
omics studies, and molecular breeding have been widely applied to 

Fig. 65. Trends in research of Acremonium in the period 2011–2021.

Table 43. Top 10 cited articles related to Acremonium published in the period 2011–2021.
Rank Article title No. of citations References
1 Regulation of fungal secondary metabolism 569 Brakhage (2013)
2 Characterization of the fungal microbiota (mycobiome) in healthy and dandruff-

afflicted human scalps
250 Park et al. (2012b)

3 Microbial degradation and deterioration of polyethylene - A review 231 Restrepo-Florez et al. (2014)
4 Associations between fungal species and water-damaged building materials 213 Andersen et al. (2011)
5 Acremonium phylogenetic overview and revision of Gliomastix, Sarocladium, 

and Trichothecium
173 Summerbell et al. (2011)

6 An overview of the taxonomy, phylogeny, and typification of nectriaceous fungi 
in Cosmospora, Acremonium, Fusarium, Stilbella, and Volutella

165 Grafenhan et al. (2011)

7 Plants and endophytes: equal partners in secondary metabolite production? 139 Ludwig-Muller et al. (2015)
8 The diversity of ant microbial secondary metabolites produced by fungal 

endophytes: an interdisciplinary perspective
132 Mousa et al. (2013)

9 Fungal community composition in soils subjected to long-term chemical 
fertilization is most influenced by the type of organic matter

124 Sun et al. (2016)

10 Genera in Bionectriaceae, Hypocreaceae, and Nectriaceae (Hypocreales) 
proposed for acceptance or rejection

93 Rossman et al. (2013)
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industrial strains of Acremonium to better serve the pharmaceutical 
industry (Hu & Zhu 2016). Therefore, further exploration of novel 
secondary metabolites from Acremonium with distinctive structural 
characteristics and various biological activities will be important 
and should lead to the development of further pharmaceuticals, 
agrochemicals and food additives.

Taxonomy and phylogeny
The first systematic phylogenetic analysis of Acremonium and its 
related taxa was carried out by Summerbell et al. (2011) based on 
SSU and LSU sequences. A phylogenetic overview was provided 
for these morphologically simple fungi and most Acremonium 
species examined clustered within Hypocreales, which are divided 
into two major clades and clustered with diverse known genera. 
The other species fell into four groups across different classes 
of Ascomycota (Coniochaetales, Microascales, Sordariales and 
Cephalothecaceae), showing them to be highly polyphyletic 
(Summerbell et al. 2011). Therefore, the phylogeny and taxonomic 
limits of these taxa await to be resolved with additional effective 
genes and more strains. Giraldo & Crous (2018) revised the 
phylogenetical relationship of Acremonium species and other 
genera in Plectosphaerellaceae based on ITS, LSU, rpb2, and tef1 
sequences, revealing that rpb2 and tef1 sequences are possible 
candidates for generic species delimitation in Acremonium. 
All previous studies underlined the fact that the taxonomy 
and phylogeny of a great number of genera and families with 
acremonium-like morphs remain undefined (Hou et al. 2023).

Author: L. Hou

38. Chaetomium Fr., Syst. Mycol. 3(1): 253. 1829.

Type species: Chaetomium globosum Kunze

Classification: Ascomycota, Pezizomycotina, Sordariomycetes, 
Sordariales, Chaetomiaceae.

Background

Chaetomium was assumed to be one of the largest genera of 
saprobic ascomycetes with more than 400 species epithets listed 
in Index Fungorum (2022). After being reduced to synonymy and 
transferred to other genera based on phylogenetic analysis, only 42 
species are now accepted in the monophyletic genus (von Arx et al. 
1986, Wang et al. 2016h, i, Zhang et al. 2017a, Raza et al. 2019).

Chaetomium species are cosmopolitan and can be readily 
isolated from a great variety of substrates in different environments, 
such as terrestrial soils, dung, seed, various other plant materials, 
air, paper, textiles, water-damaged building materials, bird feathers, 
cheese (Ames 1963, von Arx et al. 1986, Kopytina 2005, Andersen 
et al. 2011, Yamada et al. 2012, Pangallo et al. 2014, Barret et al. 
2015, Wang et al. 2016h, i, Nelson 2018), plant debris submerged 
in stream water (Luo et al. 2019), arthropods such as Armadillidium 
vulgare (Chen et al. 2015a, b), lichens as endolichenic fungi (Chen 
et al. 2013b), guts of marine fish (Yamada et al. 2011, Yan et al. 
2014), or even in the troposphere over the Pacific Ocean (Smith et 
al. 2012). They are also common endophytes of different species of 
plants (Momesso et al. 2008, Gutierrez et al. 2012, Li et al. 2014d, 
Yadav et al. 2014, Fatima et al. 2016).

Chaetomium was introduced by Kunze based on Ch. 
globosum (Kunze & Schmidt 1817) with ostiolate sporocarps, 
membranous wall with dark hairs, and dark spores, but the origin 

of the spores was initially uncertain. Fries (1849) first discerned 
the asci which were evanescent and usually deliquesced before 
ascospores were mature. The first monograph of Chaetomium 
was published by Zopf (1881) who noted the presence of germ 
pores in ascospores and described the species under two 
subgenera; subgenus Chaetomium with ostiolate ascomata and 
subgenus Chaetomidium with non-ostiolate ascomata. Saccardo 
(1882) elevated subgenus Chaetomidium to genus and this was 
followed by subsequent researchers (Bainier 1910, Von Arx 1975, 
Von Arx et al. 1988). After Zopf (1881), more than 300 species 
were described and the morphology of ascomatal hairs was used 
as the important character for species identification (Chivers 
1915, Skolko & Groves 1953, Udagawa 1960, Ames 1963, Seth 
1970). The taxonomic value of ascomatal hair characteristics 
was argued (Hawksworth & Wells 1973, Dreyfuss 1976, Von 
Arx et al. 1984). Von Arx et al. (1986) re-described Chaetomium 
as having ostiolate ascomata with a membranous perithecial 
wall covered by relatively well-developed hairs, producing 
fasciculate and evanescent asci and single-celled, smooth and 
pigmented ascospores with germ pores. They emphasised on the 
morphology of asci, ascospores, germ pores, and the structure 
of the ascomata wall, but paid less attention to the morphology 
of ascomatal hairs, only accepting 91 of 310 described species 
(Von Arx et al. 1986). However, molecular evidence suggested 
the polyphyly of Chaetomium sensu Von Arx et al. (Greif et 
al. 2009, Asgari & Zare 2011, Zhang et al. 2017a, Wang et al. 
2016h). Phylogeny inference based on six loci (ITS, LSU, tub, 
rpb1, rpb2, tef1) resulted in the establishment of Chaetomium 
s. str. (Wang et al. 2016h, i). Three species of Chaetomidium, 
including the type Chd. fimeti, were found to be closely related to 
the type species of Chaetomium; the genus Chaetomidium was 
then rejected and its three non-ostiolate species were transferred 
into Chaetomium (Wang et al. 2016h, i). The definition of 
Chaetomium is now modified as “ascomata globose, ellipsoid to 
ovate or obovate, ostiolate or non-ostiolate in a few species, with 
walls usually composed of textura intricata or epidermoidea in 
surface view, or of textura angularis in a few species; ascomatal 
hairs hypha-like, flexuous, undulate, coiled or dichotomously 
branched, with verrucose surface, or smooth in a few species; 
asci clavate or fusiform with 8 biseriate or irregularly arranged 
ascospores, evanescent; ascospores limoniform to globose, or 
irregular in a few species, bilaterally flattened, usually more than 
7 μm in length; asexual morphs, if present, acremonium-like.” 
Based on the study of ex-type cultures, many chaetomium-like 
species are now classified in several other existent or newly-
proposed genera, such as Amesia, Arcopilus, Arxotrichum, 
Botryotrichum, Brachychaeta, Chrysanthotrichum, Chrysocorona, 
Collariella, Dichotomopilus, Floropilus, Humicola, Ovatospora, 
Parachaetomium, Subramaniula, and Trichocladium (Crous et al. 
2018, Wang et al. 2016h, 2019e, Mehrabi et al. 2020).

Ecological and economic significance
Degradation and enzymes

The genus is well-known as decomposers of organic materials, 
particularly cellulose-rich ones, working together with other fungi 
and bacteria, they play a role in carbon turnover (Harreither et al. 
2011, Eichorst & Kuske 2012, Glass et al. 2013, Banerjee et al. 
2016). Chaetomium globosum also showed potential in degrading 
plastics such as poly(ε-caprolactone) (PCL), polyvinyl chloride 
(PVC), polyethylene adipate (PEA), poly(β-propiolactone) (PPA) 
and polybutylene adipate (PBA) (Ghosh et al. 2013, Vivi et al. 
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2019). Because of their capacity to degrade organic materials, 
Chaetomium species have the potential in biodegradation of waste 
plant material and other industrial applications (Umikalsom et 
al. 1998, El-Gindy et al. 2003, Ahammed et al. 2008, Prokhorov 
& Linnik 2011, Longoni et al. 2012, Singh et al. 2013, Kim et al. 
2016, Hu et al. 2018b, Yadav et al. 2019). On the other hand, 
biodegradation by Chaetomium species can damage cellulose-
rich materials like books, military goods, archaeological relics and 
building materials (Ames 1963, Andersen et al. 2011, Wang et al. 
2016h, Abdel-Rahim et al. 2018, Abdel-Azeem et al. 2019).

Metabolites and bioactivity

Chaetomium is a rich source of novel secondary metabolites 
with various biological activities (Zhang et al. 2012b). Over 300 
secondary metabolites have been discovered from Chaetomium 
species, with most from Ch. globosum obtained from various 
environments (Momesso et al. 2008, Yamada et al. 2011, Gutierrez 
et al. 2012, Zhang et al. 2012b, Yan et al. 2014, Fatima et al. 2016, 
Liang et al. 2018b). The metabolites can be chaetoglobosins, 
epipolythiodioxopiperazines, azaphilones, xanthones, 
anthraquinones, chromones, depsidones, terpenoids, steroids, etc. 
(Zhang et al. 2012b, Fatima et al. 2016, Liang et al. 2018b). Most 
of these metabolites exhibit bioactivity and are of considerable 
importance as new lead compounds for medicine as well as for 
plant protection: cytotoxic or anticancer Sekita et al. 1973, Ge et 
al. 2008, Kharwar et al. 2011, Yamada et al. 2011, Gutierrez et 
al. 2012, Awad et al. 2013, Li et al. 2013c, Li et al. 2014d, Hani & 
Eman 2015, Wang et al. 2015a, Xu et al. 2015, Wang et al. 2017b, 
Wang et al. 2018g, Yang et al. 2018a), antioxidant (Huang et al. 
2007, Ye et al. 2013, Yadav et al. 2014); anti-bacterial (Ge et al. 
2011, Gond et al. 2012, Casella et al. 2013, Talontsi et al. 2013), 
some show anti-bacterial activity against drug-resistant bacterial 
pathogens such as methicillin-resistant Staphylococcus aureus 
(Wu et al. 2013a, Gao et al. 2019, Garcia et al. 2021b), which 
may contribute to the development of new anti-bacterial agents 
against drug-resistant microbial pathogens; antimalarial (Kharwar 
et al. 2011, Zhang et al. 2012b); antifungal with potential in plant 
disease biocontrol (Andrews 1992, Dipietro et al. 1992, Vilich et al. 
1998, Istifadah & McGee 2006, Tarafdar & Gharu 2006, Qin et al. 
2009, González & Tello 2011, Li HQ, Li et al. 2011b, Vujanovic et al. 
2012, Wang et al. 2012g, Zhang et al. 2013a, b, Zhang et al. 2014b, 
Kawasaki et al. 2016, Larran et al. 2016); nematicidal with potential 
in biocontrol of nematode (Hu et al. 2013b); and enzyme inhibitors 
(Selim et al. 2014).

Common indoor contaminants

Chaetomium is a common indoor fungus. Six species have been 
detected in the indoor environments, among them, Ch. globosum 
is the most abundant, followed by Ch. cochliodes, Ch. elatum, Ch. 
coarctatum, Ch. cervicicola and Ch. testifimeti (Wang et al. 2016h). 
They can be in the air or on various kinds of building materials 
like concrete, wood, plaster, gypsum, wallpaper, glass fibre 
and plywood (Andersen et al. 2011, Wang et al. 2016c). These 
moulds not only damage building material but produce mycotoxins 
(chaetoglobosins), which may cause skin irritation and non-specific 
hypersensitivity reactions or even contribute to the symptoms of 
rhinitis, asthma and other health problems (Griffin et al. 1982, 
Vesper et al. 2007, Apetrei et al. 2009, Polizzi et al. 2009, Mason et 
al. 2010, Miller & McMullin 2014, Abdel-Rahim et al. 2018).

Human infection

Chaetomium globosum is one of the causal agents of human 
onychomycosis (Naidu et al. 1991, Stiller et al. 1992, Aspiroz et 
al. 2007, Latha et al. 2010, Tullio et al. 2010, Hubka et al. 2011, 
Hwang et al. 2012, Lagacé & Cellier 2012, Kim et al. 2013b) and 
skin infection of other animals (Sugiyama et al. 2008). However, 
whether this species and its close relatives can cause systemic 
and deep infections remains controversial (Hoppin et al. 1983, 
Anandi et al. 1989, Abbott et al. 1995, Yeghen et al. 1996, Lesire 
et al. 1999, Barron et al. 2003, Paterson et al. 2005, De Hoog 
et al. 2013). A single isolate from a clinical case of fatal brain 
abscess was originally identified as Ch. globosum (Anandi et al. 
1989). Abbott et al. (1995) later re-classified this isolate as Ch. 
atrobrunneum (syn. Amesia atrobrunnea) based on its morphology 
and its ability to grow at 42 °C, and they suggested that infections 
by Ch. globosum were confined to cooler areas of the human body 
due to its restricted growth at 37 °C. The growth response of a 
fungal species at 37 °C is used as an indicator of its potential for 
internal infection in humans (Abbott et al. 1995, Barron et al. 2003). 
Correct identification of clinical fungal isolates is very important. 
More research is required to clarify the adaptation of Chaetomium 
species to human bodies.

Plant disease

Recently, a few cases of plant diseases were reported to be caused 
by Chaetomium globosum. At the University of Tennessee, leaf spots 
of hemp (Cannabis sativa) were found in the greenhouse, which 
began as chlorotic lesions near the margins and then progressed to 
necrotic lesions with chlorotic halos (Chaffin et al. 2020). In another 
case (Zhu et al. 2020a), leaf blight of cabbage (Brassica oleracea 
var. capitata) was found in greenhouses of the Chinese Academy of 
Agricultural Sciences (Beijing). The disease showed the symptoms 
of leaf wilt and can make the plants gradually die. It is uncertain 
whether the infection by Ch. globosum only occurs in controlled 
environments like greenhouses or not.

Research interests

There are 1 154 publications and 16 519 citations from 2011–2021 
in the Web of Science (Fig. 66), with the top 10 most cited articles 
listed in Table 44. The majority of the publications focused on their 
ecology and ecological function (indoor contamination, human 
infection), novel metabolites they produce and their bioactivity as 
well as taxonomy.

Exploring more novel metabolites with different 
bioactivities
In addition to isolating new metabolites produced by Chaetomium 
species from different or special environments, metabolites were 
also induced in laboratories by co-culturing with some other 
organisms (Wang et al. 2018d), in the presence of some special 
additive (Ancheeva et al. 2018), or by gene engineering or genetic 
manipulation (Nakazawa et al. 2013, Yan et al. 2014) to activate the 
silent or less-active biosynthetic pathways in the fungus.
 

Genetics and biology
Chaetomium globosum, the type species of the genus, is often used 
as a representative species to investigate the general genetics and 
biology of Ascomycota (Clutterbuck 2011, Jedd 2011, Muszewska 
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et al. 2011). This species has been whole-genome sequenced 
(Cuomo et al. 2015), which will help to better understand this 
fungus as well as the whole Ascomycota.

Taxonomy and phylogeny
Chaetomium has been phylogenetically revised, and tub is proposed 
as a secondary molecular marker for species delimitation (Wang et 
al. 2016h, i). There are several Chaetomium isolates in the literature 
which remain to be identified at the species level (Talontsi et al. 
2013, Wang et al. 2015a, 2017b, Ancheeva et al. 2018). A review of 
“Chaetomium endophytes: a repository of pharmacologically active 
metabolites” covered 71 published articles, of which, however, 31 
kept their isolates as poorly-identified “Chaetomium sp.” (Fatima et 
al. 2016). Proper identification of species will help to understand 
the potential of Chaetomium species in producing metabolites in 

association with its phylogeny and evolution. For example, Rank 
et al. (2011) noticed that in Chaetomium s. lat., Ch. cellulolyticum, 
Ch. longicolleum, Ch. malaysiense and Ch. virescens were able 
to produce O-methylsterigmatocystin, the immediate precursor 
for aflatoxin. But these species currently belong to Humicola and 
Collariella. It is necessary to screen other species in these two 
genera for their potential to produce this mycotoxin. In addition, 
there are still some chaetomium-like species that remain to 
ascertain their place in the family.

Author: X.W. Wang
39. Paecilomyces Bainier, Bull. Soc. Mycol. France. 23(1): 
26. 1907.

Type species: Paecilomyces variotii Banier

Fig. 66. Trends in research of Chaetomium in the period 2011–2021.

Table 44. Top 10 cited articles related to Chaetomium published in the period 2011–2021.
Rank Article title No. of citations References
1 Network analysis reveals functional redundancy and keystone taxa amongst bacterial 

and fungal communities during organic matter decomposition in an arable soil
318 Banerjee et al. (2016)

2 Anticancer compounds derived from fungal endophytes: their importance and future 
challenges

313 Kharwar et al. (2011)

3 Associations between fungal species and water-damaged building materials 213 Andersen et al. (2011)
4 Plant cell wall deconstruction by ascomycete fungi 203 Glass et al. (2013)
5 Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus 

and human parainfluenza virus type 3
192 Gaikwad et al. (2013)

6 Endophytic fungi from medicinal plants: a treasure hunt for bioactive metabolites 154 Kaul et al. (2012)
7 The endophytic mycota associated with Vitis vinifera in central Spain 123 González & Tello (2011)
8 Common foliar fungi of Populus trichocarpa modify Melampsora rust disease severity 97 Busby et al. (2016)
9 Chemical and bioactive diversities of the genus Chaetomium secondary metabolites 92 Zhang et al. (2012)
10 Illumina MiSeq investigations on the changes of microbial community in the Fusarium 

oxysporum f. sp. cubense infected soil during and after reductive soil disinfestation
89 Huang et al. (2015b)
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Classification: Ascomycota, Pezizomycotina, Eurotiomycetes, 
Eurotiales, Thermoascaceae.

Background

In 1907, Bainier introduced the genus Paecilomyces with Paec. 
variotii as the type species. In the century after this introduction, 
several other species were described or combined in the genus and 
the generic concept changed over time. For example, the monograph 
of Brown & Smith (1957) accepted 23 species and 10 years later, 
Onions & Barron (1967) broadened the concept and included 
species having orthotropic awl-shaped phialides. In time, the genus 
Paecilomyces became a heterogeneous assemblage of species with 
diverse ecology. Samson (1974) noted this diversity and restricted 
Paecilomyces to species producing verticillate conidiophores, 
bearing divergent whorls of branches and having phialides that 
consist of a cylindrical or swollen basal portion, tapering abruptly 
into a long distinct neck. Based on conidial colours and growth 
temperatures, he introduced section Paecilomyces (incl. the generic 
type Paec. variotii) for mesophilic, thermotolerant and thermophilic 
species that produce yellow brown to brownish-coloured conidia. 
Section Isarioidea contained mesophiles and species with purple, 
pink, green or yellow conidial colours. Certain section Paecilomyces 
species can produce a sexual morph and these were classified as 
Byssochlamys, Talaromyces and Thermoascus.

Using 18S rDNA sequences, Luangsa-Ard et al. (2004) 
showed that Paecilomyces sensu Samson (1974) is polyphyletic 
across two subclasses, Sordariomycetidae and Eurotiomycetidae. 
Paecilomyces variotii, and its thermophilic relatives, belong in 
the Eurotiales. Not all of Samson’s (1974) section Paecilomyces 
species are nowadays classified as Paecilomyces. For example, 
Talaromyces (Paecilomyces) byssochlamydoides is classified in 
the phenotypically related genus Rasamsonia and Talaromyces 
(Paecilomyces) leycettanus is combined in the recently introduced 
genus Evansstolkia (as E. leycettana) (Houbraken et al. 2012, 2020). 
Other species not belonging to Paecilomyces are, for example, 
Purpureocillium lilacinum (syn. Paec. lilacinus), Keithomyces 
carneus (syn. Paec. carneus), Marquandomyces marquandii (syn. 
Paec. marquandii) but the old species names are still used in recent 
literature. In the dual nomenclature era, the ascomycete genus 
Byssochlamys was linked to Paecilomyces s. str. and Samson et al. 
(2009) accepted five Byssochlamys and four Paecilomyces species. 
The asexual species Paec. fulvus, Paec. niveus, Paec. variotii and 
Paec. zollerniae were linked to the sexual species B. fulva, B. nivea, 
B. spectabilis and B. zollerniae, respectively. With the introduction 
of a single name nomenclature system, Paecilomyces got priority 
over Byssochlamys. Currently, Paecilomyces includes 12 accepted 
species: Paec. brunneolus, Paec. clematidis, Paec. formosus, Paec. 
lagunculariae, Paec. dactylethromorphus, Paec. divaricatus, Paec. 
fulvus, Paec. niveus, Paec. penicilliformis, Paec. tabacinus, Paec. 
variotii and Paec. zollerniae (Houbraken et al. 2020, Crous et al. 
2020b, Spetik et al. 2022).

Paecilomyces variotii
The best-known and most studied species of the genus is Paec. 
variotii. Due to taxonomic changes and the move to a single 
name nomenclature system, Paec. variotii can be found in the 
literature under multiple synonym names. The fungus was first 
described by Bainier, who dedicated the name to the French 
doctor and paediatrician Dr Variot (Bainier 1907). Two years 
later, the genus Byssochlamys was described to accommodate a 
sexually reproducing species B. nivea (Westling 1909). In 1994, 

a new sexually reproducing species, Talaromyces spectabilis 
with a Paecilomyces asexual morph was described (Udagawa & 
Suzuki 1994). Later, morphological observations showed that this 
fungus had a Byssochlamys morph instead of Talaromyces sexual 
morph (Houbraken et al. 2006). Molecular data and the discovery 
of its heterothallic sexual life cycle revealed that B. spectabilis is 
conspecific with Paec. variotii and therefore the same species as 
T. spectabilis (Houbraken et al. 2008, Samson et al. 2009). After 
the abolition of the dual nomenclature, Paecilomyces has priority, 
hence the name Paec. variotii should be used (Hawksworth et al. 
2011, Rossman et al. 2016).

Peacilomyces variotii is a common cosmopolitan filamentous 
fungus found in soil, indoor environments, plants, animals, food 
and beverages, and can also be an opportunistic human pathogen 
(Houbraken et al. 2008, 2010, Pitt & Hocking 2009, Samson et al. 
2019). It is a thermotolerant species, able to grow at temperatures 
up to 50 °C (Samson et al. 2019). In addition, it can grow at low 
oxygen concentrations and in the presence of preservatives. 
Therefore, this fungus is a spoilage organism of many food 
products. It is considered a heat-resistant mould because of its 
heat-resistant ascospores (Houbraken et al. 2008). Consequently, 
Paec. variotii can spoil heat-treated products or resources, such 
as pectin, canned fruits, fruit juices and non-carbonated sodas. 
However, it is also able to spoil a wide range of other products 
like margarine and bakery products, which are more likely to be 
contaminated through airborne conidia than by ascospores. The 
fungus can produce viriditoxin of which the biosynthetic gene 
cluster was recently described (Urquhart et al. 2019), and which 
was shown to be toxic to mice (Lillehoj & Ciegler 1972). Viriditoxin 
has anti-bacterial activity by inhibiting the cell division protein FtsZ 
(Wang et al. 2003), while it also has cytotoxic activity against cancer 
cells (Kundu et al. 2014, Park et al. 2015). Whether viriditoxin is 
also produced in foodstuffs is unknown and the significance for 
food safety needs to be studied.

Three different spore types can be formed by Paec. variotii. 
Asexually, it produces abundant conidia and chlamydospores are 
usually present in colonies. Conidia are smooth and ellipsoid with 
usually flat apical edges. When two compatible mating strains 
encounter each other, they can mate and reproduce sexually through 
ascospore formation (Fig. 67). Although the heat resistance of Paec. 
variotii ascospores has not been studied in detail, there are indications 
that they can survive heat treatments of 85 °C for more than an hour 
(Houbraken et al. 2006). This makes them potentially more resistant 
than ascospores of the related heat-resistant Paec. niveus and Paec. 
fulvus (Beuchat & Rice 1979). Chlamydospores and ascospores of 
Paec. variotii are considered more localised within the mycelium and 
less prone to distribution than its conidia. Ten strains of Paec. variotii 
showed notable heterogeneity in conidial spore size distribution and 
heat resistance (Van den Brule et al. 2020a, b).

The full genome sequences of Paec. variotii strains CBS 101075 
and CBS 144490 are available at the Joint Genome Institute (JGI, 
jgi.doe.gov). Authors found evidence for an active repeat induced 
point mutation (RIP) system for the first time in an Eurotiales species 
(Urquhart et al. 2018). It is thought that RIP is a fungal specific 
protection mechanism against the deleterious effects of transposons 
(Hane et al. 2015). Recently, a large transposable element of 
approximately 85 kbp was identified in some, but not all, Paec. 
variotii strains (Urquhart et al. 2022). Genes located in this cluster 
are involved in stress resistance against the metals cadmium, lead, 
zinc, copper and arsenic. The genome of another strain was also 
sequenced under the name Paec. variotii No. 5 (Oka et al. 2014) but 
was reclassified as Paec. formosus (Urquhart et al. 2018).
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Ecological and economic significance

Biotechnology
Paecilomyces variotii is known to produce metabolites (Dai et al. 
2020; many metabolites mentioned in this publication are related 
to species that do not belong to the genus Paecilomyces, such as 
Purpureocillium lilacinus) and enzymes (Herrera Bravo de Laguna 
et al. 2015). Paecilomyces variotii s. lat. and Paec. fulvus are 
reported as producers of the mycotoxin patulin (Escoula 1975a, b, 
Percebois et al. 1975, Rice et al. 1977). However, in the revision of 
the genus, Samson et al. (2009) showed that patulin production is 
restricted to Paec. dactylethromorphus and Paec. niveus.

Ecology
Paecilomyces species are ubiquitous, saprobic and isolated from 
soil, decaying vegetation, wood, acetic acid, air, human and extreme 
environments. Species can grow under extreme conditions, such 
as high temperatures (thermotolerant), low oxygen levels, low pH 
levels and high concentrations of metals.

Clinical impact
Paecilomyces species are potential human pathogens in 
immunocompromised individuals with Paec. variotii and Paec. 
formosus most frequently reported from clinical samples 
(Houbraken et al. 2010, Sprute et al. 2021). The genus may also 
be a source of allergens (Pfeiffer et al. 2021).

Plant diseases and food spoilage
Paecilomyces species can be causal agents of tree dieback 
diseases, such as pistachio dieback in Iran (Heidarian et al. 
2018). They can also cause economic losses due to spoilage of 
(pasteurised) foods, such as margarine, fruit juices and rye bread. 
Paecilomyces niveus (as Byssochlamys nivea) was described in 
pasteurised strawberries in 1933 as the first example of a so-called 
heat-resistant fungus.

Heat resistance and stress resistance
Several Paecilomyces species produce smooth-walled ascospores 
that can withstand high temperatures (e.g., pasteurisation). 
Paecilomyces niveus and Paec. fulvus produce these spores in 
a homothallic fashion, while Paec. variotii produces heterothallic 
ascospores. These ascospores (e.g., Beuchat 1979) have been 
compared to other heat-resistant fungi within Eurotiales as within the 
genera Talaromyces, Aspergillus (mostly the Neosartorya morph), 
Thermoascus and Hamigera (Wyatt et al. 2015, Dijksterhuis 2019). 
Ascospores of Paec. niveus are relatively less resistant to sanitisers 
compared to other heat-resistant fungi (Dijksterhuis et al. 2018). 
The ascospores of Paec. variotii are potentially more resistant than 
ascospores of the related heat-resistant moulds Paec. niveus and 
Paec. fulvus (Beuchat & Rice 1979).

Entomopathogenicity
Most of this literature is related to the entomopathogen Purpureocillium 

Fig. 67. Sexual reproduction of Paec. variotii (Van den Brule 2022). A. Two strains with compatible mating types, DTO 217-A2 and DTO 212-C5 (grown 
for 6 wk on potato dextrose agar at 30 °C). B. Magnification of the area between the two strains by stereo microscopy. Asci form between the colonies 
resulting in typically white ascomata. C. Light microscopy of asci, each containing 8 ascospores. D. Cryo-SEM image of grouped asci. E. Cryo-SEM image 
of ascogenous cell (1) forming young asci; (2) the membrane of the asci shrinks when asci mature, revealing its individual ascospores (3). Scale bars: C = 
10 µm; D = 100 µm; E = 5 µm.
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lilacinus formerly known as Peac. lilacinus. In addition, the 
entomopathogenic species Paec. farinosus and Peac. fumosoroseus 
have been reclassified as Cordyceps farinosa and C. fumosorosea 
(Kepler et al. 2017) and literature using the old nomenclature will add 
to a false number of citations to Paecilomyces.

Research interests

There are 1 312 publications and 16 324 citations from 2011–2021 
in the Web of Science (Fig. 68), with the top 10 most cited articles 

listed in Table 45. Most publications are related to biotechnology 
and food science (enzyme production and food spoilage).

Taxonomy and phylogeny
The taxonomy of Paecilomyces is well-studied and 12 species are 
currently accepted in the genus (Crous et al. 2020b, Houbraken et 
al. 2020, Spetik et al. 2022). These species can be identified using 
partial beta-tubulin (BenA) or calmodulin (CaM) gene sequences. 
Phylogenetic analysis showed that Paec. formosus consists of 
three clades and may represent a species complex. The taxonomic 

Fig. 68. Trends in research of Paecilomyces in the period 2011–2021.

Table 45. Top 10 cited articles related to Paecilomyces published in the period 2011–2021.
Rank Article title No. of citations References
1 Phylogeny of Penicillium and the segregation of Trichocomaceae into three 

families
316 Houbraken & Samson (2011)

2 ESCMID and ECMM joint guidelines on diagnosis and management of 
hyalohyphomycosis: Fusarium spp., Scedosporium spp. and others

271 Tortorano et al. (2014)

3 GH11 xylanases: Structure/function/properties relationships and applications 251 Paes et al. (2012)
4 Endophytic fungal association via gibberellins and indole acetic acid can 

improve plant growth under abiotic stress: an example of Paecilomyces 
formosus LHL10

162 Kahn et al. (2012)

5 Rhizosphere bacteria and fungi associated with plant growth in soils of three 
replanted apple orchards

130 Franke-Whittle et al. (2015)

6 Classification of Aspergillus, Penicillium, Talaromyces and related genera 
(Eurotiales): An overview of families, genera, subgenera, sections, series and 
species

126 Houbraken et al. (2020)

7 Plant-extract-assisted green synthesis of silver nanoparticles using Origanum 
vulgare L. extract and their microbicidal activities

109 Shaik et al. (2018)

8 Comparison of in vitro antifungal activities of Efinaconazole and currently 
available antifungal agents against a variety of pathogenic fungi associated with 
onychomycosis

106 Jo et al. (2013)

9 Bacterial and fungal taxon changes in soil microbial community composition 
induced by short-term biochar amendment in red oxidized loam soil

83 Hu et al. (2014a)

10 Filamentous fungal diversity and community structure associated with the solid 
state fermentation of Chinese Maotai-flavor liquor

81 Chen et al. (2014a)
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status of Paec. formosus needs attention because the name is 
based on the invalidly described species Monilia formosa (nom. 
inval., Art. 36.1) (Houbraken et al. 2020).

Authors: T. van den Brule, J. Houbraken and J. Dijksterhuis

40. Trichosporon Behrend (1890) Berliner Klin. Wochenschr. 
27: 464. 1890; and related trichosporonoid yeasts: Apiotrichum, 
Cutaneotrichosporon, Effuseotrichosporon, Haglerozyma, and 
Pascua

Type species: Trichosporon ovoides Behrend
Apiotrichum porosum Stautz
Cutaneotrichosporon cutaneum (Beurmann et al.) X.Z. Liu et al.
Effuseotrichosporon vanderwaltii (Motaung et al.) A.M. Yurkov et al.
Haglerozyma chiarellii (Pagnocca et al.) A. M. Yurkov et al.
Pascua guehoae (Middelhoven et al.) Takashima et al.

Classification: Basidiomycota, Agaricomycotina, Tremellomycetes, 
Trichosporonales, Trichosporonaceae.

Background

The genus Trichosporon has a secular and controversial history. 
The first description of its microscopic structures was made by 
visualisation of nodules causing infection of hair of a wig, which 
could not be removed by the usual cleaning process (Beigel 1865). 
On that occasion, based on findings and comments of authorities 
on microscopic fungal taxonomy, the organism was found to be 
related to a new species Pleurococcus beigelii (Rabenhorst 1867). 
Some original specimens were sent to the Pharmaceutical Institute 
of the Friedrich Schiller University Jena (Germany), and despite a 
good morphological description (Beigel 1869), no material is known 
to be preserved. In 1890, the generic name Trichosporon [from 
the Greek: Trichos (hair) and sporon (spores)] was introduced by 

Behrend to characterise a similar organism as observed by Beigel 
and that caused white piedra on a man’s beard (Behrend 1890). 
This organism was named Trichosporon ovoides, but no material 
was preserved. Later, European and Colombian white piedra 
specimens yielded two new Trichosporon species, Tr. ovale and Tr. 
giganteum (Unna 1896). Vuillemin (1902) transferred Pleu. beigelii 
to Trichosporon, considering all initial taxa to represent Tr. beigelii 
with the previous ones being a variant of the species described 
by Küchenmeister & Rabenhorst. It has been suggested that the 
material analysed by Vuillemin that led to the first reclassification 
of these isolates originated from a case of black piedra (piedra 
hortae), but no proof of this hypothesis was provided (Guého et al. 
1992a, Vuillemin 1901).

The generic name Trichosporon was later reconsidered and 
further species were described and contested (Yamada et al. 1882, 
Castellani 1908, Ota 1926, 1928, Dodge 1935, Carmo-Sousa 
1970). The genus name was frequently mixed up and no type 
material was preserved for a long time. A dimorphic isolate obtained 
from a pruritic skin, named Oidium cutaneum (De Beurmann et al. 
1909), was later transferred to Trichosporon (Ota 1926). This likely 
authentic strain described by Beurmann was selected as neotype 
CBS 2466 Tr. cutaneum (De Beurmann et al. 1909) var. cutaneum 
(Guého et al. 1992b, Diddens & Lodder 1942). Later, a strain from 
a case of human white piedra exhibiting similar characteristics 
to those described by Behrend (1890) was selected as neotype 
CBS 7566 Tr. ovoides (Lasagni & Ermacora 1977, Guého et al. 
1992b). Both species show differences in their ecological and 
biological characteristics (Guého et al. 1992b), and CBS 2466 is 
recognised as Cutaneotrichosporon cutaneum (Liu et al. 2015d). 
The reference strain CBS 7566 Tr. ovoides remains the current 
neotype of Trichosporon.

Up to 2015, over 50 Trichosporon species had been described. 
Based on their phenotypical, biochemical, and correlated taxonomic 
molecular characteristics, these species were distributed in five 
clades: cutaneum, ovoides, brassicae, gracile, and porosum 

Table 45. Top 10 cited articles related to Paecilomyces published in the period 2011–2021.
Rank Article title No. of citations References
1 Phylogeny of Penicillium and the segregation of Trichocomaceae into three 

families
316 Houbraken & Samson (2011)

2 ESCMID and ECMM joint guidelines on diagnosis and management of 
hyalohyphomycosis: Fusarium spp., Scedosporium spp. and others

271 Tortorano et al. (2014)

3 GH11 xylanases: Structure/function/properties relationships and applications 251 Paes et al. (2012)
4 Endophytic fungal association via gibberellins and indole acetic acid can 

improve plant growth under abiotic stress: an example of Paecilomyces 
formosus LHL10

162 Kahn et al. (2012)

5 Rhizosphere bacteria and fungi associated with plant growth in soils of three 
replanted apple orchards

130 Franke-Whittle et al. (2015)

6 Classification of Aspergillus, Penicillium, Talaromyces and related genera 
(Eurotiales): An overview of families, genera, subgenera, sections, series and 
species

126 Houbraken et al. (2020)

7 Plant-extract-assisted green synthesis of silver nanoparticles using Origanum 
vulgare L. extract and their microbicidal activities

109 Shaik et al. (2018)

8 Comparison of in vitro antifungal activities of Efinaconazole and currently 
available antifungal agents against a variety of pathogenic fungi associated with 
onychomycosis

106 Jo et al. (2013)

9 Bacterial and fungal taxon changes in soil microbial community composition 
induced by short-term biochar amendment in red oxidized loam soil

83 Hu et al. (2014a)

10 Filamentous fungal diversity and community structure associated with the solid 
state fermentation of Chinese Maotai-flavor liquor

81 Chen et al. (2014a)
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(Sugita et al. 2002, Middelhoven et al. 2004). Considering the 
results of phylogenetic analyses from a seven-gene dataset, Liu 
et al. (2015c) proposed a reclassification of families and genera 
assigned to Tremellomycetes that impacted the Trichosporon 
species classification. Thus, the Trichosporonaceae family 
was emended to accommodate the monophyletic lineages 
comprising the brassicae/gracile, cutaneum, haglerorum, porosum, 
Trichosporon, and Vanrija clades, and four single-species lineages 
comprising three Cryptococcus and one Trichosporon species as 
recognised in these multigene phylogenies. Consequently, five 
genera were proposed to accommodate trichosporonoid yeasts: 
Apiotrichum emend., Cutaneotrichosporon, Effuseotrichosporon, 
and Haglerozyma. Trichosporon was re-defined to accommodate 
only species of the Trichosporon clade as recognised in the seven-
genes phylogeny.

Based on comparative genomics data, a new delimitation of 
the Trichosporonales was performed and the genus Pascua was 
created to accommodate a single species P. guehoae, a species 
formerly assigned to Cutaneotrichosporon (Takashima et al. 2019).

Ecological and economic significance

Basidiomycetous trichosporonoid yeasts that as far as we know 
only reproduce asexually and mainly by arthroconidia, are widely 
distributed in the environment, such as soil, air, decomposing 
wood, fresh water, rivers, seawater, scarab beetles, cheese, 
bats, bird droppings, pigeons, and cattle (Fell et al. 2006, 
Colombo et al. 2011a). Trichosporon species are part of the 
human microbiota, and transitory colonise the gastrointestinal 
tract and skin (Francisco et al. 2016). Species from the genera 
Trichosporon, Cutaneotrichosporon, and Apiotrichum have been 
isolated from clinical specimens, such as superficial mycosis, 
bronchial secretions, deep-seated infections, and from the houses 
of summer-type hypersensitivity pneumonitis patients (Nishiura et 
al. 1997, Sugita et al. 2001, 2004, Nakajima et al. 2013). The origin 
of strains as given in the 5th edition of “The Yeasts, a Taxonomic 
Study” (TYTS), also include nails of a psoriasis patient, axillary 
white piedra, human skin lesions, human urine and faeces, snail 
droppings, cheese, cabbage, activated sludge, mushroom, moist 
humus around roots, reptile, wood pulp, cow mastitis, and exudate 
of English yew (Taxus baccata) (Sugita et al. 2011).

Trichosporon and related trichosporonoid yeasts are known for 
their ability to hydrolyse urea (Liu et al. 2015d). They assimilate 
several carbohydrates and other carbon sources, but they are non-
fermentative. According to the 5th edition of TYTS, these species 
exhibit the capability to use a broad range of substrates, especially 
aromatic compounds, aliphatic lipids, amines, and complex 
nitrogenous compounds as sole sources of carbon and energy, 
including uric acid, ethylamine, hydroxyproline, tyramine, and 
L-phenylamine (Middelhoven et al. 2004), but they also assimilate 
aromatic compounds, but not nitrate, and require thiamine, but not 
biotin, for growth.

Trichosporon asahii produces β-glucosidases with optimum 
pH and temperatures ranging from 5.5 to 6.0, and 50 to 70 °C, 
respectively (Wang et al. 2011c). These enzymes have been 
used to improve the quality and aroma of young red wine (Wang 
et al. 2012h). Trichosporon asteroides produces a 37kDa lipase 
showing optimal activity at pH 5 and 60 °C, which can be used in 
the production process of polyunsaturated fatty acids (Dharmsthiti 
& Ammaranond 1997).

Apiotrichum brassicae can be isolated from cabbage (Nakase 
1971), salami (Aquilanti et al. 2007), and milk derivates, such as 

yogurt, and cheese (Mihyar et al. 1997). The species exhibits 
potential use as a microbial sensor of volatile compounds, such as 
ethyl alcohol and acetic acid (Karube et al. 1980), and can catalyse 
the hydrolysis of ketoprofen ethyl ester by its esterase (Shen et al. 
2001). Apiotrichum dulcitum can degrade high levels of phenol at 
low temperatures (Margesin et al. 2005). The reference strain A. 
montevideense produces high quantities of cytochrome P450 after 
cultivation in a glucose-peptone medium (Stündl et al. 2000).

Cutaneotrichosporon cutaneum was found in the cloacae of 
migratory birds (Cafarchia et al. 2006) and has been isolated from 
milk and cheese (Mihyar et al. 1997, Corbo et al. 2001). This species 
has been used as an interface bioreactor for the degradation of 
(RS)-ibuprofen (Tanaka et al. 2001), as a biochemical oxygen 
demand (BOD) biosensor (Suriyawattanakul et al. 2002, Jia et al. 
2003), as a biodegrader of lignocellulose compounds (Chen, et 
al. 2009), and as an efficient simultaneous consumer of glucose 
and xylose (Hu et al. 2011a). Cutaneotrichosporon mucoides 
can cleave the aromatic structure of the dioxin-like compound 
dibenzofuran (Hammer et al. 1998) and can hydroxylate biphenyl, 
thus biotransforming this compound into a less toxic one (Sietmann 
et al. 2000). Cutaneotrichosporon jirovecii can detect a low amount 
of L-cysteine (1 μg/L; Hassan et al. 2007), and mediate the 
synthesis of cadmium sulfide nanoparticles by producing hydrogen 
sulfide on cysteine containing medium (El-Baz et al. 2016). 
Cutaneotrichosporon moniliiforme produces the volatiles 2-methyl 
butanol, 3-methyl butanol, methanethiol, S-methyl thioacetate, 
dimethyl sulfide, dimethyl disulfide, dimethyl trisulfide, dihydro-2-
methyl-3(2H)-thiophenone and 3-(methylthio)-1-propanol (MTP) 
(Buzzini et al. 2005). It also produces a salicylic acid decarboxylase 
able to catalyse the decarboxylation of salicylic acid to phenol, the 
carboxylation of phenol to form salicylic acid without any by-products 
(Kirimura et al. 2010), and demonstrated potential to be used in crude 
glycerol bioreactors and for bioremediation processes (Duarte et al. 
2016). Cutaneotrichosporon dermatis can be useful for biodiesel 
production as is able to perform the bioconversion of wastewater 
from butanol fermentation to microbial oil (Peng et al. 2013). 
Cutaneotrichosporon oleoginosus presents several attributes that 
make this yeast a promising sustainable bioagent for oils and fuel 
production. The species exhibits upregulation in genes involved in 
amino acid and ammonium transport, and the ability to metabolise 
a broad spectrum of monosaccharides (Kourist et al. 2015). In a 
nitrogen limiting medium, C. oleoginosus can accumulate ~90 % 
w/w of triacylglyceride that conventionally resembles cocoa butter 
(Bracharz et al. 2017a, Wei et al. 2017). Inhibition of the target of 
rapamycin complexes is the current pathway associated with this 
yeast to enhance their lipid content (Bracharz et al. 2017b). The 
use of traditional physiological and biochemical characteristics as 
identification methods must be carefully considered as they do not 
provide enough discriminatory power to distinguish Trichosporon 
and related trichosporonoid yeasts. Accurate species identification 
is based on sequencing the IGS1 ribosomal DNA locus (Sugita et 
al. 2002, Liu et al. 2015c, d, Chen et al. 2021b). MALDI-TOF MS 
is a useful tool for the identification of Trichosporon and related 
trichosporonoid yeasts using a modulated database that needs to 
be updated further (Kolecka et al. 2013, De Almeida et al. 2014). 
MALDI Biotyper® (Bruker Daltonics Inc., Germany) and VITEK® 
MS (bioMerieux, France) exhibited similar results in the species 
identification when using an extended library (De Almeida et al. 
2017, Guo et al. 2019b, Ahangarkani et al. 2021). Due to the lack of 
inclusion of Main Spectrum Profile (MSPs) of all clinically relevant 
Trichosporon and other trichosporonoid species, misidentification 
of closely related species might occur. Hence, the global guideline 
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for diagnosis and management of rare yeast infections caused by 
trichosporonoid yeasts only moderately supports the use of this tool 
for identification of these yeasts at the species level (Chen et al. 
2021b).

Research interests

There are 1 082 publications and 15 922 citations from 2011–2021 
in the Web of Science (Fig. 69), with the top 10 most cited articles 
listed in Table 46. Due to medical and industrial interest, published 

research on Trichosporon and related trichosporonoid yeasts 
during the past decade has focused on epidemiology, species 
distribution, antifungal susceptibility profiles, and biotechnologically 
interesting features. The top 10 papers related to these yeasts 
dealt with findings in oil and lipid production, acid hydrolysation, 
biofilm production, and the production of bio compounds (Table 46). 
Aspects included the oil production from lignocellulosic biomass; 
a description of the significant inhibitory effect on the growth of 
Tr. asahii by silver nanoparticles that damage the cell wall, cell 
membrane, and cellular compounds; practical and efficient way 
for lipid production from lignocellulose material; optimal conditions 

Fig. 69. Trends in research of Trichosporon and related trichosporonoid yeasts in the period 2011–2021.

Table 46. Top 10 cited articles related to Trichosporon and related trichosporonoid yeasts published in the period 2011–2021.
Rank Article title No. of citations References
1 Oil production by the yeast Trichosporon dermatis cultured in enzymatic 

hydrolysates of corncobs
81 Huang et al. (2012)

2 The antifungal effect of silver nanoparticles on Trichosporon asahii 79 Xia et al. (2016)
3 Simultaneous saccharification and microbial lipid fermentation of corn stover by 

oleaginous yeast Trichosporon cutaneum
61 Liu et al. (2012c)

4 Evaluating the effect of medium composition and fermentation condition on the 
microbial oil production by Trichosporon cutaneum on corncob acid hydrolysate

56 Chen et al. (2013d)

5 Multiple species of Trichosporon produce biofilms highly resistant to Triazoles and 
Amphotericin B

55 Iturrieta- González et al. (2015) 

6 Lipid fermentation of corncob residues hydrolysate by oleaginous yeast 
Trichosporon cutaneum

54 Gao et al. (2014)

7 Inhibitor degradation and lipid accumulation potentials of oleaginous yeast 
Trichosporon cutaneum using lignocellulose feedstock

54 Wang et al. (2016)

8 Genomics and transcriptomics analyses of the oil-accumulating basidiomycete 
yeast Trichosporon oleaginosus: Insights into substrate utilization and alternative 
evolutionary trajectories of fungal mating systems

49 Kourist et al. (2015)

9 Trichosporon asahii causing nosocomial urinary tract infections in intensive care 
unit patients: genotypes, virulence factors and antifungal susceptibility testing

47 Sun et al. (2012)

10 In vitro interactions between non-steroidal anti-inflammatory drugs and antifungal 
agents against planktonic and biofilm forms of Trichosporon asahii

35 Yang et al. (2016a)



127www.studiesinmycology.org

What are the 100 most cited fungal genera?

for lipid accumulation by C. cutuneum and its potential feedstock 
for biodiesel production. The gene content and expression of C. 
oleaginosus indicated it is well adapted to the use of chitin-rich 
biomass, while transcriptome data showed peculiarities in the lipid 
and nitrogen metabolism under nitrogen limitation resulting in the 
accumulation of fatty acids.

From a clinical perspective, the main results showed that 
for different species biofilm-forming cells are more resistant to 
antifungals than planktonic cells; hemolysin activity and the biofilm 
formation may be the main virulence factors in the development of 
nosocomial urinary tract infections in intensive care unit patients; 
and drug-drug combinations as a potential beneficial effect against 
this species.

Authors: E.C. Francisco and T. Boekhout

41. Malassezia Baill., Traité Bot. Méd. Crypt.: 234. 1889.

Type species: Malassezia furfur (C.P. Robin) Baill.

Classification: Basidiomycota, Ustilaginomycotina, 
Malasseziomycetes, Malasseziales, Malasseziaceae.

Background

Malassezia was first identified by Eichstedt in 1846 in relation to 
the human skin disease pityriasis versicolor (PV), but the organism 
was first named by Robin as Microsporon furfur in 1853, and 
later renamed by Baillon in 1889, when he created a new genus 
Malassezia, with only one species, Malassezia furfur. The second 
described Malassezia species was isolated from captive Indian 
rhinoceros, and originally described as Pityrosporum pachydermatis 
by Weidman in 1925, and later transferred to the genus Malassezia 
by Dodge in 1935 (Hay & Midgley 2010). For over five decades, the 
genus consisted of only these two species, until in 1990 Malassezia 
sympodialis was added (Simmons & Guého 1990). In 1996, 
four more species (Ma. globosa, Ma. obtusa, Ma. restricta, Ma. 
slooffiae) were described, for the first time by applying sequencing 
technology to distinguish species in this genus (Guého et al. 1996). 
To date, 18 species have been described in the genus Malassezia.

Malassezia are basidiomycetous yeasts, recently assigned to 
the class Malasseziomycetes, and are phylogenetically positioned 
in the Ustilaginomycotina, together with primarily plant pathogenic 
fungi (Wang et al. 2014d, 2015b). As they are lipid-dependent, their 
culture medium requires lipid supplementation for growth, except 
for Ma. pachydermatis, which is also able to grow on Sabouraud 
dextrose agar (SDA) due to the presence of short chain fatty acids 
in that medium. The optimal growth temperature for most species 
is 30–33  °C, with few exceptions (Guého-Kellermann et al. 2010). 
Comparative genomics showed a genus-wide expansion of lipid 
hydrolases and loss of genes coding for enzymes involved in lipid 
and carbohydrate metabolism, explaining its lipid dependence, 
and suggesting an early evolutionary host adaptation from plant to 
animal skin (Wu et al. 2015c).

Malassezia yeasts reside on human and animal skin as 
commensals, but under certain conditions, they may also cause 
various skin diseases, such as dandruff/seborrheic dermatitis 
(SD), PV, psoriasis, Malassezia folliculitis, and atopic dermatitis 
(AD) in humans; and otitis and dermatitis in cats, dogs and a 
variety of other animals (Bond et al. 2010, Gaitanis et al. 2012). 
In immunocompromised individuals and neonates, some species 
may also cause bloodstream infections (Gaitanis et al. 2012, Rhimi 

et al. 2020). Instigated by increased direct sequencing efforts and 
boosted attention for the fungal component in microbiome studies, 
it became clear that Malassezia not only is the most predominant 
fungal component of the human skin microbiome but may also play 
a role in other body sites, e.g., in human gut health and disease 
(Spatz & Richard 2020). With the application of fungal barcoding 
approaches, Malassezia presence has also been observed in a 
wide variety of environmental ecologies (Amend 2014).

Clinical and economic significance

Scientific literature dealing with Malassezia, historically mainly 
focused on its involvement in skin diseases in humans and a 
variety of animals. Here we present some of the most common skin 
diseases and their impact on human health. Though skin diseases 
involving Malassezia are not life-threatening, it is important to also 
consider the negative social and psychological effects of these 
diseases.

Dandruff/Seborrheic Dermatitis (D/SD)

Dandruff and Seborrheic Dermatitis (SD) are both skin diseases 
in the same spectrum, affecting the sebaceous areas such as 
the scalp, midface, chest, and back; only differing in locality and 
severity. Dandruff is limited to the scalp and involves itchy, flaking 
skin without visible inflammation. Seborrheic Dermatitis involves 
flaking, scaling, an itchy sensation, and also inflammation (Park 
et al. 2012b, Borda & Wikramanayake 2015, Saunte et al. 2020). 
Multiple factors may contribute to the pathogenesis of D/SD, such 
as host susceptibility, sebaceous activity and Malassezia (Borda 
& Wikramanayake 2015). Seborrheic Dermatitis affects 1–3 % of 
the general population, prevalence increases with age and men 
are affected more frequently. Seborrheic Dermatitis significantly 
increases in immune-compromised individuals, such as HIV/AIDS 
patients, with incidence ranging from 30 to 83 %. Dandruff is much 
more common, affecting approximately 50 % of adults worldwide, 
but varying between different ethnic groups. The economic burden 
from dandruff was estimated at 300 million US dollars annually for 
over-the-counter products in the USA alone and the total direct 
annual costs of SD were estimated at 179 US dollars, and an 
additional 51 million US dollars indirect costs as a result of lost 
working days. Due to the location of the affected skin areas, the 
disease has a significant negative impact on the patient’s quality of 
life (Borda & Wikramanayake 2015).

Pityriasis versicolor (PV)

Pityriasis versicolor (PV) is a common skin infection, caused by 
Malassezia, and is characterised by hypo- or hyperpigmented 
plaques, covered by scales, mainly on the back, chest, and neck. 
Interestingly, there is a high correlation between PV and the 
occurrence of hyphae on the skin of patients (Gaitanis et al. 2012, 
Saunte et al. 2020). The disease occurs in a variety of geographies 
and age categories, but peak prevalence in more temperate 
climates is lower and between 20–40-yr-old adults, whereas in 
more tropical climates, peak prevalence is between 10–30-yr-old. 
Prevalence rates as low as 0.5 % have been observed in Sweden 
(Gaitanis et al. 2012), up to 22.5 % in a large student population in 
Vietnam (Nguyen et al. 2020), and 40 % of the population in some 
areas in Brazil (Saunte et al. 2020). Treatment may be topical or 
with oral antifungals in more severe cases, but disease recurrence 
is not uncommon and pigmentation normalisation may take up to 
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several months after ending treatment (Gaitanis et al. 2012, Saunte 
et al. 2020). Information regarding economic burden is not known, 
but considering the very high prevalence in tropical regions and its 
impact on quality of life, it likely is substantial.

Research interests

There are 1 354 publications and 15 632 citations from 2011–2021 
in the Web of Science (Fig. 70), with the top 10 most cited articles 
listed in Table 47. When exploring citations for Malassezia, it is 
relevant to distinguish two main categories: one where Malassezia 
is the “direct” focal point, mostly dealing with aspects of more 
traditionally associated skin diseases, modes of pathogenicity, and 
evolutionary and biological features; and a second category, where 
broader studies, not set out to focus on Malassezia, observe signals 
in their data, pointing towards previously unknown aspects of this 
genus. These categories are not mutually exclusive but stimulate 
one another towards a more holistic understanding of various 
ecosystems and the complex roles that Malassezia may play in 
them. Below, a few important developments for each category will 
be summarised.

Malassezia as a direct focal point

Diagnostic and disease management challenges
Its unique lipid requirement for growth is one of the challenges for 
epidemiology studies as is the diagnosis of Malassezia as a causative 
agent for disease, especially for bloodstream infections (BSIs). Lack 
of lipid supplementation in standard culture media in clinics results in 
under-diagnosis and therefore Malassezia may play a larger role than 
thus far believed (Iatta et al. 2014a, Rhimi et al. 2020). Malassezia 
BSIs especially affect immunocompromised patients and neonates, 
receiving intravenous (lipid-rich) nutrition (Gaitanis et al. 2012, Rhimi 
et al. 2020). An increasing number of studies describe Malassezia 

BSIs as an emerging phenomenon, possibly because of factors 
such as the growing numbers of immunocompromised patients and 
selective pressure of frequently applied prophylactic fluconazole, for 
which the most frequently observed BSI-related Malassezia species, 
Ma. furfur, is often less susceptible (Miceli et al. 2011, Iatta et al. 2014b, 
Chen et al. 2019a, Rhimi et al. 2021). So far, only two species have 
mainly been implicated in BSIs, Ma. furfur and Ma. pachydermatis, 
and a few additional cases of Ma. sympodialis (Rhimi et al. 2020). A 
general future disease management hurdle for Malassezia-related 
diseases may be a trend towards reduced antifungal susceptibility 
(Pedrosa et al. 2019, Rhimi et al. 2021, Peano et al. 2020), and the 
lack of standardised testing protocols (Arendrup et al. 2014, Rhimi 
et al. 2020). The omnipresence of Malassezia as a commensal on 
healthy skin poses a challenge in determining its role in disease but 
many contemporary advances have been made towards unravelling 
relevant factors driving host-microbe interactions, as is illustrated 
below.

Modes of pathogenicity
Whether Malassezia acts as an innocent commensal or harmful 
pathogen on the skin, seems to be the complex combined result 
of virulence determinants of the yeast, host susceptibility, and 
environmental factors such as temperature and humidity. In 
the case of PV, excess yeast proliferation is involved, which is 
not necessarily the case with D/SD or AD (Theelen et al. 2018). 
Two not mutually exclusive disease induction mechanisms were 
described: direct irritant pathways as with D/SD, and indirect 
allergic pathways as with AD (Grice & Dawson 2017, Theelen 
et al. 2018). In addition to virulence factors such as a high lipid 
content of the cell wall, lipolytic enzyme production, hyphae and 
biofilm formation (Hort & Mayser 2011), several studies further 
characterised previously identified allergens (Gaitanis et al. 2012, 
Gioti et al. 2013), and identified allergen-carrying extracellular 
vesicles which are released by Malassezia cells and that interact 

Fig. 70. Trends in research of Malassezia in the period 2011–2021.
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with human skin cells (Gehrmann et al. 2011, Johansson et al. 
2018). One additional feature of Malassezia worth mentioning is 
its ability to metabolise tryptophan, resulting in the production of 
several indolic compounds that may serve as potent ligands of the 
aryl hydrocarbon receptor (AhR). Recent studies have revealed a 
diverse number of roles of AhR in skin homeostasis and disease, 
including inflammation, melanogenesis, and cancer (Gaitanis et 
al. 2012, Furue et al. 2014, Hubbard et al. 2015, Szelest et al. 
2021). A study comparing healthy and diseased skin found an 
increased presence of AhR ligands in scales from diseased skin 
vs healthy skin, and Ma. furfur species isolated from diseased skin 
showed a significantly higher AhR ligand production, compared 
to Ma. furfur isolates from healthy skin, confirming their status as 
virulence factors (Magiatis et al. 2013). A role for Malassezia in skin 
cancer (basal cell carcinoma) has been suggested via a number of 
AhR ligand mediated tumour promoting pathways (Gaitanis et al. 
2011, 2012). Finally, there is increasing evidence that microbiota 
derived AhR ligands also play an important role in host-microbiota 
communication in the gastrointestinal tract, modulating physiology, 
and are possibly involved in etiology or progression of inflammatory 
bowel disease (IBD) (Dong & Perdew 2020).

The first Malassezia genome sequences (Ma. globosa and 
Ma. restricta) were published in 2007 (Xu, 2007), while during the 
following decade, genomes for 15 of the 18 described species were 
published and utilised as a resource for exploring aspects related 
to evolution and virulence traits (Xu et al. 2007, Gioti et al. 2013, 
Wu et al. 2015c, Zhu et al. 2017, Lorch et al. 2018). The genomes 
revealed the presence of mating-type genes, suggesting that sexual 
reproduction may be possible (Xu et al. 2007, Gioti et al. 2013, Wu 
et al. 2015c, Zhu et al. 2017). Additionally, in Ma. furfur, evidence 
was found for the presence of hybrids (Wu et al. 2015c, Theelen et 
al. 2022), an increasingly observed phenomenon, and frequently 
linked to the emergence of new pathogens (Mixāo & Gabaldón 
2018). Many questions remain regarding the complex role and 
pathogenicity modes of Malassezia. In addition to recent genomics 
advancements, the development of various model systems 
for host-pathogen interaction studies (Sparber & LeibundGut-
Landmann 2019, Torres et al. 2020), and the establishment of tools 
for genetic manipulation in Malassezia (Ianiri et al. 2016, Celis et 
al. 2017, Ianiri et al. 2019), make way for answering many of the 
open questions.

Other perspectives on Malassezia

Microbiome
For many years, microbiome studies focused mainly on bacteria 
and only in the last decade it became clear that the long overlooked 
fungal kingdom might play a pivotal role in various aspects of 
human health and disease. For the first time, Findley et al. (2013) 
evaluated the microbial communities of various human skin sites, 
considering both bacterial and fungal microbiota, and found that 
Malassezia was the dominating fungal component on 11 core body 
sites of healthy adults. Many studies followed, exploring the human 
microbiome, now also considering fungi. Previously believed 
to predominantly be of relevance on human skin only, multiple 
studies found evidence for significant Malassezia presence in other 
human body sites as well. The yeast was found to be a member 
of the human oral mycobiome (Dupuy et al. 2014), and multiple 
studies also implicated Malassezia as a frequent resident of the 
human gut (Nash et al. 2017, Sokol et al. 2016, Spatz & Richard 
2020). Comparing fungal gut microbiota from healthy individuals 
and Crohn’s disease patients, fungi with increased abundance in 
patients were identified, of which Ma. restricta was linked to an 
IBD-associated polymorphism in the gene for CARD9 (a signalling 
adaptor important for antifungal defence), evoking an innate 
inflammatory response in a CARD9-dependent manner, and the 
yeast was also shown to aggravate colitis in mouse models (Limon 
et al. 2019). Another study implicated the fungal mycobiome in the 
pathogenesis of pancreatic cancer, with the fungal community being 
considerably enriched for Ma. globosa. Removal of the mycobiome 
was protective against tumour growth and repopulation only with 
Ma. globosa accelerated tumour growth in mice (Aykut et al. 2019). 
These and other findings, implicating a role for Malassezia on 
the skin and beyond, will likely incite many future studies that will 
further unravel the complex role of Malassezia in the human body.

Ecology
The direct sequencing approach to scan for microbial community 
compositions was not only applied to the human body but various 
studies also considered other ecologies and found Malassezia 
presence in a variety of different environments, such as terrestrial 
and marine ecosystems (Lai et al. 2007, Le Calvez et al. 2009), 

Table 47. Top 10 cited articles related to Malassezia published in the period 2011–2021.
Rank Article title No. of citations References
1 Topographic diversity of fungal and bacterial communities in human skin 615 Findley et al. (2013)
2 Emerging opportunistic yeast infections 530 Miceli et al. (2011)
3 The Malassezia genus in skin and systemic diseases 325 Gaitanis et al. (2012)
4 ESCMID and ECMM joint clinical guidelines for the diagnosis and management of 

rare invasive yeast infections
305 Arendrup et al. (2014)

5 The gut mycobiome of the human microbiome project healthy cohort 286 Nash et al. (2017)
6 Characterization of the fungal microbiota (mycobiome) in healthy and dandruff-

afflicted human scalps
250 Park et al. (2012b)

7 Adaptation of the human aryl hydrocarbon receptor to sense microbiota-derived 
indoles

166 Hubbard et al. (2015)

8 Mycology - an update. Part 1: Dermatomycoses: causative agents, epidemiology 
and pathogenesis

162 Nenoff et al. (2014)

9 Bacterial, fungal and protozoan carbonic anhydrases as drug targets 146 Capasso & Supuran (2015)
10 Identification of distinct ligands for the c-type lectin receptors mincle and dectin-2 in 

the pathogenic fungus Malassezia
138 Ishikawa et al. (2013)
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Antarctic soils (Arenz et al. 2006, Fell et al. 2006), corals (Amend 
et al. 2012), and sponges (Gao et al. 2008). Based on ribosomal 
sequence comparison, both sequences similar and distant to 
known Malassezia species were found. Malassezia has not yet 
been successfully cultured from any of these ecosystems and 
much about its broad presence is still puzzling, but it is becoming 
increasingly clear that Malassezia is ecologically very diverse 
(Amend 2014). Future comparison of malassezia-like isolates 
from these different environments with known strains/species may 
provide interesting new insights into the evolution of this unique 
genus.

Authors: B. Theelen and T. Boekhout

42. Phoma Sacc., Michelia 2(no. 6): 4. 1880.

Type species: Phoma herbarum Westend.

Classification: Ascomycota, Pezizomycotina, Dothideomycetes, 
Pleosporales, Didymellaceae.

Background

Phoma is a ubiquitous and widely distributed genus within 
Pleosporales (Dothideomycetes). Around 3 000 taxa have been 
described and approximately 110 taxa were reported as pathogenic 
on plants, animals and humans in different ecosystems (Aveskamp 
et al. 2008, Rai et al. 2014, Chen et al. 2015c, Bennett et al. 2018, 
Deb et al. 2020). Phoma species can change from opportunistic 
to pathogenic life mode when in contact with susceptible hosts 
(both animals and humans) (Aveskamp et al. 2008, Bennett et al. 
2018). Phoma species primarily infect plant hosts through wounds, 
stomata and directly through the epidermis. Fungal hyphae then 
grow intercellularly through plant tissues and become necrotrophic 
(Aveskamp et al. 2008). After lesions production, dark-coloured 
conidiomata can be often seen and, occasionally, extra dermal 
mycelium is formed. Conidia or mycelial fragments can disperse 
by water-splash, misting or wind to infect new hosts (Aveskamp et 
al. 2008). Birds and insects can act as vectors of Phoma infections 
(Aveskamp et al. 2008). If the spores do not contact suitable hosts, 
they mostly persist as saprobes on decaying organic material in the 
soil (Aveskamp et al. 2008, Bennett et al. 2018). Saprobic Phoma 
species occur on inorganic materials while other species are found 
on fungi, humans and plant materials (Hutchison et al. 1994, 
Sullivan & White 2000, Aveskamp et al. 2008, Deb et al. 2020).

Phoma is an asexual genus and was formally introduced 
by Saccardo (1880) for plant stem pathogens. The genus was 
considered to be a pycnidial forming filamentous fungal genus with 
aseptate and hyaline conidia associated with plant stems (Saccardo 
1884, Aveskamp et al. 2008, De Gruyter 2012, Bennett et al. 2018, 
Deb et al. 2020). Boerema & Bollen (1975) provided updates for the 
definition and classification of the genus. Taxonomically, Phoma is 
polyphyletic with indistinguishable species boundaries (Bennett et 
al. 2018, Deb et al. 2020).

Identification of Phoma species was previously mainly based on 
the host and the shape, the size of pycnidia and pycnidiospores (Rai 
et al. 2014, Hou et al. 2020). The “Phoma Identification Manual” by 
Boerema et al. (2004) described over 220 recognised taxa based on 
morphological characteristics. The key characters of Phoma asexual 
morphs are pseudoparenchymatous or scleroplectenchymatous 
pycnidia, ampulliform to doliiform, phialidic conidiogenous cells 
and initially unicellular, hyaline conidia that become septate 

with age (De Gruyter et al. 2010). Conidiogenesis cells were 
considered a significant morphological character in hyphomycete 
identification and was applied to all conidial fungi including asexual 
Phoma (Sutton 1964, Hughes 1953, Aveskamp et al. 2008). Other 
asexual characters, such as the formation of conidia, pycnidia, and 
chlamydospores, vegetative cells within hyphae or at hyphal tips 
can also be considered (Boerema et al. 2004, Guégan et al. 2016, 
Bennett et al. 2018). However, morphology-based identification 
has its limitations as several taxa exhibit characters that are shared 
between different Phoma genera (Aveskamp et al. 2009, Deb et 
al. 2020). Also, some characters overlap within and between other 
genera of coelomycetous fungi such as Phyllostictoides (producing 
similar pycnidia with unicellular conidia on natural substrate) and 
Pilosa (producing pseudoparenchymatous pycnidia and unicellular 
conidia) (De Gruyter et al. 2010, Deb et al. 2020). Currently, 
Boeremia, Didymella and Pyrenochaeta are often incorrectly used 
synonymously with Phoma (Blancard 2012, Duarte & Barreto 
2015, Deb et al. 2020). With the advent of nucleotide sequence 
data, phylogenetic analyses greatly advanced Phoma taxonomy by 
adding novel taxa and delimitating unclear placements (Aveskamp 
et al. 2008). Similar to previous analyses, in the recent analysis of 
Deb et al. (2020), the type species Phoma herbarum represented 
a monophyletic lineage as Phoma s. str. in Didymellaceae. The 
species complex of Phoma s. lat. is highly polyphyletic and many 
species boundaries are unclear (Aveskamp et al. 2008, 2010, 
Zimowska et al. 2017, Deb et al. 2020).

Ecological and economic significance

Phoma species occur on economically important crops causing 
devastating plant diseases (Deb et al. 2020). Some Phoma taxa 
cause serious yield losses (Chen et al. 2015d, 2017, Fitt et al. 2006, 
Deb et al. 2020). Phoma betae, Ph. clematidina, Ph. complanata, Ph. 
cucurbitacearum, Ph. destructive, Ph. dictamnicola, Ph. eupyrena, 
Ph. exigua, Ph. glycinicola, Ph. hedericola, Ph. herbarum, Ph. 
glomerata, Ph. macdonaldii, Ph. macrostoma, Ph. medicaginis, 
Ph. multirostrata, Ph. narcissi, Ph. negriana, Ph. koolunga, Ph. 
labilis, Ph. lingam, Ph. sambuci-nigrae, Ph. sambuci-nigrae, Ph. 
sclerotioides, Ph. sorghina and Ph. tracheiphila are known as 
important plant pathogens (Boerema et al. 2004, Deb et al. 2020).

Phoma infections have been recorded in animals and humans 
(Aveskamp et al. 2008). In 1973, the first confirmed human case was 
reported of pathogenic Phoma spp. in a subcutaneous lesion of a 
post-renal transplant patient (Young et al. 1973, Bennett et al. 2018). 
Subsequently, a number of human pathogens were reported by Zaitz 
et al. (1997), De Hoog et al. (2000) and Balis et al. (2006). With the 
increase of immunosuppression in patients and the advancement of 
medicines, Phoma infections have gradually increased (Bennett et al. 
2018). Bovine mycotic mastitis and fish-mycosis in salmon and trout 
are severe vertebrate diseases caused by Phoma species (Costa et 
al. 1993, Faisal et al. 2007, Aveskamp et al. 2008). Arthropods and 
nematodes can be also infected by Phoma species (Chen et al. 1996, 
Aveskamp et al. 2008). Other fungal taxa, oomycetes and lichens 
(lichenicolous) with associated Phoma species have been recorded 
(Hutchinson et al. 1994, Sullivan & White 2000, Hawksworth & Cole 
2004, Aveskamp et al. 2008), 

Some Phoma species play a beneficial role as biocontrol 
agents of weeds and plant pathogens (Aveskamp et al. 2008). 
Phoma exigua, Ph. herbarum and Ph. macrostoma have been 
used as bioherbicides and are effective against broadleaf weeds 
(dandelion, chickweed, clematis, salal species) (Aveskamp et al. 
2008). Phoma glomerata has been reported as a causal agent for 
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the synthesis of silver nanoparticles (Birla et al. 2009, Fabrega 
et al. 2011). Several Phoma species such as Ph. eupyrena, Ph. 
glomerata, Ph. herbarum and Ph. pomorum var. pomorum have 
been recorded on asbestos, cement, oil-paint, plaster, crockery and 
many other inorganic substrates (Aveskamp et al. 2008). These 
taxa play an important role in the degradation of organic materials. 
Also, Phoma species were reported from public bathrooms, 
swimming pools, air and food (Bennett et al. 2018).

Research interests

There are 1 277 publications and 15 402 citations from 2011–
2021 in the Web of Science (Fig. 71), with the top 10 most cited 

articles listed in Table 48. The majority of the publications focused 
on advantageous biological activities (Li et al. 2012a, Wang et al. 
2012c, Waqas et al. 2012, Gade et al. 2014), pathogenic lifestyles 
(Xu et al. 2012b) and resolving the phylogeny of phoma-like 
genera (De Gruyter et al. 2013, Chen et al. 2015c, Ertz et al. 2015, 
Valenzuela-Lopez et al. 2018).

Biological activities
Li et al. (2012a) investigated the diversity and heavy metal tolerance 
of endophytic Phoma from plants in a lead-zinc mine wasteland in 
China. Phoma species were identified as more sensitive isolates to 
Zn2+ than isolates of Alternaria and Peyronellaea. Pb2+ sensitivity of 
the isolates was not significantly different among Phoma, Alternaria 
and Peyronellaea (Li et al. 2012a). Waqas et al. (2012) examined 

Fig. 71. Trends in research of Phoma in the period 2011–2021.

Table 48. Top 10 cited articles related to Phoma published in the period 2011–2021.
Rank Article title No. of citations References
1 Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-

plant growth during stress
234 Waqas et al. (2012)

2 Redisposition of phoma-like anamorphs in Pleosporales 221 De Gruyter et al. (2013)
3 Resolving the Phoma enigma 199 Chen et al. (2015c)
4 Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex 

virus and human parainfluenza virus type 3
192 Gaikwad et al. (2013)

5 Soil fungal community structure along a soil health gradient in pea fields 
examined using deep amplicon sequencing

138 Xu et al. (2012a)

6 Coelomycetous dothideomycetes with emphasis on the families 
Cucurbitariaceae and Didymellaceae

90 Valenzuela-Lopez et al. (2018)

7 Bioactive metabolites from Phoma species, an endophytic fungus from the 
Chinese medicinal plant Arisaema erubescens

79 Wang et al. (2012)

8 Green synthesis of silver nanoparticles by Phoma glomerata 79 Gade et al. (2014)
9 Diversity and heavy metal tolerance of endophytic fungi from six dominant plant 

species in a Pb-Zn mine wasteland in China
69 Li et al. (2012a)

10 Phylogenetic insights resolve Dacampiaceae (Pleosporales) as polyphyletic: 
Didymocyrtis (Pleosporales, Phaeosphaeriaceae) with phoma-like anamorphs 
resurrected and segregated from Polycoccum (Trypetheliales, Polycoccaceae 
fam. nov.)

61 Ertz et al. (2015)
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the endophytic Phoma glomerata LWL2 strain and identified 
indoleacetic acid (IAA) in the cultures.

Biologically active metabolites which showed antifungal and 
anti-tumour activities were identified from endophytic Phoma 
cultures, from the tuber of Arisaema erubescens, a medicinal 
plant in China (Wang et al. 2012c). (3S)-3,6,7-trihydroxy-α-
tetralone, a new metabolite with antifungal activity was identified 
as the first report of the α-tetralone derivative from Phoma. Also, 
cercosporamide and β-sitosterol compounds were obtained from 
Phoma species for the first time. 

Xu et al. (2012a) studied the structures of soil fungal communities 
with the soil health gradient in pea fields. Phoma was identified 
as an abundant fungal colony in soils with diseased plants (Rajak 
et al. 1982, Kövics et al. 2005, Rai et al. 2014). Gaikwad et al. 
(2013) investigated the biological synthesis of silver nanoparticles 
using Phoma species based on the colour change of the fungal 
cell filtrate from yellowish or colourless to yellowish brown with 
aqueous AgNO3. Silver nanoparticles produced by Phoma species 
in the 7–20 nm range were identified with less antiviral activity and 
larger particle size. Gade et al. (2014) reported the extracellular 
synthesis of silver nanoparticles by Ph. glomerata (MTCC-2210) 
with rapid synthesis in bright sunlight.

Taxonomy and phylogeny
De Gruyter (2012) studied the taxonomy of excluded Phoma 
species that were classified in sections Plenodomus, Heterospora 
and Pilosa. Several species of Leptosphaeria and Phoma section 
Plenodomus were reclassified into Plenodomus, Subplenodomus, 
Leptosphaeria and Paraleptosphaeria based on the ITS and LSU 
phylogeny (De Gruyter 2012). Morphologically, Ascochyta and 
Phoma are difficult to distinguish, and species of these genera 
have been linked to Didymella sexual morphs in the past. The 
morphological observations and multi-locus phylogenetic 
analyses performed by Chen et al. (2015c) revealed that 
Phoma was delineated as a distinct genus with Ascochyta and 
Didymella. Ertz et al. (2015) included species of Polycoccum s. 
lat. in Pleosporales and they were closely related to lichenicolous 
phoma-like species in Phaeosphaeriaceae. Didymocyrtis was 
resurrected for these species and for lichenicolous species that 
were classified into Diederichia, Diederichomyces, Leptosphaeria 
and Phoma. Some of the sexual and asexual linkages were 
resolved by Ertz et al. (2015) such as Didymocyrtis ramalinae–
Phoma ficuzzae and D. consimilis–Ph. caloplacae based on 
phylogenetic analyses.

Hou et al. (2020) revised the poly- and paraphyletic genera 
Ascochyta, Didymella and Phoma. By employing a DNA phylogeny 
of four gene loci (ITS, LSU, rpb2, tub2), they were able to delineate 
36 well-supported monophyletic clades, representing 36 phoma-
like genera. However, further research is still needed to resolve the 
phylogeny of several old generic names that still lack cultures and 
DNA data (Chethana et al. 2021b).

Author: S.N Wijesinghe

43. Thermomyces Tsikl., Ann. Inst. Pasteur, Paris 13: 500. 
1899.

Type species: Thermomyces lanuginosus Tsikl.

Classification: Ascomycota, Pezizomycotina, Eurotiomycetes, 
Eurotiales, Trichocomaceae.

Background

Thermomyces was introduced in 1899 when P. Tsiklinsky reported 
the accidental discovery of a thermophilic hyphomycete on a potato 
inoculated with garden soil; he typified the genus with Thermomyces 
lanuginosus (Tsiklinsky 1899). Thermomyces belongs to the family 
Trichocomaceae (Eurotiales) and is phylogenetically sister of the 
monotypic genus Ascospirella (Ascospirella lutea, syn. Talaromyces 
luteus). These two genera differ in their thermophilicity: Thermomyces 
contains thermophilic species, while the sole species in Ascospirella 
is a mesophile (Houbraken et al. 2020). Seven species are described 
in the genus, and phylogenetic studies have shown that these species 
belong to different families. The thermophilicity of the species reflects 
their different evolutionary histories. Two species are accepted in 
Thermomyces: Th. lanuginosus (syn. Th. ibadanensis, Humicola 
lanuginosa) and Th. dupontii (syn. Th. thermophilus, Talaromyces 
thermophilus) (Houbraken et al. 2020). The mesophile Thermomyces 
verrucosus was combined in Botryotrichum (Chaetomiaceae) as B. 
verrucosum (Wang et al. 2019e), the thermotolerant Th. stellatus 
phylogenetically belongs to Microascaceae (Morgenstern et al. 2012, 
Houbraken et al. 2014) and the taxonomic position of Th. piriformis 
remains unresolved. Both Th. lanuginosus and Th. dupontii can grow 
at high temperatures but differ phenotypically and in reproductive 
behaviour. The presence of similar chlamydospores in both species 
suggests a common ancestor (Houbraken et al. 2014, 2020).

The genomes of Th. lanuginosus strains SSBP and ATCC 
200065 were sequenced and are 19.2 and 19.9 Mb in size with 
an estimate of 6 241 and 8 129 protein-coding genes, respectively. 
The genome of Th. dupontii NRRL 2155 is similar in size (19.8 
Mb) and the number of protein-coding genes is 7 560 (Mchunu 
et al. 2013, https://mycocosm.jgi.doe.gov/Thermophilic_ Fungi/
Thermophilic_Fungi.info.html). These genome sequences will be 
studied further to identify and characterise genes responsible for 
the production of various industrially important enzymes.

Ecological and economic importance

Thermomyces species are thermophilic, and strains generally can 
grow between 20 and 60 °C, with an optimum growth temperature 
between 45 and 50 °C. Thermophilic fungi are commonly found in 
soil, compost, and other organic materials, especially those that 
have been subjected to high temperatures. Thermomyces as a 
genus of thermophilic fungal species has received considerable 
interest in biotechnology as a producer of enzymes with activity at 
higher temperatures, but also in processes such as composting. A 
search for patents using Thermomyces as a search term in Google 
patents yielded 76 011 hits, hence there is considerable commercial 
interest in the enzymes produced by species of the genus.

Research interests

There are 854 publications and 15 013 citations from 2011–2021 
in the Web of Science (Fig. 72), with the top 10 most cited articles 
listed in Table 49. Most highly cited publications on the genus 
Thermomyces deal with enzymatic properties of Th. lanuginosus, 
such as lipases, lipolase, xylanases, and hemicellulase 
(Adlercreutz 2013, Chandra et al. 2020) and its biochemical, 
chemical and biotechnological applications (Cowan & Fernandez-
Lafuente 2011, Deive et al. 2011, Manoel et al. 2015, Cipolatti et al. 
2016). A major review describing the enzymes of Th. lanuginosus 
(Singh et al. 2003) focused on the biotechnological properties of 
xylanases and other hemicellulase. The lipase of Th. lanuginosus 
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is used as a model enzyme to study biocatalysis using immobilised 
enzymes on substrates such as aldehyde resins, multiwalled carbon 
nanotubules, octyl-glyoxyl agarose beads, poly-methacrylate particles, 
Fe3O4-chitosan magnetic particles, and siliciumoxide microparticles 
(Mendes et al. 2011, Verma et al. 2013a, Rueda et al. 2015, Wang et 
al. 2015h, Lage et al. 2016). The immobilised enzyme on the carbon 
nanotubules showed a broader pH range and improved thermal 
stability and could be used for up to 10 cycles (Verma et al. 2013a). 
The thermostability of a xylanase of Th. lanuginosus increased 
significantly by adding a disulfide bridge in the enzyme with the 
optimal temperature increasing from 10–75 °C (Wang et al. 2012f).

Thermomyces species, especially Th. lanuginosus, play an 

important role during composting as it is a major hemicellulose 
degrader and can withstand higher temperatures. A dominance 
of Thermomyces spp. in hay-based compost was observed 
together with species of Epicoccum, Eurotium, Arthrobotrys, and 
Myriococcum (Neher et al. 2013). Thermomyces species were found 
to be dominant after the thermophilic phase in windrow compost 
and became less dominant thereafter, whereas vermicompost 
contained equal abundances of species belonging to Pezizaceae, 
Galactomyces, and Lecanoromycetes (Neher et al. 2013). Another 
microbial ecological study on composting identified Thermobifida, 
Bacillus, Thermomyces and Aspergillus as the most important 
fungal genera, in which Thermomyces together with Aspergillus 

Fig. 72. Trends in research of Thermomyces between 2011–2021.

Table 49. Top 10 cited articles related to Thermomyces published in the period 2011–2021.
Rank Article title No. of citations References
1 Immobilisation and application of lipases in organic media 608 Adlercreutz (2013)
2 Immobilization of lipases on hydrophobic supports involves the open form of the 

enzyme
383 Manoel et al. (2015)

3 Nanomaterials for biocatalyst immobilization - state of the art and future trends 230 Cipolatti et al. (2016)
4 Microbial lipases and their industrial applications: a comprehensive review 220 Chandra et al. (2020)
5 Changes in bacterial and fungal communities across compost recipes, preparation 

methods, and composting times
194 Neher et al. (2013)

6 Modern taxonomy of biotechnologically important Aspergillus and Penicillium 
species

137 Houbraken et al. (2014)

7 SiO2 microparticles with carbon nanotube-derived mesopores as an efficient 
support for enzyme immobilization

128 Kumar et al. (2019)

8 Classification of Aspergillus, Penicillium, Talaromyces and related genera 
(Eurotiales): An overview of families, genera, subgenera, sections, series and 
species

126 Houbraken et al. (2020)

9 Dynamic changes of the dominant functioning microbial community in the compost 
of a 90-m3 aerobic solid state fermentor revealed by integrated meta-omics

126 Zhang et al. (2006)

10 Enzyme immobilisation on amino-functionalised multi-walled carbon nanotubes: 
structural and biocatalytic characterisation

120 Verma et al. (2013a)
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species degraded hemicellulose (Zhang et al. 2016c). In a compost 
made of spent mushroom substrate and rice husks, with and 
without treatment of pig manure, Thermomyces abundance was 
found to be higher in the spent mushroom-based compost without 
manure (Meng et al. 2018). Thermomyces lanuginosus was found 
to be the dominant species in maize straw compost (Zhang et al. 
2015b).

Authors: J. Houbraken and T. Boekhout

44. Lentinus Fr., Elench. Fung. 1: 45. 1828.

Type species: Lentinus crinitus (L.) Fr.

Classification: Basidiomycota, Agaricomycotina, Agaricomycetes, 
Polyporales, Polyporaceae.

Background 

Lentinus is a genus of agaricoid mushrooms in the family 
Polyporaceae (He et al. 2019b). A major monograph was published 
by Pegler (1983b). MycoBank holds over 500 species names, 
but currently only 55 species are accepted (He et al. 2019b). 
Several genera are congeneric, namely Lentodiellum, Lentodium, 
Leucoporus, and Polyporellus (He et al. 2019b). The sporocarps 
are usually stipitate, omphaloid, and lamellate, but secocioid forms 
also occur. The caps are usually thick-fleshed, firm, and usually 
with a depressed centre with somewhat inflexed margins, and 
a scaly to fibrillose surface. The hyphal system is dimitic. The 
genome sizes of an agaricoid and a secotioid strain of Lentinus 
tigrinus were 39.53–39.88 Mb with 15 380–15 581 genes (Wu et al. 
2018a). Lentinus species occur globally, but many occur in (sub)-
tropical regions. The species cause wood rot and are gregarious 
or solitary on living or dead trunks, stumps, and branches of both 

deciduous and coniferous trees. Some species are edible and are 
considered of medicinal importance (see below).

Ecological and economic importance

Lentinus species cause white rot and play an important role in the 
decomposition of wood (Wu et al. 2018a). In depth investigation of 
the wood degrading physiology of Lentinus squarrosulus showed 
activities of several lignocellulolytic enzymes, such as laccase, 
peroxidase, CMCase, and xylanase. The species is a good 
producer of exopolysaccharides and prefers hemicellulose over 
cellulose and might find application in the industrial pre-treatment 
and biodelignification of lignocellulosic biomass (Isikhuemhen et 
al. 2012). Field observations made in the Colombian Amazon on 
the rapid appearance of Lentinus spp. after primary forest trees 
were cut down for slash-and-burn agriculture, suggests that they 
might occur as endophytes in tree trunks (López-Quintero et al. 
2012). The endophytic nature of Lentinus species was confirmed 
by observations made in Malaysia (Maadon et al. 2018). Lentinus 
species are considered “medicinal mushrooms” but are also 
biotechnologically important. Aspects of cultivation, biologically 
active compounds and nutritional values have been reviewed 
(Phonemany et al. 2021). Various Lentinus species are consumed 
in Southeast Asia (e.g., Laos, Malaysia, Philippines, Thailand, 
Vietnam) and parts of Africa (Phonemany et al. 2021).

Research interests

There are 892 publications and 13 964 citations from 2011–2021 
in the Web of Science (Fig. 73), with the top 10 most cited articles 
listed in Table 50. Most highly cited publications on Lentinus deal 
with reviews on medicinal aspects of various mushrooms, such 
as immunomodulatory, anti-tumoural, antiviral, anti-bacterial, and 
antihyperlipidemic effects (Wasser 2011, Alves et al. 2012, Chang & 

Fig. 73. Trends in research of Lentinus between 2011–2021.
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Wasser 2012, El Enshasy & Hatti-Kaul 2013), aspects of functional 
molecules, such as lentinan (Zhang et al. 2011c, Giavasis 2014), 
and new species descriptions or new species records (Li et al. 
2016a, Tibpromma et al. 2017). Lentinula (formerly classified as 
Lentinus) edodes or shiitake, a highly praised edible mushroom, 
is the most studied species with a broad antimicrobial action 
against both gram-positive and gram-negative bacteria (Alves et al. 
2012) but is phylogenetically distinct from the genus Lentinus as it 
belongs to a different family, namely Omphalotaceae (Hibbett et al. 
1993, 1998, Matheny et al. 2006, He et al. 2019b).

Author: T. Boekhout

45. Mortierella Coem., Bull. Acad. R. Sci. Belg., Cl. Sci., sér. 
2 15: 536. 1863.

Type species: Mortierella polycephala Coem.

Classification: Mucoromycota, Mortierellomycotina, 
Mortierellomycetes, Mortierellales, Mortierellaceae.

Background

Mortierella species are mostly saprobic soil-inhabiting fungi 
and some are isolated from dead or dying plant tissues, animal 
carcasses or occasionally from freshwater habitats (Hyde et al. 
2016, Nguyen et al. 2019, Karunarathna et al. 2020). Mortierella was 
introduced in 1863 with Mor. polycephala as the type species, and it 
is the largest genus in the family with approximately 112 accepted 
species (Wijayawardene et al. 2020). Mortierella is characterised 
by simple or branched sporangiophores terminating with sporangia 
or sometimes with a swelling at the base, and globose, multi-, few- 
or uni-spored sporangia (Hyde et al. 2016). The zygospores of 
Mortierella are homo- and heterothallic, which has been confirmed 
for about 28 species (Takashima et al. 2018). In morphology-
based taxonomy, nine sections were distinguished in Mortierella 
(Gams 1977). However, a phylogenetic analysis based on LSU 
sequence dataset revealed seven distinct groups, and Wagner et 
al. (2013) indicated that the morphology of Mortierella is likely to 

depend on culture conditions. Identification of Mortierella is mostly 
based on LSU and ITS sequence data in recent phylogenetic 
analyses (Wagner et al. 2013, Hyde et al. 2016, Karunarathna et 
al. 2020). Karunarathna et al. (2020) utilised SEM to demonstrate 
the microstructures of Mortierella species. Several species that 
lack DNA sequence data and distinguishable morphology, remain 
doubtful and may be excluded from the genus when isolates are 
available.

Ecological and economic significance

Mortierella species catalyse the formation of rare fatty acids, which 
is promising for application in industry. They also cause serious 
diseases in animals.

Agricultural application

Phosphate fixation causes serious problems in agriculture, which 
may lead to a production reduction. Mortierella species can 
desorb phosphate from soil samples by producing oxalic acid 
(Osorio & Habte 2014). Mortierella capitata promotes crop growth 
by increasing biomass, chlorophyll and gibberellic acid (Li et al. 
2020b). Zhang et al. (2020b) demonstrated that Mor. elongata 
increases plant biomass among non-leguminous crop species.

Application and disease management

The ability of Mortierella to catalyse the formation of rare fatty 
acids is promising and may improve human health or lead to the 
development of new chemical materials. Bioremediation may 
reduce environmental stress caused by organic pesticides from 
agriculture or chemical plants. However, control of diseases caused 
by Mortierella is challenging and requires more knowledge of the 
interaction of fungi and their hosts.

Animal pathogen

Mortierella wolfii is reported as a common cause of mycotic 
abortion and pneumonia in cattle (Neilan et al. 1982, Seviour et al. 

Table 50. Top 10 cited articles related to Lentinus published in the period 2011–2021.
Rank Article title No. of citations References
1 The role of culinary-medicinal mushrooms on human welfare with a pyramid 

model for human health
341 Chang & Wasser (2012)

2 Current findings, future trends, and unsolved problems in studies of 
medicinal mushrooms

267 Wasser (2011)

3 Advances in lentinan: Isolation, structure, chain conformation and 
bioactivities

260 Zhang et al. (2011c)

4 Bioactive fungal polysaccharides as potential functional ingredients in food 
and nutraceuticals

222 Giavasis (2014)

5 A review on antimicrobial activity of mushroom (basidiomycetes) extracts 
and isolated compounds

197 Alves et al. (2012)

6 Mushroom immunomodulators: unique molecules with unlimited applications 165 El Enshasy & Hatti-Kaul (2013)
7 Comparative assessment of bioremediation approaches to highly recalcitrant 

PAH degradation in a real industrial polluted soil
79 Lladó et al. (2013)

8 Anti-inflammatory potential of mushroom extracts and isolated metabolites 75 Taofiq et al. (2016)
9 Extraction of polysaccharides from edible mushrooms: Emerging 

technologies and recent advances
69 Leong et al. (2021)

10 Anticancer and other therapeutic relevance of mushroom polysaccharides: A 
holistic appraisal

64 Kothari et al. (2018)
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1987). Karunarathna et al. (2020) reported three novel Mortierella 
species isolated from bat carcasses. They are likely to be saprobic 
or opportunistic pathogens but this needs to be confirmed.

Research interests

There are 800 publications and 12 787 citations from 2011–2021 
in the Web of Science (Fig. 74), with the top 10 most cited articles 
listed in Table 51. Most of the publications focused on taxonomy 
and light industrial applications (producers of polyunsaturated fatty 
acids and bioremediation).

Taxonomy and phylogeny
The application of Mortierella has been intensively studied, but the 
identification of species was often overlooked and isolates were 
referred to as Mortierella sp. (Kataoka et al. 2010, Ellegaard-Jensen 
et al. 2013, Osorio & Habte 2014, Tamayo-Vélez & Osorio 2018). 
Accurate identification is especially important for those species that 
are human pathogens, while the taxonomic utility of old names is 
hampered by a lack of type specimens, representative cultures, 
or DNA sequence data. However, the taxonomy and phylogeny of 
Mortierella have received great attention in recent years (Hyde et 
al. 2012, 2017, Ariyawansa et al. 2015a, Li et al. 2016a).

Fig. 74. Trends in research of Mortierella in the period 2011–2021.

Table 51. Top 10 cited articles related to Mortierella published in the period 2011–2021.
Rank Article title No. of citations References
1 Advancing oleaginous microorganisms to produce lipid via metabolic 

engineering technology
248 Liang & Jiang (2013)

2 Microbial degradation and deterioration of polyethylene – A review 231 Restrepo-Flórez et al. (2014)
3 Microbial oils as food additives: recent approaches for improving microbial 

oil production and its polyunsaturated fatty acid content
184 Bellou et al. (2016)

4 Soil pH is a key determinant of soil fungal community composition in the 
Ny-Alesund region, Svalbard (High Arctic)

183 Zhang et al. (2016e)

5 Microbial lipid-based lignocellulosic biorefinery: feasibility and challenges 180 Jin et al. (2015)
6 Single cell oil production from rice hulls hydrolysate 155 Economou et al. (2011)
7 Fungal pathogen accumulation at the expense of plant-beneficial fungi as a 

consequence of consecutive peanut monoculturing
140 Li et al. (2014f)

8 Distinct roles for soil fungal and bacterial communities associated with the 
suppression of vanilla Fusarium wilt disease

136 Xiong et al. (2017)

9 Ice nucleation by water-soluble macromolecules 125 Pummer et al. (2015)
10 Soil sickness of peanuts is attributable to modifications in soil microbes 

induced by peanut root exudates rather than to direct allelopathy
112 Li et al. (2014e)
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Producers of PUFAs
Many Mortierella species have shown potential as producers 
of polyunsaturated fatty acids (PUFAs). Ogawa et al. (2012) 
concluded that Mortierella species are good fermentative producers 
of several useful single-cell oils, e.g., Mor. alpina and its mutants 
and transformants are useful as producers of PUFAs and they 
exhibit the ability to produce new oils containing rare PUFAs such 
as n–9, n–7, n–4 and n–1.

Bioremediation
Two Mortierella strains, W8 and Cm1-45, isolated from soil have 
the potential for the bioremediation of contaminated sites with 
endosulfan. They degraded α and β-endosulfan by more than 
70 % and 50 % in the liquid cultures, respectively, over 28 d 
at 25 °C, which indicated that Mortierella species are likely to 
play a major role in the formation of hydroxylated metabolites 
(Kataoka et al. 2010). Ellegaard-Jensen et al. (2013) clarified 
the ability of Mortierella species to degrade the phenylurea 
herbicide diuron, and the degradation of diuron was fastest in 
carbon and nitrogen-rich media. Restrepo-Flórez et al. (2014) 
reviewed recent hypotheses and experimental findings regarding 
the biodegradation of polyethylene, and described the effects of 
these microorganisms on the physiochemical properties of this 
polymer including changes in crystallinity, molecular weight, 
the topography of samples and the functional groups found on 
the surface. Mortierella species also decompose leaf litter to 
improve soil fertility, which is a major process in nutrient recycling 
(Tamayo-Vélez & Osorio 2018).

Author: W. Dong

46. Debaryomyces Lodder & Kreger-van Rij, in Kreger-van 
Rij, Yeasts, a taxonomic study, 3rd Edn (Amsterdam): 130, 145. 
1984.

Type species: Debaryomyces hansenii (Zopf) Lodder & Kreger-van 
Rij

Classification: Ascomycota, Saccharomycotina, Pichiomycetes, 
Serinales, Debaryomycetaceae.

Background

Debaryomyces species are widespread and have been isolated 
from many sources (Kurtzman et al. 2011) such as fruit, soil, air, 
insects, plants and human tissue (Nishikawa et al. 1996, Pfaller et 
al. 2005, De Hoog et al. 2020), but most frequently from processed 
food products (Fröhlich-Wyder 2003, Samelis & Sofos 2003). 
Debaryomyces was established with the description of De. globosus 
(Klöcker 1909) after which various species were described using 
morphological characteristics that include the presence of spherical 
cells and spherical, warty ascospores. Lodder & Kreger-van Rij 
(1952) drew attention to the heterogeneity among species to ferment 
different carbon sources, therefore, the strongly fermenting species, 
such as De. globosus, were transferred to Saccharomyces and the 
weakly- or non-fermenting species remained in Debaryomyces, with 
De. hansenii as the type species.

The currently used method to describe novelties and distinguish 
among species of this genus is by sequence analysis of the D1/
D2 domains of LSU gene and ITS regions (Kurtzman & Robnett 
1998, Kurtzman et al. 2011). Sequencing analyses using the D1/D2 
domains and the SSU genes showed that Debaryomyces species 

are polyphyletic and segregated into three genera, Debaryomyces, 
Schwanniomyces (emend.) and Priceomyces (Kurtzman & Suzuki 
2010). The currently described Debaryomyces species include 
De. coudertii, De. fabryi, De. hansenii, De. mycophilus, De. 
macquariensis, De. marama, De. nepalensis, De. prosopidis, De. 
psychrosporus, De. renaii, De. robertsiae, De. singareniensis, De. 
subglobosus, De. udenii. Debaryomyces vietnamensis and De. 
vindobonensis (Lee et al. 2009, Kurtzman et al. 2011, Dlauchy et 
al. 2011, Lopandic et al. 2013). Candida psychrophilla, although not 
yet proposed as a new combination within Debaryomyces, clusters 
with the rest of the Debaryomyces species in phylogenetic studies. 
Debaryomyces hansenii is the most abundantly isolated, used 
and studied Debaryomyces species. However, as Debaryomyces 
species are phenotypically difficult to separate it is likely that strains 
assessed in earlier studies have been misidentified.

Debaryomyces species are commonly found in natural sources, 
like fruit, air, fresh and salt water, soil and phylloplane of different 
plant species, but what makes this genus very interesting is that it 
was found to play an important role in the production processes as 
a natural or added inhabitant of many food products, in particular 
dairy products (Fröhlich-Wyder 2003), meat and sausages 
(Samelis & Sofos 2003), and also in fermented soy products sake-
moto, wine, tobacco, coffee beans, brines. Many of the products 
listed are high in salt and this is why the osmo-, halo- and xero-
tolerant capabilities of Debaryomyces species (Breuer & Harms 
2006, Ramos-Moreno et al. 2021) play a significant role.

Economical and medical significance

Food and food safety
Debaryomyces species, in particular, De. hansenii, is commonly 
found in dairy products such as cheeses (soft cheeses, semi-hard 
and hard cheeses, brines and cheese quark), yoghurt, fruit, meat 
(mostly sausages and dry-meat products) as well as fermented 
olives, cucumbers and Fuzhuan brick-tea (Fleet 1987, Seiler 1991, 
Viljoen & Greyling 1995, Deak & Beuchat 1996, Boekhout & Robert 
2003, Breuer & Harms 2006, Flores & Toldra et al. 2011, Xu et al. 
2011a, Gori et al. 2012, Bokulich & Mills 2013, Chen et al. 2021a, 
reviewed in Ramos-Moreno et al. 2021).

The occurrence and growth of Debaryomyces species in dairy 
products are favored by their ability to ferment lactose, produce 
proteolytic and lipolytic enzymes that can metabolise milk 
proteins and fat, and their capacity to grow at low temperatures, 
high salt concentrations and low water activities (aw) (Besancon 
et al. 1992, Roostita & Fleet 1996, Wyder & Puhan 1999). The 
ability of De. hansenii to produce branched-chain aldehydes and 
alcohols contributes to the final cheese flavour and influences 
the sensory properties of cheeses. In addition, the metabolic 
activities of De. hansenii modify the micro-environment in 
cheese to the benefit of some desired microorganisms such as 
Penicillium roqueforti (Besancon et al. 1992, Roostita & Fleet 
1996). However, under uncontrolled conditions in the production 
of semi-soft and soft cheeses, yeast spoilage, that most likely 
also include Debaryomyces spp., causes off-flavours, softening, 
gas production, discoloration, and swollen packages, so although 
mostly known for its beneficial effect in the production of dairy 
products this genus can also have detrimental effects on the end 
products (Boekhout & Robert 2003).

The involvement of Debaryomyces spp. in meat fermentation 
has been known since the 1960s (Rankine 1964). However, the 
precise effect Debaryomyces species have on the final product is 
not known. Individual Debaryomyces strains supposedly contribute 
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to the final organoleptic characteristics of meat and therefore have 
a positive effect with respect to aroma and flavour. These strains 
were found to have an increased ability to ferment carbohydrates 
and catabolised amino acids, increasing therefore the production 
of volatile and aromatic compounds (Flores & Toldra et al. 2011, 
reviewed in Ramos-Moreno et al. 2021).

If cereal grains containing De. hansenii, were used as animal 
feed it acted as a stimulating factor for the growth of animals and 
this species can also induce an immune response in gilt-head 
sea bream if orally applied to the fish (Reyes-Becerril et al. 2008, 
Medina-Cordova et al. 2016).

Biological control agent

Debaryomyces hansenii has applicability as a biological control 
agent against fungal spoilage in dairy products, processed meats, 
fruits and cereals (Gori et al. 2012, reviewed in Median-Cordova 
et al. 2018, Huang et al. 2021a, reviewed in Ramos-Moreno et al. 
2021,) due to its antagonistic effects against specific contaminating 
fungi. Debaryomyces spp. are not only beneficiary for enhancing 
the flavour of cheese but they can outcompete undesirable 
organisms such as Clostridium spp. for nutrients and can produce 
antimicrobial metabolites that inhibit the growth of these organisms 
in cheese brines (Gori et al. 2012). Debaryomyces spp. have 
been proposed to be biocontrol agents in meat products as they 
contribute to the inhibition of the growth of aflatoxin producing 
(such as Aspergillus flavus and A. parasiticus) and ochratoxin 
producing fungi (such as Penicillium nordicum, P. verrucosum and 
A. westerdijkiae) (reviewed in Ramos-Moreno et al. 2021).

Debaryomyces hansenii is an excellent coloniser of damaged 
citrus fruits and grows rapidly in wounds on the fruit surface, 
protecting it against spoilage fungi. It is clear that Debaryomyces 
spp. have great potential in biological control, and cereal grains 
used as animal feed and can act as a stimulating factor for the 
growth of animals feeding on the grain (Reyes-Becerril et al. 2008, 
Medina-Cordova et al. 2016). However, it should be kept in mind 

that some clinical isolates of Debaryomyces species have been 
observed, although the species that are commonly associated 
with the food industry, De. hansenii and De. fabryi do not seem to 
be associated with disease in healthy humans and belong to the 
generally regarded as safe category (Jacques & Casaregola 2008).

Medical importance

Strains of De. hansenii, De. fabryi and De. marama have been 
reported from human tissue (Kurtzman et al. 2011) and although 
De. hansenii has been reported as an emergent pathogen, no 
clear clinical significance has been documented that this species 
is responsible for problems in healthy individuals.

Some Debaryomyces species tested for antifungal drug 
resistance (Desnos-Ollivier et al. 2012) showed high minimum 
inhibitory concentrations to some antifungals. These included 
De. hansenii, De. fabryi, De. nepalensis, De. marama to 
Amphotericin B; De. prosopidis to Terbinafin; De. nepalensis to 
Posaconazole; De. nepalensis, De. prosopidis, De. udenii, De. 
singareniensis to Voriconazole; De. nepalensis, De. prosopidis 
to Itraconazole and De. nepalensis, De. prosopidis, De. udenii, 
De. singareniensis to Fluconazole. This data concluded that the 
species isolated from patients, De. hansenii, De. fabryi and De. 
marama, have no resistance to most of the antifungals tested. 
However, De. nepalensis and De. prosopidis, resistant to four 
and five of the antifungals, respectively, may be potential risks for 
immunocompromised patients, especially De. prosopidis that can 
also grow at 37 °C.

Research interests

There are 861 publications and 12 476 citations from 2011–2021 
in the Web of Science (Fig. 75), with the top 10 most cited articles 
listed in Table 52. There is an increased interest in Debaryomyces 
spp. as they are known to be extremophilic yeasts, due to their 
osmo-, halo-, xero- and cryotolerant capabilities (Breuer & Harms 

Fig. 75. Trends in research of Debaryomyces in the period 2011–2021.
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2006, Ramos-Moreno et al. 2021). They have proved on various 
levels to have considerable biotechnological promise to be used in 
food production and commercial processes (Ratledge & Tan 1990, 
Baronian 2004, Breuer & Harms 2006).

Industry
This metabolically versatile non-pathogenic, extremophilic and 
oleaginous genus represents an attractive target for fundamental 
and applied biotechnological research in the manufacture of various 
foods and heterologous synthesis of a range of fine chemicals. As 
already mentioned, Debaryomyces spp. are very important for the 
food industry and play a role in the production of a variety of cheese 
and dairy products as well as the fermentation of meat products. 
They also have great potential as biological control agents and 
are used as bio-preservatives against fungal spoilage in food 
products (Reyes-Becerril et al. 2016). As an oleaginous yeast, 
Debaryomyces has the ability to synthesise, accumulate and store 
industrial useful lipids (e.g., sophortose) Debaryomyces strains can 
be induced or manipulated to produce such lipids cost-effectively 
and could be commercially competitive. Additional industrial 
interesting compounds to look at for biotechnological production 
are riboflavin (vitamin B2), o-arabinitol, xylitol, lipases and 
exopeptidases, termophilic B-glucosidase bioconversion of xylose 
into the sweetener xylitol, and potential synthesis of arabinitol, 
pyruvic acid and lytic enzymes (Charoenchai et al. 1997, review 
Breuer & Harms 2006, Satyanarayana & Kunze 2009, Abbas et al. 
2011, Flores & Toldra 2011).

Biotechnology and future research
As a metabolically versatile, non-pathogenic, extremophilic and 
oleaginous genus, Debaryomyces represents an attractive target 
for fundamental and applied biotechnological research in the 
manufacture of various foods, and heterologous synthesis of a range 
of valuable fine chemicals and polysaccharides (Charoenchai et al. 
1997, Breuer & Harms 2006, Satyanarayana & Kunze 2009, Abbas 
et al. 2011, Flores & Toldra 2011). This provides great possibilities for 
alternative biological compounds to be used in food processing, the 
production of fuel alcohol, the bio-industry and medicine rather than 
existing chemical processes or to enter new applications in these 

industries (Satyanarayana & Kunze 2009). It is however essential 
that these products should be produced competitively with regards 
to current chemical syntheses to be attractive alternatives that will 
be further explored in future research. It is suggested that the next 
biotechnology trends will be to use antagonistic Debaryomyces 
strains to manage fungal diseases and to be integrated into 
pathogen management in fruits, meat, dairy products and cereal 
grains while at the same time having the ability to act as probiotics 
for animals and humans (Reyes-Becerril et al. 2016). Therefore, it 
is likely that this genus will be further explored to be used in above 
mentioned industrial significant areas in the future (Ratledge & Tan 
1990, Baronian 2004, Breuer & Harms 2006).

Author: M. Groenewald

47. Metschnikowia T. Kamieński, Trudy Imp. S.-Peterburgsk. 
Obshch. Estestvoisp. 30: 364. 1900.

Type: Metschnikowia bicuspidata ((Metschn.) T. Kamieński

Classification: Ascomycota, Saccharomycotina, Pichiomycetes, 
Serinales, Metschnikowiaceae.

Background

Metschnikowia lasted six decades as a monotypic genus with 
only the species used by Eli Metschnikoff (1884) to demonstrate 
phagocytosis as an immune defense mechanism. Since the re-
definition of the genus by Van Uden (1962) membership has grown 
to well over 70 described species, prompting some to reiterate an 
urge to divide the genus into smaller units (Kurtzman et al. 2018). 
Having survived potential renaming (Doweld 2015), Metschnikowia 
remains one of the most cohesive genera in the Saccharomycetes, 
as most species share the unique characteristic of forming exactly 
two aciculate ascospores in elongate to sphaeropedunculate 
asci. As is typical in biology, exceptions exist, such as the single-
spored flexuous asci of Mets. caudata (De Vega et al. 2014) or the 
ovopedunculate ascospores of Mets. lachancei (Giménez-Jurado et 
al. 2003). Variations in ascus size are extreme, from slightly above 
5 μm in Mets. kunwiensis to nearly 250 μm in Mets. hawaiiensis 

Table 52. Top 10 cited articles related to Debaryomyces published in the period 2011–2021.

Rank Article title No. of citations References
1 Genetic control of biosynthesis and transport of riboflavin and flavin 

nucleotides and construction of robust biotechnological producers
192 Abbas et al. (2011)

2 Fungi in the healthy human gastrointestinal tract 171 Hallen-Adams & Suhr (2017)
3 Brewer’s spent grain: A review of its potentials and applications 168 Aliyu & Bala (2011)
4 Facility-specific house microbiome drives microbial landscapes of artisan 

cheesemaking plants
154 Bokulich & Mills (2013)

5 Antimicrobial activity of lactic acid bacteria against pathogenic and spoilage 
microorganism isolated from food and their control in wheat bread

147 Cizeikiene et al. (2013)

6 Rewiring yeast sugar transporter preference through modifying a conserved 
protein motif

114 Young et al. (2013b)

7 Selection of non-Saccharomyces yeast strains for reducing alcohol levels in 
wine by sugar respiration

111 Quiros et al. (2014)

8 Fungal community associated with fermentation and storage of Fuzhuan brick-
tea

105 Xu et al. (2011a)

9 Functional survey for heterologous sugar transport proteins, using 
Saccharomyces cerevisiae as a host

99 Young et al. (2011a)

10 Microbial enzymatic activities for improved fermented meats 95 Flores & Toldra et al. (2011)
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(Lachance 2011a). Half the species form a clade (Guzmán et al. 
2013) consisting exclusively of haplontic, heterothallic species 
where conjugation often leads to the formation of larger ascospores, 
up to 50 times the length of typical budding cells. These are 
primarily associated with floricolous beetles or other insects and 
are distributed along strong biogeographic lines (Lachance et al. 
2016). The remaining species exist mostly in the diploid state, 
where sporulation is environmentally triggered and sometimes 
preceded by the formation of lipoferous chlamydospores that can 
give rise to asci (Lachance 2011a). 

Ascus formation from chlamydospores can be induced in the 
laboratory by culturing on diluted V8 agar, a condition that is almost 
exclusive to those yeast species. Among the diplontic species are 
several noteworthy subclades (Guzmán et al. 2013). One consists 
of closely related, chlamydospore-forming species capable of 
producing the iron-rich pigment pulcherrimin, exemplified by 
Mets. pulcherrima; these are often fruit associated. Another 
subclade consists of mostly marine, invertebrate pathogens that 
include the type species, Mets. bicuspidata. Other chlamydospore 
formers, although not part of a monophyletic assemblage, have 
a strong association with nectar, as typified by Mets. reukaufii. 
Responses to growth tests are remarkably similar across the 
genus. Well-utilised carbon sources include, among others, 
sucrose, trehalose, β-glucosides, L-sorbose, and N-acetyl-D-
glucosamine. Few species grow at 37 °C or in the presence of 
10 ppm cycloheximide, but most tolerate the presence of 10 ppm 
CTAB in growth media, which may facilitate their isolation from 
natural substrates. Metschnikowia shares membership in the 
family Metschnikowiaceae with the smaller genus Clavispora as 
well as a disparate collection of species temporarily assigned to 
Candida while awaiting placement in better-defined genera, which 
is expected to arise from the determination of genome sequences 
for all species as well as progress in obtaining ascus formation. 
Among the Candida species, C. auris is an important emerging 
pathogen. Members of the family share the same unique mating 
locus structure (Lee et al. 2018). The Metschnikowiaceae together 
with the Debaryomycetaceae constitute the CUG-Ser1 clade, 
a relatively large collection of yeasts that share the use of an 
alternative codon usage where the CUG codon is associated with 
serine instead of leucine (Shen et al. 2019).

Ecological and economic significance

Metschnikowia pulcherrima is gaining popularity in vinification 
due to its β-glucosidase and α-L-rhamnosidase activities, a 
relatively low H2S production, and its “killer” activity, which is likely 
a reference to the production of pulcherriminic acid and its strong 
inhibitory effect on other microorganisms due to iron sequestration 
(Comitini et al. 2011, Padilla et al. 2016b). In co-culture with Mets. 
pulcherrima, S. cerevisiae retains its vigour, and the resulting 
wines are of excellent quality. The yeast does cause a reduction in 
fermentation rate and ethanol yields, however (Sadoudi et al. 2012), 
but the volatile acidity is low. Reductions in ethanol can be regarded 
as desirable (Contreras et al. 2014) as high ethanol may reduce the 
quality of wines or interfere with the perception of other aromas. 
Interestingly, Mets. pulcherrima can be supplanted by S. cerevisiae 
by the end of the fermentation due to the better ability of the latter 
to thrive in the near absence of oxygen (Sadoudi et al. 2012). 
There is a strong synergistic effect in the production of aromatic 
compounds such as fatty acids and esters, and the modification 
of the terpenol profile is not biomass dependent, indicating that 
the interaction itself is a major factor. Barata et al. (2012) assigned 

microbial species encountered in vinification to three categories, 
oligotrophs, strongly fermentative copiotrophs, and oxidative or 
moderately fermentative copiotrophs, Mets. pulcherrima belonging 
to the last category. The species is thought to be vectored around 
the vineyard by Drosophila, as opposed to bees or wasps, which 
are also important parts of this ecosystem. Vicente et al. (2020) 
added Mets. fructicola and Mets. viticola to the list of species of 
oenological interest. Four commercial preparations based on Mets. 
pulcherrima or Mets. fructicola are used in oenology, either for the 
prevention of mould damage or as a fermentation adjunct aimed 
at controlling other microorganisms and enhancing organoleptic 
properties of the wine.

Biocontrol of fungal damage to crops by species of the Mets. 
pulcherrima clade is now a reality. Fruit crops undergo losses 
approaching 50 % in some countries (Liu et al. 2013c). The 
causative agents are often moulds that compete with yeasts for 
nutrients in nature. Antagonistic yeasts can be used as agents of 
environmentally friendly biocontrol. A small number of diverse yeast 
species have been studied for their potential. The most efficacious 
are members of the Mets. pulcherrima clade, including Mets. 
fructicola and Mets. andauensis. Sipiczki (2006) provided strong 
evidence that these yeasts act through the depletion of iron caused 
by the excretion of pulcherriminic acid, which combines with ferric 
ions, rendering them inaccessible to neighbouring species. He 
also questioned whether the distinct status accorded to these 
species is warranted (Sipiczki 2020). It is not entirely inconceivable 
that economic gain might have played a role in the proliferation 
of specific epithets. The phylogenetic discontinuity that one would 
expect between independently evolving populations is difficult 
to detect in the three aforementioned species as well as Mets. 
chrysoperlae, Mets. leonuri, Mets. rubicola, Mets. shanxiensis, 
Mets. sinensis, and Mets. zizyphicola. In addition, GenBank is 
rife with sequences attached to related but unassigned strains 
queueing for eventual naming. Following a careful examination 
of the available data, and having demonstrated unusually high 
variability in barcode sequences even within individual strains, 
Sipiczki (2022) reduced nine named species (but not Mets. 
chrysoperlae) to synonymy with Mets. pulcherrima. For the sake 
of clarity, the names used in the original publications are retained 
in the present discussion. A commercial yeast biocontrol product 
consisting of a dried culture of Mets. fructicola has been developed, 
first under the name “Shemer”, but now to be licensed under 
the name “Noli” by Koppert Biological Systems. Six such yeast-
based products have been developed (Spadaro & Droby 2016). 
Pulcherrimin formation appears to be the most efficient of several 
mechanisms by which yeasts exercise interference competition (Liu 
et al. 2013c). Other processes include the production of chitinases, 
glucanases, or proteases and the induction of plant defences, the 
first and last of which have been demonstrated in Mets. fructicola 
and Mets. pulcherrima. Also important is the ability of biocontrol 
agents to resist plant defences. Metschnikowia fructicola has been 
shown to be affected, for example, by reactive oxygen species put 
out on plant surfaces. Lytic enzymes, volatile organic compounds, 
biofilm formation, fruit wound colonisation, and in situ competition 
also contribute to yeast antagonism, as shown for Botrytis cinerea 
by Parafati et al. (2015). Although lytic enzyme activity has not 
been detected in Mets. pulcherrima, the species rates well in all 
other attributes and is the only one among the species tested that 
is capable of iron scavenging, which gives it a strong advantage 
over other species.
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The functional and evolutionary genetics of pulcherrimin 
metabolism in yeasts make for a fascinating story. Krause et al. 
(2018), through a truly Holmesian genome dissection of pulcherrimin-
producing yeasts (Kluyveromyces lactis, Mets. fructicola, and 
Zygosaccharomyces mrakii), showed that these species share a 
cluster of four genes, two of which code for enzymes that catalyse, 
respectively, the dimerisation of leucine to cyclo-leucyl-leucine and 
its isomerisation to pulcherriminic acid. A third gene regulates the 
process. Pulcherriminic acid spontaneously complexes with ferric 
ions to form pulcherrimin, a low solubility, ochre pigment that may 
then be transported to the cytoplasm via the product of a fourth 
gene. All four genes were found in pulcherrimin-positive strains, 
but the presence of all four genes does not guarantee pigment 
production, as for example in Candida auris. Pulcherriminic acid 
production may in some cases benefit other species by recruiting 
rare iron, which is then taken up in the complexed form by yeasts 
such as most Saccharomyces species, by virtue of the presence of 
the PUL4 gene in their genome.

Oil from Mets. pulcherrima is the goal set by Abeln & Chuck 
(2019). The species offers a number of advantages over other 
oleaginous yeasts such as Rhodosporidium toruloides and 
Yarrowia lipolytica, in particular the potential for non-aseptic growth 
conditions. However, optimal growth and oil generation conditions 
in Mets. pulcherrima do not yet rival those of these other species.

Metschnikowia reukaufii is the dominant yeast in the nectar of 
many plants. It is vectored mostly by insects, including bees (Brysch-
Herzberg 2004, Herrera et al. 2009). Metschnikowia reukaufii is 
thought to influence plant fitness in many ways, positive or negative. 
For example, nectar fermentation can generate enough heat to 
warm up flowers by several degrees, assisting in their maturation 
in cold environments (Herrera & Pozo 2010). Microorganisms also 
alter the nature of mutualistic interactions between plants and their 
pollinators. However, in an experimental study of the hummingbird-
pollinated shrub Mimulus aurantiacus, Vannette et al. (2013) 

determined that bacteria of the genus Gluconobacter, and not the 
yeast Mets. reukaufii, were responsible for interfering with the bird-
plant mutualism by modifying nectar chemistry.

Metschnikowia bicuspidata features in a predator-prey 
model system centred on water fleas in the genus Daphnia. 
Metschnikowia species are often encountered as insect symbionts, 
but the nature of their interaction with the host is often not clear. 
In contrast, the Daphnia system (McLean & Duffy 2020) involves 
an eclectic collection of organisms that include vertebrates, 
crustaceans, algae, bacteria (in particular Pasteuria ramosa), 
viruses, oomycetes, microsporidians, protozoa, and, not least, 
Mets. bicuspidata. Although of theoretical interest, some of these 
interactions are also of economic importance, as most recently 
reported by Bao et al. (2021) and Zhang et al. (2021a), where the 
yeast causes significant mortality in farmed Chinese mitten crab. 
Although the crab is a local delicacy of high economic value, it has 
become an invasive pest in other world regions. A better knowledge 
of its interaction with Mets. bicuspidata may one day provide 
solutions to both problems.

Research interests

There are 674 publications and 11 995 citations from 2011–2021 
in the Web of Science (Fig. 76), with the top 10 most cited articles 
listed in Table 53. Citation records are often driven by economic 
impact or model organism status, as is the case for much of the 
literature in Table 53. But a robust Metschnikowian connection 
is not always so clear, however. The article by Cray et al. (2013) 
makes the case that yeasts and other microorganisms may be 
adapted to invade and dominate diverse, open habitats, in contrast 
to others that are greatly specialised. Metschnikowia pulcherrima 
is given as an example of the former, with Mets. orientalis as a 
counter-example. A justification for this conclusion in the literature, 
however, is lacking. A simple reference to the article describing 
Mets. orientalis (Lachance et al. 2006) would have doubled its (non-

Fig. 76. Trends in research of Metschnikowia in the period 2011–2021.
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self) citation record. Species descriptions rarely join the citation 
hall of fame. Of the over 70 Metschnikowia currently accepted 
species, nearly two dozen have been described in the last decade, 
but few of the articles have rated more than a dozen citations. 
The 160 citations associated with Mets. colchici are therefore in 
sharp contrast to this but are easily explained by the fact that the 
description was part of a multi-authored paper (Crous et al. 2015) 
that bundled together 50 short entries. The entry concerning Mets. 
colchici did not make a particularly strong case for its separate 
status from Mets. henanensis from mating experiments, a distinct 
phylogenetic placement, or a distinct D1/D2 barcode sequence 
(three substitutions), but the proposed species was reported to 
assimilate starch, nitrate, and nitrite, each of which on its own would 
be unprecedented in the genus Metschnikowia. In the past, equally 
startling reports of β-galactosidase activity in Mets. corniflorae 
(Nguyen et al. 2006) or the absence of pulcherrimin in Mets. 
fructicola (Kurtzman & Droby 2001) were later found to be mistaken 
(Lachance 2011a). With that in mind, the author of this review re-
evaluated the unexpected assimilations on the type strains of Mets. 
colchici and Mets. henanensis. Neither strain utilized nitrate or 
nitrite. A delayed utilization of dextrin (Difco) was observed in both 
strains. Metschnikowia colchici gave a delayed growth response 
on 2 % whole potato starch, but not on 2 % soluble starch (both 
Sigma) or starch at the recommended concentration (0.5 %) for 
standard growth tests.

Unculturable yeasts
Unlikely to climb to the top of the citation chart is the nonetheless 
intriguing matter of unculturable yeasts. The paucity of diagnostic 
morphological features makes yeast identification by microscopy 
difficult at best. The quintessential example is Coccidiascus legeri, 
known only from morphology. Electron micrographs (Lushbaugh et 
al. 1976) suggest a metschnikowia-like morphology but also hint at a 
prokaryotic structure. Reports of unculturable Metschnikowia species 
in the gut of beetles have featured daring assertions on their identity 
and status based on low-definition light micrographs or electron 
micrographs that fail to capture the gestalt of the material. Weiser 
et al. (2003) described the unculturable species Mets. typographi 
from such images. Recent progress (Kleespies et al. 2017) arose 
when DNA amplified from material containing an uncultured yeast 

from the gut of Austrian pine bark beetles, circumstantially identified 
as Metschnikowia cf. typographi, showed a strong affinity to Mets. 
agaves, a species found in insect-damaged agave tissue. Whole 
genome approaches might in the future provide information that will 
enable researchers to grow these organisms or at least understand 
why it has hitherto not been possible to culture them.

Author: M.A. Lachance

48. Talaromyces C.R. Benj., Mycologia 47: 681. 1955.

Type species: Talaromyces flavus (Klöcker) Stolk & Samson

Classification: Ascomycota, Pezizomycotina, Eurotiomycetes, 
Eurotiales, Trichocomaceae.

Background

Talaromyces was introduced with Ta. vermiculatus (syn. Ta. flavus) 
as the generic type characterised by typically yellow cleistothecia 
having soft walls of interwoven hyphae and ovate to subglobose 
ascospores with spiny walls (Benjamin 1955). The asexual morphs 
were commonly classified in Penicillium subgenus Biverticillium 
and together were known to form a clade distinct from the main 
Penicillium clade (Berbee et al. 1995, Houbraken & Samson 2011). 
Samson et al. (2011) reviewed the taxonomy of Talaromyces 
based on a multigene phylogeny and considered Penicillium 
subg. Biverticillium, Penicillium subg. Biverticillata-Symmetrica, 
Erythrogymnotheca, Paratalaromyces and Sagenoma as 
synonyms, while providing new Talaromyces combinations for most 
of these names. A monograph adopting a polyphasic approach was 
subsequently published with 88 species accepted within seven 
sections (Yilmaz et al. 2014). Similar to Penicillium, beta-tubulin 
was proposed as the sequence marker for species identification. 
Many new Talaromyces species were subsequently introduced. 
Houbraken et al. (2020) reviewed the taxonomy and nomenclature 
of Eurotiales, including an updated species list for Talaromyces 
where 171 species were accepted. More recently, Visagie et al. 
(2024) provided an update, which brought the number to 203 
accepted species in Talaromyces (currently 218).

Table 53. Top 10 cited articles related to Metschnikowia published in the period 2011–2021.
Rank Article title No. of citations References
1 Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered 465 Jolly et al. (2014)
2 Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations 

with Saccharomyces cerevisiae
366 Comitini et al. (2011)

3 The microbial ecology of wine grape berries 360 Barata et al. (2012)
4 Development of biocontrol products for postharvest diseases of fruit: The 

importance of elucidating the mechanisms of action of yeast antagonists
276 Spadaro & Droby (2016)

5 Review: Utilization of antagonistic yeasts to manage postharvest fungal diseases 
of fruit

273 Liu et al. (2013c)

6 Yeast-yeast interactions revealed by aromatic profile analysis of Sauvignon 
Blanc wine fermented by single or co-culture of non-Saccharomyces and 
Saccharomyces yeasts

236 Sadoudi et al. (2012)

7 Evaluation of non-Saccharomyces yeasts for the reduction of alcohol content in 
wine

191 Contreras et al. (2014)

8 Biocontrol ability and action mechanism of food-isolated yeast strains against 
Botrytis cinerea causing post-harvest bunch rot of table grape

181 Parafati et al. (2015)

9 The biology of habitat dominance; can microbes behave as weeds? 159 Cray et al. (2013)
10 Nectar bacteria, but not yeast, weaken a plant - pollinator mutualism 142 Vannette et al. (2013)



143www.studiesinmycology.org

What are the 100 most cited fungal genera?

Ecological and economic significance

Food mycology and ecology
Talaromyces species are commonly distributed in a wide range 
of substrates, although mostly in soil. However, new species 
have been isolated from indoor air, dust, clinical samples, plants, 
seeds, leaf litter, honey, pollen and stingless bee nests. The main 
interest of food mycologists lies in their production of heat resistant 
ascospores and their association with spoilage of pasteurised fruit 
juices and fruit-based products. The most isolated heat-resistant 
species include Ta. bacilisporus, Ta. helicus, Ta. macrosporus, Ta. 
stipitatus and Ta. trachyspermus (Pitt & Hocking 2009, Yilmaz et al. 
2014). Talaromyces trachyspermus or Ta. bacillisporus were recently 
found in low levels as contaminants of raw material (< 100 CFU/kg) 
for the food industry, and a traditional pasteurisation process would 
be insufficient to avoid potential spoilage problems (Tranquillini et 
al. 2017). In addition, Ta. flavus, Ta. funiculosus, Ta. pinophilus, 
Ta. purpurogenus, Ta. rugulosus and Ta. wortmannii have been 
found quite frequently in food, including fruit, nuts and cereals (Pitt 
& Hocking 2009). Talaromyces islandicus can cause yellowing of 
stored rice and has been reported from e.g., flour, peanuts, pecans, 
soybeans and maize (Sakai et al. 2005, Oh et al. 2008). Several 
species have been proven effective biocontrol agents against soil-
borne pathogens. Talaromyces flavus suppresses Verticillium wilt 
of tomato, eggplant and potato (Marois et al. 1984, Fahima & Henis 
1995). Talaromyces species have been used to parasitise and rot 
the hyphae and/or sclerotia of Botrytis cinerea, Rhizopus oryzae, 
Pythium graminicola, Gibberella fujikuroi, Sclerotium rolfsii, and 
Verticillium dahliae (Naraghi et al. 2010, 2012). A marine-derived 
species Ta. tratensis KUFA 0091 proved significant in reducing 
rice brown spots and dirty panicle disease (Dethoup et al. 2018). 
Talaromyces species may have multiple mechanisms to control 
plant diseases. They were demonstrated to be better adapted 
than Trichoderma to paddy soil and could be developed as eco-
friendly BCAs to parasitise the hyphae and sclerotia of R. solani, to 

promote rice growth and yield, and to protect rice crops against rice 
sheath blight (Abbas et al. 2021). Interestingly for food and industry, 
Talaromyces produce a broad range of colours of high industrial 
relevance. They produce high pigment yields with high stability, and 
some of the pigments are added-value compounds with bioactive 
properties (Morales-Oyervides et al. 2020). Talaromyces, like also 
Aspergillus and Penicillium, are ubiquitous fungi and possess the 
robust metabolic plasticity to interact with hash environmental 
factors either abiotic or biotic. In this respect, two new marine-
derived strains of Ta. zhenhaiensis and Ta. haitouensis, not 
taxonomically distinct from their terrestrial counterparts, were 
recovered from marine habitats while they rare or difficult to 
find in terrestrial sites (Han et al. 2021). Their wide ecological 
adaptation and distribution in nature render Talaromyces species 
as excellent enzyme producers for plant biomass applications. 
Their cellulases were recently reviewed (Vaishnav et al. 2018), and 
many strains produce the enzymatic arsenal required to degrade 
the heterogeneous plant hemicelluloses (Yoon et al. 2007, Lee 
et al. 2012). Méndez-Líter et al. (2021) reviewed the enzymatic 
properties of Penicillium and Talaromyces evidencing the ecological 
ability of several species, as a response to different lignocellulosic 
substrates, to produce xylanases, feruloyl esterases, β-xylosidases 
and arabinofuranosidases. From an industrial perspective, some 
strains of Ta. emersonii and Ta. thermophilus produce thermostable 
endoxylanases, β-xylosidases and xylanolytic auxiliary enzymes 
(Méndez-Líter et al. 2021). Recently, its endophytic role has been 
evidenced with 46 Talaromyces species found associated with 281 
plant species belonging to 108 families (Nicoletti et al. 2023).

Research interests

There are 1 147 publications and 11 976 citations from 2011–2021 
in the Web of Science (Fig. 77), with the top 10 most cited articles 
included in Table 54. Most publications focused on taxonomy, 
diseases and secondary metabolites associated with Talaromyces.

Fig. 77. Trends in research of Talaromyces in the period 2011–2021.
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Extrolites
Being competition selected fungi, Talaromyces can produce a very 
large number of small molecule extrolites (Frisvad et al. 1990, 
Samson et al. 2011, Yilmaz et al. 2014, Frisvad 2015), but they 
share few of these with Aspergillus and Penicillium. Important 
drugs or promising drug lead candidates produced by Talaromyces 
species include wortmannin a potential anticancer drug (Kornienko 
et al. 2015, Gambardelli et al. 2021) and the anticancerogenic 
rubratoxin A (Wada et al. 2010). Many other promising bioactive 
secondary metabolites have been found in Talaromyces species 
(Nicoletti & Trincone 2016). Mycotoxins produced by Talaromyces 
species include the hepatotoxin rubratoxin B produced by Ta. 
purpureogenus (Yilmaz et al. 2012), rugulosin produced by Ta. 
islandicus, Ta. rugulosus and other Talaromyces species in section 
Islandici (Yilmaz et al. 2016), and cyclochlorotin and luteoskyrin 
from Ta. islandicus (Uraguchi et al. 1972).

Authors: G. Perrone, C.M. Visagie, J.C. Frisvad and N. Yilmaz

49. Geotrichum Link, Mag. Gesell. Naturf. Freunde, Berlin 
3(1–2): 17. 1809.

Type species: Geotrichum candidum Link

Classification: Ascomycota, Saccharomycotina, Dipodascomycetes, 
Dipodascales, Dipodascaceae.

Background

Geotrichum is a ubiquitous filamentous yeast-like fungus, which is 
commonly isolated from soil, air, water, milk, silage, plant tissues, 
and they can also be pathogenic causing skin disease in humans 
and animals (Dolensek et al. 1977, Chahota et al. 2001, Pottier et 
al. 2008, Miceli et al. 2011). Geotrichum is generally characterised 
by the presence of arthroconidia with schizolytic conidial secession 
in a random order, and the conidial septal walls are perforated by 
micropores (De Hoog & Smith 2004). The taxonomy of this genus 
has been continuously studied in recent decades (Butler 1960, 

De Hoog et al. 1986, Guého et al. 1987, Smith et al. 2000b). 
Phylogenetic analyses showed that Geotrichum species, as well 
as their sexual morphs, formed several divergent groups with 
remarkable diversity in the ITS sequence, which resulted in the 
modifications of the sexual/asexual genera (De Hoog & Smith 
2004). The sexual morphs Dipodascus and Galactomyces have 
been linked with Geotrichum based on 18S, 26S and ITS sequence 
data (De Hoog & Smith 2004).

Ecological and economic significance

Geotrichum species have attractive benefits for humans because 
of their great biotechnological potential such as improving cheese 
flavour in the food industry, and biodegradation and decolourisation 
in the environmental protection industry. They are however also 
pathogenic, causing fungal infections in plants, humans and other 
mammals. For example, Geotrichum candidum is an important 
post-harvest pathogen which causes sour rot in ripe and over-
ripe fruits such as citrus, kiwifruit, loquat, mulberry, peach and 
strawberry (Hafeez et al. 2015, Alonzo et al. 2020, Cheng et al. 
2021a, Lu et al. 2021). Infection detracts from the quality of fresh 
fruits during harvesting, storage, transportation and marketing 
operations, leading to great economic losses (Zhang et al. 2018b).

Research interests

There are 794 publications and 11 900 citations from 2011–2021 
in the Web of Science (Fig. 78), with the top 10 most cited articles 
listed in Table 55. Most publications focused on disease infections 
and management (pathogens of humans, biological control of 
postharvest diseases on citrus and other fruits), application (cheese 
products, biodegradation and decolourisation), as well as taxonomy.

Pathogens of humans
Geotrichum candidum can colonise human skin, respiratory 
tract and gastrointestinal tract. The pathogenicity of Geotrichum 
species to humans should not be underestimated, especially in 
the immunocompromised population (e.g., HIV, alcoholism, critical 
illness, immunosuppressant use, diabetes mellitus). For example, 

Table 54. Top 10 cited articles related to Talaromyces published in the period 2011–2021.
Rank Article title No. of citations References
1 Phylogeny of Penicillium and the segregation of Trichocomaceae into 

three families
316 Houbraken & Samson (2011)

2 Phylogeny and nomenclature of the genus Talaromyces and taxa 
accommodated in Penicillium subgenus Biverticillium

253 Samson et al. (2011)

3 Polyphasic taxonomy of the genus Talaromyces 202 Yilmaz et al. (2014)
4 Fungal infections in HIV/AIDS 175 Limper et al. (2017)
5 Aspergillus, Penicillium and Talaromyces isolated from house dust 

samples collected around the world
148 Visagie et al. (2014a)

6 Penicillium marneffei infection: An emerging disease in mainland China 143 Hu et al. (2013a)
7 Talaromyces (Penicillium) marneffei infection in non-HIV-infected patients 135 Chan et al. (2016)
8 Classification of Aspergillus, Penicillium, Talaromyces and related genera 

(Eurotiales): An overview of families, genera, subgenera, sections, series 
and species

126 Houbraken et al. (2020)

9 Rasamsonia, a new genus comprising thermotolerant and thermophilic 
Talaromyces and Geosmithia species

124 Houbraken et al. (2012)

10 Cytotoxic norsesquiterpene peroxides from the endophytic fungus 
Talaromyces flavus isolated from the mangrove plant Sonneratia apetala

107 Li et al. (2011a)
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Kassamali et al. (1987) reported one patient with acute leukaemia 
who was infected by Ge. candidum, which indicated the potential 
virulence of the fungus in such patient population. Heinic et al. 
(1992) reported a Ge. candidum infection associated with human 
immunodeficiency virus (HIV) infection. The patient responded well 
after treatment with nystatin tablets. Prakash et al. (2012) reported 
a case of renal fungal bezoar caused by Ge. candidum in a female 
patient in the postpartum period. Bilman & Yetik (2017) detected 
Ge. candidum reproduction in urinary tract infection in a 74-yr-
old man who developed severe pain in the lumbar region. Keene 
et al. (2019) reported the first case of cutaneous geotrichosis by 
Ge. candidum infection in a patient with severe thermal burns. 
Antifungal resistance and breakthrough disease are an ongoing 
concern due to the increasing number of at-risk patients and the 
use of routine mould prophylaxis (Keene et al. 2019). Enhanced 
knowledge of Geotrichum infection in immunocompromised 
patients with accurate and rapid identification is crucial to improve 
diagnosis and contribute toward their effective antifungal therapy.

Biological control of postharvest diseases on citrus and 
other fruits
Geotrichum candidum and Ge. citri-aurantii are the major causal 
agents of postharvest sour rot in citrus and other fruits worldwide. 
They have therefore received great attention and scientific interest 
in disease management and antifungal activities. Salts and food 
additives have been used for the control of citrus post-harvest 
diseases (El-Mougy et al. 2008, Talibi et al. 2014). Soto-Muñoz et 
al. (2022) found that two edible coating emulsions based on potato 
starch formulated with 2 % w/w sodium benzoate significantly 
reduced sour rot incidence and severity compared to uncoated 
control samples on lemons incubated at 28 °C for 4 and 7 d. 
The use of natural plant-derived compounds is an interesting 
useful alternative approach for disease control. Talibi et al. (2012) 
determined the antifungal activity of some Moroccan plants against 
Ge. candidum postharvest citrus fungal pathogens. Among the 
43 plant species tested Cistus villosus, Halimium antiatlanticum, 
H. umbellatum, Pistacia lentiscus and Inula viscosa showed 

Fig. 78. Trends in research of Geotrichum in the period 2011–2021.

Table 55. Top 10 cited articles related to Geotrichum published in the period 2011–2021.
Rank Article title No. of citations References
1 Emerging opportunistic yeast infections 530 Miceli et al. (2011)
2 ESCMID and ECMM joint clinical guidelines for the diagnosis and management of 

rare invasive yeast infections
305 Arendrup et al. (2014)

3 Isavuconazole: A new broad-spectrum Triazole antifungal agent 177 Miceli et al. (2015)
4 Fungi in the healthy human gastrointestinal tract 171 Hallen-Adams et al. (2017)
5 Fabrication of fungus/attapulgite composites and their removal of U(VI) from 

aqueous solution
115 Cheng et al. (2015)

6 Alternative methods for the control of postharvest citrus diseases 114 Talibi et al. (2014)
7 Antifungal activity of citral, octanal and alpha-terpineol against Geotrichum citri-

aurantii
99 Zhou et al. (2014a)

8 Filamentous fungi and mycotoxins in cheese: A review 97 Hymery et al. (2014)
9 Anti yeast activities of some essential oils in growth medium, fruit juices and milk 90 Tserennadmid et al. (2011)
10 Microbial community dynamics during fermentation of doenjang-meju, traditional 

Korean fermented soybean
82 Jung et al. (2014)
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high antifungal activities against Ge. candidum both in vitro and 
in vivo. Zhou et al. (2014a) found that three volatile compounds 
(citral, octanal, and a-terpineol) exhibited strong antifungal activity 
against Ge. citri-aurantii, with minimum inhibitory concentration 
and minimum fungicidal concentration of 0.50 μL/mL and 1.00 μL/
mL, 0.50 μL/mL and 2.00 μL/mL, and 2.00 μL/mL and 4.00 μL/mL, 
respectively. Management of postharvest diseases using microbial 
antagonists, which are generally recognised as safe compounds 
and natural plant-derived products are suitable alternative 
methods to replace synthetic fungicides because of their antifungal 
activity, biodegradability, nonphytotoxicity and systemicity (Talibi 
et al. 2014). Therefore, the development of appropriate tools to 
effectively implement these alternative methods is necessary to 
provide more effective disease control for commercial citrus and 
other fruit production.

Cheese products
There has been a lot of interest in making cheese with Geotrichum 
candidum due to its many different metabolic pathways (Jollivet 
et al. 1994, Boutrou & Guéguen 2005, Sacristán et al. 2013, 
Lessard et al. 2014, Jaster et al. 2019). Geotrichum candidum 
can contribute to the maturation of cheese, as well as ripening 
and flavour formation and its application in the dairy industry was 
reviewed by Boutrou & Guéguen (2005).

Biodegradation and decolourisation
Geotrichum candidum is very efficient in the decolourisation of fresh 
and stored black olive mill wastewater, textile effluent, acid scarlet 
and molasses (Kim & Shoda 1999, Assas et al. 2000, Govindwar 
et al. 2014, Guo et al. 2019a, Ahmed & Sohail 2020). Borja et al. 
(1993a, b) reported that Ge. candidum was capable of removing 
phenolic compounds from molasses and distillery wastewater. 
FitzGibbon et al. (1998) showed that Ge. candidum was efficient 
for the biodegradation of distillery wastewater with evidence of 
fungal growth rates increasing in the presence of gallic acid. Kim & 
Shoda (1999) showed that Ge. candidum successfully decolourised 
molasses and an anthraquinone dye in shaken flasks after 12 and 7 
d of cultivation, respectively. Interest in studying biodegradation and 
decolourisation by Geotrichum species, as well as its relatives, is 
increasing (Dieuleveux et al. 1998, Assas et al. 2000, 2002, Jadhav 
et al. 2008a, b, Govindwar et al. 2014, Guo et al. 2019a).

Taxonomy and phylogeny
Gente et al. (2006) proposed a standardised protocol for the 
identification of Geotrichum candidum at the species and strain 
level with primers M13 and GATA4. The current classification of 
Geotrichum and its sexual morph Galactomyces is based on 
morphology, ecology, biochemistry, DNA-DNA reassociation 
comparisons, gene sequencing, phylogenetic analyses and mating 
compatibility (Groenewald et al. 2012). More work is needed for a 
standard systematic classification.

Author: M. Doilom

50. Pestalotiopsis Steyaert, Bull. Jard. Bot. État Bruxelles 
19: 300. 1949.

Type species: Pestalotiopsis maculans (Corda) Nag Raj

Classification: Ascomycota, Pezizomycotina, Sordariomycetes, 
Xylariales, Sporocadaceae.

Background

Pestalotiopsis is an appendage-bearing conidial form of 
Sporocadaceae with many species (Liu et al. 2019a). The genus 
was erected by Steyaert (1949) to describe the species Pes. 
guepinii. However, Nag Raj (1985) pointed out that the use of 
Pes. guepinii as the generic type of the genus Pestalotiopsis is 
contentious. He regarded Pes. maculans as the generic type of 
Pestalotiopsis and as the correct, older name for Pes. guepinii with 
Pes. guepinii as a synonym. According to Index Fungorum (2024), 
there are 406 names, while in MycoBank there are 377 names. 
Many of these names have traditionally been applied according 
to their host association (Tejesvi et al. 2009). However, sequence 
data has shown that host association and geographical location 
are less informative in their classification (Maharachchikumbura 
et al. 2012). The sexual morph of Pestalotiopsis is recognised as 
Pestalosphaeria M.E. Barr. Since Pestalotiopsis is the oldest and 
most commonly used name, Maharachchikumbura et al. (2011) 
suggested that this name be adopted for the sexual and asexual 
forms.

Pestalotiopsis comprises complexes of morphologically 
indistinguishable species that are closely related to each other. 
Maharachchikumbura et al. (2012) evaluated three ribosomal 
RNA regions and seven protein-coding markers for suitability 
in resolving species in Pestalotiopsis. Because of greater 
amplification and high-resolution power, ITS, tub and tef1 proved 
to be better markers. Conidial morphology, such as the colour 
of the median cells, is a widely used character in Pestalotiopsis 
taxonomy. Considering conidial pigmentation, conidiophores 
character and sequence data, Maharachchikumbura et al. (2014) 
segregated Pestalotiopsis into three genera: Neopestalotiopsis, 
Pseudopestalotiopsis and Pestalotiopsis. Pestalotiopsis is 
characterised by septate conidiophores that are unbranched 
and often reduced to conidiogenous cells. The conidiogenous 
cells are ampulliform to lageniform or cylindrical to subcylindrical 
phialides, and the conidia have concolourous median cells. 
Neopestalotioposis conidiophores are indistinct, and median cells 
are versicolourous, while Pseudopestalotiopsis is characterised 
by indistinct conidiophores and median cells are generally dark-
coloured and concolourous. These genera can be approximately 
assigned to separate groups based on the ITS region.

Ecological and economic significance

Plant pathogens
Pestalotiopsis species have a cosmopolitan distribution and 
accommodate mostly terrestrial taxa, although several can be 
found in aquatic environments (Maharachchikumbura et al. 2011). 
They are common phytopathogens that cause a variety of diseases, 
decrease production and cause economic loss in apple, blueberry, 
chestnut, grapevine, guava, mango, orchid, peach, rambutan, 
strawberries and tea (Sun & Cao 1990, Sangchote et al. 1998, 
Keith et al. 2006, Ismail et al. 2013a, Maharachchikumbura et al. 
2013a, b, 2016, Jayawardena et al. 2015, 2022, Morales-Mora et 
al. 2019, Silva et al. 2020a). It has been estimated that in southern 
India, grey blight disease of tea caused by pestalotiopsis-like taxa 
resulted in 17 % yield loss (Joshi et al. 2009) and 10–20 % yield 
decline in Japan (Horikawa 1986). Some species cause human and 
animal infections. Pestalotiopsis-like taxa have been isolated from 
the human sinuses, fingernails, a bronchial biopsy, eyes, scalp and 
feet with corneal abrasions (Sutton 1999, Monden et al. 2013).
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Secondary metabolites producers

Species of Pestalotiopsis are frequently isolated as endophytes 
that reside in plants without causing apparent symptoms of 
disease or occur as saprobes (Xu et al. 2010, Tian et al. 2022, 
Samaradiwakara et al. 2023). There are numerous reports that 
these endophytes have an enormous potential to produce active 
compounds constituting a new way to obtain various precursors 
or novel molecules useful in agriculture, medicine, and industrial 
applications (Xu et al. 2010, 2014). Chemical exploration of 
endophytic Pestalotiopsis subsequently increased exponentially, 
and these genera are the most studied fungal group for secondary 
metabolic products in the preceding 15 years. Xu et al. (2010, 
2014) reviewed 130 and 160 different compounds, respectively, 

isolated from species of pestalotiopsis-like taxa. These included 
bioactive alkaloids, terpenoids, isocoumarin derivatives, coumarins, 
chromones, quinones, semiquinones, peptides, xanthones, 
xanthone derivatives, phenols, phenolic acids, and lactones with a 
range of antifungal, antimicrobial, and antitumor activities.

Research interests

There are 759 publications and 11 758 citations from 2011–2021 
in the Web of Science (Fig. 79), with the top 10 most cited articles 
listed in Table 56. Most publications focused on taxonomy, 
phylogeny, description of new species, biochemistry and bioactive 
metabolites from endophytic Pestalotiopsis.

Fig. 79. Trends in research of Pestalotiopsis in the period 2011–2021.

Table 56. Top 10 cited articles related to Pestalotiopsis published in the period 2011–2021.
Rank Article title No. of citations References
1 Pestalotiopsis revisited 242 Maharachchikumbura et al. (2014)
2 One stop shop: backbones trees for important phytopathogenic genera: I 

(2014)
235 Hyde et al. (2014)

3 Biodegradation of polyester polyurethane by endophytic fungi 201 Russell et al. (2011)
4 Towards unraveling relationships in Xylariomycetidae (Sordariomycetes) 173 Senanayake et al. (2015)
5 Pestalotiopsis—morphology, phylogeny, biochemistry and diversity 172 Maharachchikumbura et al. (2011)
6 A multi-locus backbone tree for Pestalotiopsis, with a polyphasic 

characterisation of 14 new species
167 Maharachchikumbura et al. (2012)

7 Endophytic fungi from medicinal plants: a treasure hunt for bioactive 
metabolites

154 Kaul et al. (2012)

8 Species delimitation in fungal endophyte diversity studies and its 
implications in ecological and biogeographic inferences

149 Gazis et al. (2011)

9 Characterization of fungal pathogens associated with grapevine trunk 
diseases in Arkansas and Missouri

106 Urbez-Torres et al. (2012)

10 The taxonomy, biology and chemistry of the fungal Pestalotiopsis genus 87 Yang et al. (2012e)
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Emerging fungal pathogens
Pestalotiopsis is reported to cause various new diseases globally 
and to have expanded way beyond its natural host range in the 
recent past. Pestalotiopsis species described initially as endophytes 
may adapt to a new host and alter their life modes becoming plant 
pathogens and causing different novel diseases. Early diagnosis 
of these cryptic pathogens and understanding pathogen-host 
interactions will enable the development of a comprehensive set of 
measures to control diseases.

Secondary metabolites
Pestalotiopsis is one of the most biologically diverse groups of fungi 
that have great potential to produce new active compounds (Xu 
et al. 2010). The secondary metabolites of Pestalotiopsis species 
are highly diverse and synthesised through various biosynthetic 
pathways (Helaly et al. 2018). However, exploration of secondary 
metabolites is limited because of a lack of detection methods and 
culture conditions (Bills et al. 2013). Therefore, in further research, 
new methods and detection techniques should be developed. 
Furthermore, isolating new substances may be achieved by activation 
of weakened or dormant gene clusters that encode the formation of 
previously unknown secondary metabolites. These predominantly 
endophytic organisms have a fascinating ecology that makes them 
highly suitable as candidate organisms for biocontrol.

Taxonomy and phylogeny
The identification of Pestalotiopsis species only on a morphological 
basis is often difficult (Maharachchikumbura et al. 2011, 2014). 
For this reason, the use of molecular data for the identification of 
species has increased rapidly. However, the available gene regions 
lack species level resolution for several cryptic species complexes 
in Pestalotiopsis. Therefore, it is essential to utilise additional loci in 
future studies to identify cryptic species in Pestalotiopsis.

Author: S.S.N. Maharachchikumbura

51. Microsporum Gruby, C. R. Hebd. Séanc. Acad. Sci., 
Paris 17: 302. 1843.

Type species: Microsporum audouinii Gruby

Classification: Ascomycota, Pezizomycotina, Eurotiomycetes, 
Onygenales, Arthrodermataceae.

Background

Microsporum is a name that until recently was applied 
to a phylogenetically diverse group of fungi in the family 
Arthrodermataceae. This family lies within the protein-loving 
order Onygenales, which contains many of the best-known fungal 
pathogens infecting humans, other mammals, birds and reptiles. 
After phylogenetic analysis (De Hoog et al. 2017), Microsporum 
was restricted to three closely related species. The most common 
is Microsporum canis, a cosmopolitan zoophilic dermatophyte 
(“zoophilic” = an ecological class for skin pathogens with non-
human mammalian primary population hosts). In addition, Mi. canis 
has engendered two anthropophilic (specifically human-adapted) 
unifactorial radiate lineages (Summerbell 2002), type species Mi. 
audouinii and the uncommon and likely endangered Mi. ferrugineum. 
Among the prominent species recently removed from Microsporum 
are the geophilic dermatophytes (potentially human- and animal-
infecting but primarily saprobic and soil-associated) in the Nannizzia 

gypsea multi-species complex and the associated N. persicolor, as 
well as the poultry- and occasionally human-infecting Lophophyton 
gallinae, and the geophilic non-pathogen Paraphyton cookei.

Microsporum was introduced by physician David Gruby in 1843 
as a concept encompassing a disease presentation, namely, the 
appearance of masses of small spores coating the hair shafts of 
children with Microsporum audouinii scalp infections (Sabouraud 
1910). It was not reliably described from culture until some 
years later by Raymond Sabouraud. Microsporum canis, at first 
mainly observed from infected dogs and cats, was first named 
as a variety of Mi. audouinii by Eugène Bodin in 1900 but shortly 
thereafter in 1902 was upgraded to species status by the same 
author (Sabouraud 1910, De Hoog et al. 2017). The third currently 
phylogenetically sanctioned member of the genus, Mi. ferrugineum, 
was described by Masao Ota and Maurice Langeron in 1921 
based on human hair and skin infections studied by the former in 
Japanese-occupied Manchuria (Kitamura 1957).

The relationship between the three Microsporum species 
is unusual. Microsporum canis, clearly the ancestral species, is 
known from a worldwide near-clonal lineage of “minus” mating 
type established as a skin-infecting population on cats and less 
commonly on horses, as well as from a single phylogenetically 
distant isolate representing the “plus” mating type (Kaszubiak 
et al. 2004). The main population crosses over to infect various 
other species, including humans, but infections and outbreaks in 
these occasional hosts are usually self-limiting, and a permanent 
population is not known to be established. The species’ derivative 
based on a fully successful host-jump to humans, Mi. audouinii, 
is a product of the ancestral “plus” mating type and is much more 
closely related to CBS 495.86, the “plus” mating type tester strain 
of Mi. canis, than to the cosmopolitan ‘minus’ cat lineage of that 
species. Microsporum ferrugineum appears to constitute an 
independent host-jump to humans, though also derived from the 
“plus” mating type. The mating-type relations outlined here can be 
confirmed both by analysis of MAT mating type idiomorph as well 
as, in some isolates, by the long-standing technique of mating with 
testers of Trichophyton simii (Kosanke et al. 2018, Stockdale 1968).

Microsporum species on the host appear only as mycelium or 
substrate-arthroconidia; the latter, historically called “arthrospores”, 
are infectious elements that appear mostly on the surfaces of 
infected scalp hairs. They have some ability to disarticulate 
rhexolytically, but otherwise have no perceptible ontogenetic relation 
with the rhexolytically dehiscing macro- and micro- aleuriocondia 
that form in culture. In appearance, they resemble typical fungal 
chlamydospores. Growth of Mi. canis in culture is distinguished 
by formation of two types of aerial aleurioconidia (rhexolytically 
dehiscing specialised side-branches formed only above the 
substrate line): macroconidia, which are fusoid in shape, beaked 
at the apex, superficially encrusted with rough material, 40–150 × 
8–20 μm and 7–16-celled; and microconidia, which are small (3–5 
μm long), unicellular, droplet-shaped and smooth-walled.

Conidiation in derivative species and some atypical isolates 
is not as regular as in typical Mi. canis isolates. Microsporum is 
affected by the common trend among dermatophytes for conidiation 
to become reduced or atypical in lineages that have hosts whose 
ecologies do not provide hair-rich soil as an alternative growth site 
(Summerbell 2000). Thus, Mi. audouinii makes only infrequent, 
poorly formed Mi. canis-like macroconidia, often lacking most 
internal septa; many isolates make no macroconidia at all, and 
some also make no microconidia. Microsporum ferrugineum 
has essentially completely lost aerial conidiation, although a few 
conidium-like structures have rarely been induced. Even within 
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Mi. canis, a form previously known as the variety “distortum” (now 
with no separate taxonomic status) produces only highly irregular 
macroconidia, while lineages in the now synonymised horse 
population formerly called Mi. equinum, when they can be induced 
to produce macroconidia on special media, form structures that 
are only 2–4 cells long (occasionally to 8 cells), 18–60 × 5–13 μm 
(Kane et al. 1982).

When the “plus” and “minus” forms of Mi. canis are mated, 
spherical ascomata 280–700 μm in diameter are formed with loosely 
interwoven, branching, echinulate peridial hyphae bearing straight 
to spiralling, terminal, spiny protective appendages up to 150 μm 
long. Ascospores are formed in rounded, 8-spored, evanescent 
asci and are smooth and lenticular, 2.5–4.8 × 2–2.5 μm. These 
ascomata in the pre-2013 era of dual fungal nomenclature at first 
bore the name Nannizzia otae, later recombined as Arthroderma 
otae. Both generic names, Nannizzia and Arthroderma are currently 
validly applied to other clades in phylogenetic systematics.

Ecological (including medical and veterinary) and 
economic significance

Microsporum canis is primarily an agent of subclinical skin infection 
in cats that live in groups, such as the common feral cats of the 
Mediterranean area (often seen in restaurant patios), barn cats, and 
cats raised in breeding catteries (Nenoff et al. 2014). Though often 
causing minimal symptomatology, the infection is easily detected in 
the clinic, since infecting elements of Mi. canis fluoresce yellow-green 
in a Wood’s Lamp (ultraviolet at ~ 365 nm). Economic interest in Mi. 
canis derives in large part from its common occurrence in the human 
scalp and upper-body skin infections (face, trunk, arms) based 
almost entirely on recent contact with infected cats. In many parts 
of the world, it has proliferated as the most common cause of tinea 
capitis (dermatophytic scalp infection) (Rodríguez-Cerdeira et al. 
2020) and upper-body dermatophytosis (tinea corporis) in general. It 
is especially prominent in Europe, North Africa, China, New Zealand 
and Mexico (Rodríguez-Cerdeira et al. 2020, Xiao et al. 2022). In 

urban areas worldwide influenced by recent immigration from Africa, 
the anthropophilic Mi. audouinii may become more common than 
Mi. canis as a scalp ringworm fungus (Rodríguez-Cerdeira et al. 
2020), although it grows almost exclusively in children (Borman & 
Summerbell 2019). In North American cities and the Caribbean, 
Trichophyton tonsurans predominates as the main childhood 
tinea capitis agent, while in Africa, T. soudanense, Mi. audouinii, T. 
violaceum and Mi. canis each predominates in partially overlapping 
regions (Rodríguez-Cerdeira et al. 2020).

Microsporum ferrugineum is seen uncommonly in a few 
scattered areas of continued endemicity, such as parts of China, 
southern Ethiopia, and parts of Macedonia, and like the more 
frequently seen Mi. audouinii, is occasionally brought into western 
Europe via immigration (Nenoff et al. 2020).

Research interests

There are 1 176 publications and 11 474 citations from 2011–2021 
in the Web of Science (Fig. 80), with the top 10 most cited articles 
listed in Table 57. Three of the five most cited publications focused 
on molecular biosystematics or genomic research shedding insight 
into relationships and mechanisms of pathogenicity. Three of the 
top ten publications, including two of the top five, were clinical 
reviews focused towards updating physicians on some or all of the 
common topics of practical interest: biosystematics/nomenclature, 
epidemiology, pathogenesis and therapy. A similar review, also 
in the top ten, was directed at veterinarians. Of the three non-
DNA-based experimental studies in the top ten, one investigated 
the susceptibility to a novel commercially marketed antifungal 
agent, one investigated a novel approach to laboratory species 
identification with MALDI-TOF spectroscopy, and one investigated 
the inhibitory effects of some natural plant extracts. The array of 
topics considered in the top 10 publications gives an excellent 
overview of current topics of activity by researchers investigating 
Microsporum. Four relatively prominent topics abstracted from 
those mentioned above are commented on further below.

Fig. 80. Trends in research of Microsporum in the period 2011–2021.
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Biosystematics
With only three Microsporum species to work with, ongoing research 
in biosystematics tends to focus on the infraspecific distinction of 
strain types, along with the connection of these types to patterns in 
epidemiology (e.g., Mochizuki et al. 2022).

Pathogenesis
No Microsporum species has yet been the principal focus of a major 
comparative genomics study analysing patterns of virulence factors, 
but Mi. canis has been used as a comparator in initial whole genome 
surveys with other dermatophytes such as Trichophyton rubrum, 
as well as related non-pathogens such as Arthroderma uncinatum 
(Martinez et al. 2012, Zheng et al. 2020). Individual pathogenicity 
factors, especially proteases responsible for binding Mi. canis 
to human and animal cells have come under investigation. The 
protease subtilisin, variant sub3, from Mi. canis was the first protease 
secreted by a dermatophyte for which in vivo production during 
skin infection was clearly demonstrated, and was also found to be 
necessary for the adherence of Mi. canis to both feline and human 
epidermis (Băguţ et al. 2012). An overlapping topic of interest is gene 
expression studies on proteolytic enzymes produced under different 
conditions and by different strains in Mi. canis pathogenicity (Mathy 
et al. 2010). Complementary studies on host responses to Mi. canis 
pathogenicity factors are likewise in progress (Cambier et al. 2016).

Susceptibility and treatment
Microsporum infections tend to be susceptible to existing 
antidermatophytic therapies and are not at the forefront of 
major research into new drugs or strategies against resistance. 
Nonetheless, there are numerous studies such as that of Mabona 
et al. (2013) from Table 57 and Giordani et al. (2022), where natural 
products are explored for inhibitory properties against Mi. canis, 
among other pathogenic fungi.

This is an unusual area of research, in that these studies 
probably often re-investigate natural materials that were screened 
by multinational pharmaceutical companies in previous years, 
perhaps decades ago, but for which there is no public record of 

the results obtained. The research is thus, even setting aside the 
economic situations of the researchers currently doing the studies, 
exquisitely unlikely to become connected to the heavily privately 
funded networks of chemical refinements and clinical trials that 
lead to licensed conventional medical therapies. This area of study, 
then, adds to our knowledge of antifungal chemistry more as a 
theoretical discipline than as the applied discipline it seems to be 
at first glance. It may also connect to sociological considerations by 
validating traditional folk remedies and could, in principle, supply 
new materials to alternative medicine.

Conservatively approximating the strength of this natural 
inhibitory products research front, a search in Web of Science from 
2011 through 2021 on “Microsporum inhibit* extract*” yields 174 
results, making this area account for almost 15 % of publications 
on Microsporum.

Epidemiology and unusual cases
Describing and analysing outbreaks and unusual cases make 
up a substantial amount of research activity in Microsporum. For 
example, the recent rise to prominence, through immigration 
from Africa, of Mi. audouinii in childhood tinea capitis in Belgium 
has been well documented (Sacheli et al. 2020, 2021, Lecerf et 
al. 2022). Microsporum ferrugineum, found in Germany to be 
infecting two immigrant children from Russia who participated in 
a sports wrestling club, raised concerns about “tinea gladiatorum”, 
a frequently seen pattern of contagious ringworm outbreaks 
among child and adolescent wrestlers. However, in contrast to the 
pattern that would be expected with the notorious Trichophyton 
tonsurans, the Microsporum inoculum turned out not to have been 
communicated to other children in the club (Nenoff et al. 2020). 
It is important for physicians and health authorities to be able to 
use such findings to predict the risk to social contacts entailed by 
dermatophytosis cases, especially in children.

Author: R. Summerbell

Table 57. Top 10 cited articles related to Microsporum published in the period 2011–2021.
Rank Article title No. of citations References
1 Toward a novel multilocus phylogenetic taxonomy for the dermatophytes 264 De Hoog et al. (2017)
2 Mycology - an update. Part 1: dermatomycoses: causative agents, epidemiology and 

pathogenesis
162 Nenoff et al. (2014)

3 Comparative genome analysis of Trichophyton rubrum and related dermatophytes 
reveals candidate genes involved in infection

150 Martinez et al. (2012)

4 Comparative and functional genomics provide insights into the pathogenicity of 
dermatophytic fungi

137 Burmester et al. (2011)

5 The changing face of dermatophytic infections worldwide 123 Zhan et al. (2017)
6 Comparison of in vitro antifungal activities of efinaconazole and currently 

available antifungal agents against a variety of pathogenic fungi associated with 
onychomycosis

106 Jo Siu et al. (2013)

7 Diagnosis and treatment of dermatophytosis in dogs and cats. Clinical Consensus 
Guidelines of the World Association for Veterinary Dermatology

103 Moriello et al. (2017)

8 Antimicrobial activity of southern African medicinal plants with dermatological 
relevance: From an ethnopharmacological screening approach, to combination 
studies and the isolation of a bioactive compound 

100 Mabona et al. (2013)

9 MALDI-TOF mass spectrometry - a rapid method for the identification of 
dermatophyte species 

95 Nenoff et al. (2013)

10 British Association of Dermatologists’ guidelines for the management of tinea capitis 87 Fuller et al. (2014)
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52. Curvularia Boedijn, Bull. Jard. Bot. Buitenzorg, 3 Sér. 
13(1): 123. 1933.

Type species: Curvularia lunata (Wakker) Boedijn

Classification: Ascomycota, Pezizomycotina, Dothideomycetes, 
Pleosporales, Pleosporaceae.

Background

The globally distributed genus Curvularia, includes pathogens or 
saprobes of a wide range of plant hosts, especially members of 
Poaceae (Marin-Felix et al. 2017a, Ferdinandez et al. 2023). It 
also includes emerging opportunistic human pathogens which 
can cause superficial to deep infections (De Hoog et al. 2011b). 
Species of this genus can also be found in other substrates, i.e., 
aquatic environments (Verma et al. 2013b), air (Manamgoda et al. 
2015) and soil (Marin-Felix et al. 2017a, Tan et al. 2018).

Curvularia is the largest genus of helminthosporioid fungi 
with 222 species epithets listed in Index Fungorum (2022). 
However, only 143 species are accepted based on DNA 
sequence data (Raza et al. 2019, Song et al. 2019a, Crous 
et al. 2020a, Iturrieta-González et al. 2020, Marin-Felix et 
al. 2020a, Safi et al. 2020, Zhang et al. 2020e). This genus is 
characterised by the production of brown distoseptate conidia, 
usually with paler terminal cells and inordinately enlarged 
intermediate cells. Similar conidia are observed in the other 
helminthosporioid genera Bipolaris, Exserohilum, Johnalcornia 
and Pyrenophora, which led to the wrong identification of species 
in these genera (Manamgoda et al. 2012, 2014, Tan et al. 2014, 
Hernández-Restrepo et al. 2018, Marin-Felix et al. 2019b, 2020). 
Exserohilum can be easily distinguished by the production of 
conidia with distinctly protruding hila, but similar structures have 
also been observed in Curvularia (Hernández-Restrepo et al. 
2018). Pyrenophora differs by its muriform septate ascospores. 
In Curvularia, the sexual morph was known as Cochliobolus, 
which is now synonymised to Bipolaris, and is characterised by 
brown or black, globose ascomata, bitunicate, cylindrical asci 
and filiform or flagelliform, hyaline ascospores, which are loosely 
arranged into a helix or in a parallel arrangement (Manamgoda et 
al. 2012). However, the asexual morph of Pyrenophora is similar 
to Curvularia, which also leads to wrong identifications (Marin-
Felix et al. 2019b). Johnalcornia can be distinguished from the 
other helminthosporioid genera by the presence of a second 
conidial septum in the apical cell and distinctive conidia-like 
chlamydospores (Tan et al. 2014). Curvularia and Bipolaris can be 
distinguished by the curvature of their conidia, being throughout 
the length of the conidium in Bipolaris, while in Curvularia, it is 
generally restricted to the middle due to its inordinately enlarged 
intermediate cells (Marin-Felix et al. 2017a, b). The sexual 
morphs are similar, with the only difference being the presence 
of stromata in some Curvularia species, a feature not observed in 
Bipolaris, but it is of limited value since the sexual stage is rarely 
found in nature and difficult to induce in culture (Manamgoda et 
al. 2012). Moreover, Curvularia shows a wider host range and 
geographic distribution than Bipolaris (Marin-Felix et al. 2017b). 
Therefore, molecular data of the ITS, gapdh and tef1 sequences 
are required for accurate species delimitation in all these genera 
due to the similarity and overlapping dimensions between their 
species (Manamgoda et al. 2014, Hernández-Restrepo et al. 
2018, Marin-Felix et al. 2019b, 2020).

Ecological and economic significance

Diseases in plants and animals caused by Curvularia and Bipolaris 
species amount to an estimated annual loss of 10 billion US dollars 
worldwide (Bengyella et al. 2019). Species of Curvularia occur mainly 
on Poaceae and represent important pathogens of grasses and 
staple crops, including rice, maize, wheat and sorghum (Marin-Felix 
et al. 2017a). Other hosts are members of the families Actinidiaceae, 
Aizoaceae, Caricaceae, Convolvulaceae, Fabaceae, Iridaceae, 
Lamiaceae, Lythraceae, Oleaceae, Polygonaceae and Rubiaceae 
(Sivanesan 1987, Manamgoda et al. 2015, Marin-Felix et al. 
2017a, b, Tan et al. 2018). A prominent example of an economically 
significant disease caused by Curvularia species is a leaf spot of 
maize, with maize being the third most cultivated crop in the world 
(Ahmad et al. 2020). This disease is characterised by brownish leaf 
lesions and is produced by different species, e.g., Cur. australiensis 
in China (Chang et al. 2016), Cur. chiangmaiensis in Thailand (Marin-
Felix et al. 2017b) and Cur. lunata in the USA (Garcia-Aroca et al. 
2018). Diseases in rice caused by Curvularia species also lead to 
yield losses, with rice being a major staple crop that provides more 
than 20 % of calories for more than half of the human population 
(Gutaker et al. 2020). Different symptoms or diseases are observed 
in this crop, e.g., black kernel disease (Bengyella et al. 2018) and 
leaf spots observed for example in Cambodia, Malaysia and Pakistan 
(Kusai et al. 2016, Majeed et al. 2016, Tann & Soytong 2017), all 
caused by Cur. lunata. Other examples of diseases are leaf spots 
of sorghum in China and Pakistan (Akram et al. 2014, Tong et al. 
2016), the foliar necrosis of potatoes in India (Louis et al. 2013), and 
stem blight disease of cassava in West Africa (Msikita et al. 2007), all 
caused by Cur. lunata.

Curvularia species are also emerging opportunistic pathogens 
of humans, causing respiratory tract, cerebral, cutaneous and 
corneal infections, as well as deep and disseminated infections, 
in both immunocompetent and immunocompromised patients 
(Krizsán et al. 2016). The most common disease caused by 
Curvularia is keratitis, being extensively reported in India, e.g., 
the two recently described species Cur. coimbatorensis and Cur. 
tamilnaduensis (Kiss et al. 2020), with 97 cases reported from 
2012 to 2018 in only one tertiary eye care centre (Khurana et al. 
2020). Curvularia species also commonly cause respiratory tract 
infections (Cruz et al. 2013, Cavanna et al. 2014, Chowdhary 
et al. 2014a), with sinusitis being the second most common 
human infection caused by this genus (Krizsán et al. 2016). Both 
cutaneous and subcutaneous phaeohyphomycoses skin infections 
are known (Moody et al. 2012, Gunathilake et al. 2013, Vásquez-
del-Mercado et al. 2013, Requena López et al. 2020). Curvularia 
species have also been reported to cause deep infections such 
as cerebral phaeohyphomycosis (Rosow et al. 2011, Gongidi 
et al. 2013, Wang et al. 2014f), and even human disseminated 
phaeohyphomycosis (Revankar et al. 2002, Kobayashi et al. 2008, 
Vasikasin et al. 2019). Different antifungals have been applied as a 
treatment for the diseases produced by Curvularia, but differences 
in the susceptibility of different species and isolates have been 
observed (Krizsán et al. 2016). Da Cunha et al. (2013) studied the 
in vitro susceptibility of 99 clinical isolates belonging to 14 different 
species, concluding that the most active drugs were amphotericin 
B, echinocandins and posaconazole, while voriconazole and 
itraconazole showed poor activity. However, itraconazole was 
highly effective in two different studies, one including 25 isolates 
belonging to seven different species (Guarro et al. 1999), and the 
other including 30 isolates from keratitis belonging to four different 
species (Krizsán et al. 2015).
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Research interests

There are 941 publications and 11 008 citations from 2011–2021 
in the Web of Science (Fig. 81), with the top 10 most cited articles 
listed in Table 58. Most publications focused on the plant and 
human diseases caused by Curvularia species (see above for 
more details), their taxonomy and phylogeny, as well as their 
biotechnological application as producers of compounds with 
antimicrobial properties or beneficial to the environment.

Taxonomy and phylogeny
Species delimitation in Curvularia based only on morphology 
is problematic since many species share similar characters with 
overlapping dimensions. Therefore, phylogenetic studies using ITS, 

gapdh and tef1 sequences are necessary for proper delimitation 
and identification (Manamgoda et al. 2012, 2015, Tan et al. 2014, 
2018, Marin-Felix et al. 2017a, b, 2020, Raza et al. 2019). Many 
species were described before the DNA era and were based only 
on morphology. The lack of molecular data is causing many of these 
species to be ignored by the scientific community. Thus, one of the 
objectives addressed in the last years is to provide sequence data 
of the main markers used in molecular studies of Curvularia and 
to determine the taxonomic position of many of these previously 
described species (Marin-Felix et al. 2020a).

Biotechnological application
In the last years, the study of Curvularia for biotechnological 
applications in medicine, global agriculture and eco-system 

Fig. 81. Trends in research of Curvularia in the period 2011–2021.

Table 58. Top 10 cited articles related to Curvularia published in the period 2011–2021.
Rank Article title No. of citations References
1 Fungi and allergic lower respiratory tract diseases 305 Knutsen et al. (2012)
2 One stop shop: backbones trees for important phytopathogenic genera: I 

(2014)
235 Hyde et al. (2014)

3 Optimization for rapid synthesis of silver nanoparticles and its effect on 
phytopathogenic fungi

202 Krishnaraj et al. (2012)

4 Genera of phytopathogenic fungi: GOPHY 1 185 Marin-Felix et al. (2017a)
5 In vitro antifungal efficacy of copper nanoparticles against selected crop 

pathogenic fungi
178 Kanhed et al. (2014)

6 A phylogenetic and taxonomic re-evaluation of the Bipolaris – Cochliobolus – 
Curvularia complex

169 Manamgoda et al. (2012)

7 Antimicrobial enzymes: an emerging strategy to fight microbes and microbial 
biofilms

163 Thallinger et al. (2013)

8 The genus Bipolaris 146 Manamgoda et al. (2014)
9 Allergic bronchopulmonary mycosis due to fungi other than Aspergillus: a 

global overview
120 Chowdhary et al. (2014a)

10 Cochliobolus: an overview and current status of species 118 Manamgoda et al. (2011)
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clean-up has increased (Bengyella et al. 2019). Different strains 
of Curvularia species have been subjected for screening to 
produce bioactive compounds. These studies demonstrated that 
Curvularia species are prolific producers of antimicrobial secondary 
metabolites, with potential uses in the pharmacological industry. 
Examples of antifungal compounds are moriniafungin E, which 
is a sordarin tetracyclic diterpene glycoside isolated from Cur. 
hawaiiensis (Zhang et al. 2019b), and curvularide B, which is a 
hybrid peptide-polyketide isolated from Cur. geniculata with activity 
against Candida albicans and synergistic activity with fluconazole 
drug (Chomcheon et al. 2010). Antibiotic compounds have also 
been isolated from Curvularia species, such as curvulamine, which 
showed strong activity against the human pathogens Actinomyces 
israelii, Streptococcus sp., Peptostreptococcus sp. and Bacteroides 
vulgatus (Han et al. 2014), and 4-epiradicinol, which inhibited 
the growth of Bacillus subtilis, Escherichia coli, Salmonella 
choleraesuis and Staphylococcus aureus (Varma et al. 2006). 
Other bioactive secondary metabolites isolated from Curvularia 
are pyrenolide A, which showed strong motility impairing activity 
against zoospores of the oomycete Phytophthora capsici (Mondol 
et al. 2017), and curindoziline, which displays an anti-inflammatory 
action representing a possible solution for managing inflammation-
derived diseases (Han et al. 2016b). Cytotoxic compounds, which 
can hold great potential for cancer treatment, have been found 
in Curvularia, e.g., pyrenocine J isolated from Cur. affinis, which 
showed activity against human hepatic cancer cell line HepG2 
(Zhang et al. 2012a), and a polyketide isolated from Cur. trifolii, 
which showed cytotoxic activity against five different cancer cell 
lines (Samanthi et al. 2015).

Curvularia spp. have been demonstrated to provide potential 
solutions for environmental and agricultural problems. For example, 
phytotoxic compounds produced by Curvularia, could be used 
as eco-friendly mycoherbicides, e.g., phthalic acid butyl isobutyl 
ester and radicinin, which showed significant phytotoxic activity 
against the radical growth of Echinochloa crusgalli (Zhang et al. 
2011d), and zeaenol, isolated from Cur. crepinii, which possessed 
herbicidal activity against Echinochloa crusgalli (Yin et al. 2018a). 
Bioremediation using Curvularia species is also an increasing field 
of study. For example, Senthilkumar et al. (2012) demonstrated 
that a strain of Curvularia was able to uptake Reactive Red 195 in 
dye wastewater, suggesting its potential to decolourise wastewater 
of textile industries. Curvularia lunata was found to have the ability 
to biodegrade crude oil (Al-Nasrawi 2012), as well as chrysene, 
which is a polycyclic aromatic hydrocarbon (Bhatt et al. 2014). The 
potential use of Curvularia in bioremediation processes was also 
observed in a strain of Cur. geniculata that was able to remove 
100 % of mercury from a culture medium and promoted the 
growth of Aeschynomene fluminensis and Zea mays in substrates 
containing this metal (Pietro-Souza et al. 2020). Other uses could 
be cleaning industrial metallic wastewater since Abu-Elreesh & 
Abd-El-Haleem (2014) demonstrated that cell debris of Curvularia 
sp. removed 85 % of Cd and 15 % of Zn after 1 h contact time in 
solution. Species of Curvularia have a great impact on industrial 
enzyme production, such as the laccases produced by Cur. 
kusanoi. Vazquez et al. (2020) demonstrated that these enzymes 
decreased the fibre content and increased in vitro digestibility of 
sugarcane bagasse; therefore, it could represent a novel tool for 
improving the nutritional quality of fibrous sources for animal feed.

Author: Y. Marin-Felix

53. Rhizomucor Lucet & Costantin, Rev. Gén. Bot. 12: 92. 
1900.

Type species: Rhizomucor pusillus (Lindt) Schipper

Classification: Mucoromycota, Mucoromycotina, Mucoromycetes, 
Mucorales, Lichtheimiaceae.

Background

Rhizomucor was established by Lucet & Costantin in 1900. It is 
classified in Rhizomucoraceae and has 15 epithets (Zhao et al. 
2023). In recent publications, the number of accepted species 
is not congruent. Wijayawardene et al. (2018a) list four species, 
Walther et al. (2019) accept two species, and Wijayawardene 
et al. (2020) list six species. The genus exclusively comprises 
thermophilic species that can grow at temperatures above 50 °C. 
All mesophilic species such as Rhi. chlamydosporus and Rhi. 
endophyticus were transferred to Mucor. Hence in the current 
classification scheme, Rhizomucor comprises Rhi. miehei, Rhi. 
pusillus, Rhi. nainitalensis, and Rhi. pakistanicus. However, for 
Rhi. nainitalensis, and Rhi. pakistanicus no strains, DNA sequence 
data, or reports are available, and it may be that they represent 
synonyms of Rhi. pusillus or Rhi. miehei. Species of Rhizomucor 
account for 5 % of mucormycosis worldwide. They mainly 
cause pulmonary, cutaneous infections or rhino-orbital-cerebral 
manifestations (Walther et al. 2019).

Rhizomucor shares several morphological similarities with 
Mucor. One of the key characteristics used to differentiate these two 
genera was the presence of rhizoids in the species of Rhizomucor 
and the absence in Mucor. However, recent studies revealed that 
some Mucor species do produce rhizoids under certain conditions. 
In literature, another difference used to segregate Mucor from 
Rhizomucor was the production of stolons in the latter. Route of 
infection can also be taxonomically informative to differentiate 
among Mucorales genera. Rhizopus and Rhizomucor are primarily 
airborne while Mucor and Lichtheimia usually infect their host by 
contact (Nicolás et al. 2020). This preference in the mode of infection 
is reflected in the intergeneric sporangial differences. Rhizomucor 
and Rhizopus species usually have dry sporangia on thin and long 
sporangiophores which are fully adapted for spore release in the 
air. Mucor and Lichtheimia typically have wet sporangia and release 
spores in small droplets when several sporangia stick together 
which may explain why Mucor and Lichtheimia infect burn wounds 
and trauma injuries (Nicolás et al. 2020). Intrageneric delimitations 
usually consider the colour of the colonies, the origin of rhizoids, the 
appearance of the sporangiophores (length, branching, diameter), 
the size of the columella, spores, and sporangium, or the presence 
or absence of a collar (Zheng et al. 2009).

Ecological and economic significance

Production of ester compound using lipase
Esters of long-chain fatty acids and polyhydric alcohols such as 
glycerol, sorbitol, and other carbohydrates have an array of uses in 
the food and pharmaceutical industries. They are important aroma 
compounds and oleochemicals that can be used as lubricants and 
anti-static reagents. Esterification catalysed by lipase has been 
used to produce esters of glycerol, aliphatic, and terpene alcohols. 
In this sense, lipase derived from Rhizomucor miehei has a wide 
range of applications such as in hydrolysing oils into free fatty acids 
and glycerol and esterification processes (Hari Krishna et al. 2000). 



154

Bhunjun et al.

In several studies, Rhi. miehei lipase has been used to produce 
esters. The enzyme is known for its ability to efficiently synthesise 
esters with high yields and broad substrate specificity ranging from 
low to high molecular weight acids, alcohol to amines, and amino 
acids (Hari Krishna et al. 2000, Rodrigues & Fernandez-Lafuente 
2010).

Hydrolysis of oil
The partial hydrolysis of glycerides in oil can help to modify the 
specific properties of the oil. Several studies focus on the hydrolysis 
of commercially available oils such as soybean oil and peanut oil. 
Rhizomucor miehei lipase can selectively hydrolyse saturated fatty 
acids in soybean oil. For example, the removal of saturated fatty 
acids from epoxidised soybean oil allows for the processing of the 

oil for polymer synthesis applications (Rodrigues & Fernandez-
Lafuente 2010).

Research interests

There are 667 publications and 10 915 citations from 2011 to 2021 
in the Web of Science (Fig. 82), with the top 10 most cited articles 
listed in Table 59. Most publications are related to the taxonomy 
of Rhizomucor to produce enzymes, and human pathogenicity 
(mucormycosis).

Clinical importance
Similar to Mucor and Lichtheimia, Rhizomucor is also known 
to cause mucormycosis. One of the species known to cause 

Fig. 82. Trends in research of Rhizomucor in the period 2011–2021.

Table 59. Top 10 cited articles related to Rhizomucor published in the period 2011–2021.
Rank Article title No. of citations References
1 A global analysis of Mucormycosis in France: The RetroZygo study (2005–2007) 271 Lanternier et al. (2012)
2 Mucormycosis caused by unusual mucormycetes, non-Rhizopus, -Mucor, and 

-Lichtheimia species
224 Gomes et al. (2011)

3 DNA barcoding in Mucorales: an inventory of biodiversity 176 Walther et al. (2013)
4 Daqu - A traditional Chinese liquor fermentation starter 173 Zheng et al. (2011b)
5 Complex microbiota of a Chinese “Fen” liquor fermentation starter (Fen-Daqu), 

revealed by culture-dependent and culture-independent methods
148 Zheng et al. (2012)

6 Quantitative Polymerase Chain Reaction detection of circulating DNA in serum for 
early diagnosis of Mucormycosis in immunocompromised patients

123 Millon et al. (2013)

7 Biodiesel production from Acrocomia aculeata acid oil by (enzyme/enzyme) 
hydroesterification process: Use of vegetable lipase and fermented solid as low-
cost biocatalysts

106 Aguieiras et al. (2014)

8 Improved performance of lipases immobilized on heterofunctional octyl-glyoxyl 
agarose beads

105 Rueda et al. (2015)

9 Fungal community associated with fermentation and storage of Fuzhuan brick-tea 105 Xu et al. (2011a)
10 The family structure of the Mucorales: a synoptic revision based on comprehensive 

multigene-genealogies
104 Hoffmann et al. (2013)
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mucormycosis is Rhi. pusillus. The pathogen is usually transmitted 
by inhalation of the spores, percutaneously and mainly affects 
immunocompromised patients. Like all species in the genus, 
the fungus is thermophilic and usually isolated as a saprobe 
(Menzinger et al. 2019). Twenty-two cases of mucormycosis 
caused by Rhi. pusillus were recorded before 2013 worldwide 
(Menzinger et al. 2019). Rhizomucor pusillus can lead to 
rhinoorbito-cerebral mucormycosis which occurs in 9 % of cases 
(Bala et al. 2014). Similar to other agents of mucormycosis, the 
fungus mainly affects people with haematological disorders (Zhao 
et al. 2009, Bala et al. 2014). The pathogenicity of the species is 
associated with its angioinvasive nature and thermotolerance (Bala 
et al. 2014). There has been a recent case of Rhi. pusillus causing 
mucormycosis in Magellanic penguins. The bird exhibited acute 
neurologic symptoms. Further examination showed the presence 
of congested, oedematous lungs and intracranial haemorrhage 
(Reed et al. 2021).

Industrial applications
Several studies on Rhizomucor revolve around its industrial 
applications (De Oliveira et al. 2019). These include the production 
of enzymes such as proteases and lipases which have an array of 
applications in various industries (Dhake et al. 2013, Wang et al. 
2020). For example, Rhi. pusillus is commonly used to produce 
industrial enzymes by solid-state fermentation. Rhizomucor miehei 
is commonly used in industries such as cheese making. Proteases 
produced by Rhi. miehei are commonly used as a substitute 
for calf rennet. This enzyme can split peptide bonds in kappa-
casein similar to rennet obtained from calves, and has high milk 
coagulating activity, similar calcium content, and low incidence of 
the bitter taste of the curds produced (Aljammas et al. 2018).

Author: V.G. Hurdeal

54. Pyricularia (Sacc.) Sacc., Syll. Fung. (Abellini) 4: 217. 
1886.

Type species: Pyricularia grisea Cooke ex Sacc.

Classification: Ascomycota, Pezizomycotina, Sordariomycetes, 
Magnaporthales, Pyriculariaceae.

Background

Pyricularia is one of the most important genera of plant pathogenic 
hyphomycetes (Ellis 1971, 1976, Bussaban et al. 2003, Hirata et 
al. 2007, Klaubauf et al. 2014) More than 60 species of Pyricularia 
are listed in Index Fungorum (2022), but only nine species are 
validated (Klaubauf et al. 2014, Marin-Felix et al. 2019a, Pordel et 
al. 2019). Pyricularia species are the causal agents of blast and leaf 
spot diseases on many monocotyledonous species in Poaceae, 
Musaceae, and Zingiberaceae (Bussaban et al. 2005, Murata et 
al. 2014, Zhong et al. 2016, Marin-Felix et al. 2019a). Pyricularia 
species attack all aerial parts of host plants (Igarashi 1986, Wilson 
& Talbot 2009, Saleh et al. 2014, Reges et al. 2016, Crous et al. 
2016). Tropical and subtropical regions with high humidity and 
warm conditions are ideal for Pyricularia species to infect and 
appear on host plants (Couch & Kohn 2002, Bussaban et al. 2003, 
Ganesan et al. 2017). Pyricularia oryzae is the causal agent of rice, 
wheat, and maize blast disease worldwide (Couch & Kohn, 2002, 
Bussaban et al. 2005, Islam et al. 2016, Pordel et al. 2021). This 
fungus produces several secondary metabolites in pathogenicity 

mechanisms; for example, pyriculols, a salicylaldehyde polyketide, 
have been produced in culture medium and nature (Narayana 
& Suryanarayanan 1974). In light conditions, application of the 
pyriculols on a rice leaf made necrotic lesions and caused inhibition 
of the growth of shoots, roots, and seedlings (Iwasaki et al. 1973, 
Narayana & Suryanarayanan 1974, Kono et al. 1991, Kim et al. 
1998).

Pyricularia species are favoured by high air temperatures, and 
relative humidity (Male 2011, Cruz & Valent 2017, Ganesan et al. 
2017, Kastsantonis et al. 2017). They are distributed readily by 
natural dispersion of spores and seed transmission by humans and 
equipment (Saleh et al. 2014). The diseases cause large lesions on 
the stem, leaves, neck, glume, panicle, spike, and fruits. In general, 
the symptoms initially formed are small water-soaked or chlorotic 
lesions and gradually enlarge. The centre of the spots is usually 
grey or white, and the margins are reddish brown or yellow (Wilson 
& Talbot 2009, Male 2011, Pordel et al. 2016, Cruz & Valent 2017). 
Lesions have grey centres during sporulation and white to tan 
centres after spore release (Igarashi 1986, Wilson & Talbot 2009, 
Male 2011, Pordel et al. 2016, Cruz & Valent 2017).

In 1880, Saccardo coined the generic name Pyricularia based 
on the asexual form Pyr. grisea isolated from Digitaria sanguinalis 
(Couch & Kohn 2002). Ellis (1971) described Pyricularia, which is 
similar to some species of Dactylaria with polyblastic, integrated 
and sympodial, geniculate, thin-walled conidiophores that 
have cylindrical denticles and solitary, dry, acropleurogenous, 
obpyriform, obturbinate or obclavate, hyaline to pale olivaceous 
brown, conidia with a protuberant hilum (Ellis 1976, Goh & 
Hyde 1997, Bussaban et al. 2003). Some species described 
initially in Pyricularia have been synonymised or transferred to 
other genera (Ingold 1943, Ellis 1971, 1976). Multigene-based 
phylogenetic analyses resulted in establishing the Pyriculariaceae 
to accommodate the genus Pyricularia (Klaubauf et al. 2014). The 
study was based on partial sequences of the ITS regions with the 
5.8S nuclear ribosomal RNA gene (ITS-rDNA), LSU, and several 
protein-encoding genes, including the rpb1, act, and cal. The 
Magnaporthales now contain three families, Magnaporthaceae, 
Pyriculariaceae, and Ophioceraceae (Klaubauf et al. 2014, Luo et 
al. 2015). Pyriculariaceae (type genus: Pyricularia) has nine genera 
divided from Pyricularia s. lat. (Klaubauf et al. 2014).

Ecological and economic significance

Pyricularia oryzae causes annual destruction of rice, wheat, and 
foxtail millets, which supply millions of people with food (Pennisi 
2010, Liu et al. 2004). It also has an economic impact through 
the cost of control methods to prevent or limit epidemics on golf 
courses (Uddin et al. 1999).

Blast disease of rice, wheat, and maize caused by Pyricularia 
oryzae (sexual morph Magnaporthe oryzae), the causal agent of 
rice, wheat, and maize blast disease, is one of the most widely 
distributed diseases of these crops and is highly destructive on 
rice leading to up to 30 % yield loss worldwide (Skamnioti & Gurr 
2009, Islam et al. 2016, Castroagudín et al. 2016) at the cost of 
around 66 billion US dollars (Pennisi 2010, Nalley et al. 2016). 
The notorious wheat blast disease leads to 40–100 % yield losses 
in some extreme conditions (Skamnioti & Gurr 2009, Inoue et al. 
2017). Blast disease has spread in all rice and some wheat-growing 
areas globally (Couch et al. 2005, Pennisi 2010, Murata et al. 2014, 
Islam et al. 2016). Pyricularia oryzae expends its host range from 
barnyard grass to maize in Iran (Pordel et al. 2021). Host resistance 
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is the most economically viable and environmentally friendly way to 
manage this disease (Ou 1980, Zeigler et al. 1994); nearly 100 
different resistance genes and > 350 QTLs, of which 23 resistance 
genes have been identified, mapped and cloned, and functionally 
validated to find suitable rice cultivars against Pyr. oryzae (Fukuoka 
et al. 2014). To achieve rice with a high resistance response to 
the pathogen, horizon, and vertical resistance are applied in the 
new races (Liu et al. 2004). Some fungicides with high application 
for the control of blast disease include probenazole, tricyclazole, 
azoxystrobin, isoprothiolane, and propiconazole (Rijal & Devkota 
2020). High genetic variability, polycyclic nature, and sporulation 
by the fungus quickly overcome host and fungicide resistance, and 
cultivars and fungicides typically become ineffective (Dean et al. 
2012, Rijal & Devkota 2020).

Blast disease on leaves and heads of Triticum aestivum, 
Hordeum vulgare, and Urochloa brizantha caused Pyricularia 
urashimae. Reges et al. (2016) sampled Poaceae species infected 
with blast disease by Pyr. pennisetigena, Pyr. zingibericola, Pyr. 
grisea, and Pyr. oryzae. They proved that Pyr. pennisetigena 
and Pyr. zingibericola can attack barley and wheat with varying 
aggressiveness levels. Phylogenetic analysis showed that Pyr. 
zingibericola isolates are close to Pyr. oryzae isolates (Reges et 
al. 2016). Following the revision of Pyricularia, Pyr. zingibericola 
isolates were re-described under a new name, Pyr. urashimae 
(Castroagudín et al. 2016, Crous et al. 2016, Reges et al. 2016). 
Some species of Pyricularia such as Pyr. penniseticola, Pyr. 
pennisetigena, Pyr. grisea and Pyr. setariae (used as a bioherbicide 
agent for control of green foxtail (Setaria viridis)) infect weed plants, 
especially in Poaceae (Peng et al. 2004, Klaubauf et al. 2014, Peng 
& Byer 2017). Pyricularia ctenantheicola and Pyr. zingibericola 
were isolated from the ornamental Ctenanthe oppenheimiana and 
medicinal plant Zingiber officinale, respectively (Klaubauf et al. 
2014).

Blast and pitting disease of banana caused by P. 
angulata

Pitting disease on bananas caused by Pyricularia sp. was reported 
as early as 1931 on fruit shipped from Brazil to England (Tomkins 
1931), and subsequently reported from other countries where 
banana is cultivated (Hoette 1963, Meredith 1962, Hashioka 1971, 
Ganesan et al. 2017). Pyricularia angulata causes symptoms in 
the young and mature parts of the banana (Ganesan et al. 2017). 
Blast lesions appear on leaves, stems and pitting symptoms 
appear on fruits (Ganesan et al. 2017). Severe pitting symptoms on 
fruit require heavy rain with high humidity (Shafaullah et al. 2011, 
Ganesan et al. 2017).

Research interests

There are 1 038 publications and 10 856 citations from 2011–2021 
in the Web of Science (Fig. 83), with the top 10 most cited articles 
listed in Table 60. Most publications focused on the pathogenicity 
mechanism (in vitro, host-species interaction) and the economic 
importance of the blast pathogen.

Disease management
Efforts to breed cultivars with improved resistance have been 
constant against some Pyricularia spp., especially to control wheat 
and rice blast (Lenné et al. 2007, Zhan et al. 2008, Tagle et al. 
2015, Islam et al. 2020). However, resistant cultivars proved to be 
susceptible when deployed across different geographical regions 
(Urashima et al. 2004a, b, Rijal & Devkota 2020, Volante et al. 2020). 
Researchers and farmers use many methods for the management 
of Pyricularia species on crop plants, including cultural and sanitary 
methods, host nutrition, biological and chemical management 
(Urashima & Kato 1998, Laker-Ojok et al. 2005, Varma & 
Santhakumari 2012, Magar et al. 2015, Castroagudın et al. 2016). 
Nowadays, farmers prefer to control blast disease on wheat, rice, 
and foxtail millet using chemical compounds (Rijal & Devkota 

Fig. 83. Trends in research of Pyricularia in the period 2011–2021.
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2020). However, the efficacy of fungicides has been continuously 
marred by the emergence of resistant strains after repeated and 
widespread use of the same fungicide classes (Ceresini et al. 
2018). New cultivars and fungicide applications provide a good 
strategy in the integrated management of Pyricularia disease.

Toxins
Secondary metabolites produced by Pyricularia isolates have also 
been examined. Some Pyricularia isolates induce necrosis on rice 
and wheat as well as cause chlorosis on oat leaves (Iwasaki et al. 
1973, Tsurushima et al. 2010, Castroagudín et al. 2016). Pyriculol 
and epipyriculol have been detected as the main necrosis-inducing 
factors produced by Pyr. oryzae. However, they are thought to be 
non-specific, as most Pyricularia isolates from graminaceous plants 
produce these compounds in culture (Tsurushima et al. 2010). 
Pyricularia oryzae infecting rice leaves produced non-host selective 
toxins such as pyricularin, pyriculol, epipyriculol, tenuazonic acid, 
and picolinic acid (Iwasaki et al. 1973, Tsurushima et al. 2010). 
Several studies demonstrated the importance of tenuazonic 
acid and picolinic acid in the development of the characteristic 
symptoms of the blast (Umetsu et al. 1972). Pyrichalasin H has 
been detected from Pyricularia grisea infecting Digitaria (Nukina 
1987). Pyrichalasin H increases the ability of a Pyricularia isolate to 
infect Digitaria plants (Tsurushima et al. 2010).

Taxonomy and phylogeny
In general, to identify the phylogenetic placement of Pyricularia 
among other Pyriculariaceae genera, LSU has been supplemented 
with rpb1 data (Klaubauf et al. 2014, Pordel et al. 2016, 2021). To 
improve the resolution of the placement of Pyricularia species, act or 
cal supplemented by ITS and rpb1 are strong candidates for species 
delimitation (Klaubauf et al. 2014, Pordel et al. 2016, 2021).

Author: A. Pordel

55. Parastagonospora Quaedvl. et al., Stud. Mycol. 75: 
362. 2013.

Type species: Parastagonospora nodorum (Berk.) Quaedvlieg et 
al.

Classification: Ascomycota, Pezizomycotina, Dothideomycetes, 
Pleosporales, Phaeosphaeriaceae.

Background

Parastagonospora was introduced by Quaedvlieg et al. (2013) to 
accommodate several important plant pathogenic fungi. The genus 
comprises 20 species (Index Fungorum 2022) and many species 
were previously accommodated in Leptosphaeria, Phaeosphaeria, 
Septoria or Stagonospora (Ghaderi et al. 2017, Goonasekara et 
al. 2019). Parastagonospora was originally introduced as Septoria 
(Weber 1922) and later assigned to Stagonospora based on 
the asexual morph while the sexual morph was recognised in 
Phaeosphaeria (Weber 1922). However, based on the International 
Code of Nomenclature for Algae, Fungi and Plants (ICNafp), along 
with molecular support, these genera were further confined to 
a newly introduced genus Parastagonospora (Quaedvlieg et al. 
2013). Parastagonospora mainly differs from Stagonospora in 
its sexual morph, as Parastagonospora are phaeosphaeria-like 
whereas Stagonospora are didymella-like (Quaedvlieg et al. 2013, 
Marin-Felix et al. 2019a, Bhagya et al. 2024). The sexual morph 
is characterised by immersed ascocarps, papillate ostiole, clavate, 
cylindrical or curved, short-stipitate asci, fusoid, subhyaline to pale 
brown, transversely euseptate ascospores, while the asexual morph 
produces pycnidial conidiomata, phialidic and hyaline conidiogenous 
cells, and cylindrical, granular to multi-guttulate, hyaline conidia 
(Quaedvlieg et al. 2013, Li et al. 2015c, Thambugala et al. 2017).

Parastagonospora comprises many cereal pathogens, including 
cultivated and wild plants recorded around the world (Quaedvlieg et 
al. 2013, Ghaderi et al. 2017, Thambugala et al. 2017). They can 
also be saprobes on grasses (Marin-Felix et al. 2019a). These 
species can infect various hosts and are responsible for significant 
annual production losses for economically important major crops 
such as wheat, barley and rye. Parastagonospora nodorum and 
Paras. pseudonodorum cause significant yield losses in global wheat 

Table 60. Top 10 cited articles related to Pyricularia published in the period 2011–2021.

Rank Article title No. of citations References
1 The top 10 fungal pathogens in molecular plant pathology 1 769 Dean et al. (2012)
2 Fungal effectors and plant susceptibility 383 Lo Presti et al. (2015)
3 Genome evolution in filamentous plant pathogens: why bigger can be better 361 Raffaele & Kamoun (2012)
4 Effector-mediated suppression of chitin-triggered immunity by Magnaporthe 

oryzae is necessary for rice blast disease
253 Mentlak et al. (2012)

5 Plant cell wall-degrading enzymes and their secretion in plant-pathogenic 
fungi

222 Kubicek et al. (2014)

6 One-step hydrothermal approach to fabricate carbon dots from apple juice 
for imaging of mycobacterium and fungal cells

206 Mehta et al. (2015)

7 The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin 
ligase APIP6 to suppress pathogen-associated molecular pattern-triggered 
immunity in rice

205 Park et al. (2012a)

8 The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe 
oryzae effectors AVR-Pia and AVR1-CO39 by direct binding

203 Cesari et al. (2013)

9 The bZIP transcription factor MoAP1 mediates the oxidative stress response 
and is critical for pathogenicity of the rice blast fungus Magnaporthe oryzae

172 Guo et al. (2011)

10 A multifaceted genomics approach allows the isolation of the rice Pia-blast 
resistance gene consisting of two adjacent NBS-LRR protein genes

164 Okuyama et al. (2011)
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production (Richards et al. 2019). The diseased plant presents with 
mainly node spots on leaves and glumes (Marin-Felix et al. 2019a).

The taxa of Parastagonospora are delimited largely based 
on molecular approaches due to overlapping morphological 
characteristics with related genera (Ghaderi et al. 2017). In 
taxonomic literature, several pathogenic Parastagonospora 
species have been classified into different groups due to a lack of 
supporting morphological characteristics such as Paras. nodorum 
placed in Leptosphaeria, Septoria and Stagonospora (McDonald et 
al. 2012). However, the increased use of multigene phylogenetic 
analysis has led to significant clarification within the taxonomy 
(McDonald et al. 2012, Ghaderi et al. 2017). Researchers have 
used different molecular gene markers, such as ITS sequences 
(Ueng et al. 1998), tub (Malkus et al. 2005), glucosidase (bgl1) 

(Reszka et al. 2005), rpb2 (Arkadiusz et al. 2006), histidine 
synthase (his) (Wang et al. 2007) and mating-type loci (Bennett et 
al. 2003, Ueng et al. 2003).

Ecological and economic significance

Parastagonospora species are responsible for numerous 
economically important plant diseases, two of which are discussed 
below.

Parastagonospora nodorum leaf blotch and glume blotch on 
Triticum aestivum (wheat) also known as septoria-like blotch 
caused by Paras. nodorum is a major pathogen in wheat and 
other cereals (Oliver et al. 2012) that was originally described as 

Fig. 84. Trends in research of Parastagonospora in the period 2011–2021.

Table 61. Top 10 cited articles related to Parastagonospora published in the period 2011–2021.
Rank Article title No. of citations References
1 Finished genome of the fungal wheat pathogen Mycosphaerella graminicola 

reveals dispensome structure, chromosome plasticity, and stealth pathogenesis
360 Goodwin et al. (2011)

2 Sizing up Septoria 223 Quaedvlieg et al. (2013)
3 When and how to kill a plant cell: infection strategies of plant pathogenic fungi 209 Horbach et al. (2011)
4 Disease impact on wheat yield potential and prospects of genetic control 185 Singh et al. (2016b)
5 The cysteine rich necrotrophic effector SnTox1 produced by Stagonospora 

nodorum triggers susceptibility of wheat lines harboring Snn1
139 Liu et al. (2012d)

6 Revision of Phaeosphaeriaceae 135 Phookamsak et al. (2014)
7 Stagonospora nodorum: from pathology to genomics and host resistance 121 Oliver et al. (2012)
8 Comparative pathogenomics reveals horizontally acquired novel virulence genes in 

fungi infecting cereal hosts
118 Gardiner et al. (2012)

9 Horizontal gene and chromosome transfer in plant pathogenic fungi affecting host 
range

106 Mehrabi et al. (2011)

10 Genome-wide association study reveals novel quantitative trait loci associated with 
resistance to multiple leaf spot diseases of spring wheat

103 Gurung et al. (2014)
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Depazea nodorum from wheat collected in the UK (Croll et al. 
2021). The disease was reported to cause 31 % loss of yield in 
Australia (Bhathal et al. 2003). This pathogen commonly occurs 
in northern latitudes (Leath et al. 1993). The sexual morph of this 
species was initially described on wheat as Leptosphaeria nodorum 
(Muller 1952) but later transferred to Phaeosphaeria (Hedjaroude 
1968). The primary dispersal is via air and during the winter, and 
ascospores are released while the secondary dispersal occurs 
through splash-dispersed conidia (Solomon et al. 2006). Leaf blotch 
primarily affects leaves, while glume blotch affects leaves, glumes 
and nodes. Wet leaf surface facilitates the germination of spores 
and the development of fungal hyphae, and later the penetration 
can occur through stromata or cuticles (Solomon et al. 2006). At 
the initial stage, the infected host shows water-soaked and small 
chlorotic lesions on the lower leaves of the plant that become yellow 
and eventually red-brown. At the mature stage, the lesions become 
lens shaped without a distinct yellow border (McMullen & Adhikari 
2009). Parastagonospora avenae leaf blotch is also recorded from 
wheat, but it has a lower impact than Paras. nodorum (Van Ginkel 
et al. 1999). Parastagonospora nodorum glume blotch and Paras. 
nodorum leaf blotch (SNLB) are important disease in wheat and 
grains (Friesen et al. 2008).

Parastagonospora leaf blotch of barley and rye caused by 
Parastagonospora avenae f. sp. triticea. This species also occurs 
as a pathogen on wheat, oats, rye and various grasses (Johnson 
1947). At the initial stage, an off-white centre with a narrow brown 
edge can be observed, later becoming yellow-brown lesions on 
barley (Cunfer 2000), while small brown spots with yellow halos 
and necrotic spots were observed in oats (Shearer et al. 1978). 
Brown with off-white centres before coalescing to cause necrotic 
areas with a brown margin was observed in rye (Shearer et al. 
1978, Cunfer 2000).

Research interests

There are 490 publications and 10 146 citations from 2011–2021 
in the Web of Science (Fig. 84), with the top 10 most cited articles 
included in Table 61. Most publications focused on disease 
management (disease resistance, quantitative trait loci, sensitivity 
genes) and research on pathogenic Parastagonospora nodorum 
(winter wheat, Stagonospora nodurum blotch, host selective toxins) 
as well as identification.

Disease management
Parastagonospora nodorum blotch (SNB) is a major disease 
worldwide and commonly controlled by crop rotation, tillage, 
growth of resistant cultivars, fungicide-treated seeds and foliar 
fungicide (Krupinsky et al. 2007). However, these cultural practices 
and chemical methods are ineffective, as widespread airborne 
ascospores can develop without wheat residue (Cowger & Silva-
Rojas 2006). Resistant cultivar and pathogenicity of the fungus 
determined the spread of SNB. Pre-planting decision management 
tools have also been found to be effective for controlling Paras. 
nodorum (Mehra et al. 2016). Cultivar resistance levels vary; 
cultivars with low resistance have a high risk of susceptibility and 
adapted, highly resistant cultivars are not available (Milus & Chalkley 
1997). Some cultivars can be resistant to foliar infection, but seed-
transmitted inoculum could trigger an epidemic (Shah et al. 2000). 
Hyperspectral imaging techniques with a molecular approach have 
also been used for early detection of Parastagonospora nodorum 
on leaves of durum wheat (Iori et al. 2015). Percentage of necrotic 

leaf area or pycnidial density have been conducted by visual or 
microscopic examination but they are not accurate; thus, enzyme-
linked immunosorbent assay is an accurate alternative method to 
detect pathogens in plants (Tian et al. 2005). Restriction fragment 
length polymorphisms (RFLPs) (McDonald et al. 1994), amplified 
fragment length polymorphisms (AFLPs) (Bennett et al. 2005), 
microsatellites or simple sequence repeats or SSRs (Stukenbrock 
et al. 2005), single nucleotide polymorphisms from entire genome 
sequences (Richards et al. 2019, Pereira et al. 2020) and single 
nucleotide polymorphism (SNP) have been used to identify the 
genetic structure of Paras. nodorum (Gao et al. 2016a).

Toxins
Three types of proteinaceous host-selective toxins (HST) (SnToxA, 
SnTox1, and SnTox3) have been identified in Paras. nodorum 
(Friesen et al. 2008), and these necrotrophic effectors facilitate 
the infection process (Friesen et al. 2008). These necrotrophic 
effectors are small and secreted proteins that infect hosts by 
triggering programmed cell death (PCD), resulting in NE-triggered 
susceptibility (Richards et al. 2019).

Taxonomy and phylogeny
Parastagonospora is well established within Phaeosphaeriaceae 
and found to be a separate clade from other cereal pathogens 
(Quaedvlieg et al. 2013). Combined multigene phylogenetic 
analyses of ITS, LSU, SSU, tef1, rpb2 and tub are commonly 
used in the taxonomy (Quaedvlieg et al. 2013, Li et al. 2015c, 
Thambugala et al. 2017).

Author: D.N. Wanasinghe

56. Monascus Tiegh., Bull. Soc. Bot. France 31: 226. 1884.

Type species: Monascus ruber Tiegh.

Classification: Ascomycota, Pezizomycotina, Eurotiomycetes, 
Eurotiales, Aspergillaceae.

Background

Monascus is an important genus in Eurotiales due to its application 
in several industrial segments, such as food colorants. Red 
pigments are of particular interest, as red is the most popular food 
colour but true natural pigments suitable for applications in food 
industries are difficult to obtain. Monascus species commonly exist 
in soil, starch, grain, mouldy feed and more recently in stingless 
bee substrates and colonies (Stchigel et al. 2015, Barbosa et al. 
2017). Most species show osmophilic affinity (Pitt & Hocking 1985). 
Monascus was introduced by Van Tieghem (1884) to accommodate 
two species, Mo. ruber and Mo. mucoroides that produce non-
ostiolate ascomata. In the past, the position of Monascus in 
Aspergillaceae (Eurotiales) was the subject of discussion (Benny & 
Kimbrough 1980, Von Arx 1987), but its placement was confirmed 
by several phylogenetic analyses (Berbee et al. 1995, Ogawa et 
al. 1997, Ogawa & Sugiyama 2000, Peterson 2008, Houbraken 
& Samson 2011, Houbraken et al. 2020). The identification and 
classification of Monascus have long been based on macro- and 
microscopic features, such as pigmentation of the cleistothecial 
walls and conidia, as well as the growth rates on agar media. The 
number of Monascus species increased with the description of Mo. 
albidulus, Mo. argentinensis, Mo. aurantiacus, Mo. eremophilus, 
Mo. floridanus, Mo. fumeus, Mo. lunisporas, Mo. pallens, Mo. 
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rutilus and Mo. sanguineus. However, the genus became 
morphologically and physiologically more diverse, and many 
of the species are now considered to be synonyms (Shao et al. 
2011). The genus Basipetospora has been linked to Monascus for 
many years, however with the introduction of “One Fungus = One 
Name” nomenclature system, Monascus has taken precedence 
over Basipetospora (Rossman et al. 2016). Barbosa et al. (2017) 
conducted a comprehensive polyphasic examination of Monascus 
based on a multi-locus DNA sequence dataset (ITS, tub, cal, LSU 
and rpb2), morphology and extrolites analysis. They resolved 
Monascus into nine species (Monascus argentinensis, Mo. 
flavipigmentosus, Mo. floridanus, Mo. lunisporas, Mo. mellicola, 
Mo. pallens, Mo. purpureus, Mo. recifensis and Mo. ruber) and 
two sections (sect. Floridani containing seven species and sect. 
Rubri with three species). These findings led to the conclusion 
that a polyphasic approach is the best route for the delimitation of 
Monascus species (Barbosa et al. 2017).

Ecological and economic significance

Monascus may have an ecological value for native bees, as it 
has been reported as closely associated with bees (Menezes et al. 
2015, Barbosa et al. 2017). However, this aspect deserves to be 
better evaluated.

Monascus species produce yellow, orange, and red pigments, 
which have been used as natural food colouring in Asian fermented 
foods, particularly red rice. Red rice is of particular interest because 
of its health-promoting effects (Lee & Pan 2011, 2012, Hsu & Pan 
2012, Shi & Pan 2012). Monascus pigments have been used to 
colour food for centuries and the traditional method of pigment 
production involves the growth of the fungus on a solid medium 
such as steamed rice (Manan et al. 2017).

Several Monascus species, mainly Mo. ruber can produce 
heat-resistant ascospores, which survive thermal pasteurisation, 
and this has been a methodological challenge for the food industry, 

which has increasingly investigated different techniques for food 
and feed preservation. Fungal spoilage of products imposes 
significant annual global revenue losses, and Mo. ruber has 
contributed to this spoiling of food, feed products and silage, and is 
well documented (e.g., Panagou et al. 2005, Cappato et al. 2018, 
Rico-Munoz et al. 2019).

Derivatives of Monascus pigments also have importance 
in health promotion due to the production of compounds 
with anti-bacterial properties and cholesterol-lowering statins. 
Several companies (especially in China) are working to produce 
Monascus products containing lovastatin (Monacolin K = mevinolin 
= lovastatin) used to reduce cholesterol levels (Srianta et al. 
2014). Lovastatin is the first reported in Mo. ruber and works by 
competitively inhibiting HMG Co-A reductase. Monacolin M, a 
specific inhibitor of cholesterol biosynthesis structurally related to 
monacolin K is produced by Monascus (Seenivasan et al. 2008, 
Vendruscolo et al. 2016). The antimicrobial activity of Monascus 
pigments has been a focus of research. Wong & Koehler (1981) 
studied the antibiotic effect of Mo. purpureus N11S against Bacillus 
subtilis. The pigments from Mo. ruber strain CCT 3802 showed 
antimicrobial activity against Staphylococcus aureus ATCC 25923 
and Escherichia coli ATCC 25922 (Vendruscolo et al. 2014), 
revealing their antibacterial potential for use in the food and 
pharmaceutical industry. Monascus products have been used for 
the treatment of dengue virus infection (Triyono et al. 2020).

Mycotoxin production can be observed in several species. 
Monascus purpureus and Mo. ruber have been reported to produce 
the mycotoxin citrinin (Barbosa et al. 2017), and the presence of 
this mycotoxin in food, including red rice, should be avoided. Wang 
et al. (2005b) also reported citrinin production by Mo. floridanus, 
Mo. lunisporas and Mo. pallens, but this has not been confirmed by 
other authors working on citrinin and Monascus.

In humans, Monascus can be pathogenic in several ways, for 
example, allergy and anaphylaxis in response to red yeast rice have 

Fig. 85. Trends in research of Monascus in the period 2011–2021.
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been described, due to an immediate sensitivity to Mo. purpureus 
(Hipler et al. 2002). Citrinin is a nephrohepatotoxic agent deserving 
attention when present in contaminated food (Krejci et al. 2002). 
Renal infection after surgery due to Mo. ruber was described in a 
70-yr-old patient with multiple kidney stones (Sigler et al. 1999), and 
an invasive gastric infection was observed in a patient with gastric 
adenocarcinoma by the consumption of Mo. ruber contaminated 
food (Iriart et al. 2010).

Research interests

There are 1 051 publications and 10 083 citations from 2011–2021 
in the Web of Science (Fig. 85), with the top 10 most cited articles 
included in Table 62. Most publications focused on Monascus 
secondary metabolites including pigments and fermented products. 
A few papers focused on the taxonomy and phylogeny of Monascus.

Monascus pigments
Monascus pigments are widely used in the food industry as a colour 
intensifier, food additive and nitrite substitute in meat products. The 
pigments also have potential for therapeutic uses, and as a dye in 
cosmetic and textile industries (Agboyibor et al. 2018). However, 
the production of the nephrotoxic and hepatotoxic citrinin limits 
the wide application of Monascus related products (Blanc et al. 
1995). The six primary pigments produced by Monascus are the 
colours yellow (angkak flavin, monascine), orange (rubropunctatin, 
monascorubrine) and red (rubropuntantamine, monascorubramine) 
(Meinicke et al. 2012). The orange pigments possess antibiotic 
activities against bacteria, yeast, and filamentous fungi and inhibit 
the growth of Bacillus subtilis and Candida pseudotropicalis. 
Yellow pigments such as monascin and ankaflavin have 
immunosuppressive activities against mouse T splenocytes 
(Martinkova et al. 1999). The red pigment is the most common and 
suitable for food use (Chen & Johns 1993).

Monascus-fermented products
Monascus purpureus, Mo. pilosus, Mo. anka and Mo. ruber can be 
used for fermentation. The first product, which has been consumed 
over centuries in Asian countries, is Monascus-fermented rice 
(angkak, anka, beni koji, red yeast rice). The red yeast rice contains 
the compound monacolin K, the same active ingredient found in 
prescription cholesterol-lowering medications like lovastatin. The 

red pigment produced in rice also possesses antioxidant properties, 
immunosuppressive properties, teratogenicity, and antimicrobial, 
cytotoxic and anti-tumour activities (Lin et al. 2008).

Taxonomy and phylogeny
Barbosa et al. (2017) revealed that the BenA gene has strong power 
for species delimitation in Monascus when supplemented with ITS 
and cmd. LSU has limited resolving power and rpb2 is recommended 
only in phylogenetic studies (Barbosa et al. 2017). These authors 
considered nine species to belong to the genus (Mo. argentinensis, 
Mo. flavipigmentosus, Mo. floridanus, Mo. lunisporas, Mo. mellicola, 
Mo. pallens, Mo. purpureus, Mo. recifensis and Mo. ruber). He et 
al. (2020b) studied the morphological characteristics and analysed 
sequences of seven genes (ITS, tub, cal, LSU, rpb2, β-ketoacyl 
synthase, and mating-type locus 1-1) of 15 Monascus strains, 
including sequencing of multiple clones of five protein genes in four 
Mo. sanguineus strains. They observed two types of haplotypes 
in the five protein genes of Mo. sanguineus. One haplotype was 
closely related to Mo. ruber, and the other may be derived from an 
unknown Monascus species. Thus, the authors suggested that Mo. 
sanguineus including type strains may be a natural species, and that 
its genome must be analysed for a better understanding.

Author: R.N. Barbosa, C.M. Souza-Motta and J. Houbraken

57. Hanseniaspora Zikes ex Klöcker, Centbl. Bakt. 
ParasitKde, Abt. II 35: 385. 1912.

Type species: Hanseniaspora valbyensis Klöcker

Classification: Ascomycota, Saccharomycotina, Saccharomycetes, 
Saccharomycodales, Saccharomycodaceae.

Background

Hanseniaspora is a genus of ascomycetous yeasts that are 
morphologically characterised as apiculate yeasts with bipolar 
budding and are phylogenetically placed at the base of the 
Saccharomycetaceae. Currently, there are 22 species recognised. 
Recently, according to the new rules of nomenclature (Shenzen 
Code; Turland et al. 2018), three asexual species that were 
assigned to the asexual counterpart Kloeckera have been 

Table 62. Top 10 cited articles related to Monascus published in the period 2011–2021.
Rank Article title No. of citations References
1 Monascus pigments 213 Feng et al. (2012)
2 Monascus secondary metabolites: production and biological activity 167 Patakova (2013)
3 Density functional theory study on the electronic structure of Monascus dyes as 

photosensitizer for dye-sensitized solar cells
153 Sang-aroon et al. (2012)

4 Orange, red, yellow: biosynthesis of azaphilone pigments in Monascus fungi 124 Chen et al. (2017d)
5 Edible filamentous fungi from the species Monascus: early traditional 

fermentations, modern molecular biology, and future genomics
102 Chen et al. (2015e)

6 Genetic localization and in vivo characterization of a Monascus azaphilone 
pigment biosynthetic gene cluster

87 Balakrishnan et al. (2013)

7 Purification and characterization of a new red pigment from Monascus purpureus 
in submerged fermentation

75 Mukherjee et al. (2011)

8 Production of citrinin-free Monascus pigments by submerged culture at low pH 72 Kang et al. (2014)
9 Beneficial effects of Monascus purpureus NTU 568-fermented products: a review 71 Shi et al. (2011)
10 Perstraction of intracellular pigments by submerged cultivation of Monascus in 

nonionic surfactant micelle aqueous solution
62 Hu et al. (2012)
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transferred to the sexual genus Hanseniaspora (Čadež et al. 
2019). As their primary habitat, Hanseniaspora spp. are abundant 
on various fruits, and also on flowers and bark (Saubin et al. 2020). 
Insects can serve as their dispersal vectors (Hamby et al. 2012), 
and their presence in the upper layers of soil suggests that this acts 
as their reservoir (Maksimova & Chernov 2004, Kachalkin et al. 
2015). As predominant inhabitants on the surface of various fruit, 
and mostly on grapes, they contribute to the starting phases of 
various spontaneous food fermentation processes. In this context, 
Hanseniaspora spp. have been intensively studied to determine 
their potential to improve the sensorial complexity of fermented 
products (Steensels & Verstrepen 2014).

An extensive study on the evolutionary diversification of budding 
yeasts was published recently (Shen et al. 2018). This was followed 
by the study of Steenwyck et al. (2019) that focused on the evolution of 
Hanseniaspora spp. Through analysis of their genomes, Steenwyck 
et al. (2019) showed that the origin of Hanseniaspora spp. coincides 
with the origin of flowering plants with fruit, where simple sugars 
were available as a food source only once a year. They reported that 
ancient Hanseniaspora spp. lost numerous genes associated with 
metabolism, the cell cycle and DNA repair processes. This most likely 
provided Hanseniaspora spp. with a burst of accelerated evolution 
and adaptation to the grape environment, which was followed by 
a reduction in the pace of their sequence evolution. Compared to 
Saccharomyces cerevisiae, the most abundant Hanseniaspora 
spp. on grapes, Hanseniaspora uvarum, has a lower fermentative 
capacity due to reduced glycolytic enzyme activities, which can be 
correlated with its Crabtree-negative phenotype (Langenberg et al. 
2017). Further, Hanseniaspora spp. have the lowest GC content, and 
the smallest genomes and gene numbers in the entire subphylum 
Saccharomycotina (Riley et al. 2016, Shen et al. 2018). The 
mitochondrial DNA of H. uvarum was shown to be in the form of a 
very compact linear molecule that contains the shortest functional 
region found in fungi (Pramateftaki et al. 2006). These evolutionary 
and functional studies have shown that the genus Hanseniaspora 
represents enigmatic fungi, with many questions on its biology 
remaining unanswered.

Reess (1870) first described apiculate yeasts and considered 
them members of the genus Saccharomyces because they 
fermented grape juice. He classified them into the single species 
Saccharomyces apiculatus. The name Hanseniaspora was 
proposed by Zikes (1911), but did not include a generic concept. For 
this reason, Klöcker (1912) was the first who placed sporogenous 
apiculate yeasts in the genus Hanseniaspora. Subsequent studies 
on the classification of apiculate yeast have provided an extensive 
bibliography, with their generic concept based on their ability (or 
not) to form ascospores, and their various reported forms have 
contributed to much confusion (Phaff 1979). It was not until the 
introduction of molecular taxonomy of the genus Hanseniaspora 
by Meyer et al. (1978) that the status of the various Hanseniaspora 
spp. became established through DNA-DNA reassociation studies, 
with Hanseniaspora sexual morphs correlated with Kloeckera 
asexual morphs.

However, with the introduction of phylogenetic analysis 
(Yamada et al. 1992), the generic concept of Hanseniaspora was 
again revised, mainly because of the high sequence divergence 
between two groups of Hanseniaspora species. Nevertheless, 
Boekhout et al. (1994) argued against splitting the genus solely on 
the basis of genetic divergence, because the two species groups 
share many similarities in morphology, physiology and ecology. 
As the ribosomal gene regions of Hanseniaspora are unusually 
conservative for reliable species phylogeny, it was necessary to 

include multi-locus DNA sequence datasets (Čadež et al. 2006), or 
to resolve the relationships between species using a genome-scale 
phylogeny (Steenwyk et al. 2019). Later, the long-standing puzzle 
of the long branches was solved from an evolutionary perspective, 
with the delimitation into two lineages within the genus (i.e., FEL, 
SEL lines). This was probably due to the loss of many genes 
associated with DNA repair and maintenance, which resulted in a 
hypermutator phenotype.

Ecological and economic significance

Hanseniaspora spp. have significant roles in food fermentations 
through the production of enzymes and aroma compounds. The 
aroma compounds can also be exploited in biocontrol against 
pests.

Increased flavour complexity of wine

Hanseniaspora spp. can provide increased complexity of the 
flavours of wines when they are added as co-starter cultures in 
wine fermentation. Indeed, in recent years, this has been shown 
to be the preferred practice over wines produced by monocultures 
of S. cerevisiae (for reviews, see Jolly et al. 2013, Martin et al. 
2018). As the most abundant Hanseniaspora spp. on grapes, those 
that are most commonly associated with wine fermentation are 
H. vineae (Medina et al. 2013), H. osmophila (Viana et al. 2009), 
H. uvarum (Hu et al. 2018a) and H. opuntiae (Luan et al. 2018). 
However, their effects on wine aromas appear to be a strain-
specific trait, as only certain Hanseniaspora strains result in wines 
with increased levels of acetate esters, such as 2-phenyl acetate 
and ethyl acetate, which are associated with fruity and floral aroma 
descriptors of wines (Viana et al. 2009, Martin et al. 2018). In 
addition to metabolic activity, selected strains of apiculate yeasts 
have high β-glucosidase activity, which can free volatile compounds 
from glycosides in grapes, and thus produce typical varietal aromas 
(Hu et al. 2018a).

On the other hand, apiculate yeasts are also known to be high 
producers of acetic acid and ethyl esters, which at higher levels can 
contribute negatively to wine quality (Zironi et al. 1993, Rojas et al. 
2003) or limit nutrient availability to S. cerevisiae, which can lead to 
stuck fermentations (Medina et al. 2012). Nevertheless, with novel 
technological advances and controlled fermentation processes, 
Hanseniaspora yeasts continue to gain importance in winemaking.

As indicated, most of the properties of apiculate yeasts in wine 
making are strain dependent, and therefore several studies have 
been aimed at the characterisation of genetic variability among the 
populations of Hanseniaspora spp. However, population structure 
based on geographic or substrate origins has been very difficult 
to establish, most probably due to their highly dynamic genomic 
structure (Albertin et al. 2016, Saubin et al. 2020). Furthermore, the 
first interspecific hybrids were found between H. opuntiae and H. 
pseudoguilliermondii (Saubin et al. 2020).

Bioflavouring of fermented foods

As the dominant species of spontaneous fermentations, the 
bioflavouring of various foods by Hanseniaspora spp. has recently 
gained attention, particularly as spontaneous processes generally 
yield products of inconsistent quality, and starter cultures with 
only one species provide a limited flavour spectrum (Steensels & 
Verstrepen 2014). Hanseniaspora opuntiae has been suggested as 
a starter culture for cocoa fermentation because it produces high 
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levels of aromatic compounds (Mota-Gutierrez et al. 2018) and 
pectinases (Verce et al. 2021). Hanseniaspora guilliermondii and 
H. opuntiae have also been defined for beer fermentation in mixed 
cultures with S. cerevisiae, because they improve the aroma profile 
of the beer, although they cannot assimilate maltose, as the main 
sugar of the wort (Bourbon-Melo et al. 2021).

Postharvest biocontrol of moulds

In the fruit industry, preharvest application of Hanseniaspora spp. 
for postharvest control of moulds is an alternative to the use of 
synthetic fungicides, as these pose health concerns. Most studies 
have reported on the use of H. uvarum with a bioactive compound, 
to augment its activity (Liu et al. 2010). By synthesising volatile 
organic compounds, H. uvarum can induce plant defence-related 

enzymes and inhibit spore germination, without affecting fruit 
quality. From this perspective, Hanseniaspora strains have great 
potential as an alternative method against postharvest moulds of 
various fruit (Li et al. 2016b, Qin et al. 2017, Ruiz-Moyano et al. 
2020).

Nutritional ecology of insects

Drosophila have been well studied in terms of its nutritional 
ecology. Hanseniaspora yeasts have crucial roles in supplementing 
the sugar-rich diet of Drosophila with a source of dietary protein, 
which is needed for oviposition (Hamby et al. 2012). Drosophila 
are attracted to the CO2 emitted by ripe fruit and to the volatile 
compounds produced by fermentative yeasts (e.g., fruity esters, in 
particular), with feeding preferences shown towards Hanseniaspora 

Fig. 86. Trends in research of Hanseniaspora in the period 2011–2021.

Table 63. Top 10 cited articles related to Hanseniaspora published in the period 2011–2021.
Rank Article title No. of citations References
1 Not your ordinary yeast: non-Saccharomyces yeasts in wine production 

uncovered
465 Jolly et al. (2014)

2 The microbial ecology of wine grape berries 360 Barata et al. (2012)
3 Yeast biodiversity from DOQ Priorat uninoculated fermentations 249 Padilla et al. (2016a)
4 Recent advances on the use of natural and safe alternatives to conventional 

methods to control postharvest gray mold of table grapes
169 Romanazzi et al. (2012)

5 Increased flavour diversity of Chardonnay wines by spontaneous fermentation 
and co-fermentation with Hanseniaspora vineae

153 Medina et al. (2013)

6 Taming wild yeast: potential of conventional and nonconventional yeasts in 
industrial fermentations

134 Steensels & Verstrepen (2014)

7 Outlining a future for non-Saccharomyces yeasts: selection of putative 
spoilage wine strains to be used in association with Saccharomyces 
cerevisiae for grape juice fermentation

131 Domizio et al. (2011)

8 Yeasts are essential for cocoa bean fermentation 129 Ho et al. (2014)
9 Microbial terroir and food innovation: the case of yeast biodiversity in wine 112 Capozzi et al. (2015)
10 Growth of non-Saccharomyces yeasts affects nutrient availability for 

Saccharomyces cerevisiae during wine fermentation
99 Medina et al. (2012)
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spp. (Mori et al. 2017). In this regard, Hanseniaspora spp. might 
serve as attractive and selective bait for fruit fly pests, and thus 
contribute to sustainable insecticides (Jones et al. 2021).

Research interests

For Hanseniaspora spp., there were 597 publications and 9 891 
citations from 2011–2021 in the Web of Science (Fig. 86), with 
the top 10 most-cited articles given in Table 63. Most of these 
publications have been focused on wine ecology (e.g., grape 
microbiota, mixed wine fermentation, Hanseniaspora diversity), 
the ecology of other fermented foods, and research into biocontrol 
activities.

Wine ecology
Spontaneous wine fermentations are characterised by the presence 
of “wild” non-Saccharomyces yeasts that participate in a sequential 
manner, mostly in the early phases of grape must fermentation 
(Barata et al. 2012, Jolly et al. 2014). As the predominant species 
on grapes, Hanseniaspora spp. have important roles in the 
harmonisation of the aromatic profiles of wines, and at the same 
time, they are “compatible” with S. cerevisiae wine yeast, to finish 
the fermentation (Medina et al. 2013, Padilla et al. 2016b).

Postharvest control
The control of postharvest fruit decay is an important challenge 
for the fruit industry. As strong producers of volatile organic 
compounds, Hanseniaspora spp. are gaining attention as the 
predominant inhabitants of healthy fruit (Romanazzi et al. 2012).

Taxonomy and phylogeny
Since the introduction of DNA sequence analysis for species 
delineation, the number of newly described Hanseniaspora spp. 
has increased significantly (Jindamorakot et al. 2009, Chang et al. 
2012, Čadež et al. 2014, 2019, Ouoba et al. 2015, Liu et al. 2021b). 
Currently, with the emergence of whole-genome sequencing, the 
reconstruction of more robust yeast phylogenies has recovered 
statistically well-supported phylogenetic trees that reflect the 
evolutionary relationships between species and genera. With the 
exploration of novel ecological niches, the genetic diversity and 
modes of speciation of this fascinating genus are being elucidated.

Author: N. Čadež

58. Paracoccidioides F.P. Almeida, Compt.-Rend. Hebd. 
Séances Mém. Soc. Biol. 105: 316. 1930.

Type species: Paracoccidioides brasiliensis (Splend.) F.P. Almeida

Classification: Ascomycota, Pezizomycotina, Eurotiomycetes, 
Onygenales, Ajellomycetaceae.

Background

Paracoccidioides is an ascomycete genus that belongs to the 
family Ajellomycetaceae, order Onygenales. It encompasses 
two species complexes, Para. brasiliensis, with at least five 
phylogenetic lineages, and Para. lutzii, known as the causative 
agent of paracoccidioidomycosis. Paracoccidioidomycosis (PCM) 
is the most relevant systemic mycosis in Latin America, described 
in 1908 from Brazil by Adolf Lutz (Lutz 1908). The first name 
proposed for the agent was Zymonema brasiliensis in 1912 by 

Splendore and only in 1930 Floriano de Almeida (De Almeida 1930) 
formally described the species as Paracoccidioides brasiliensis. 
Paracoccidioides species are thermal dimorphic fungi, with a 
mycelial phase at room temperature, or in a saprobic substrate, 
producing conidia that can be inhaled by humans and other 
vertebrate hosts, while at higher temperatures, growth converts 
to a multi-budding yeast phase. Once in pulmonary alveoli, 
Paracoccidioides yeasts disseminate to other organs and tissues. 
Chronic pulmonary or disseminated disease is the most common 
manifestation of PCM, which may mimic some clinical aspects of 
tuberculosis, causing severe disability (Bocca et al. 2013). The 
highest prevalence of PCM occurs in Brazil, where it is a serious 
public health issue, accounting for 50 % of deaths caused by 
systemic mycosis (Prado et al. 2009). Hospital admissions due to 
PCM is 7.99/1 000 (Giacomazzi et al. 2016), which is higher than 
other endemic mycoses. Due to Paracoccidioides spp. saprobic 
association with soil, PCM is predominant in rural areas, affecting 
socioeconomically vulnerable individuals (Griffiths et al. 2019, Nery 
et al. 2021). Its relevance in public health has led to great research 
efforts concerning diagnosis, immunological and other biological/
ecological aspects and treatment of PCM in the last century.

Clinical significance

The main risk factors for being infected by Paracoccidioides 
species are the activities of soil management, such as earthworks, 
soil preparation, gardening, transportation of plant products, 
and others. Most PCM patients are exposed to the fungal agent 
in their first two decades of life, presenting the symptoms many 
years later, so some have already left the rural areas when clinical 
manifestation is presented. This long latency period (up to 50 
years) makes identification of the exact local of fungal exposure 
impossible. Smoking and alcoholism are considered risk factors for 
disease development, but different from other systemic mycoses, 
such as cryptococcosis and disseminated histoplasmosis, PCM 
is not exclusively associated with immunosuppression (Shikanai-
Yasuda et al. 2017).

In humans, PCM infection is usually asymptomatic or with non-
specific symptoms. In those patients that exhibit PCM disease, 
there are two main clinical manifestations: acute or subacute 
manifestation, also known as juvenile, and the chronic or adult form. 
The acute or subacute form affects predominantly children and 
young adults, usually after a short period since fungus exposure, 
presenting the involvement of the phagocytic-mononuclear system, 
and having, as main symptoms, localised or generalised lymph 
adenomegaly and hepatosplenomegaly, in addition to digestive 
manifestations, accompanied by lesions in skin mucosa and 
bone. The chronic or adult form, which represents the majority 
of PCM cases (74–96 %), affects mainly adult men (there is 22:1 
women:men ratio) over 30 yr old, after a long latency period. This 
clinical manifestation is usually characterised by lesions in the lungs 
and also in upper airways and oral mucosa and, in some cases, 
by fungal spread to other organs such as adrenals and the brain. 
In this manifestation, PCM may be misdiagnosed as tuberculosis, 
which severely compromises the disease prognostic (Bellíssimo-
Rodrigues et al. 2013).

Paracoccidioides spp. also infect vertebrates other than 
humans. The most common accidental wild host of Paracoccidioides 
spp. are armadillos, mainly Dasypus novemcinctus, from which this 
fungus has been constantly isolated in endemic areas (Bagagli et al. 
2003). Curiously, only species from the complex Para. brasiliensis 
have been isolated in culture from these mammals, although Para. 
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lutzii has been detected by molecular tools in soil from armadillo 
burrows (Arantes et al. 2017, Hrycyk et al. 2018). The occurrence of 
Paracoccidioides spp. in wild animals is not restricted to armadillos, 
since it was also detected in other wild mammals road killed, such 
as Cavia aperea (“guinea pig”), Sphiggurus pinosus (“porcupine”), 
Gallictis vittata (“grison”) and Procyon cancrivorus (“raccoon”) 
(Richini-Pereira et al. 2008). In addition to these, the manifestation 
of PCM disease has been confirmed in dogs (Ricci et al. 2004) 
and more recently in dolphins (Vilela et al. 2016). Although no 
fungal isolation from dolphin tissues was possible, the molecular 
phylogeny suggested this uncultivable Paracoccidioides belongs to 
the Para. brasiliensis complex.

Paracoccidioidomycosis have endemic areas well defined 
in Brazil, Colombia, Venezuela, Argentina and Ecuador but 
climate changes, as well as human migration to new territories, 
are known to influence PCM expansion to new regions, such as 
northern and centre-west regions of Brazil (Martinez 2017). Since 
most PCM cases are chronic and therefore present long latency 
periods, the definition of Paracoccidioides spp. occurrence in 
nature depends on their detection in the environment. The isolation 
of Paracoccidioides spp., in culture, from saprobic substrates, 
such as soil, is extremely rare (Bagagli et al. 2008) since it has 
fastidious growth requirements when compared to contaminant 
microorganisms. Nevertheless, molecular tools such as nested 
PCR (Theodoro et al. 2005, Arantes et al. 2013, Hrycyk et al. 
2018), and in situ hybridisation techniques (Arantes et al. 2017), 
of multi-copy genomic targets such as ITS allowed mapping of 
the exact occurrence of these pathogens in the environment, 
which has been frequently related to armadillo burrows, mainly in 
sandy and disturbed soils, with medium to low concentrations of 
organic matter (Bagagli et al. 2003). Also, Geographic Information 
System analysis indicates that moisture availability in soil plays an 
important role in PCM distribution (Barrozo et al. 2009). The strong 
relationship between Para. brasiliensis and armadillos reinforced 
the idea that soil is the environmental substrate for this fungus in 
nature and mapping positive armadillo burrows for the presence of 

these pathogens has become a great strategy for mapping areas 
of infection risk.

Concerning the immune response against Paracoccidioides 
spp., the Th1 response, mediated by T lymphocytes (T-helper 
type 1) plays a central role in those patients who do not develop 
PCM disease. This response is characterised by the synthesis 
of cytokines that activate macrophages and TCD4+ and TCD8+ 
lymphocytes, producing compact granulomas that contain fungal 
replication and spread. However, quiescent forms may persist in 
such granulomas and, eventually, in a weak Th1 response, give rise 
to PCM disease. In patients with symptomatic and severe forms, 
both from acute and chronic manifestations, the main immune 
response is the Th-2 and Th-9 type, with B lymphocytes producing 
high titres of specific antibodies (Benard et al. 2001, Benard, 2008, 
Oliveira et al. 2002, Castro et al. 2013).

Paracoccidioidomycosis is usually treated with the 
administration of itraconazole, co-trimoxazole (sulfamethoxazole/
trimethoprim association) and amphotericin B, although many 
other antifungal drugs have proved to be effective in the treatment 
of different clinical forms of PCM, including azolic and sulfamid 
derivatives. Depending on the clinical manifestation, as well as 
the treatment drug choice, the management of PCM disease may 
last up to 24 mo (Shikanai-Yasuda et al. 2017). Besides the long 
treatment, many patients may present sequelae due to anatomical 
and functional changes caused by scars in several organs, mainly 
in the lungs, skin, larynx, trachea, adrenal glands, airway mucosa, 
upper limbs, central nervous system and lymphatic system 
(Shikanai-Yasuda et al. 2017). Thus, the disease itself as well as 
its post-treatment sequelae make PCM a serious disability disease, 
once its patients are in their most productive ages.

Research interests

There are 994 publications and 9 763 citations from 2011–2021 
in the Web of Science (Fig. 87). The top 10 most cited articles 
are listed in Table 64. Most of the publications focused on fungal 

Fig. 87. Trends in research of Paracoccidioides in the period 2011–2021.
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taxonomy, concerning cryptic speciation in Paracoccidioides genus 
and their impact on diagnosis, epidemiology and management of 
PCM disease, studies of virulence factors and their immunogenicity.

Regarding species diversity since its formal description in 1930 
until 2006, only one species, Para. brasiliensis, was known to 
belong to this genus, being the causative agent of PCM. However, 
Matute et al. (2006) identified three cryptic species, in what was 
known as Para. brasiliensis. They did not formally describe the 
species but identified them as clades S1, PS2 and PS3. Clades 
S1 and PS2 are sympatric in some regions of South America and 
PS3 is endemic in Colombia. Later, a new and very divergent clade 
was discovered and formally named Para. lutzii (Teixeira et al. 
2009). In 2014 a new phylogenetic species, the Venezuelan clade 
PS4, was included in Para. brasiliensis complex (Teixeira et al. 
2014). More recently S1, PS2, PS3, and PS4 were formally named 
Para. brasiliensis s. str., Para. americana, Para. restrepiensis, and 
Para. venezuelensis, respectively (Turissini et al. 2017). Recently, 
the uncultivated Paracoccidioides sp. detected in dolphins was 
described as a new species, Para. cetii (Vilela et al. 2021).

Although clinical researchers have not observed any difference 
in PCM manifestations caused by the species described so far, their 
existence is impacting diagnosis because, whether it is histological, 
by culture isolation (gold standard method, despite taking more 
time), molecular or serologic, it should be capable of detecting all 
species causing PCM. For instance, serological diagnosis may 
result in false negative results when specific antigenic preparations 
derived from a single Paracoccidioides sp. are used (Queiroz 
Junior et al. 2014, Teixeira et al. 2014). Also, molecular detection 
needs primers or probes that hybridise with conservative genomic 
sequences among the species (Arantes et al. 2017).

According to a recent literature review, most molecular markers 
for species identification are ITS and the GP43 (glycoprotein 43) 
gene, although many other nuclear and mitochondrial genomic 
regions have been evaluated. Pinheiro et al. (2020) highlighted that 
most techniques do not accompany taxonomic updates, since some 
do not include Para. lutzii or do not consider species diversity in the 
Para. brasiliensis complex, and also highlighted the urgency for 
the development of point-of-care testing assays (POCT or bedside 
testing) to diagnose PCM at sites with limited infrastructure. Indeed, 
despite being affordable and simple, diagnosis by fungal isolation 
and identification in culture takes up to 30 d, which is too long, 
especially for patients presenting severe forms of PCM, that need 

treatment as soon as possible. On the other hand, molecular tools 
for diagnosis are still only applied for research and not in routine 
labs, since they are more expensive and demand equipment and 
trained professionals, which is not affordable in many developing 
countries, such as those where PCM is endemic.

To better understand the pathogenesis caused by 
Paracoccidioides species, numerous studies have focused on 
their virulence factors, which make possible fungal survival and 
dissemination in host tissues but are not essential for the growth of 
the yeast (parasitic phase) in culture (Mendes-Giannini et al. 2008). 
The main virulence factors studied in Paracoccidioides, and many 
other invasive fungi, are dimorphism and thermal tolerance, cell 
wall components, proteinases, lipases and phospholipases (Van 
Burik & Magee 2001). Many of these components are extracellular 
and function as adhesins, for instance, the enolase, 14-3-3 protein, 
fructose-1,6-bisphosphate aldolase, triose phosphate isomerase, 
glyceraldeyde-3-phosphate dehydrogenase, and glycoprotein 
gp43 (Santos et al. 2020). Among them, the gp43, a cell surface 
and exocellular glycoprotein with proteinase activity at acidic pH 
is considered the immune dominant antigen in PCM caused by 
Para. brasiliensis species complex, since it reacts with 100 % of 
patient sera in immunoblotting assays (Puccia & Travassos 1991). 
However, the same is not observed for patients infected with Para. 
lutzii whose gp43 is poorly expressed and have few common 
epitopes with Para. brasiliensis; this observation invalidates the 
use of this antigen for serological diagnosis of PCM caused by 
Para. lutzii (Leitão et al. 2014).

Other virulence factors are important intracellular proteins, 
such as α-(1,4)-amylase (AMY1), which is involved in the synthesis 
α-(1,3)-glucan in the cell wall, present in the parasitic yeast phase 
(Camacho et al. 2012) and HSP (heat shock proteins), which are 
chaperones highly expressed during mycelia to yeast conversion 
in response to thermic and other environmental stresses (Cleare 
et al. 2017). For an in-depth review of Paracoccidioides virulence 
factors, we recommend the recent review from Santos et al. (2020), 
in which the most important virulence factors are revised as well as 
pointing out those that may be considered important therapeutic 
targets, such as gp43.

Author: R.C. Theodoro

Table 64. Top 10 cited articles related to Paracoccidioides published in the period 2011–2021.
Rank Article title No. of citations References
1 Epidemiology of endemic systemic fungal infections in Latin America 213 Colombo et al. (2011b)
2 Brazilian guidelines for the clinical management of paracoccidioidomycosis 153 Shikanai-Yasuda et al. (2017)
3 New trends in paracoccidioidomycosis epidemiology 125 Martinez (2017)

4 Paracoccidioidomycosis: eco-epidemiology, taxonomy and clinical and 
therapeutic issues 118 Bocca et al. (2013)

5 The spectrum of fungi that infects humans 118 Köhler et al. (2015)

6 Vesicle and vesicle-free extracellular proteome of Paracoccidioides 
brasiliensis: Comparative analysis with other pathogenic fungi 118 Vallejo et al. (2012)

7 Extracellular vesicle-mediated export of fungal RNA 116 Peres da Silva et al. (2015)
8 Species boundaries in the human pathogen Paracoccidioides 116 Turissini et al. (2017)

9 Comparative genomic analysis of human fungal pathogens causing 
paracoccidioidomycosis 115 Desjardins et al. (2011)

10 Comparative genomics allowed the identification of drug targets against human 
fungal pathogens 73 Abadio et al. (2011)
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59. Schizophyllum Fr., Syst. Mycol. 1: 330. 1821.

Type species: Schizophyllum commune Fr.

Classification: Basidiomycota, Agaricomycotina, Agaricomycetes, 
Agaricales, Schizophyllaceae.

Background

Schizophyllum is a basidiomycete that belongs to Schizophyllaceae 
of Agaricales. Its name originates from the Latin words schizo, which 
means split, and phyllum, which means lamella, which appropriately 
describes its unique characteristics and distinctive morphology 
(Cooke 1961, Guzmán 2004). It is commonly known as the split gill 
mushroom. It is an edible and medicinal mushroom, found on every 
continent except Antarctica (Imtiaj et al. 2008). There are 31 records 
with 20 species of Schizophyllum in Index Fungorum (2022). Linder 
(1933) recognised two groups within Schizophyllum and named 
them Stirps Commune subhymenium, including Sch. commune, 
Sch. radiatum, Sch brevilamellatum and Sch. fasciatum; and Stirps 
Umbrinum with subhymenium undifferentiated, including Sch. 
umbrinum and Sch. leprieuri. Based on observations by the authors, 
all species described in this treatment differ in their subhymenium, 
although this may not be obvious in all samples (Linder 1933, Raper 
& Miles 1958, Cooke 1961, Guzmán 2004). Schizophyllum is easily 
recognised based on its tiny basidiomes that lack stems, and they 
attach themselves like tiny bracket fungi on dead wood. The genus 
is characterised by basidiomes that are fan-shaped or resemble 
undulating waves; small hairs protect the upper surface, and when 
dry, are white to greyish or tan; the under surface has gill-like folds 
that are split down the centre; folds in the under surface are “split” or 
“doubled”. Schizophyllum is able to survive harsh conditions as the 
sporophores are able to tolerate prolonged drought and the mycelium 
can grow on almost any organic matter while the sporophores have 
the ability to rebuild lost parts (Essig 2012).

Ecological and economic significance

Schizophyllum species are common in the tropics and temperate 
regions, spreading throughout North America and around the world. 
They are typically found in large numbers within small spaces 
on logs or trees, including Aceraceae, Betulaceae, Fagaceae, 
Hippocastanaceae, Juglandaceae, Lauraceae, Leguminosae, 
Moraceae, Palmaceae, Pinaceae, Rosaceae, Rubiaceae, 
Rutaceae, and Tiliaceae (Essig 2012). They are saprobic on 
dead wood or sometimes parasitic on living wood, some growing 
alone or more often in clumps on hardwood and rotten logs (Riley 
et al. 2014). The most common species, Sch. commune is used 
for food in southern parts of Asian countries such as Thailand, 
Taiwan, Malaysia, Vietnam and southern China (Imtiaj et al. 2008). 
Schizophyllum mushrooms have been used medicinally for a long 
time in China and Japan.

Research interests

There are 699 publications and 9 725 citations from 2011–2021 
in the Web of Science (Fig. 88), with the top 10 most cited 
articles listed in Table 65. Most of the publications focused on 
the medicinal value (secondary metabolites, compounds, health-
promoting properties), and taxonomy (physiological, genomes) of 
Schizophyllum species.

Medicinal value
Schizophyllum mushrooms are an important source of biologically 
active material that has medicinal value. They contain secondary 
metabolites, carbohydrates, minerals, proteins, fibres, vitamins, 
fats, and bioactive compounds such as phenolic, polysaccharide 
and b- glucan (Lindequist et al. 2005, Klaus et al. 2011, Joel & 
Bhimba 2013). Schizophyllan is a polysaccharide containing a 
1,3-b-D-linked backbone of glucose residues with 1,6-b-D-glucosyl 
side groups (Kumari et al. 2008, Üstün et al. 2018). 

Fig. 88. Trends in research of Schizophyllum in the period 2011–2021.
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Mirfat et al. (2014) found that Schizophyllum extract had more 
effective anti-bacterial activity against Gram-positive bacteria than 
Gram-negative bacteria.

Taxonomy and phylogeny
The taxonomy of this genus was uncertain as the previous 
classification was based on morphological characters (Carreño-Ruiz 
et al. 2019). Molecular analyses based on ITS and LSU sequences 
have provided better resolution (Robledo et al. 2014). Genomic 
data has revealed that Schizophyllum contains six homeodomain 
genes abq6 (HD1), abr6 (HD2), abs6 (HD1), abt6 (HD1), abu6 
(HD1) and abv6 (HD2) (Ohm et al. 2010). Therefore, the generation 
of additional taxonomic information for Schizophyllum species is 
important for their application and conservation.

Author: D. Gonkhom

60. Plasmopara J. Schröt., in Cohn, Krypt.-Fl. Schlesien 3.1: 
236. 1886.

Type species: Plasmopara nivea (Unger) J. Schröt.

Classification: Oomycota, Peronosporomycetes, Peronosporales, 
Peronosporaceae.

Background

Plasmopara is the second largest genus of the downy mildews and 
belongs to the oomycetes, fungus-like organisms of the kingdom 
Straminipila, related to brown algae and diatoms (Beakes & Thines 
2017). The genus contains about 150 species (Wijayawardene et al. 
2022), which are all obligate biotrophic plant parasites of dicot hosts 
(Thines & Choi 2016). Plasmopara species can incite both systemic 
and local infections, resulting in typical downy mildew symptoms. In 
systemically infected hosts, these include stunting of the hosts and 
often smaller leaves and discolouration of the whole plant, local 
infections are characterised by often leaf-vein-delimited lesions that 
are yellow green (chlorotic) from above, sometimes reddening due 
to anthocyane accumulation and with sporangiophore outgrowth 

through the stomata on the lower surface, resulting in a felt-like 
covering with sporangiophores and sporangia. At later stages of 
infection, oospores, which are thick-walled resting spores, are 
formed in infected tissues that sometimes turn necrotic after the life 
cycle of the pathogen is concluded (Thines 2014). For sporulation 
humid conditions are required, with (almost) water-saturated air 
or leaf wetness for several hours. Plasmopara species have been 
found on all continents except Antarctica, but are particularly 
abundant in Northern America (Voglmayr et al. 2006).

Plasmopara was segregated from Peronospora by Schröter 
(1886) including downy mildews of dicots in which the sporangia 
germinate by the production of zoospores instead of a germ tube 
(Thines et al. 2009). In addition, the sporangiophores in Plasmopara 
are mostly clearly monopodial and have a branching pattern with 
close to rectangular angles, while species of Peronospora often 
have more acute branching angles (Constantinescu et al. 2005). 
Based on similarities in sporangiophore morphology, some conidial 
species were added to Plasmopara, while other species with a 
distinct sporangiophore morphology were excluded from the genus 
(e.g., Wilson 1907, 1914, Skalický 1966, Constantinescu 1989). 
As a result, Plasmopara became rather heterogenous until it was 
revised to a monophyletic group after thorough morphological 
and molecular phylogenetic studies by Constantinescu (1989), 
Göker et al. (2003), Voglmayr et al. (2004), Constantinescu et al. 
(2005), Thines et al. (2007), Voglmayr & Constantinescu (2008), 
respectively segregating Paraperonospora, Viennotia, Protobremia, 
Plasmoverna, Poakatesthia, and Novotelnova from Plasmopara, and 
after Voglmayr & Thines (2007) merged the genus Bremiella with 
Plasmopara. As currently understood, Plasmopara contains downy 
mildews of eudicots other than Ranunculales that have hyaline 
sporangia that germinate by the (facultative) production of zoospores.

Species of Plasmopara are highly host-specific (Salgado-
Salaza et al. 2023). Almost all species complexes that have been 
investigated in detail have shown host specificity below the host 
genus level (Voglmayr et al. 2006, Choi et al. 2007, 2020, Komjáti 
et al. 2007, Schröder et al. 2011, Thines 2011, Görg et al. 2017), but 
there are a few notable exceptions, such as the report of infection 
of Ligularia fischeri by Pl. angustiterminalis, a species otherwise 
infecting Xanthium species (Chen et al. 2018e).

Table 65. Top 10 cited articles related to Schizophyllum published in the period 2011–2021.
Rank Article title No. of citations References
1 Extensive sampling of basidiomycete genomes demonstrates inadequacy of the 

white-rot/brown-rot paradigm for wood decay fungi
422 Riley et al. (2014)

2 The plant cell wall–decomposing machinery underlies the functional diversity of 
forest fungi

366 Eastwood et al. (2011)

3 Genome sequence of the model mushroom Schizophyllum commune 295 Ohm et al. (2010)
4 Recent developments in mushrooms as anti-cancer therapeutics: a review 216 Patel & Goyal (2012)
5 Beta-glucans from edible and medicinal mushrooms: Characteristics, 

physicochemical and biological activities
138 Zhu et al. (2015)

6 Microsatellites in the genome of the edible mushroom, Volvariella volvacea 125 Wang et al. (2014g)
7 Allergic bronchopulmonary mycosis due to fungi other than Aspergillus: a global 

overview
120 Chowdhary et al. (2014a)

8 Characterization of fungal pathogens associated with grapevine trunk diseases in 
Arkansas and Missouri

106 Urbez-Torres et al. (2012)

9 Evolution of novel wood decay mechanisms in Agaricales revealed by the genome 
sequences of Fistulina hepatica and Cylindrobasidium torrendii

92 Floudas et al. (2015)

10 Transcription factor genes of Schizophyllum commune involved in regulation of 
mushroom formation

83 Ohm et al. (2011)
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Ecological and economic significance

Plasmopara species affect numerous economically important 
plants, and the most prominent diseases are listed below.

Downy mildew of grape (Vitis vinifera) is caused by Plasmopara 
viticola and remains one of the most destructive diseases of 
grapevine for almost 150 yr (Gobbin et al. 2006, Fontaine et al. 
2013, 2021). Infection by Plasmopara viticola leads to direct loss of 
berries and indirect losses due to foliage damage and is difficult to 
control due to the airborne nature of the spores and rapid evolution 
of fungicide resistance (Gessler et al. 2011, Campbell et al. 2021). 
In addition to the high genetic variability and genetic recombination 
by sexual reproduction (Gobbin et al. 2006), it is noteworthy that 
several phylogenetically distinct lineages exist on other species of 
Vitis and allied genera, of which only Pl. muralis has been described 
so far as an independent species (Schröder et al. 2011, Thines 
2011, Rouxel et al. 2014). Some of these are able to parasitise 
the alien host Vitis vinifera, but are yet restricted to North America 
(Schröder et al. 2010, Rouxel et al. 2014, Fontaine et al. 2021). An 
introduction of these lineages into Europe or other grape-producing 
areas could have a strong negative impact on grape production.

Downy mildew of sunflower (Helianthus annuus) is caused by 
Plasmopara halstedii, a pathogen which, like Pl. viticola, originates 
from North America (Cohen & Sackston 1974). Plasmopara 
halstedii was initially described from Eupatorium rubrum (Farlow 
1883), so the assumption would be that based on the high degree 
of host specificity the pathogen of sunflower should be a species 
independent from Pl. halstedii. Based on this assumption and 
some morphological differences, Novotel’nova (1966) argued for 
recognising the species Pl. helianthi as the pathogen on sunflowers. 
However, this species name was not taken up widely (Spring 2019). 
In the absence of sequence data from the original type specimens 
of multiple recent specimens of the downy mildew of Eupatorium 
rubrum it remains unclear if the pathogens of Eupatorium rubrum 
and Helianthus annuus belong to different species, especially as 

morphological differences are rather minor and there are reports of 
host shifts (Thines 2019) in other species of Plasmopara affecting 
Asteraceae (Chen et al. 2018e).

Downy mildew of balsamines (Impatiens spp.) caused by 
Plasmopara destructor and Pl. velutina leads to defoliation and 
collapse of ornamental species of the genus Impatiens. While 
Pl. obducens, downy mildew of the wild species, Impatiens noli-
tangere, was among the first Plasmopara species described in 
Europe (Schröter 1877), the downy mildew of ornamental Impatiens 
has been recorded widely only after the turn of the millennium 
(Wegulo et al. 2004, Lane et al. 2005), suggesting that the disease 
might be caused by an invading species. However, the species was 
generally reported as Pl. obducens (Wegulo et al. 2004, Lane et 
al. 2005, Cunnington et al. 2008) until detailed phylogenetic and 
morphological investigations revealed that the downy mildew of 
buzzy lizzy is caused by a distinct species, Pl. destructor, while the 
downy mildew of lady slippers balsamine is caused by Pl. velutina 
(Görg et al. 2017). Thus, it seems likely that the downy mildew 
pathogens of cultivated impatiens were only recently imported 
to Europe, North America, and Australasia, possibly by infected 
seeds, which might also be the way of import for the sunflower 
downy mildew, Pl. halstedii (Döken 1989), as many downy mildew 
species are seed-borne (Thines & Choi 2016).

There are no immediate beneficial uses of Plasmopara species 
reported, but Plasmopara on Ambrosia has been suggested as a 
potential biocontrol agent for these often-noxious weeds (Choi et 
al. 2009).

Research interests

There are 813 publications on Plasmopara species with 9 535 
citations from 2011–2021 in the Web of Science (Fig. 89), and 
the top 10 most cited articles are given in Table 66. Most of the 
publications focused on the management of downy mildew 
of grapes, including fungicide sensitivity, disease forecasting, 
virulence, and resistance. However, especially species boundaries 

Fig. 89. Trends in research of Plasmopara in the period 2011–2021.
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for most Plasmopara species complexes, i.e., Plasmopara species 
infecting the same plant family remain unresolved, foremost the 
Plasmopara pathogens affecting Asteraceae, which hampers an 
understanding of the evolution and potential risk of infections of 
weedy hosts for cultivated crops (Thines & Choi 2016).

Disease management
Disease control for downy mildew caused by Plasmopara species 
has mainly been by application of fungicides, but resistance 
against major fungicides used is widely reported (Corio-Costet 
et al. 2011, Sawant et al. 2017, Campbell et al. 2021), and the 
rapid emergence of fungicide-tolerant and fungicide-resistant 
strains is a major obstacle to sustainable control. For major crops 
affected by Plasmopara, such as grapes and sunflowers, extensive 
resistance breeding efforts have been carried out (Gessler et al. 
2011, Sánchez-Mora et al. 2017, Trojanová et al. 2017). However, 
disease resistance is frequently overcome by more virulent strains, 
necessitating a continuous breeding effort (Viranyi et al. 2015, 
Spring & Zipper 2018, Sargolzaei et al. 2020).

Toxins
Downy mildews, like other oomycetes, do not produce known 
toxins.

Taxonomy and phylogeny
The phylogenetic relationships of most Plasmopara species 
remain unresolved, but the overall phylogeny of the genus has 
been addressed in several studies leading to major taxonomic 
rearrangements (Thines et al. 2009). For identification of species 
via barcoding, the otherwise frequently used nuclear ribosomal 
internal transcribed spacer (nrITS) is of limited use as in the nrITS 
region two tandem repeat regions that lead to nrITS lengths of well 
above 2 000 bp in many species are present, which complicates 
both PCR and sequencing (Thines et al. 2005, Thines 2007). 
Consequently, mitochondrial loci, in particular, cox2 sequences 
have been used for species delimitation (Choi et al. 2007, 2020, 

Görg et al. 2017), as they have the advantage that apart from high 
resolution, they are also readily amplifiable from herbarium material 
(Choi et al. 2015).

Author: M. Thines

61. Auricularia Bull., Herb. France (Paris) 3: pl. 290. 1780.

Type species: Auricularia mesenterica (Dicks.) Pers.

Classification: Basidiomycota, Agaricomycotina, Agaricomycetes, 
Auriculariales, Auriculariaceae.

Background

Auricularia is one of the most common gelatinous genera with 
nearly 200 species epithets listed in Index Fungorum (2022), and 
37 recognised species in the world (Wu et al. 2021). Members of 
Auricularia play an important role in wood degradation in forest 
ecosystems, especially in tropical forests. Most Auricularia species 
inhabit angiosperm wood, such as dead standing trees, stumps, 
fallen trunks and branches, and rotten wood, but a few grow on 
gymnosperm wood (Sysouphanthong et al. 2010, Baldrian & 
Lindahl 2011, Wu et al. 2021). Some species of Auricularia are 
edible and medicinal mushrooms, and they are rich in nutrients 
including carbohydrate, protein, amino acid, mineral and bioactive 
compounds (Bandara et al. 2019, Huang et al. 2021b), and have 
properties of lowering blood sugar and fat, anti-tumour, antioxidant, 
and immunity enhancement (Zeng et al. 2012b, Li et al. 2013a, 
Su & Li 2020). Several Auricularia species are widely cultivated 
in China and other Asian countries, e.g., Au. heimuer and Au. 
cornea (Dai et al. 2010b, Wu et al. 2019b). Active components 
and pharmacological effects of Auricularia have always been hot 
research topics (Zeng et al. 2012b, Su & Li 2020).

Auricularia was established by Bulliard in 1789 and is 
characterised by gelatinous, resupinate to substipitate basidiomata 
with hairs on the upper surface, cylindrical to clavate and 

Table 66. Top 10 cited articles related to Plasmopara published in the period 2011–2021.
Rank Article title No. of citations References
1 The top 10 oomycete pathogens in molecular plant pathology 383 Kamoun et al. (2015)
2 Plasmopara viticola: a review of knowledge on downy mildew of grapevine and 

effective disease management
274 Gessler et al. (2011)

3 Advanced knowledge of three important classes of grape phenolics: anthocyanins, 
stilbenes and flavonols

184 Flamini et al. (2011)

4 Carbohydrates in plant immunity and plant protection: roles and potential 
application as foliar sprays

161 Trouvelot et al. (2014)

5 Rpv10: a new locus from the Asian Vitis gene pool for pyramiding downy mildew 
resistance loci in grapevine

116 Schwander et al. (2012)

6 The SWEET family of sugar transporters in grapevine: VvSWEET4 is involved in 
the interaction with Botrytis cinerea

112 Chong et al. (2014)

7 In planta functional analysis and subcellular localization of the oomycete pathogen 
Plasmopara viticola candidate RXLR effector repertoire

97 Liu et al. (2018d)

8 Construction of a reference linkage map of Vitis amurensis and genetic mapping of 
Rpv8, a locus conferring resistance to grapevine downy mildew

93 Blasi et al. (2011)

9 Genetic dissection of a TIR-NB-LRR locus from the wild North American grapevine 
species Muscadinia rotundifolia identifies paralogous genes conferring resistance 
to major fungal and oomycete pathogens in cultivated grapevine

86 Feechan et al. (2013)

10 Genome analyses of the sunflower pathogen Plasmopara halstedii provide insights 
into effector evolution in downy mildews and Phytophthora

71 Sharma et al. (2015b)
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transversely 3-septate basidia with guttules and hyaline, thin-
walled and allantoid basidiospores (Lowy 1951, Duncan & 
Macdonald 1967, Kobayasi 1981, Montoya-Alvarez et al. 2011). 
Lowy (1952) and Kobayasi (1981) recorded 10 and 15 Auricularia 
species in the world, respectively, most were considered to have 
intercontinental to cosmopolitan distributions. Those species were 
described and identified only based on morphology before the 21st 
century, and some of them represent species complexes. Looney 
et al. (2013) evaluated and revised species concepts in Auricularia 
using phylogenetic and morphological methods, and indicated that 
Au. delicata was a species complex and they described two new 
species in this complex. With the implementation of molecular 
analyses, other species complexes were confirmed, and new 
species were derived from these complexes (Wu et al. 2014a, 
2015a, b, Bandara et al. 2015). Wu et al. (2021) conducted a 
comprehensive morphological and molecular study of Auricularia 
worldwide based on multi-locus DNA sequence datasets (ITS, nLSU, 
rpb1 and rpb2 sequences), and they accepted 31 species. The 31 
Auricularia species nested in three major clades in phylogenies 
based on the muti-locus datasets, while two morphological 
complexes (Au. auricula-judae complex and Au. mesenterica 
complex) independently occupied two major phylogenetic clades, 
and three other morphological complexes (Au. cornea complex, 
Au. delicata complex and Au. fuscosuccinea complex) nested in 
one major clade. Taxa in the species complexes of Au. cornea, 
Au. delicata and Au. fuscosuccinea were scattered in different 
subclades of major clades, and the morphological complexes did 
not fully correspond to the phylogenetic clades (Wu et al. 2021). 
Host and geographical distribution probably have an influence on 
the speciation of Auricularia according to previous studies (Wu et 
al. 2014a, 2015a, b, 2021).

Ecological and economic significance

Auricularia species cause white rot to degrade lignin, cellulose 
and hemicellulose, and they can be used as edible and medicinal 
mushrooms. Their properties are summarised below.

Auricularia species as white-rot fungi have an extracellular 
enzyme system, which includes ligninolytic enzymes (laccase, 
manganese peroxidase, lignin peroxidase, and versatile 
peroxidase) and cellulolytic enzymes (endo-glucanase, 
cellobiohydrolase, and betaglucosidase), esterases, oxidases/
dehydrogenases, and oxygenases (Manavalan et al. 2015). 
The enzyme system can effectively degrade lignocellulosic 
biomasses (Manavalan et al. 2015) and has been used to remove 
many emerging contaminants that are difficult to decompose, 
such as dye-based industrial pollutants and endocrine-disrupting 
compounds (Kupski et al. 2019, Chang et al. 2021). The application 
of white-rot fungi and their derivatives for environmental pollutant 
bioremediation is a low-cost, effective, and eco-friendly strategy, 
which has received attention in recent years (Akhtar et al. 2020, 
Chang et al. 2021).

Auricularia species are utilised as nutrient-rich foods and 
medicinal resources, with particular prominence in traditional Asian 
medicine (Bandara et al. 2019). Auricularia heimuer was considered 
a delicacy of emperors in the Eastern Zhou Dynasty 2 000 years ago, 
and it has been cultivated for over 1 400 yr (Zhang & Chen 2015). Its 
production in China reached 7.1 billion kg (fresh weight) in 2019 and 
is worth more than 5.6 billion US dollars (Wu et al. 2021). Auricularia 
cornea, Au. sinodelicata and Au. fibrillifera have also been cultivated 
in China, and some other species have the potential for cultivation 
(Zhang et al. 2019d). Carbohydrates are the major nutritional 
constituent of edible Auricularia species, and polysaccharides are the 
major active compounds in Auricularia species (Bandara et al. 2019). 
On average, dried Auricularia basidiomata have a composition of 
79.9–93.2 % carbohydrates, 6.5–13 % crude proteins, 9.9–17.9 % 
total soluble sugars, 0.48–4.5 % crude fat (lipid), and 3.5–12.5 % 
crude fibre (Bandara et al. 2017, 2019). Auricularia polysaccharides 
have anti-tumour, immunomodulatory, anti-bacterial, antiviral, 
antioxidant, hypoglycemic, and antihypercholesterolemic properties 
(Song & Du 2012, Bandara et al. 2019, Su & Li 2020). Auricularia 
species have also been used as biomass material, such as Au. 
cornea used as a carbon precursor (Long et al. 2015) and metal ions 
adsorption (Li et al. 2018d).

Fig. 90. Trends in research of Auricularia in the period 2011–2021.
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Research interests

There are 784 publications and 9 237 citations from 2011–2021 
in the Web of Science (Fig. 90), with the top 10 most cited 
articles listed in Table 67. Most of the publications focused on 
the characteristics, physicochemical and biological activities of 
Auricularia polysaccharides, and the application of extracellular 
enzymes, as well as porous carbon materials.

Auricularia polysaccharides
The structural characterisation and biological activities of Auricularia 
polysaccharides have been extensively studied, including the 
characterisation of antioxidant polysaccharides using different 
extraction methods (Zeng et al. 2012b), antitumor activities of the 
main active components Beta-glucans (Zhu et al. 2015, Song & 
Du 2012), antioxidant activities of different Auricularia species 
(Yang et al. 2011, Su & Li 2020). Yang et al. (2011) compared 
the antioxidant activities of three polysaccharides isolated from 
Au. auricula and found that the activity of one carboxymethylated 
polysaccharide (CMAAP22) was nearly twice that of the crude 
polysaccharide from Au. auricula. Zeng et al. (2012b) found that 
microwave-assisted extraction of antioxidant polysaccharides from 
Au. auricula had low molecular weight and remarkable antioxidant 
capability. The structural characterisation and antioxidant activities 
of four Auricularia polysaccharides indicated that they were mainly 
composed of mannose and galactose which jointly determined total 
antioxidant capacity (Su & Li 2020).

Application of enzymes
Auricularia species have valuable lignocellulolytic enzymes to 
degrade both lignin and cellulose biopolymers in lignocellulose 
biomass, and these have been employed in various industrial 
applications, especially in the pre-treatment and hydrolysis 
stages of biorefinery systems, industrial biotransformations, and 
removing endocrine-disrupting compounds (Liers et al. 2011, 
Manavalan et al. 2015, Martínez et al. 2017, Kupski et al. 2019). 
Oxidoreductases are the major enzymes isolated from Auricularia 
species, and typically include: (i) haem-containing peroxidases 

and peroxygenases, being activated by H2O2 as sole electron 
acceptor; (ii) flavin-containing oxidases and dehydrogenases, 
being activated by O2 and other oxidants – such as Fe3+ and 
quinones – respectively; and (iii) copper-containing oxidases and 
monooxygenases, being activated by O2, the latter with a more 
complicated activation mechanism (Martínez et al. 2017).

Porous carbon materials
Densely porous graphene-like carbon materials were greenly 
synthesised through hydrothermal treatment of Auricularia and the 
subsequent carbonisation process by Long et al. (2015). Jiang et al. 
(2016) demonstrated a facile one-step construction of a nitrogen-
doped porous carbon building (N-PCB) using interconnected ultra-
small carbon nanosheets through the carbonisation of Auricularia 
biomass using ZnCl2 as the activating agent and NH4Cl as the nitrogen 
source. These results suggest a low-cost and environmentally 
friendly design of electrode materials for high volumetric-performance 
supercapacitors (Long et al. 2015, Jiang et al. 2016).

Authors: Y.C. Dai and F. Wu

62. Russula Pers., Observ. Mycol. (Lipsiae) 1: 100. 1796.

Type species: Russula emetica (Schaeff.) Pers.

Classification: Basidiomycota, Agaricomycotina, Agaricomycetes, 
Russulales, Russulaceae.

Background

The genus Russula, introduced by Persoon (1796), is the type 
genus of Russulaceae, a family in which all agaricoid members 
are recognisable in the field because of their unique brittle context 
due to the predominant presence of large spherical cells, called 
sphaerocytes. Although the original concept of Russula could not be 
maintained (see below), this genus still resists the recent trend of 
splitting hyper-diverse genera, such as Inocybe (Matheny et al. 2020) 
or Cortinarius (Liimatainen et al. 2022) into a multitude of smaller 

Table 67. Top 10 cited articles related to Auricularia published in the period 2011–2021.
Rank Article title No. of citations References
1 Porous layer-stacking carbon derived from in-built template in biomass for high 

volumetric performance supercapacitors
426 Long et al. (2015)

2 Characterization of antioxidant polysaccharides from Auricularia auricular using 
microwave-assisted extraction

141 Zeng et al. (2012b)

3 Beta-glucans from edible and medicinal mushrooms: Characteristics, 
physicochemical and biological activities

138 Zhu et al. (2015)

4 Oxidoreductases on their way to industrial biotransformations 127 Martínez et al. (2017)
5 Contents of lovastatin, γ-aminobutyric acid and ergothioneine in mushroom fruiting 

bodies and mycelia
120 Chen et al. (2012a)

6 Construction of nitrogen-doped porous carbon buildings using interconnected 
ultra-small carbon nanosheets for ultra-high rate supercapacitors

115 Jiang et al. (2016)

7 Patterns of lignin degradation and oxidative enzyme secretion by different wood- 
and litter-colonizing basidiomycetes and ascomycetes grown on beech-wood

106 Liers et al. (2011)

8 Carboxymethylation of polysaccharides from Auricularia auricula and their 
antioxidant activities in vitro

96 Yang et al. (2011)

9 Effect of pig manure on the chemical composition and microbial diversity during 
co-composting with spent mushroom substrate and rice husks

90 Meng et al. (2018)

10 Structure characterization and antitumor activity of an alpha beta-glucan 
polysaccharide from Auricularia polytricha

79 Song et al. (2012)
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satellite genera. Recent estimates of species numbers based on the 
number of sequenced OTUs in the Northern Hemisphere alone are 
already in excess of 1 000 (Looney 2016), but the total number of 
Russula species in the world has been estimated to be in excess of 
3 000 (He et al. 2019b) and could even be quite higher. The great 
challenge for the future will be to document this incredible diversity 
that is vanishing very quickly due to the conversion of the natural 
environment for human activities. As a result, Russula now holds 
the record of being the most diverse ectomycorrhizal mushroom 
genus, and probably could be the most diverse mushroom genus in 
“all categories”. The only other mushroom genus that outcompetes 
Russula in terms of diversity is Entoloma s. lat. (Noordeloos 
et al. 2022). The latter genus contains both saprotrophic and 
ectomycorrhizal species. It has been split on a morphological basis 
into many separate genera in the past, but a generic delimitation on 
a sound phylogenetic and ecological basis is needed (Bhunjun et 
al. 2022). With its 1 348 presently described species (Bhunjun et 
al. 2022), Russula also outnumbers by far the other genera in the 
family Russulaceae, three of which predominantly include agaricoid 
species, viz. Lactarius with 450 spp., Lactifluus with 207 spp. (He et 
al. 2019b) and Multifurca with 12 spp. (Wang et al. 2019b). Russula 
differs from these in the absence of a branching, lactiferous system 
that ends in pseudocystidia at the surface of pileus and hymenium 
(Buyck et al. 2008, 2020).

The most recent multilocus genus phylogeny (Buyck et al. 2023) 
divides the genus into nine subgenera of very unequal size, varying 
in number of species from hardly two or three (subgen. Glutinosae 
and Crassotunicatae) to more than 600 for subgen. Russula, which 
is the dominant subgenus in the Northern Hemisphere. The genus 
is also unique in the fact that the anatomy of the plant-symbiotic 
organs, the ectomycorrhiza, reflects the subgeneric phylogeny 
better than the features of the structures for sexual reproduction or 
basidiomata (Buyck et al. 2018). This ectomycorrhizal anatomy has 
also been used to explain different ecological roles and foraging 
strategies among Russula species (Agerer 2001, 2006, Beenken 
2004). As an obligate ectomycorrhizal genus, Russula also lost 
the ability to reproduce asexually through the formation of conidia, 

and it is quasi-impossible to maintain species in culture, as sexual 
basidiospores do not germinate in normal culture conditions.

Both its attractive field appearance and its abundance in nearly 
every type of forested habitat on earth have resulted in a long-
standing interest from both professional and amateur mycologists. 
Russula is certainly the most frequently monographed genus 
in Europe (for an overview see Romagnesi 1967, Sarnari 1998, 
2005), but remains poorly known elsewhere, although this situation 
is rapidly changing in the past few years. The main game changer 
has been the important impact of the application of molecular 
tools on species concepts, descriptions of new species and fungal 
phylogenies. Between 11 and 115 new Russula species have been 
introduced on a yearly basis between 2011 and 2020 (Bhunjun et 
al. 2022).

As mentioned above, Russula has not maintained its original 
generic concept. Instead of being split into a number of smaller 
genera, the genus has “absorbed” several smaller polyphyletic 
genera with similar microscopic features but often very different 
field appearances, including tiny, pleurotoid species that are 
formed above the soil, often on wood or living parts of trees 
(Pleurogala), others with strongly reduced stipe and deformed 
hymenophore (Elasmomyces, Macowanites) to truffle-like and 
completely hypogeous taxa (Cystangium, Gymnomyces, Martellia). 
All these abandoned genera share with Russula the presence of 
gloeocystidia and an amyloid spore ornamentation, as well as 
being obligate ectomycorrhizal symbionts.

Ecological and economic significance

Russula harbours some economically important edible fungi, 
particularly in Asia (e.g., Wang 2020) and Africa (e.g., Buyck 1994, 
2008, Härkönen et al. 1993). Apart from research papers and 
books focusing on the taxonomy and identification of these edible 
species (e.g., Eyi Ndong et al. 2011, De Kesel et al. 2017), rather 
different aspects of this edibility constituted the subject of highly 
cited papers in Russula research. The ability of mushrooms to 
accumulate toxic metals that are present in the soil is certainly one 

Fig. 91. Trends in research of Russula in the period 2011–2021.
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of these (Zhu et al. 2011a, Aloupi et al. 2012). Another highly cited 
topic relates to the search for medically or therapeutically important 
substances (Patel & Goyal 2012), as well as to the identification of 
toxic substances (Huang et al. 2023).

As one of the most diverse obligate root symbionts, Russula 
is a key lineage in ectomycorrhizal fungi and is highly cited in 
most papers that study fungal communities, ecosystem functions 
and global carbon sequestration. The genus represents one of 
the most important ectomycorrhizal partners in arctic-boreal, 
temperate and tropical ecosystems, associating mainly with 
Pinaceae, Fagaceae and Betulaceae in the Northern Hemisphere, 
with Myrtaceae and Nothofagaceae in the Southern Hemisphere, 
and with Caesalpinioideae and Dipterocarpaceae in the paleo- 
and neotropics. Ecological research papers focusing on fungal 
communities in one or more of these ecosystems figure among 
the top ten highly cited papers related to Russula (Geml et al. 
2011, Smith et al. 2011, Toju et al. 2013), and frequently relate 
fungal community composition with forest age (Kyaschenko et al. 
2017) or warming climate conditions (Deslippe et al. 2011, 2012). 
Interactions between Russulaceae and mammals or other animals 
that feed on them also have more profound consequences on the 
entire ecosystem (Elliott et al. 2022).

Some mycoheterotrophic Orchidaceae and species in Ericaceae 
subfamily Monotropoideae lack chlorophyll and obtain their organic 
carbon through a fungal link connecting the ectomycorrhizas 
of nearby autotrophic plants with their mycorrhizae. Species of 
Russula are well-known to constitute the privileged partner for 
this fungal link as well as very few Lactarius, but no Lactifluus nor 
Multifurca species (Bidartondo & Bruns 2001, 2005). However, 
whereas the fungus-tree host relationship involves many different 
fungal partners for a single tree individual, the mycoheterotrophic 
plants target frequently a single fungal individual (Bidartondo & 
Read 2008, Kong et al. 2015).

Research interests

There are 593 publications and 9 156 citations from 2011–2021 
in the Web of Science (Fig. 91), with the top 10 most cited 

articles listed in Table 68. Most publications focused on taxonomy 
and phylogeny, but the most cited papers treat aspects of the 
ectomycorrhizal lifestyle and aspects related to the edibility or 
pharmaceutical potential of Russula species as discussed above.

Future perspectives

The description of new species and new infrageneric taxa takes 
a very important place in Russula research and this will remain 
the subject of many smaller contributions in the years to come, 
although rarely highly cited. For most of the accepted subsections 
of Russula in the northern hemisphere, the most recent estimates 
announce a 3–6-fold increase in the number of species (Bhunjun 
et al. 2022). More than 170 new Russula species have been 
described over the past two decennia from Asia, principally from 
India and China and this is just the beginning.

Seven out of the 10 most highly cited papers that mention 
Russula and were published between 2011 and 2021, have 
been discarded from the results in Table 68 because they all 
correspond to the “Fungal diversity notes” series, i.e., taxonomic 
compilations of a large number (usually 100) of various new fungal 
taxa featuring between one and five new Russula species in each 
issue (Ariyawansa et al. 2015a, Liu et al. 2015b, Hyde et al. 2016, 
2017, 2020, Li et al. 2016a, Tibpromma et al. 2017). The ITS 
region was frequently mentioned as most new species of Russula 
described during the past 10 years were supported by single gene 
phylogenies based on ITS sequences. In the coming years, it can 
be expected that combined phylogenetic analyses using several 
loci will become much more frequent.

When extending the top 10 to the top 50 of most cited papers, 
there are merely two papers entirely focused on Russula. The first 
(Looney et al. 2016) discusses host association and diversification 
of the genus at a world scale; the second is a purely taxonomic 
paper (Buyck et al. 2018) that discusses features of above- and 
below-ground organs in the context of a multi-locus phylogeny to 
propose a new infrageneric classification.

The biogeographic history and diversification of the genus 
certainly also remain a major research issue in the coming years, 

Table 68. Top 10 cited articles related to Russula published in the period 2011–2021.
Rank Article title No. of citations References
1 Recent developments in mushrooms as anti-cancer therapeutics: a review 216 Patel & Goyal (2012)
2 Long-term experimental manipulation of climate alters the ectomycorrhizal 

community of Betula nana in Arctic tundra
141 Deslippe et al. (2011)

3 Long-term warming alters the composition of arctic soil microbial communities 141 Deslippe et al. (2012)
4 Shift in fungal communities and associated enzyme activities along an age 

gradient of managed Pinus sylvestris stands
126 Kyaschenko et al. (2017)

5 An arctic community of symbiotic fungi assembled by long-distance dispersers: 
phylogenetic diversity of ectomycorrhizal basidiomycetes in Svalbard based on 
soil and sporocarp DNA

121 Geml et al. (2012)

6 Ectomycorrhizal fungal diversity and community structure on three co-occurring 
leguminous canopy tree species in a Neotropical rainforest

114 Smith et al. (2011)

7 Soil bacterial community composition altered by increased nutrient availability in 
Arctic tundra soils

112 Koyama et al. (2014)

8 Assessment of heavy metals in some wild edible mushrooms collected from 
Yunnan Province, China

105 Zhu et al. (2011a)

9 Community composition of root-associated fungi in a Quercus-dominated 
temperate forest: “codominance” of mycorrhizal and root-endophytic fungi

80 Toju et al. (2013)

10 Trace metal contents in wild edible mushrooms growing on serpentine and 
volcanic soils on the island of Lesvos, Greece

79 Aloupi et al. (2012)
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especially when sequences will become available for important 
key taxa in the Southern Hemisphere and tropical Asia and Africa. 
Looney et al. (2016) hypothesised that the agaricoid Russulaceae 
started to diversify between 55 and 61 MYA (45–74; 95 % highest 
posterior density interval) during the early Palaeogene when global 
climates underwent gradual cooling that continued through the ice 
ages of the late Pleistocene. But whether Russula originated in the 
temperate northern hemisphere ca. 44 MYA (33–56; 95 % highest 
posterior density interval) as hypothesised by Looney et al. (2016) 
or has a tropical African origin as concluded by Hackel et al. (2022) 
remains an open question.

All four genera that comprise agaricoid species in the family 
Russulaceae are ectomycorrhizal. However, the two corticioid 
and resupinate, small saprotrophic genera, Boidinia (12 accepted 
species) and Gloeopeniophorella (four species), are very closely 
related (Larsson & Larsson 2003) and placed in the same family. 
Consequently, the Russulaceae, and Russula in particular, are 
also a targeted model group for genomic approaches to better 
understand the saprotroph-ectotroph transition. The Mycorrhizal 
Genomics Initiative has already generated important discoveries 
including a pattern of convergent loss of some metabolic functions 
and the evolutionary development of effectors that interact with 
plant hosts to facilitate mutualistic interactions (Martin et al. 2016). 
Russulaceae are dominant producers of oxidative enzymes, 
including lignin peroxidases and laccases, indicating a white-
rot ancestry and the potential ability to mobilise nutrients from 
lignin. These enzymes have been shown to be present, both at 
transcription levels and in enzymatic assays, in even greater 
abundance in Russulaceae than in many saprotrophic fungi (Luis 
et al. 2005). The specific roles of Russula in nutrient cycling and 
plant health will certainly remain a major focus in the Russulaceae 
Genome Initiative (RGI) project in the near future (Looney et al. 
2018, 2021).

Author: B. Buyck

63. Zygosaccharomyces B.T.P. Barker, Phil. Trans. Roy. 
Soc. London, Ser. B, Biolog. Sci. 194: 482. 1901.

Type species: Zygosaccharomyces rouxii (Boutroux) Yarrow

Classification: Ascomycota, Saccharomycotina, Saccharomycetes, 
Saccharomycetales, Saccharomycetaceae.

Background

Zygosaccharomyces species are widely distributed and are often 
associated with food products with high sugar content, but strains 
can also be isolated from weak acid and alcohol-containing food 
or beverages (Boekhout & Robert 2003, Kurtzman et al. 2011). 
They exhibit remarkable tolerance to several stress conditions. 
Zygosaccharomyces species can convert highly concentrated 
sugars into ethanol, with a preference for fructose over glucose, 
a trait called fructophily. This characteristic together with their 
tolerance to severe stress conditions makes Zygosaccharomyces 
strains suitable for use in a wide range of industrial processes 
(reviewed by Solieri 2021).

The genus Zygosaccharomyces is morphologically, 
physiologically and phylogenetically related to Saccharomyces 
(Kurtzman et al. 2011). Zygosaccharomyces was introduced by 
Barker (1901), to accommodate yeasts that undergo conjugation 
prior to ascus formation but are otherwise similar to species of 

Saccharomyces. However, Stelling-Dekker (1931) observed that 
conjugation did not always occur prior to ascus formation, and 
could on occasion be lacking. As a result, Zygosaccharomyces 
was subsequently reduced to a subgenus of Saccharomyces. Only 
in the 1970s was this genus reinstated following studies by Van 
der Walt & Johannsen (1975). Zygosaccharomyces barkeri was 
originally designated as the type species, but with no existing type 
material and as Z. barkeri was believed to be a synonym of Z. rouxii 
(Lodder & Kreger-van Rij 1952, Yarrow 1984), Kurtzman (2003) 
proposed Z. rouxii as the neotype species of the genus.

Sequence analysis of the D1/D2 domains of the LSU gene, the 
ITS regions and SSU gene (Kurtzman & Robnett 1998, Kurtzman 
et al. 2011, Kurtzman & Robnett 2013) is used to describe 
novelties and distinguish among species of Zygosaccharomyces. 
The described Zygosaccharomyces species include Z. bailii, Z. 
bisporus, Z. favii, Z. gambellarensis, Z. kombuchaensis, Z. lentus, 
Z. machadoi, Z. mellis, Z. osmophilus, Z. parabailii, Z. pseudobailii, 
Z. rouxii (type species), Z. sapae, Z. seidelii and Z. siamensis 
(Kurtzman et al. 2011, Torriani et al. 2011, Saksinchai et al. 2012, 
Solieri et al. 2013, Suh et al. 2013, Čadež et al. 2015, Brysch-
Herzberg et al. 2020, Matos et al. 2020).

Zygosaccharomyces species have been isolated from various 
habitats but are most commonly associated with food products 
(Kurtzman et al. 2011, Torriani et al. 2011, Solieri et al. 2013, 
Čadež et al. 2015). Most species are highly halotolerant and 
osmotolerant and some are even tolerant to weak organic acid 
preservatives e.g., acetic acid, benzoic acid or sorbic acid as well as 
dimithyldicarbonate (Steels et al. 1999, 2002, Deak 2008, Escott et 
al. 2018, reviewed by Solieri 2021). Dimithyldicarbonate is also used 
as a sterilant in beverage industries. These characteristics make 
Zygosaccharomyces species important food spoilage organisms, 
particularly food with low water activity, acidified preserved foods and 
beverages with a high concentration of fermentable sugars (Boekhout 
& Robert 2003, Deak 2008, Escott et al. 2018). On the other hand, 
their ability to cope with a wide range of process conditions makes 
these yeasts very attractive for converting various substrates that 
are not favourable for the growth of other microorganisms such as 
Saccharomyces cerevisiae that is already used in a vast number of 
industrial processes. Zygosaccharomyces yeasts live the transition 
from dangerous food spoilage agents to robust and stress-tolerant 
bio-catalysers exploitable in several bioprocesses other than food 
fermentation, such as bioethanol, chemicals, and enzyme production 
(reviewed by Solieri 2021).

Economic significance

Food and food safety
The physiological characteristics of many Zygosaccharomyces species 
indicate that they have remarkable tolerance to extreme environmental 
stress conditions (Steels et al. 1999, 2002, Deak 2008, Escott et al. 
2018, reviewed by Solieri 2021), including high concentrations of 
organic acids, inorganic salts, weak acids (e.g., acetic and lactic acids), 
sugars, alcohol and also low pH and oxygen conditions (Jansen et al. 
2003) as well as low water-activity (Stevenson et al. 2015). This genus, 
comprising halotolerant and osmotolerant strains in combination with 
resistance to heat and food preservatives, such as sorbic acid, benzoic 
acid, acetic acid, cinnamic acid and ethanol, is one of the major yeast 
genera responsible for causing food spoilage and plays a prominent 
role as a contaminant in preserved food and beverages. Food products 
and beverages prone to spoilage due to Zygosaccharomyces include 
juice concentrates, sugar syrups, honey and other bee hive material, 
jams, cane sugar, chocolate syrup, vinegar, pickled cucumbers, wine 
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and other alcoholic beverages, salad dressing, tomato ketchup, tea 
beer fungus, carbonated soft drinks and dried fruit (Boekhout & Robert 
2003, Fleet 2010, Kurtzman et al. 2011, Torriani et al. 2011, Saksinchai 
et al. 2012, Solieri et al. 2013, Čadež et al. 2015). The spoilage 
activities comprise mainly the production of excess carbon dioxide 
as well as the production of non-desired compounds such as ethanol 
and carbon esters. This undesirable fermentation also compromises 
the integrity of food packages as it can cause package expansion or 
the explosion of glass bottles (Solieri 2021). Due to their capacity to 
also grow at very low pH values, Zygosaccharomyces species are 
good candidates for spoilage of wines (Escott et al. 2018). Strains may 
cause re-fermentation and excessive CO2 production in sweet wines. 
In wine fermentation, Z. bailii is conventionally associated with high 
production of volatile acidity and is considered a dangerous spoilage 
agent in several cases (Padilla et al. 2016b, Malfeito-Ferreira & Silva 
2019).

Despite its non-desirable effects on food related products, 
Zygosaccharomyces species can also be used in the production 
of foodstuffs under controlled conditions and by selecting strains 
with desirable characteristics. The physiological characteristics of 
Zygosaccharomyces strains can vary, even among strains of the 
same species. The same abilities of Zygosaccharomyces species 
that make their presence in food products undesirable also give 
some strains the potential to be used as starter cultures as alternative 
and/or complementary to Saccharomyces cerevisiae (Domizio et al. 
2011, Solieri 2021). Re-fermentation and excessive production of 
CO2 in alcoholic beverages are mostly unwanted. However, for the 
production of sparkling wines, it is a desirable trait and Z. bailii was 
used as a mixed starter with S. cerevisiae to improve the production 
of ethyl esters and polysaccharides which remarkably contribute to 
wine aroma (Garavaglia et al. 2015) and enhance the wine taste 
and body (Domizio et al. 2011). The fructophilic characteristic is 
also used as an advantage and selected Zygosaccharomyces 
strains are included in the fermentation processes of grape musts 
from over-ripened grapes, therefore removing remaining sugar from 
Cabernet Sauvignon and Syrah sluggish fermentations. Maltose 

fermenting strains were successfully used in trials to produce 
ethanol-free beer (De Francesco et al. 2015). Zygosaccharomyces 
can assimilate ethanol under aerobic conditions and, at the same 
time, produce active flavour compounds that positively affect the 
beer aroma profile.

Zygosaccharomyces spp. can also play a role in the production 
of soy sauce and balsamic vinegar (Solieri et al. 2013), in traditional 
homemade fermented beverages such as the Chinese alcoholic 
beverage, Maotai-flavor liquor, and Kombucha tea. Maotai-flavor 
liquor fermentation (Wu et al. 2013b, Xu & Ji 2017) is produced 
by spontaneous and solid-state alcoholic fermentation of grains at 
high temperatures. Zygosaccharomyces strains isolated from this 
beverage are significant producers of higher alcohol acids, esters, 
ketones, and aldehydes, therefore greatly impacting the unique 
aroma of the end product (Wu et al. 2012a). Kombucha tea is a 
sugared tea that is a traditional homemade fermented drink that is 
popular and consumed worldwide for its refreshing and beneficial 
properties on human health (Jayabalan et al. 2014; Sreeramulu 
et al. 2000). Yeasts and bacteria in kombucha are involved in 
such metabolic activities that utilise substrates by different and in 
complementary ways. The micro-organisms present are usually 
mixed cultures of acetic acid bacteria and moulds with Acetobacter 
and Zygosaccharomyces the dominant genera (Marsh et al. 2014). 
The yeast species present hydrolyse sucrose into glucose and 
fructose and produce ethanol via glycolysis, with a preference 
for fructose as a substrate, making the fructophilic phenotype of 
Zygosaccharomyces spp. indispensable. Soy sauce is probably 
the main product produced on an industrial scale with the use of 
Zygosaccharomyces (Devanthi & Gkatzionis 2019). It contributes 
to flavour enhancement of the sauce during the production process, 
since this yeast can increase the concentration of various aromatic 
volatile compounds, due to the formation of larger amounts of 
isoamyl alcohol, amyl alcohol, acetoin and alcohol (Jansen et 
al. 2003). Zygosaccharomyces rouxii, is used industrially in the 
production of other salted condiments, such as balsamic vinegar 
(Solieri et al. 2007, Solieri & Giudici 2008).

Fig. 92. Trends in research of Zygosaccharomyces in the period 2011–2021.



177www.studiesinmycology.org

What are the 100 most cited fungal genera?

Industrial significance

In addition to the desirable effects that Zygosaccharomyces strains 
have on the industrial production of many food products and 
beverages, they also produce many other important compounds/
products used in various industries. These include antimicrobial 
agents, aroma-like molecules, antioxidants, food additives and 
compounds used in the pharmaceutical and cosmetics industries 
and the production of bioethanol (reviewed by Solieri 2021).

Zygocin is a killer toxin produced by some Zygosaccharomyces 
spp. (Schaffrath & Breunig 2000). It disrupts plasma membrane 
integrity and therefore has the potential to act as a natural 
antimicrobial in food and for biological control of plant pathogens. 
This killer phenotype exhibits a broad lethality activity upon many 
filamentous fungi and yeasts. Other antimicrobial compounds 
(reviewed by Solieri 2021) produced by Zygosaccharomyces 
species are L-glutaminase and 2-phenylethanol which have effects 
against Gram-negative bacteria and various filamentous fungi. 
2-phenylethanol is not only a molecule that has antimicrobial 
abilities but is also a rose-honey-like aroma molecule that is utilised 
as an ingredient in cosmetics, perfumes, beer, olive oil, tea and 
coffee. Zygosaccharomyces spp. can also produce malic acid, 
which can be applied as an antioxidant, in the pharmaceutical and 
cosmetics industries and as a food additive. Malic acid-consuming 
Zygosaccharomyces spp. have been successfully used to stabilise 
the pH in fermenting musts with an excess of malic acid (reviewed 
by Vilela 2017). Another polyester compound produced by strains 
of Zygosaccharomyces is 4-hydroxy-2,5-dimethyl-3 (2H)-furanone 
which is used as a food additive with a caramel-like odour.

Zygosaccharomyces spp. are promising bioethanol-producing 
cell factories due to their suitability to metabolise pentoses and 
exhibit robustness towards multiple stresses during the production 
of bioethanol (reviewed by Solieri 2021). Also, their fructophilic 
behaviour increases ethanol yield from inulin-rich feedstocks such 
as tubers, bulbs and tuberous roots, as the fructose produced from 
inulin hydrolysis can be assimilated completely (Paixao et al. 2013, 
2018).

Research interests

There are 567 publications and 9 140 citations from 2011–2021 
in the Web of Science (Fig. 92), with the top 10 most cited 
articles listed in Table 69. Most of the publications focused on the 
bioindustry, genetic engineering and future processes.

(Bio-)industry
Zygosaccharomyces yeasts are living the transition from 
dangerous food spoilage agents to robust and stress tolerant 
bio-catalysers exploitable in several bioprocesses other than 
food fermentation, such as bioethanol, chemicals, and enzyme 
production (Paixao et al. 2013, 2018, reviewed by Solieri 2021). 
This is strongly dependent upon knowledge about the mechanisms 
whereby Zygosaccharomyces cells exhibit industrially relevant 
phenotypes in response to environmental stimuli. Although 
interesting relationships have been established among stress 
responses in Zygosaccharomyces, its fructophily characteristic 
and furanones production is still poorly understood and deserves 
further investigation. Current data comparison is suboptimal as 
information is often heterogenous and collected under diverse 
stress conditions and from strains that differ in ploidy and genetic 
make-up. Investigating and expanding the array of genes and 
increasing knowledge of the mechanisms involved in stress 
adaptation will be extremely helpful.

Although the presence of Zygosaccharomyces yeast strains in 
many food products may represent a quality control danger and 
negative economic impact, the controlled use of selected strains 
may positively contribute to the improvement of a particular range 
of products in the food/beverage industry. For example, the use of 
Zygosaccharomyces strains in winemaking is still controversial due 
to their high spoilage activity, but it might also be an alternative to 
current technologically challenging conditions to investigate further, 
especially in stuck fermentations or the use of high fructose-
containing grape musts.

There are several natural compounds produced by 
Zygosaccharomyces strains that can provide valuable alternatives 
to chemical counterparts. Improving the production of these natural 
compounds by selecting strains with the most potential and optimal 

Table 69. Top 10 cited articles related to Zygosaccharomyces published in the period 2011–2021.
Rank Article title No. of citations References
1 The microbial ecology of wine grape berries 360 Barata et al. (2012)
2 Yeast biodiversity from DOQ Priorat uninoculated fermentations 249 Padilla et al. (2016a)
3 Past and future of non-Saccharomyces yeasts: from spoilage microorganisms to 

biotechnological tools for improving wine aroma complexity
243 Padilla et al. (2016b)

4 Influence of surfactant charge on antimicrobial efficacy of surfactant-stabilized thyme 
oil nanoemulsions

162 Ziani et al. (2011)

5 Sequence-based analysis of the bacterial and fungal compositions of multiple 
kombucha (tea fungus) samples

160 Marsh et al. (2014)

6 Is there a common water-activity limit for the three domains of life? 151 Stevenson et al. (2015)
7 Physical properties and antimicrobial efficacy of thyme oil nanoemulsions: influence 

of ripening inhibitors
145 Chang et al. (2012)

8 Outlining a future for non-Saccharomyces yeasts: selection of putative spoilage wine 
strains to be used in association with Saccharomyces cerevisiae for grape juice 
fermentation

131 Domizio et al. (2011)

9 Molecular basis for the recognition of methylated adenines in RNA by the eukaryotic 
YTH domain

126 Luo et al. (2014)

10 Microbial terroir and food innovation: The case of yeast biodiversity in wine 112 Capozzi et al. (2015)
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growth conditions will be of great value for future use of these 
compounds. The most interesting compounds currently studied are 
(reviewed by Solieri 2021) (i) 2-phenylethanol that can be used as 
an antimicrobial compound as well as enhance aroma and flavour 
of food and beverages; (ii) the chiral alcohols, providing chiral 
building blocks for the bio-synthesis of different pharmaceutical 
molecules and fine chemicals; (iii) L-glutaminase can be used in 
the pharmaceutical and food industries as flavour enhancer as 
well as a therapeutic agent against cancer and HIV (Kashyap et al. 
2002, Amobonye et al. 2019); (iv) malic acid can replace chemically 
produced compounds now used as food additives, pharmaceuticals, 
cosmetics and has also potential to be used as antioxidants; and 
(v) xylitol produced from glucose via the d-arabitol route, is a five-
carbon sugar alcohol, used as a natural food sweetener.

Genetic engineering and future processes
Lactic acid is an important chemical for food, pharmaceutical, 
bioplast and leather industries. Yeast cell factories expressing 
a bacterial gene encoding lactate dehydrogenase can produce 
optical pure lactic acid with less environmental impact than 
chemical synthesis. Attempts to engineer S. cerevisiae for this 
purpose were not very successful due to its sensitivity toward 
lactic acid at lower pH. Engineering Zygosaccharomyces strains 
(Bianchi et al. 2001, Won et al. 2017) for heterologous expression 
of lactic acid is well demonstrated due to its ability to tolerate lactic 
acid at low pH. It is, therefore, a useful host to further develop for 
heterologous production of lactic acid and equivalent compounds 
to be used for industrial purposes that are also cost-effective and 
have no or limited negative impact on the environment.

Different strategies are currently used to genetically improve 
Zygosaccharomyces cells. An overview of these strategies and the 
main applications in industrial microbiology and food biotechnology 
of Zygosaccharomyces yeasts, so-called ZygoFactory, is given by 
Solieri (2021). The idea is to establish a set of reference strains 
fully characterised by phenotype, genotype, transcriptomic, and 
proteomic traits. This will increase in-depth knowledge of the 
mechanism behind the production of the compounds of interest and 
select strains for specific processes as novel ZygoFactories. This 
will broaden the biotechnological opportunities to implement them 
in sustainable bioprocesses. Genome editing tools, the construction 
of a library of well-characterised bio-compounds and further studies 
on the DNA repair mechanisms in Zygosaccharomyces cells will 
be vital for the generation of industrially relevant compounds 
from natural sources and wastes and to make these technologies 
scalable and cost-effective.

Author: M. Groenewald

64. Torulaspora Lindner, Jahrb. Vereins Lehranst. Brauerei 
Berlin 7: 441. 1904.

Type species: Torulaspora delbrueckii (Lindner) E.K. Novák & Zsolt

Classification: Ascomycota, Saccharomycotina, Saccharomycetes, 
Saccharomycetales, Saccharomycetaceae.

Background

The genus Torulaspora was established by Lindner in 1904 with 
the type species To. delbrueckii formerly known as Sacchromyces 

delbrueckii. In the first edition of the “Yeasts: A taxonomic Study” 
(Lodder & Kreger-van Rij 1952), Torulaspora was merged with 
Saccharomyces, and also the genus Zygosaccharomyces was 
added. A further taxonomic revision (Van der Walt & Johansen 
1975) restored the genera Zygosaccharomyces and Torulaspora, 
and the latter was enriched with all the Debaryomyces species 
and some species of Pichia. In a study by Kreger-van Rij in 
1984, the closely related genera Torulaspora, Saccharomyces, 
Zygosaccharomyces and Debaryomyces, showing very similar 
phenotypic characteristics, were distinguished based on a few 
physiological and morphological features (ascosporulation, 
dominant haploid/diploid status, ascospore aspects, fermentation, 
coenzyme Q-9/Q-6). The four genera were definitively separated 
thanks to a first phylogenetic investigation of D1/D2 LSU rRNA 
gene sequences (Kurtzman & Robnett 1998), and a subsequent 
multigene analysis based on rRNA gene repeat, single copy 
nuclear genes, and mitochondrial encoded genes (Kurtzman 
2003, Kurtzman & Robnett 2003). At present Torulaspora includes 
nine species: To. delbrueckii, To. globosa, To. franciscae, To. 
microellipsoides, To. pretoriensis (Kurtzman 2003), T maleeae 
(Limtong et al. 2008), To. quercuum (Wang et al. 2009), To. indica 
(Saluja et al. 2012), and To. nypae (Kaewwichian et al. 2020).

Torulaspora belongs to the order Saccharomycetales, 
family Saccharomycetaceae and the closest related genera are 
Zygotorulaspora and Zygosaccharomyces. The complete genome 
sequence of To. delbrueckii and To. microellipsoides was obtained 
in recent years (Gordon et al. 2011, Galeote et al. 2018). The cells 
are spherical to ellipsoidal and asexual reproduction occurs by 
multilateral budding. Poorly differentiated pseudohyphae may be 
present but true hyphae were not observed. Asci may be formed 
by conjugation between a cell and its bud or between independent 
cells; tapered protuberances are often observed though not 
involved in the conjugation process. Asci contain 1–4 spherical 
ascospores with smooth or roughened walls. Both homothallic and 
heterothallic species occur within the genus. Glucose is fermented 
by all the species while other sugars, such as galactose, maltose, 
sucrose, trehalose, and raffinose are fermented differently within 
the genus (Kurtzman 2003, Limtong et al. 2008, Wang et al. 2009, 
Saluja et al. 2012, Kaewwichian et al. 2020).

Torulaspora delbrueckii is the most studied species and has a 
large number of synonyms. It is a ubiquitous species isolated from 
various habitats (natural and anthropic) and countries. It was found 
in gummy material of a sugar refinery, honey bee gut, fermented 
beverages (brandy, sour milk, colonche, juice, wine, beer), plants 
(ragi, grapes, bark, sugarcane, phylloplane), foods (salads, dairy 
products, fermenting coffee beans), soil, wastewater treatment 
systems, and skin lesion (De Azeredo et al. 1998, Bhadra et al. 
2008, Kurtzman 2011a, Yang et al. 2013, Limtong et al. 2014, 
De Carvalho Neto et al. 2017, Barry et al. 2018). Torulaspora 
delbrueckii exhibits polyextremophilic/extremotolerant aptitudes; 
osmophilic/osmotolerant, alkali-tolerant and halophilic/halotolerant 
strains, as well as strains with high freeze tolerance correlated to 
high resistance to lipid oxidative damage, have been isolated from 
different extreme habitats (Alves-Araujo et al. 2004, Rojo et al. 
2017, Buzzini et al. 2018). The habitats of other species were mainly 
represented by soil, leaves or inflorescences, moss (To. maleeae), 
human oral cavity (To. quercuum) and fermented substrates (To. 
pretoriensis and To. microellipsoides). No pathogenic aptitude was 
shown (Kurtzman 2003, Limtong et al. 2008, Wang et al. 2009, 
Saluja et al. 2012, Kaewwichian et al. 2020).
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Ecological and economic significance

Torulaspora delbrueckii is the most studied of all species. It is one of 
the yeast species indigenous to grapes, an ecological niche mainly 
inhabited by non-Saccharomyces species. Although regarded as 
spoilage microorganisms in wine fermentations (Kurtzman 2011a), 
non-Saccharomyces species acquired the role of co-fermenters 
with S. cerevisiae due to their unique oenological traits which 
discontinue the wine uniform profiles deriving from the massive 
use of commercial starters. Publications relating to the role of To. 
delbrueckii as a selective starter in the fermentation of wine (some 

strains are currently on the market) have significantly increased 
in the last years (Mas et al. 2016, Benito 2018) (Fig. 93) and are 
mainly focused on its contribution to enhancing the organoleptic 
properties of wine, with strain dependant variability (Table 70).

Torulaspora delbrueckii resistance to ethanol is lower than 
that of S. cerevisiae but among non-Saccharomyces species To. 
delbrueckii shows one of the greatest fermenting abilities, reaching 
an ethanol concentration of 9.38 % (v/v) (Bely et al. 2008), enough 
to be defined as a relatively powerful fermenter. However, To. 
delbrueckii has never been proposed as a unique fermenting agent 
in high-alcohol beverages such as traditional wine, because it cannot 

Fig. 93. Trends in research of Torulaspora in the period 2011–2021.

Table 70. Top 10 cited articles related to Torulaspora published in the period 2011–2021.
Rank Article title No. of citations References
1 Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered 465 Jolly et al. (2014)
2 Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations 

with Saccharomyces cerevisiae
366 Comitini et al. (2011)

3 The microbial ecology of wine grape berries 360 Barata et al. (2012)
4 Past and future of non-Saccharomyces yeasts: from spoilage microorganisms to 

biotechnological tools for improving wine aroma complexity
243 Padilla et al. (2016b)

5 Yeast-yeast interactions revealed by aromatic profile analysis of Sauvignon Blanc 
wine fermented by single or co-culture of non-Saccharomyces and Saccharomyces 
yeasts

236 Sadoudi et al. (2012)

6 Increase of fruity aroma during mixed T. delbrueckii/S. cerevisiae wine fermentation is 
linked to specific esters enhancement

134 Renault et al. (2015)

7 The impact of non-Saccharomyces yeasts in the production of alcoholic beverages 132 Varela (2016)
8 Dynamic analysis of physiological properties of Torulaspora delbrueckii in wine 

fermentations and its incidence on wine quality
112 Belda et al. (2015)

9 Microbial terroir and food innovation: the case of yeast biodiversity in wine 112 Capozzi et al. (2015)
10 The application of non-Saccharomyces yeast in fermentations with limited aeration as 

a strategy for the production of wine with reduced alcohol content
103 Contreras et al. (2015)
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properly complete a fermentation process by itself. Its function 
has been shown to be essential in the first hours of spontaneous 
must fermentation when sugar concentration is elevated, as the 
cell abundance of To. delbrueckii is much higher than that of S. 
cerevisiae. Consequently, most studies in wine production involve 
To. delbrueckii in sequential fermentation before S. cerevisiae, in 
order to promote To. delbrueckii oenological features, minimising 
the competition with S. cerevisiae (Loira et al. 2014, González-
Royo et al. 2015, Padilla et al. 2016b, Ramírez & Velazquez 2018). 
Sequential fermentations have also been tested for decreasing the 
content of alcohol in wine, compared to S. cerevisiae control, even 
if with variable results (decrease from 0 to 0.5 %) (Cus & Jenko 
2013, Belda et al. 2015, 2017a, Renault et al. 2015, Puertas et al. 
2017, Chen et al. 2018c).

Acetic acid and volatile acidity high concentration is the principal 
negative parameter in wine quality (vinegar character). Torulaspora 
delbrueckii has shown a significant reduction of acetic acid in pure 
and sequential fermentations compared to S. cerevisiae control 
(0.13–0.8 g/l depending on strain) (Ciani & Maccarelli 1998, Bely et 
al. 2008, Taillandier et al. 2014, Padilla et al. 2016a, Medina-Trujillo 
et al. 2017, Chen et al. 2018c).

This species plays an important role in producing esters and 
other volatile compounds which enhance the aroma complexity and 
intensity of wine and its fruity character. Some authors have reported 
an increase in esters (ethyl propanoate, ethyl isobutanoate, ethyl 
dihydrocinnamate, and isoamyl acetate) (Cordero-Bueso et al. 
2013, Renault et al. 2015, Chen & Liu 2016, Belda et al. 2017a, 
Puertas et al. 2017), higher alcohols (Sadoudi et al. 2012, Azzolini 
et al. 2015, Belda et al. 2017a), 4-ethyl phenol (González-Royo 
et al. 2015), the typical grape derived volatile thiols (Swiegers et 
al. 2005, Swiegers & Pretorius 2007), and terpene compounds 
liberated by the action of β-D-glucosidase (such as α-terpineol, 
linalool, geraniol, trans-β-ocimene) (Hernández-Orte et al. 2008, 
Cus & Jenko 2013, Whitener et al. 2017) when To. delbrueckii is 
involved in most fermentation.

Some studies have described significant acid malic 
consumption of both pure and sequential fermentations with To. 
delbrueckii, thus contributing to the de-acidification of harsh wine 
typical of less sunny regions (Belda et al. 2015, Du Plessis et al. 
2017, Chen et al. 2018c, Balmaseda et al. 2024).

Torulaspora delbrueckii was considered by several authors 
a notable producer of mannoproteins and polysaccharides, with 
production up to 25–50 % more than S. cerevisiae control. These 
compounds play an important role in increasing the sensory 
perception of properties such as mouthfeel, structure and overall 
impression of wine (Domizio et al. 2014, 2017, Belda et al. 2015, 
2016, Garcia et al. 2017).

The contribution of To. delbrueckii in wine fermentation has 
also been studied for its nitrogen metabolism and the aptitude 
in the reduction of acetaldehyde content, and the increase of 
anthocyanins, phenolics, glycerol, and succinic acid (Ciani & 
Maccarelli 1998, Bely et al. 2008, González-Royo et al. 2015, 
Belda et al. 2016, 2017a, Puertas et al. 2017, Benito 2018, Chen 
et al. 2018c).

Research interests

There are 548 publications and 9 132 citations from 2011–2021 
in the Web of Science (Fig. 93), with the top 10 most cited articles 
listed in Table 70. Torulaspora was considered in the past to be 
only an undesired or spoilage yeast of wine. Startford et al. (2000) 
listed To. delbrueckii and To. microellipsoides within the eleven 

most significant deteriorating yeasts in fruit juices and soft drinks. 
Torulaspora delbrueckii has also been isolated from spoiled dairy 
products, vegetable and meat salads (Kurtzman 2011a). The positive 
contribution of Torulaspora and in particular of To. delbrueckii to 
the enhancement of fermented food and beverage characteristics 
has been deeply investigated in the last 6 or 7 years, arousing the 
interests of a growing number of researchers and becoming the 
main topic of literature on this genus. Despite the traditional wine 
technology interest, several authors have suggested To. delbrueckii 
for sparkling base wine, cherry, lychee, mango, and durian wines, 
meads, but above all, for beer (Basso et al. 2016, Varela 2016, 
Canonico et al. 2017, Medina-Trujillo et al. 2017, Sottil et al. 2019, 
Fernandes et al. 2021), mainly because of the low alcohol and high 
volatile content production (Gamero et al. 2016, Varela 2016).

Various papers describe To. delbrueckii aptitude in the brewing 
industry, highlighting the typical strain variability. During wort 
fermentation, To. delbrueckii has shown synthesis of several esters 
(such as β- phenylethanol, n-propanol, iso-butanol, amyl alcohol, 
and ethyl acetate), and the ability to convert hop monoterpene 
alcohols into linalool, that defines hop aroma in beer (King & 
Dickinson 2000, Pires et al. 2014, Basso et al. 2016). Both pure 
cultures and mixed fermentations were tested obtaining beer with 
floral and fruity aromas and low-alcohol content (2.66–3.78 % v/v) 
in the first case, and a significant increment of esters, if compare 
with a S. cerevisiae control, in the second (Canonico et al. 2016, 
Michel et al. 2016, Toh et al. 2020).

The fermentation performance of To. delbrueckii has also 
been applied in the bakery industry and some strains are already 
on the market (Pech-Canul et al. 2019). Some tested strains of 
To. delbrueckii have shown a positive influence on the final quality 
of bread, combining satisfactory dough rheology, bread texture 
and volume, with rich flavour profiles that generate diversity when 
compared to the traditional S. cerevisiae (Wahyono et al. 2015, 
Aslankoohi et al. 2016). Some studies have described the low 
invertase activity and the slow rate of trehalose mobilisation of 
To. delbrueckii. These features are strictly related to the high 
tolerance to freeze-thaw and osmotic stress, which make To. 
delbrueckii suitable for frozen and sweet dough technology, 
respectively (Hernandez-Lopez et al. 2003, 2007, Pech-Canul et 
al. 2019).

Author: B. Turchetti

65. Boletus Fr., Syst. Mycol. 1: 385. 1821.

Type species: Boletus edulis Bull.

Classification: Basidiomycota, Agaricomycotina, Agaricomycetes, 
Boletales, Boletaceae.

Background

Boletus is likely the most famous genus of wild edible mushrooms 
with the type species Boletus edulis and its allies known as porcini, 
king bolete, noble mushroom, penny bun, ceps, borovik, or Karl 
Johan svamp. Boletus are some of the most popular and widely 
collected mushrooms having excellent taste, rich in valuable 
nutrients and biologically active substances which determine their 
high economic value (Arora 2008, Feng et al. 2012, Sitta & Davoli 
2012, Cui et al. 2016b, Gelardi 2020).

The name Boletus has a long and complicated nomenclature 
history. Originally it was given by Carl Linnaeus in 1753 for all 
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fungi having a tubular hymenophore. Later, starting from 1821 
(Fries 1821, Gray 1821) to date, the genus has been repeatedly 
split with the separation of many genera. According to Kirk et al. 
(2008), Boletus comprises about 300 species. One of the first 
general research on the molecular phylogeny of Boletales (Binder 
& Hibbett 2006) presented data showing that relationships among 
genera are poorly resolved and most of the larger genera (e.g., 
Boletus, Tylopilus, Xerocomus) are not monophyletic. Global multi-
locus molecular phylogenetic work showed that Boletus should be 
reduced to Boletus s. str. (Nuhn et al. 2013). This was followed 
by many works confirming the segregation of several genera (Li 
et al. 2011e, Halling et al. 2012, Zeng et al. 2012a, Hosen et al. 
2013, Arora & Frank 2014, Gelardi et al. 2014, Wu et al. 2014b, 
2015d, 2016a, Zhao et al. 2014b, Gelardi et al. 2015). However, 
He et al. (2019b) accepted 350 species, while over 2 530 epithets 
are listed in Index Fungorum (2022). Gelardi (2020) provided 
a detailed and comprehensive list of 60 species of porcini fungi 
occurring in the world (including undescribed phylogenetic 
species). Each species listed by Gelardi (2020) was accompanied 
by a list of synonyms, pertinent geographic range, data on ecology 
and symbiotic partnerships, and relevant bibliography. Data of 
molecular phylogenies indicate that Boletus s. str. can be divided 
into five distinct lineages currently defined with provisional names: 
“porcini s. str.,” “Obtextiporus,” “Inferiboletus,” “Alloboletus,” and 
“Orientiboletus” (Dentinger et al. 2010, Feng et al. 2012, Cui et al. 
2016b). The taxonomic rank of these informal groups is unclear 
and further analysis on a more inclusive number of taxa is required 
(Gelardi 2020).

Boletus s. str. species form characteristic fleshy medium-large 
sporocarps having a pileus, a stipe and pored hymenophore, also 
there are a few sequestrate species (He et al. 2019b, Gelardi 
2020, Mao et al. 2023). The group can be characterised and 
separated from other boletes by the combination of some specific 
morphological features: white, mild-tasting flesh that does not 
change colour when exposed to air; stipe usually enlarged toward 
the base and more or less distinctly reticulate; a layer of tangled 
white hyphae that covers the pores of hymenophore similar to a 

partial veil (co-called “stuffed pores”) in the first developmental 
stages; hymenophoral trama bilateral divergent of the “Boletus 
type” (Beugelsdijk et al. 2008, Dentinger et al. 2010, Halling et al. 
2014, Cui et al. 2016b, Gelardi 2020). Most of these traits are not 
unique to porcini and can vary among individuals, however their 
combination usually quite surely leads to Boletus s. str. The feature 
“stuffed pores” is often considered a key character in the diagnosis 
of porcini (Dentinger et al. 2010, Cui et al. 2016b), however, 
sometimes it also has been reported from distantly related taxa 
including, for example, Phlebopus beniensis (Miller et al. 2000).

Species of Boletus are distributed mainly in the Northern 
Hemisphere but the genus is also reported from Australia, Malaysia, 
New Zealand, New Guinea, and South America (Muñoz 2005, 
Dentinger et al. 2010, Feng et al. 2012, Halling et al. 2014, Bessette 
et al. 2016, Noordeloos et al. 2018, Gelardi 2020). According to the 
current state of knowledge about 30 species are known only from 
eastern and southeastern Asia, 24 from North America, four from 
Europe and Western Asia, and only a few from Australasia; there are 
no endemic species described from South America (Gelardi 2020).

Ecological and economic significance

Boletus species form ectomycorrhiza with trees and shrubs of 
Fagaceae, Betulaceae, Pinaceae, Dipterocarpaceae, Salicaceae, 
Tiliaceae, Cistaceae, Cupressaceae, Ericaceae, Myrtaceae, and 
Sapindaceae (Dentinger et al. 2010, Gelardi 2020) inhabiting 
various types of forest communities from the tundra and taiga 
zone to the tropics. The significant diversity of this group, a wide 
circle of symbionts and high abundance throughout the world is 
evidence of their great ecological role in natural forest communities. 
Ectomycorrhizal species contribute to the successful development 
and sustainable existence of certain types of communities in which 
their symbiont tree dominates (Pérez-Moreno et al. 2021).

Porcini mushrooms are among the most highly-priced and widely 
appreciated forest-occurring fungi in the world. They are commonly 
used as an exquisite ingredient in a large variety of processed foods 
and their trade plays an important economic role as a source of income 

Fig. 94. Trends in research of Boletus in the period 2011–2021.
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for local communities (Arora 2008, Mello 2012, Mortimer et al. 2012, 
Feng et al. 2012, Cui et al. 2016b, Gelardi 2020). The culture of use 
and trade of porcini dates back to the ancient Greeks and Romans 
(Buller 1914), and nowadays it has achieved a global scale (Sitta 
& Davoli 2012). Traditionally porcini mushrooms were harvested 
and consumed mainly by people in “mycophilic” Slavic or Romanic 
countries in Europe (Peintner et al. 2013) as well as some countries 
in eastern and southeastern Asia, especially China (Gelardi 2020). 
In North America as well as some northern European countries the 
collecting of porcini for food started at the beginning of the twentieth 
century (Arora 2008) and now is becoming a substantial economic 
resource. The total annual worldwide consumption of Boletus edulis 
and closely related species (Bo. aereus, Bo. pinophilus, and Bo. 
reticulatus) is estimated to be between 20 000 and 100 000 tons 
(Hall et al. 1998).

Primary and secondary metabolites of Boletus species 
have been reported to have many biological functions such as 
anticancer, antioxidant, anti-inflammatory, antimicrobial, antiviral 
and immunomodulatory effects which indicates the prospects for 
their use in medicine (see above).

Research interests

There are 638 publications and 9 078 citations from 2011–2021 in 
the Web of Science (Fig. 94), with the top 10 most cited articles listed 
in Table 71. Most publications focused on food science technology 
and biochemistry, also on environmental research, taxonomy, 
phylogeny, and ecological aspects. The publications are devoted to 
representatives of the genus Boletus both in the narrow and broad 
sense. A significant part of the highly cited works includes species 
of the genus as one of the objects of global research on fungi.

Food science technology and biochemistry
Many Boletus species are among the popular edible and 
valuable commercial wild mushrooms; therefore, many highly 
cited publications are devoted to the study of their nutritional 
value, chemical composition, and medicinal properties (Beluhan 

& Ranogajec 2011, Palacios et al. 2011, Falandysz & Borovička 
2013, Kalač 2013, Heleno et al. 2015). Several publications were 
devoted to the different aspects of the chemical composition of 
Boletus species, especially, Boletus edulis (Falandysz et al. 2011, 
Zhang et al. 2018a). The analysis of primary metabolites revealed 
proteins, carbohydrates, fatty acids, mainly linoleic acid, sugars, 
mainly mannitol and trehalose, and vitamins (tocopherols and 
ascorbic acid). Secondary metabolites, such as phenolic acids, 
were also identified and correlated to Boletus antioxidant properties 
(Heleno et al. 2011). Ethanolic and methanolic extracts from 
different Boletus species demonstrate anti-inflammatory (Moro et 
al. 2012, Taofiq et al. 2015), antioxidant, and antimicrobial activities 
(Ozen et al. 2011, Vamanu & Nita 2013). Many studies deal with the 
antioxidant properties of Boletus (Guo et al. 2012, Novakovic et al. 
2017, Sánchez 2017, Zhang et al. 2018a).

An object of special interest is the biological activity and 
medicinal properties of various chemical components of the Boletus 
species. Polysaccharides extracted from Bo. edulis have been 
reported to have many biological functions such as anticancer, 
antioxidant, anti-inflammatory, antiviral and immunomodulatory 
effects (Zhang et al. 2011a, 2014a, 2015a, Chen et al. 2012c, 
Santoyo et al. 2012, Wang et al. 2014b, Chroma et al. 2018). 
Lectins of porcini have also been the subject of study (Bovi et al. 
2011, Singh et al. 2020). Lemieszek et al. (2017) showed that Bo. 
edulis RNA enhances natural killer cell activity and possesses 
immunomodulatory potential which suggests the possibility of 
their use in cancer treatment. Among wild species, Bo. edulis 
was reported with the highest content of ergosterol (Barreira et al. 
2013), and γ-aminobutyric acid (Chen et al. 2012a).

Environmental studies
The ability of macrofungi to accumulate high concentrations of 
toxic metallic elements (Hg, Cd), toxic metalloids (As), essential 
and toxic nonmetal (Se), and other elements (Ag, Au, Cs, Rb, V, 
Zn), especially in contaminated areas, has led to many studies 
(Falandysz et al. 2011, 2014, Falandysz & Borovička 2013, 
Mleczek et al. 2013a, b, Wang et al. 2015f, Širić et al. 2016, Kavčič 

Table 71. Top 10 cited articles related to Boletus published in the period 2011–2021.
Rank Article title No. of citations References
1 A review of chemical composition and nutritional value of wild-growing 

and cultivated mushrooms
322 Kalač (2013)

2 Antioxidant properties of phenolic compounds occurring in edible 
mushrooms

250 Palacios et al. (2011)

3 Macro and trace mineral constituents and radionuclides in mushrooms: 
health benefits and risks

238 Falandysz & Borovička (2013)

4 Molecular phylogenetic analyses redefine seven major clades and reveal 
22 new generic clades in the fungal family Boletaceae

160 Wu et al. (2014b)

5 Chemical composition and non-volatile components of Croatian wild 
edible mushrooms

136 Beluhan & Ranogajec (2011)

6 Optimization of ultrasonic-assisted extraction of water-soluble 
polysaccharides from Boletus edulis mycelia using response surface 
methodology

128 Chen et al. (2012c)

7 Phylogenetic overview of the Boletineae 125 Nuhn et al. (2013)
8 Contents of lovastatin, γ-aminobutyric acid and ergothioneine in 

mushroom fruiting bodies and mycelia
120 Chen et al. (2012a)

9 Reactive oxygen species and antioxidant properties from mushrooms 119 Sánchez (2017)
10 Anti-inflammatory activity of methanolic extracts from edible mushrooms 

in LPS activated RAW 264.7 macrophages
113 Moro et al. (2012)
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et al. 2019). In unpolluted areas species of Boletus are reported 
to accumulate manganese (Mn), mercury (Hg), rubidium (Rb) and 
selenium (Se) (Kalač 2013), with the content of elements differing 
in various parts of the sporocarp (Wang et al. 2015g).

Wild-grown mushrooms, including Boletus spp., are described 
as efficient accumulators of radionuclides and bioindicators of their 
environmental diffusion (Falandysz & Borovička 2013, Falandysz 
et al. 2015, Saniewski et al. 2016, Tucaković et al. 2018).

Taxonomy and phylogeny
Phylogenetic studies on Boletus were devoted to determining 
the number of species and position in Boletaceae. The global 
multi-locus molecular phylogenetic works specified a hierarchy 
of phylogenetic relationships between taxa within the Boletaceae 
and revealed that Boletus in the broad sense is polyphyletic, with 
species found throughout the phylogeny, and with most not closely 
related to the type species, Boletus edulis (Binder & Hibbett 2006, 
Nuhn et al. 2013, Wu et al. 2014b, 2016a). These studies were 
followed by the separation from Boletus s. lat. of several new 
genera (Li et al. 2011e, Halling et al. 2012, Zeng et al. 2012a, 
Hosen et al. 2013, Arora & Frank 2014a, Zhao et al. 2014b, Gelardi 
et al. 2015, Wu et al. 2015d, 2023, etc.). Several publications deal 
with Boletus s. str. (Beugelsdijk et al. 2008, Dentinger et al. 2010, 
Feng et al. 2012, Cui et al. 2016b), and Boletus species new to 
science were described within these frames (Arora & Frank 2014b, 
Halling et al. 2014, Zeng et al. 2014, Crous et al. 2019a), or with 
unresolved taxonomic position (Crous et al. 2019c).

Phylogenetic analyses support Eastern Asia as the centre 
of diversity for Boletus. Within this clade, most species are 
geographically restricted in distribution, and Bo. edulis is the 
only known holarctic species. Furthermore, molecular dating and 
geological evidence suggest that this group originated in Eastern 
Asia during the Eocene, and they then spread to other parts of 
Asia, Europe, and the Americas from the middle Miocene through 
the early Pliocene (Feng et al. 2012).

Ecology and conservation
Boletus edulis and related species are often found in works 
on ecology, productivity and conservation of the main edible 
mushrooms in different regions (Martínez-Peña et al. 2011, 
2012, Mortimer et al. 2012, Tomao et al. 2017). Boletus spp. form 
ectomycorrhizal symbiotic relationships with both coniferous and 
deciduous trees and play an important role in the health of the 
trees and forest ecosystems. Thus, there are studies on different 
aspects of ectomycorrhiza, including the methods and the effect 
of inoculation of seedlings with EM fungi, especially with Bo. 
edulis and Bo. reticulatus (Endo et al. 2014, Mediavilla et al. 2016, 
Kayama, 2020, Chartier-Fitz Gerald et al. 2020).

Authors: O.V. Morozova and T.Y. Svetasheva

66. Botryosphaeria Ces. & De Not., Comment Soc. Crittog. 
Ital. 1(fasc. 4): 211. 1863.

Type species: Botryosphaeria dothidea (Moug.) Ces. & De Not.

Classification: Ascomycota, Pezizomycotina, Dothideomycetes, 
Botryosphaeriales, Botryosphaeriaceae.

Background

Cesati & De Notaris (1863) introduced Botryosphaeria with nine species 
and another six species which were not recombined. However, they did 
not introduce the type species for this genus. Since then, Botryosphaeria 
has undergone several revisions. Hypocreaceous species were 
removed from the genus by Saccardo (1877). Von Höhnel (1909) 
suggested Bot. berengeriana as the type species of Botryosphaeria, 
while Theissen & Sydow (1915) introduced Bot. quercuum as the type 
species. Neither of these species was in the original description of the 
genus. Barr (1972) suggested Bot. dothidea as a lectotype because 
it represents the original description of Botryosphaeria and this was 
accepted later. Slippers et al. (2004a) examined the type specimens 
and fresh specimens and provided a revised description. They also 
designed a neotype and epitype for Bot. dothidea.

Fig. 95. Trends in research of Botryosphaeria in the period 2011–2021.
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Most species of Botryosphaeria were described based on 
morphological characters. Von Arx and Müller (1954) studied 183 taxa 
and reduced them to 11 species and nine combinations. Most species 
were synonymised under Bot. dothidea and Bot. quercuum based 
on sexual morphological characters. However, these synonymies 
were not always accepted, as they did not consider the asexual 
morphological characters (Shoemaker 1964, Slippers et al. 2004a). 
Botryosphaeria is heterogeneous and currently over 250 epithets 
are included (Slippers et al. 2004a, Crous et al. 2006b, Phillips et al. 
2008, 2013). According to a revision by Zhang et al. (2021d), eight 
species are accepted i.e., Bot. agaves, Bot. corticis, Bot. dothidea, 
Bot. fabicerciana, Bot. kuwatsukai, Bot. qingyuanensis, Bot. ramosa, 
and Bot. scharifii. Botryosphaeria species have hyaline and aseptate 
ascospores that can become pale brown and septate with age 
(Phillips et al. 2013). Asexual morphs are characterised by hyaline, 
aseptate conidia and sometimes they also become pigmented with 
age (Phillips et al. 2013).

Ecological and economic significance

Botryosphaeria species are the most widespread and important 
canker and dieback pathogens worldwide.

Botryosphaeria species are common and widely distributed 
and have been reported as endophytes, pathogens and saprobes 
in the bark and leaves of trees (Pavlic et al. 2007, Jayawardena et 
al. 2018a, Hyde et al. 2020a, Hattori et al. 2021, Chethana et al. 
2023). Botryosphaeria dothidea is one of the most important plant 
pathogenic species, occurring on a large number of hosts with a 
broad global distribution (Garcia et al. 2021a).

Botryosphaeria species use different mechanisms to enter 
their host. They use appressoria, enzymes and toxins for active 
mechanical penetration and natural openings, like stomata or 
lenticels for direct entry to the host. Botryosphaeria species then 
colonise host tissues and cause several diseases (Mancero-
Castillo et al. 2018). Botryosphaeria species act as opportunistic 
pathogens and cause symptoms such as canker and die-back 
diseases on branches, twigs and trunks of trees, leaf diseases, 
seedling diseases and root cankers, shoot blights and even plant 
death (Pillay et al. 2013, Jayawardena et al. 2019)

Research interests

There are 810 publications and 9 058 citations from 2011–2021 
in the Web of Science (Fig. 95), with the top 10 most cited articles 
listed in Table 72. Most studies focus on the pathogenicity of 
Botryosphaeria species, as well as its taxonomy. Although most 
studies focus on the pathogenicity of Botryosphaeria species there 
is also a need to focus on saprobic and endophytic taxa, as well as 
more taxonomic studies. This framework is essential to improve our 
understanding of how Botryosphaeria taxa switch their nutritional 
modes and how environmental changes affect these switches.

Pathogenicity of Botryosphaeria
Pathogenicity of Botryosphaeria species is often associated with 
environmental stress, such as drought, physical damage and frost 
(Marsberg et al. 2017, Bhunjun et al. 2021a).

Botryosphaeria species can severely affect Eucalyptus 
plantations, causing cankers and dieback diseases. Production 
of kino, dark red tree sap and even mortality of trees can occur in 
Eucalyptus due to this fungal infection (Darge & Woldemariam 2021). 
Botryosphaeria species also exist in healthy Eucalyptus leaves, 
twigs and stems as endophytes, without causing any disease. With 
environmental stress, these fungi become pathogens (Gezahgne et 
al. 2004, Pérez et al. 2008, 2010). Botryosphaeria dothidea is the 
main causal agent of band canker diseases of almonds (Holland et 
al. 2021). Ring rot disease is a serious disease of apples worldwide, 
and is caused by Bot. dothidea and Bot. kuwatsukai (Wang et al. 
2018a). Botryosphaeria dothidea is pathogenic on grapevines 
causing bleaching of the outer bark, cracking of canes, dieback of 
shoots and bud mortality (Savocchia et al. 2007). Also, Bot. stevensii 
and Bot. obtusa act as wound pathogens, causing small lesions on 
grapevines (Savocchia et al. 2007).

Disease management
Apple ring rot disease, caused by Bot. dothidea has led to severe 
economic losses of Fuji apple cultivation in China. The disease 
can affect both before harvest and postharvest (Kexiang et al. 
2002). The use of fungicides can cause serious environmental 
problems and, therefore, biological control using microorganisms 
has increased as an environmentally friendly and efficient method 
for the control of plant diseases (Fan et al. 2017). Fengycin is an 

Table 72. Top 10 cited articles related to Botryosphaeria published in the period 2011–2021.
Rank Article title No. of citations References
1 The Botryosphaeriaceae: genera and species known from culture 515 Phillips et al. (2013)
2 The status of Botryosphaeriaceae species infecting grapevines 238 Urbez-Torres (2011)
3 One stop shop: backbones trees for important phytopathogenic genera: 

I (2014)
235 Hyde et al. (2014)

4 Towards a natural classification of Botryosphaeriales 215 Liu et al. (2012b)
5 Phytotoxins produced by fungi associated with grapevine trunk diseases 125 Andolfi et al. (2011)
6 The endophytic mycota associated with Vitis vinifera in central Spain 123 González & Tello (2011)
7 Secondary metabolites from the endophytic Botryosphaeria dothidea 

of Melia azedarach and their antifungal, antibacterial, antioxidant, and 
cytotoxic activities

118 Xiao et al. (2014a)

8 Botryosphaeria dothidea: a latent pathogen of global importance to 
woody plant health

110 Marsberg et al. (2017)

9 Botryosphaeriaceae: Current status of genera and species 102 Dissanayake et al. (2016)
10 Species of Botryosphaeriaceae involved in grapevine dieback in China 75 Yan et al. (2013)
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antifungal lipopeptide complex produced by Bacillus subtilis, and 
fengycin plays an important role in biocontrol against apple ring rot 
disease (Fan et al. 2017). Therefore, Bot. subtilis is used to control 
apple ring rot disease (Fan et al. 2017). Streptomyces rochei, 
Trichoderma harzianum and T. atroviride also have antifungal 
activities against Bot. dothidea (Kexiang et al. 2002, Zhang et al. 
2016d).

Taxonomy and phylogeny
DNA-based molecular techniques have been used to characterise 
and identify Botryosphaeria species (Slippers & Wingfield 2007, 
Phillips et al. 2013). Such techniques are applied to recent taxonomic 
studies of Botryosphaeria and have revealed phylogenetic 
relationships among Botryosphaeria species (Jayawardena et 
al. 2019, Hyde et al. 2020a, Chethana et al. 2023). The ITS and 
tef1 genes are recommended molecular markers for species level 
identification (Jayawardena et al. 2019).

Author: A.R. Rathnayaka

67. Cunninghamella Matr., Ann. Mycol. 1(1): 46. 1903.

Type species: Cunninghamella echinulata (Thaxt.) Thaxt. ex 
Blakeslee

Classification: Mucoromycota, Mucoromycotina, Mucoromycetes, 
Mucorales, Cunninghamellaceae.

Background

The genus Cunninghamella proposed by Matruchot (1903) 
belongs to the phylum Mucoromycota, family Mucoraceae, order 
Mucorales (Wijayawardene et al. 2022). Species of this genus are 
morphologically characterised by producing erect sporophores, with 
a varied branching pattern, which can be monopodial, sympodial, 
verticillate, pseudoverticillate or with branches of different sizes 
appearing on the same sporophore. Sporophores end in a globose, 
subglobose, clavate or irregular vesicle with pedicellate unispored 
sporangiola. The reddish brown zygosporangia are formed between 
opposed suspensors that are more or less equal in size (Benny et 
al. 2005).

Traditionally, species of Cunninghamella have been delimited 
according to the maximum growth temperature, colour and texture 
of the colonies, sporophore branching pattern, shape and size of 
the vesicles, sporangiola, absence and/or presence of spines in 
the sporangiola, in addition to homothallic/heterothallic zygospore 
formation (Zycha 1935, Alcorn & Yeanger 1938, Naumov 1939, Cutter 
1946, Mil’ko & Beljakova 1967, Samson 1969, Baijal & Mehrotra 
1980). Zheng & Chen (2001) monographed this genus based 
on morphological characteristics, maximum growth temperature, 
mating experiments, as well as the length of the ITS region, 
delimiting 14 species and four varieties as follows: Cu. bertholletiae, 
Cu. blakesleeana, Cu. binariae, Cu. clavata, Cu. echinulata var. 
antarctica, Cu. echinulata var. echinulata, Cu. echinulata var. nodosa, 
Cu. echinulata var. verticillata, Cu. elegans, Cu. homothallica, Cu. 
intermedia, Cu. multiverticillata, Cu. phaeospora and Cu. septata. 
Molecular studies by Liu et al. (2001; ITS rDNA), Yu et al. (2014; 
ITS rDNA and tef1), Guo et al. (2015b; ITS, 28S rDNA and tef1), 
Hyde et al. (2016; ITS rDNA), Zhang et al. (2020j; ITS, 28S rDNA 
and tef1), Hallur et al. (2021; ITS, 28S rDNA and tef1), and Zhao 
et al. (2023; ITS rDNA), confirmed the species boundaries delimited 
by Zheng & Chen (2001) for the genus, except for Cu. septata that 

shared the clade with Cu. echinulata in the majority of these studies. 
As a result of some of these works, Cu. bigelovii (Guo et al. 2015b), 
Cu. gigacellularis (Hyde et al. 2016), Cu. guizhouensis (Zhang et al. 
2020j), Cu. arunalokei (Hallur et al. 2021), Cu. arrhiza, Cu. guttata, 
Cu. irregularis, Cu. nodosa, Cu. regularis, Cu. subclavata, and Cu. 
varians (Zhao et al. 2023), were proposed.

Species of Cunninghamella are saprobes in soils, fruits, animal 
excrement and stored grains (Zheng & Chen 2001). However, 
Cu. bigelovii and Cu. elegans have been reported as endophytes 
(Guo et al. 2015b, Sagar et al. 2017). Even though it is rare, 
Cunninghamella species may cause mucormycosis in humans 
with impaired immunity, mostly patients with uncontrolled diabetes, 
haematological malignancy with neutropenia, immunosuppressive 
therapy for solid organ or stem cell transplantation (Yu et al. 2014, 
Bellanger et al. 2018, Cinteza et al. 2022), and mucormycosis 
reports in immunocompetent patients are even rarer than in 
immunocompromised ones (Zeilender et al. 1990, Jayasuriya et al. 
2006, Hallur 2021, Portillo et al. 2021).

Ecological and economic significance

Species of Cunninghamella are of economic significance based 
on their ability to produce secondary metabolites with biological 
importance. Their mycelium can adsorb dyes and heavy metals 
mediated by chitin and chitosan, and both carbohydrates show 
antimicrobial activity against fungal phytopathogens. Because of 
the cytochrome P450 monooxygenase systems, many enzymes 
useful in the biotransformation of drugs and xenobiotic compounds 
are produced by Cunninghamella species.

Bioremediation processes

Fungi play a major role in bioremediation owing to their robust 
morphology and diverse metabolic capacity, being a cost-effective 
and environment-friendly method to degrade or remove toxic 
pollutants (Adenipekun & Lawal 2012, Hussain et al. 2017). 
According to Ambrósio et al. (2012), the inactive mycelium of 
Cu. elegans can efficiently adsorb reactive orange II, reactive 
black, reactive red (dyes commonly used in textile industries), 
and a mixture of them. The adsorption is mediated by the chitin 
and chitosan (polysaccharides of cellular fungal wall) binding to 
dyes. Hussain et al. (2017) reported that Cu. elegans biofilm was 
able to adsorb reactive black-5, acid orange 7, direct red 81 and 
brilliant blue G dyes concomitantly with Cr(VI). In this work, Cu. 
elegans could degrade triphenylmethane dye malachite green 
(MG) into leucomalachite green. Extracted chitin and chitosan 
from the mycelial biomass of Cu. elegans were able to adsorb Fe2, 
Pb2+ and Cu2+ in an aqueous solution (Franco et al. 2004), and 
Cu. bertholletiae also showed good potential for Cu2+ adsorption 
(Ren et al. 2018b). Both chitosan and chitosan nanoparticles had 
high adsorption capacity to Pb2+ and Cu2+ in aqueous solution and 
soil contaminated with both ions (Alsharari et al. 2018). In addition, 
Cunninghamella species are able to metabolise a wide variety of 
xenobiotics using both phase I (oxidative) and phase II (conjugative) 
biotransformation mechanisms. By having cytochrome P450 
monooxygenase systems analogous to those in mammals, species 
of Cunninghamella are models of mammalian drugs and xenobiotic 
metabolism, including biotransformation of fluorinated biphenyls 
(Amadio & Murphy 2010), polycyclic aromatic hydrocarbon (PAH) 
pollutants (Tortella et al. 2005), pesticides (Palmer-Brown 2019, 
Zhao et al. 2020), and anilinopyrimidine fungicide mepaniprim (Zhu 
et al. 2010).
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Antimicrobial activities

Many studies have reported the antimicrobial activities of 
Cunninghamella (mostly Cu. blaskesleeana). Cunninghamella 
blakesleeana alcohol extract of 10 fatty acids contents showed 
in vitro antimicrobial activities against Staphylococcus aureus 
and Streptococcus pyogenes, with the lowest activity for Candida 
albicans and Pseudomonas aeruginosa (Alasmary et al. 2020). 
According to another study, Cu. elegans total extract, ethyl acetate 
and ether successive extracts showed high activity against S. 
aureus. Ten compounds were formed by Cu. elegans from which 
adenosine was the most active against S. aureus (Awaad et al. 
2014). Chegaing et al. (2020) reported the transformation of 
norandrostenedione, an anabolic-androgenic steroids related to 

testosterone with Cu. blakesleeana. Four compounds were formed 
with varied anti-bacterial activity against Pseudomonas aeruginosa, 
Escherichia coli, Salmonella typhi, Klebsiella pneumoniae, S. 
aureus, and S. faecalis. Additionally, Cu. blakesleeana is able 
to biotransform a contraceptive drug, desogestrel, yielding four 
compounds, of which two show potent activity against S. aureus, 
and one shows significant activity against vancomycin-resistant S. 
aureus (Wahab et al. 2018).

Biological control

Chitosan obtained from Cu. elegans has the potential to control 
post-harvest pathogenic Botrytis cinerea and Penicillium expansum 
when applied as a coating in grapes (Vitis labrusca), by inhibiting 

Fig. 96. Trends in research of Cunninghamella in the period 2011–2021.

Table 73. Top 10 cited articles related to Cunninghamella published in the period 2011–2021.
Rank Article title No. of citations References
1 Epidemiology and clinical manifestations of mucormycosis 604 Petrikkos et al. (2012)
2 A global analysis of mucormycosis in France: The RetroZygo study (2005–2007) 271 Lanternier et al. (2012)
3 Mucormycosis caused by unusual mucormycetes, non-Rhizopus, -Mucor, and 

-Lichtheimia species
224 Gomes et al. (2011)

4 The epidemiology and clinical manifestations of mucormycosis: a systematic 
review and meta-analysis of case reports

213 Jeong et al. (2019)

5 Biotechnological conversions of biodiesel derived waste glycerol by yeast and 
fungal species

203 Chatzifragkou et al. (2011)

6 Invasive non-Aspergillus mold infections in transplant recipients, United States, 
2001-2006

188 Park et al. (2011)

7 DNA barcoding in Mucorales: an inventory of biodiversity 176 Walther et al. (2013)
8 Early clinical and laboratory diagnosis of invasive pulmonary, extrapulmonary, and 

disseminated mucormycosis (Zygomycosis)
162 Walsh et al. (2012)

9 Healthcare-associated mucormycosis 153 Rammaert et al. (2012)
10 Antifungal susceptibility and phylogeny of opportunistic members of the order 

Mucorales
93 Vitale et al. (2012)
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mycelial growth, spore germination and causing morphological 
changes in the spores of fungal strains (Oliveira et al. 2014). 
Chitosan from Cu. elegans shows antimicrobial activity against 
Fusarium oxysporum f. sp. tracheiphilum and induces defense 
mechanisms in cowpea plants by activation of the antioxidant 
enzymes catalase and peroxidase (Berger et al. 2016). Berger et 
al. (2018) reported that chitosan from Cu. elegans, growing in a 
mixture of corn steep liquor and papaya juice, inhibits the growth 
of Colletotrichum asianum, Col. fructicola, Col. tropicale and Col. 
siamense strains characterised as anthracnose-causing agents in 
fruit.

Research interests

There are 569 publications and 8 997 citations from 2011–2021 
in the Web of Science (Fig. 96), with the top 10 most cited articles 
listed in Table 73. Most of the publications focused on biotechnology 
applied microbiology, biochemistry, molecular biology, microbiology 
and pharmacology.

Biotransformation of drugs and xenobiotic compounds
The biocide tributyltin can be degraded by Cu. echinulata, forming 
less hazardous compounds dibutyltin and monobutyltin (Soboń 
et al. 2016). Cunninghamella elegans and Cu. blakesleeana are 
capable of biotransforming the anti-inflammatory flurbiprofen 
(Amadio et al. 2010) into four metabolites, whereas Cu. 
blakesleeana can transform the proton-pump inhibitor pantoprazole 
into six metabolites (Xie et al. 2005). Naproxen, a potent inhibitor 
of prostaglandin synthesis and prescribed for the treatment of 
rheumatoid arthritis, can be transformed into two metabolites, 
desmethylnaproxen and desmethylnaproxen-6-O-sulfate by Cu. 
elegans, Cu. echinulata and Cu. blakesleeana, but the capability 
of Cu. echinulata to transform naproxen is weaker than that of 
the other two strains (Da-Fang et al. 2003). An extensive list with 
examples of mammalian vs Cunninghamella species metabolism 
of drugs was provided by Asha & Vidyavathi (2009).

Production of biosurfactants
Surfactants are amphipathic molecules composed of a polar 
hydrophilic and non-polar hydrophobic moiety, exhibiting high 
surface and emulsifying activities (Lins et al. 2017, Da Silva et al. 
2021). These molecules are applied in the environmental, food, 
cosmetic and pharmaceutical industries (De Souza et al. 2018, 
Singh et al. 2018). Biosurfactants from microbes have received 
great attention for being environmentally friendly with low toxicity 
and high biodegradability (Montero-Rodrigues et al. 2015). 
Cunninghamella echinulata has the potential of producing a low 
surface tension biosurfactant using corn-steep liquor and soybean 
oil after frying with the ability to remove diesel and kerosene from 
marine sand (De Souza et al. 2018). Lins et al. (2017) reported the 
production of biosurfactants by Cu phaeospora converting soybean 
oil and corn liqueur with potential application in the bioremediation 
of sites polluted by hydrophobic compounds. According to De 
Medeiros et al. (2022), Cu. elegans produces biosurfactant growing 
on media composed of 2 % instant noodle waste, 2 % corn steep 
liquor and 0.5 % post-frying soybean oil, with a carbon/nitrogen 
ratio of 30:1.

Production of chitin and chitosan
Chitosan is a cationic biopolymer formed by the deacetylation 
of chitin, a polysaccharide found in the exoskeleton of shellfish, 
shrimps, crabs and lobster (Ghormade et al. 2017). Both 

chitosan and chitin occur in Cunninghamella cell walls (Amorim 
et al. 2006) and can be applied in agriculture (De Oliveira et al. 
2014, Berger et al. 2016), food (Manigandaman et al. 2018) and 
pharmaceutical (Cheung et al. 2015) industries. Results based on 
fermentation strategies suggest that mucoralean fungi can provide 
an alternative source of chitin and chitosan (Stamford et al. 2007), 
and researchers have been studying eco-friendly and low-cost 
alternatives for the production of this polymer by Cunninghamella 
and other mucoralean fungi. Of note is the high potential for the 
application of chitosan from Cu. elegans in biological control 
strategies (De Oliveira et al. 2014).

Oleaginous Cunninghamella species
Microorganisms called “oleaginous species”, which can accumulate 
more than 20 % of their dry biomass as oil (Fakas et al. 2009), offer 
excellent alternatives for the production of nutritionally important 
fatty acids (Laoteng et al. 2011). However, oil extraction from 
the microbial mass is still an expensive process, which has led 
researchers to consider low-cost substrates for the production 
of lipids by fungi (Gema et al. 2020). Cunninghamella echinulata 
growing on nitrogen-limited media having xylose as carbon and 
energy source can accumulate γ-linolenic acid (GLA), indicating 
that xylose is an efficient substrate for lipid accumulation by 
this species (Fakas et al. 2009). GLA can also be produced by 
Cu. echinulata growing on various nitrogen media containing 
corn steep, whey concentrate, yeast extract, and tomato waste 
hydrolysate (Fakas et al. 2008). Good production of this acid can 
also be observed from Cu. echinulata in culture media with soluble 
starch and lactose as carbon sources, and with urea as a nitrogen 
source (Chen & Chang 1996).

Mucormycosis
Among documented cases of mucormycosis caused by 
Cunninghamella, Cu. bertholletiae is the species mostly reported 
(Jeong et al. 2019), with unusual reports of infections caused by 
Cu. echinulata (LeBlanc et al. 2013), Cu. elegans (Shirane et 
al. 2021) and Cu. blakesleeana (García-Rodríguez et al. 2012). 
Unfortunately, mortality associated with Cunninghamella infections 
is significantly higher than those caused by other species of 
Mucorales (Hiramoto et al. 2020, Jeong et al. 2021). According to 
Yamamoto et al. (2021), this high mortality is due to the minimum 
inhibitory concentration of amphotericin B, which is relatively higher 
than those for other pathogens. Cunninghamella infection is most 
common after inhalation of airborne spores, especially in pulmonary 
and rhinocerebral infections, but a few cutaneous (Quinino et al. 
2004, Belliere et al. 2019, Portillo et al. 2021) and endocarditis 
(Zhang et al. 2022) cases have been reported.

Author: A.L.C.M.A. Santiago

68. Diaporthe Nitschke, Pyrenomyc. Germ. 2: 240. 1870.

Type species: Diaporthe alnea Fuckel

Classification: Ascomycota, Pezizomycotina, Sordariomycetes, 
Diaporthales, Diaporthaceae.

Background

Diaporthe species are plant pathogens and endophytes in healthy 
plants, or saprobes on decaying tissues of a wide range of hosts 
worldwide (Udayanga et al. 2011). Species of Diaporthe are well-
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known as causal agents of major plant diseases, including root and 
fruit rots, dieback, stem cankers, leaf spots, leaf and pod blights, and 
seed decay (Santos et al. 2011, Udayanga et al. 2011). A list of hosts 
and Diaporthe species was provided by Hongsanan et al. (2023). 
The paraphyletic nature of Diaporthe was demonstrated (Gao et 
al. 2017) with Ophiodiaporthe (Fu et al. 2013), Pustulomyces (Dai 
et al. 2014), Phaeocytostroma, and Stenocarpella (Lamprecht et 
al. 2011) recognised within Diaporthe s. lat. To address this issue, 
Senanayake et al. (2017) subsequently named several additional 
diaporthe-like clades within Diaporthales. Morphological characters 
such as immersed ascomata and erumpent pseudostroma with 
elongated perithecial necks in the sexual morph (Udayanga et al. 
2011), and black conidiomata with dimorphic conidia in the asexual 
morph (Rehner & Uecker 1994), were the basis for identification 
of Diaporthe species before the molecular era (Van der Aa et al. 
1990). Recent studies demonstrated that morphology is not always 
reliable for species level identification due to variability under 
changing environmental conditions (Gomes et al. 2013). The 
current trend in Diaporthe taxonomy is directed toward the use of a 
large number of strains from different locations to better understand 
species delimitation (Gao et al. 2016b). Intraspecific variability 
within different complexes was demonstrated rather than resolving 
different taxa. For example, Hilário et al. (2021) synonymised eight 
species under the name D. amygdali providing evidence that it is 
a single species. Thus, an overestimated description of species 
within this genus is assumed and should be investigated in future 
studies.

Ecological and economic significance

Diaporthe species are widely distributed, and commonly found 
as saprobes (Marin-Felix et al. 2019b, Hyde et al. 2020a, 
Phukhamsakda et al. 2020, Chethana et al. 2021c, 2023, 
Norphanphoun et al. 2022, Hongsanan et al. 2023). Their role 
as decomposers is important in carbon cycles. Their behaviour 
as endophytes or pathogens gives an opportunity for Diaporthe 
species to become early colonisers of decaying host materials 
(Promputtha et al. 2007, 2010, Hyde et al. 2007, Luo et al. 2022). 
As with many other coelomycetes, Diaporthe species have a 
significant impact on agriculture and biochemistry by causing 
disease on economically important crops or as biocontrol agents 
and production of secondary metabolites (Udayanga et al. 2011).

Studies have revealed the importance of Diaporthe species 
as biocontrol agents (Charudattan 2000, Trujillo 2005). The ability 
of Diaporthe species to become obligate pathogens, to produce 
extensive sporulation and to be highly persistent in the environment 
makes them a good candidate to develop as mycoherbicides on 
weeds (Rosskopf et al. 2000). Diaporthe amaranthophila on 
Amaranthus sp. (Ortiz-Ribbing & Williams 2006), and Diaporthe 
sp. on Carthamus lanatus (Ash et al. 2010) are two examples for 
putative mycoherbicides. From already identified Diaporthe taxa, 
the majority have been reported as plant endophytes. It has been 
proposed that these endophytes can act as a second barrier of 
plants against pathogens. These fungi could also be the key to 
identifying novel antimicrobial compounds and medicines (Dong 
et al. 2021). Diaporthe species cause numerous economically 
important plant diseases and four of them are detailed below.

Citrus melanose

Globally 22 species of Diaporthe were determined to be 
associated with Citrus based on a polyphasic approach. Huang 

et al. (2013b) reported D. citri as the predominant species in 
China and described D. citriasiana and D. citrichinensis as two 
new taxa. Huang et al. (2015a) identified various Diaporthe 
species as Citrus endophytes, such as D. endophytica, D. eres, 
D. hongkongensis, D. sojae, and different taxa clustering in the D. 
arecae species complex. They also described D. biconispora, D. 
biguttulata, D. discoidispora, D. multigutullata, D. ovalispora, D. 
subclavata, and D. unshiuensis as new species associated with 
Citrus. Guarnaccia & Crous (2017) revealed a high diversity of 
Diaporthe species recovered from Citrus in European countries 
such as Greece, Italy, Malta, Portugal and Spain. Two newly 
described species D. limonicola and D. melitensis were associated 
with severe cankers. Diaporthe citri is known as a major pathogen 
of Citrus, causing stem-end rot and melanose of fruits, young leaf 
and shoot gummosis, and blight of perennial branches and trunks 
(Kucharek et al. 1983, Timmer & Kucharek 2001, Udayanga et al. 
2014a). This species occurs in many Citrus growing regions of 
the world (Timmer et al. 2000). Several Diaporthe (or Phomopsis) 
species were previously considered as synonyms of D. citri, 
such as D. citrincola and Pho. californica, Pho. caribaea and 
Pho. cytosporella, described from the Philippines, California, 
Cuba and Italy, respectively (Fawcett 1922). Udayanga et al. 
(2014a) re-assessed strains of D. citri from China, Korea, New 
Zealand, and the USA based on molecular phylogenetic analysis 
of conserved ex-type and additional strains, collected exclusively 
from symptomatic Citrus tissues and demonstrated that D. citri is 
not present in Europe. This was initially confirmed after a broad 
survey conducted by Guarnaccia & Crous (2017). However, 
Guarnaccia & Crous (2018) isolated D. citri associated with 
symptomatic plants of C. reticulata in the Azores Island, Portugal, 
reporting the presence of the pathogen in Europe for the first time.

Diaporthe stem blight of blueberry (Vaccinium 
corymbosum)

Diaporthe includes species affecting blueberry growing areas 
worldwide (Lombard et al. 2014). Sixteen Diaporthe species have 
been reported on blueberry plants: D. ambigua, D. asheicola, D. 
australafricana, D. baccae, D. crousii, D. eres, D. foeniculina, D. 
nobilis, D. rudis, D. passiflorae, D. oxe, D. phillipsii, D. rossmaniae, 
D. sterillis, D. vaccini, and D. vacuae (Gomes et al. 2013, Hilário et 
al. 2020, Lombard et al. 2014, Guarnaccia et al. 2020). Twig blight, 
stem canker, and dieback are the symptoms caused by Diaporthe 
species on blueberries. Apical necrosis of the shoots, brown to red 
necrotic lesions on stems, discoloration of the vascular tissues, 
leaf spots, and fruit rot are occasionally present (Cardinaals et al. 
2018). Although D. vaccinii is a quarantine pathogen in Europe, as 
a causal agent of blueberry diseases, its pathogenicity, virulence 
and host specificity are not clear (Lombard et al. 2014).

Diaporthe stem diseases of soybean (Glycine max)

Several Diaporthe species cause major diseases in soybean and 
affect its production worldwide (Santos et al. 2011). Five Diaporthe-
associated diseases are known: pod and stem blight caused by 
D. sojae and D. longicolla (Mathew et al. 2015, Udayanga et al. 
2015); northern stem canker caused by D. caulivora (Santos et 
al. 2011); southern stem canker caused by D. aspalathi and D. 
phaseolorum (Van Rensburg et al. 2006); stem disease caused by 
D. gulyae (Mathew et al. 2018); Phomopsis seed decay caused by 
D. longicolla (Udayanga et al. 2015). Soybean stem canker is one 
of the most common diseases in the main soybean growing areas. 
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Differences in virulence were observed among all the Diaporthe 
species involved and within populations of one species isolated on 
susceptible soybean plants (Mena et al. 2020).

Phomopsis dieback of grapevine

Phomopsis dieback of grapevine (Vitis vinifera) caused by D. 
ampelina (Phomopsis viticola) triggers serious losses worldwide, 
due to shoots breaking off at the base, stunting, dieback, loss of 
vigour, reduced bunch set and fruit rot (Pearson & Goheen 1994, 
Van Niekerk et al. 2005, Úrbez-Torres et al. 2013a, Lawrence 
et al. 2015, Guarnaccia et al. 2018). In eastern North America, 
Phomopsis cane and leaf spot caused by D. ampelina is a foliar 
disease of grape but, in the Mediterranean climate of western North 
America, D. ampelina is primarily associated with wood cankers 

along with other Diaporthe species (Baumgartner et al. 2013). In 
much drier regions, D. ampelina is better known as a wood-canker 
pathogen (Van Niekerk et al. 2005, Úrbez-Torres et al. 2006). 
Besides Phomopsis cane and leaf spot, Diaporthe species are 
known to cause Phomopsis dieback on grapevines. Thirty species 
of Diaporthe are known to be associated with grapevine Phomopsis 
dieback worldwide. These are D. ambigua, D. ampelina, D. 
amygdali, D. australafricana, D. baccae, D. bohemiae, D. celeris, 
D. chamaeropis, D. cynaroidis, D. cytosporella, D. eres, D. 
foeniculina, D. guangxiensis, D. gulyae, D. helianthi, D. hispaniae, 
D. hongkongensis, D. hubeiensis, D. hungariae, D. kyushuensis, 
D. nebulae, D. novem, D. perjuncta, D. pescicola, D. phaseolorum, 
D. rudis, D. serafiniae, D. sojae, D. unshiuensis and D. viniferae 
(Mostert et al. 2001, Van Niekerk et al. 2005, Baumgartner et 
al. 2013, Úrbez-Torres et al. 2013b, Udayanga et al. 2014a, b, 

Fig. 97. Trends in research of Diaporthe in the period 2011–2021.

Table 74. Top 10 cited articles related to Diaporthe published in the period 2011–2021.
Rank Article title No. of citations References
1 Diaporthe: a genus of endophytic, saprobic and plant pathogenic fungi 352 Gomes et al. (2013)
2 The genus Phomopsis: biology, applications, species concepts and names of 

common phytopathogens
265 Udayanga et al. (2011)

3 One stop shop: backbones trees for important phytopathogenic genera: I (2014) 235 Hyde et al. (2014)

4 Insights into the genus Diaporthe: phylogenetic species delimitation in the D. eres 
species complex

175 Udayanga et al. (2014)

5 A multi-locus phylogenetic evaluation of Diaporthe (Phomopsis) 170 Udayanga et al. (2012)
6 Species limits in Diaporthe: molecular re-assessment of D. citri, D. cytosporella, D. 

foeniculina and D. rudis
135 Udayanga et al. (2014)

7 Identification of diverse mycoviruses through metatranscriptomics characterization 
of the viromes of five major fungal plant pathogens

128 Marzano et al. (2016)

8 Resolving the Diaporthe species occurring on soybean in Croatia 108 Santos et al. (2011)
9 Stem cankers on sunflower (Helianthus annuus) in Australia reveal a complex of 

pathogenic Diaporthe (Phomopsis) species
108 Thompson et al. (2011)

10 The Diaporthe sojae species complex: Phylogenetic re-assessment of pathogens 
associated with soybean, cucurbits and other field crops

106 Udayanga et al. (2015)
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Dissanayake et al. 2015, Guarnaccia et al. 2018, Lesuthu et al. 
2019, Manawasinghe et al. 2019).

Research interests

There are 770 publications and 8 987 citations from 2011–2021 in 
the Web of Science (Fig. 97), with the top 10 most cited articles listed 
in Table 74. Most publications focused on disease management 
(fungicide resistance, disease resistance), and research on 
pathogenic Diaporthe species (opportunistic behaviour, production 
of secondary metabolites, taxonomy and phylogeny).

Opportunistic behaviour
Diaporthe species are ubiquitous (Udayanga et al. 2011, Gomes et 
al. 2013). They vary in nutritional mode as well as ecological niches. 
However, the pathogenic nature of these species is currently a 
hotspot study area. As discussed in the previous sections, species 
of this genus are causal organisms of economically important 
hosts (Udayanga et al. 2011). Some species can infect different 
hosts within the same locality and also more than one species can 
cause disease on a single host (Yang et al. 2018b, Manawasinghe 
et al. 2019, Guarnaccia et al. 2022, Dardani et al. 2023, Martino 
et al. 2023). One of the well-established examples is “Phomopsis 
dieback of grapevine” as discussed above. Twelve Diaporthe 
species are associated with grapevines in China while 30 species 
are associated with grapevines worldwide (Mostert et al. 2001, 
Van Niekerk et al. 2005, Baumgartner et al. 2013, Úrbez-Torres 
et al. 2013c, Udayanga et al. 2014a, b, Dissanayake et al. 2015, 
Guarnaccia et al. 2018, Lesuthu et al. 2019, Manawasinghe et al. 
2019). Within one host, certain Diaporthe species can occur as 
endophytes, pathogens or saprobes (Udayanga et al. 2011, Gomes 
et al. 2013, Huang et al. 2015a). As given in the data analysis, 
one of the most cited publications on this genus addresses these 
life modes (Gomes et al. 2013). However, it is unclear what 
triggers these species to change their life mode from endophytic 
to pathogenic, saprobic to pathogenic, or vice versa. When it 
comes to the disease associated with crops and woody plants, the 
changing environment and human interferences might be creating 
a challenging environment for these opportunistic pathogens 
(Manawasinghe et al. 2019). However, this needs further in-depth 
study.

Introducing new species and records of novel disease 
emergence reflects the high and rapid evolution potential of 
Diaporthe species. This would result in developing into species 
with higher virulence and possible host shifts. With these facts what 
is more challenging is developing control measures on Diaporthe 
species associated with above mentioned as well as other diseases 
not discussed in the present study. The application of fungicides 
on common fungal pathogens may unintentionally trigger the 
pathogenicity of non-target fungal species, especially Diaporthe 
and other opportunistic species (Manawasinghe et al. 2018). 
To overcome this, further studies are necessary to understand 
interactions among host microbiomes with Diaporthe species.

Production of secondary metabolites
Many novel bioactive compounds are produced by species of 
Diaporthe (Chepkirui & Stadler 2017). Promising antibiotics were 
identified in several endophytic fungi which provide a potential source 
of anti-bacterial with the benefits of low toxicity and environmental 
impact (Kalyanasundaram et al. 2015). Many metabolites recently 
reported from Diaporthe were isolated from endophytic strains of 
medicinal plants. Endophytic Diaporthe species produce specific 

enzymes and secondary metabolites (Huang et al. 2011) with 
wide potential applications for pharmaceutical and agronomic 
purposes (Kumaran & Hur 2009). Chepkirui & Stadler (2017) 
concluded that the genus Diaporthe is a good source of bioactive 
substances, and future studies should certainly explore novel 
secondary metabolites. Nonetheless, future research should be 
directed toward the possible role and concrete applications of all 
these metabolites in the ecological relationships of the host plants 
(Tanapichatsakul et al. 2018).

Taxonomy and phylogeny 
Five loci (ITS, tef1, tub, his, and cal) are commonly used in recent 
phylogenetic studies of Diaporthe species (Gomes et al. 2013, 
Udayanga et al. 2014a, b). With a detailed evaluation of multi-locus 
phylogenies for species boundaries determination in the genus, 
Santos et al. (2017) revealed that species delimitation is enhanced 
once five loci (ITS, tef1, tub, his and cal) are simultaneously 
involved to build the phylogenies. Recently, the genus has 
become overwhelming with more than 200 species (Dissanayake 
et al. 2017), due to the introduction of numerous novel species 
based on molecular phylogenetic approaches and morphological 
characterisation. Hence, a modern revision based on analysing all 
available type species is required.

Authors: A.J. Dissanayake, J.K. Liu, Y.Y. Chen, V. Guarnaccia and 
I.S. Manawasinghe

69. Bipolaris Shoemaker, Canad. J. Bot. 37: 882. 1959.

Type species: Bipolaris maydis (Y. Nisik. & C. Miyake) Shoemaker

Classification: Ascomycota, Pezizomycotina, Dothideomycetes, 
Pleosporales, Pleosporaceae.

Background

Bipolaris includes several significant plant pathogens (Manamgoda 
et al. 2014). There are 140 species epithets listed in Index 
Fungorum (2022) under Bipolaris, but several epithets have 
been transferred to Curvularia and only 46 species are accepted 
(Bhunjun et al. 2020, Lane et al. 2020). Species have also been 
recorded as saprobes and endophytes of a wide range of hosts 
(Hyde et al. 2020a). The sexual morph was known as Cochliobolus, 
which is synonymised under Bipolaris (Manamgoda et al. 2012). 
Even though Cochliobolus was the oldest name, the generic name 
of Bipolaris was conserved as it is more commonly used by plant 
pathologists and in taxonomic literature (Rossman et al. 2013).

Bipolaris was introduced by Shoemaker (1959) and it was 
previously classified in Helmisporium, which was later renamed 
Helminthosporium (Persoon 1822). Following several revisions, 
Helminthosporium was separated into Bipolaris, Curvularia, 
Drechslera and Exserohilum (Sivanesan 1987). Drechslera was 
synonymised with its sexual morph Pyrenophora (Marin-Felix et 
al. 2019b). All these genera are characterised by distoseptate 
conidia which can lead to wrong identifications (Manamgoda et 
al. 2012, 2014, Hernández-Restrepo et al. 2018, Marin-Felix et 
al. 2019b, 2020). Bipolaris is distinguished from Curvularia based 
on the curvature of the conidia, being throughout the length in 
Bipolaris, while in Curvularia it is based on its inordinately enlarged 
intermediate cells (Ellis 1971, Sivanesan 1987, Manamgoda et 
al. 2012). The conidia in Bipolaris are usually longer than those 
of Curvularia (Marin-Felix et al. 2017b). Molecular analyses 
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are therefore needed to accurately delineate between these 
morphologically similar genera (Berbee et al. 1999, Manamgoda 
et al. 2012, Marin-Felix et al. 2017a, 2019, Hyde et al. 2020a, 
Jayawardena et al. 2022). The lack of ex-type or authenticated 
sequences is problematic for accurate identification in Bipolaris 
(Cai et al. 2011, Manamgoda et al. 2012) and there are only 28 
species that have an ex-type (Bhunjun et al. 2020, Lane et al. 
2020). The gapdh gene is the best marker to delineate species in 
this genus (Berbee et al. 1999, Manamgoda et al. 2014, Bhunjun 
et al. 2020). It is recommended to apply a polyphasic approach 
when introducing new taxa in Bipolaris based on phylogenetic 
analyses and molecular-based approaches such as Automatic 
Barcode Gap Discovery and Objective Clustering methods 
(Bhunjun et al. 2020).

Bipolaris species have been used in biotechnological 
applications, genetic manipulation and they are also responsible 
for several devastating diseases. Accurate identification and 
an understanding of virulent genes are important to accessing 
accumulated knowledge for disease control (Jayawardena et 
al. 2020). Whole-genome data and genetic manipulation have 
resulted in the development of maize varieties resistant to several 
pathogenic Bipolaris species (Mehta & Angra 2000, Badu-Apraku 
et al. 2009).

Ecological and economic significance

Bipolaris species cause several economically important plant 
diseases, mainly in high value field crops in Poaceae which 
includes rice, maize, wheat and sorghum (Manamgoda et al. 2014). 
These species can also occur on non-grass hosts, but the ecology 
and host association of several species remain poorly understood. 
Bipolaris can be found worldwide in both temperate and tropical 
environments. Several species including B. maydis, B. sacchari, B. 
sorokiniana, B. victoriae and B. zeicola can occur on a wide range 
of hosts while some species including B. clavata, B. gossypina and 
B. heveae have been associated with only one host (Manamgoda 

et al. 2012, 2014). As pathogens and saprobes, Bipolaris species 
can occur on over 60 plant genera in Anacardiaceae, Araceae, 
Euphorbiaceae, Fabaceae, Malvaceae, Poaceae, Rutaceae and 
Zingiberaceae (Sivanesan 1987, Manamgoda et al. 2011). These 
species are linked with several disease symptoms including leaf 
spots, leaf blights, melting outs, root rots and foot rots. These 
diseases can also be seed-borne.

Environmental conditions and abiotic stresses can influence 
the ability of pathogens to cause devastating diseases (Fajolu et al. 
2013). Warm and humid environments provide ideal conditions for 
pathogens on seasonal grass and crops (Eisa et al. 2013). Bipolaris 
species have been associated with devastating diseases on staple 
crops. Bipolaris oryzae was responsible for causing extensive 
damage to rice cultivation in India, thus causing famine during 
1943–1944 (Scheffer 1997). Bipolaris maydis was responsible for 
catastrophic losses in maize crops in the USA and UK, by causing 
southern corn leaf blights that generated losses of approximately 1 
billion US dollars (Manamgoda et al. 2011, Lev et al. 1999). Bipolaris 
sorokiniana, which is responsible for common root rot and leaf spot 
of wheat and barley, was one of the most economically important 
foliar pathogens of wheat in warm regions (Ahmadpour et al. 2012). 
Leaf spot diseases are usually associated with small brown-red 
water-soaked spots on leaves, which subsequently turn brown or 
black, elliptical or fusiform lesions (Ahmadpour et al. 2012). Root 
rot diseases are usually associated with brown to black lesions on 
the roots and yellowing of the plants (Arabi & Jawhar 2013).

Research interests

There are 967 publications and 8 933 citations from 2011–2021 
in the Web of Science (Fig. 98), with the top 10 most cited articles 
listed in Table 75. Most publications focused on its taxonomy, 
disease management (host resistance) and its active secondary 
metabolites with potential use as a source of microbial drugs.

Fig. 98. Trends in research of Bipolaris in the period 2011–2021.
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Taxonomy and phylogeny
The majority of the most cited publications focused on the 
taxonomic revision of Bipolaris. These publications provided 
detailed information about the morphology, disease symptoms and 
host association of Bipolaris species (Manamgoda et al. 2014). 
Some of these publications also introduced new species such as 
B. drechsleri, B. saccharicola and B. variabilis (Crous et al. 2013, 
Marin-Felix et al. 2017a). Multi-locus analyses allowed the correct 
placement of some species previously identified as Bipolaris in 
other helminthosporioid genera such as Curvularia crustacea, 
C. dactyloctenii and C. micropus (Tan et al. 2014, Hernández-
Restrepo et al. 2018). Molecular data has resulted in the taxonomic 
revision of several species, including the transfer of B. gigantea 
from Drechslera to Bipolaris (Lane et al. 2020). A high number 
of helminthosporioid species remain molecularly unstudied. 
Therefore, it is of utmost importance to provide sequence data of 
these species to properly determine their taxonomic placement.

Disease management
Spot blotch disease is responsible for major yield loss to wheat 
crops. Previous studies have shown the importance of pectin methyl 
esterification in resistance against pathogens in monocot and dicot 
plants (Wydra & Beri 2006). Volpi et al. (2011) demonstrated that 
the expression of pectin methyl esterase inhibitors from Actinidia 
chinensis improves the resistance of durum wheat against B. 
sorokiniana. This resulted in a significant reduction of spot blotch 
disease symptoms caused by the pathogen. The increased 
resistance was due to the impaired ability of B. sorokiniana to grow 
on methyl-esterified pectin (Volpi et al. 2011).

Drought and root rot have a profound effect on the growth and 
productivity of Triticum aestivum. Previous studies have highlighted 
the importance of MYB proteins in several developmental and 
physiological processes including defence responses to biotic 
and abiotic stresses (Dubos et al. 2010). Zhang et al. (2012) 
demonstrated that overexpression of the MYB gene TaPIMP1 
provides resistance against B. sorokiniana and it can also 
significantly enhance the host resistance against drought.

Bioactive compounds
Secondary metabolites with different bioactivities and therefore 
potential use as microbial drugs, have been recently isolated from 
Bipolaris species such as the antibiotic compounds bipolatoxin D 
and ophiobolin A (Shen et al. 2020a). Antifungal compounds have 
also been obtained from this genus, such as bipolamides A and B 
(Siriwach et al. 2014). Campos et al. (2008) and do Nascimento 
et al. (2015) isolated cochlioquinone A, isocochlioquinone A and 
anhydrocochlioquinone A from different strains of Bipolaris, which 
showed antileishmanial activity.

Other secondary metabolites found in Bipolaris include 
cytotoxic compounds which may hold great potential for cancer 
treatment. Bury et al. (2013) investigated the activity of ophiobolin 
A against human glioblastoma multiforme, which is the most lethal 
and malignant form of brain tumour. Ophiobolin A is a phytotoxin 
produced by Bipolaris species that infect crops in Poaceae. 
Bury et al. (2013) demonstrated that Ophiobolin A can induce 
apoptosis in mouse leukaemia cells, which could potentially inhibit 
human cancer cell growth. Berestetskiy et al. (2020) also isolated 
cochlioqionones and fusaroproliferin compounds with cytotoxic 
activity from Bipolaris sorokiniana.

Authors: C.S. Bhunjun and Y. Marin-Felix

70. Lentinula Earle, Bull. New York Bot. Gard. 5: 416. 1909.

Type species: Lentinula cubensis (Berk. & M.A. Curtis) Earle ex 
Pegler

Classification: Basidiomycota, Agaricomycotina, Agaricomycetes, 
Agaricales, Omphalotaceae.

Background

Berkeley (1877) described shiitake mushrooms and classified 
them as Armillaria. Subsequently, it was classified into nine genera 
(Tricholoma, Agaricus, Cortinellus, Lepiota, etc.), and given more 
than 12 species names (Pegler 1983a, Hibbett 1992). Lentinula 
was initially established by Earle (1909) based on the synonym 

Table 75. Top 10 cited articles related to Bipolaris published in the period 2011–2021.
Rank Article title No. of citations References
1 One stop shop: backbones trees for important phytopathogenic genera: I 

(2014)
235 Hyde et al. (2014)

2 Genera of phytopathogenic fungi: GOPHY 1 185 Marin-Felix et al. (2017a)
3 The genus Bipolaris 143 Manamgoda et al. (2014)
4 A phylogenetic and taxonomic re-evaluation of the Bipolaris-Cochliobolus-

Curvularia complex
139 Manamgoda et al. (2012)

5 Fungal Planet description sheets: 154–213 126 Crous et al. (2013b)
6 Allergic bronchopulmonary mycosis due to fungi other than Aspergillus: a 

global overview
119 Chowdhary et al. (2014a)

7 Cochliobolus: an overview and current status of species 117 Manamgoda et al. (2011)
8 Ophiobolin A induces paraptosis-like cell death in human glioblastoma cells by 

decreasing BKCa channel activity
107 Bury et al. (2013)

9 The ectopic expression of a pectin methyl esterase inhibitor increases pectin 
methyl esterification and limits fungal diseases in wheat

101 Volpi et al. (2011)

10 An R2R3 MYB transcription factor in wheat, Ta PIMP 1, mediates host 
resistance to Bipolaris sorokiniana and drought stresses through regulation of 
defense-and stress-related genes

91 Zhang et al. (2012)
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Lentinus cubensis (now renamed Lentinula boryana) of the genus 
Lentinus. Singer (1877) classified shiitake mushrooms into Lentinus 
and named Le. edodes (Singer 1941). Pegler (1975a) found that 
Lentinus has two mycelial types (reproductive mycelium, and 
skeleton-liaison mycelium), while Lentinula has only one mycelial 
type (reproductive mycelium) based on morphological characters, 
and it was assigned to the Shiitake genus by Pegler and renamed 
Lentinula edodes. Hibbett identified Lentinula as a separate genus 
using a combination of morphological characters and molecular 
identification, based on 133 nucleotide sequences in the 5’ coding 
region of the large subunit rRNA, for phylogenetic evolutionary 
relationships (Hibbett & Vilgalys 1993).

The genus Lentinula is a lignicolous fungus which causes 
white rot in broad-leaved trees, especially in Fagaceae and 

Nothofagaceae (Pegler 1983a, Mata & Petersen 2001). Lentinula 
is mainly distributed in the temperate to subtropical zones of the 
Northern Hemisphere (Pegler 1983b). Lentinula has been resolved 
as a monophyletic group within the Omphalotaceae (Agaricales), 
which also contains Gymnopus, Rhodocollybia, and other collybioid 
mushrooms (Wilson & Desjardin 2005, He et al. 2019b, Oliveira 
et al. 2019). A search of Lentinula in the MycoBank database has 
now reported eight species based on geographical distribution, 
morphological characterisation and phylogenetic analysis: Le. 
edodes (eastern Asia), Le. boryana (Gulf Coast of North America 
to South America), Le. aciculospora (Costa Rica), Le. guarapiensis 
(Paraguay), Le. raphanica (Florida, Louisiana, Puerto Rico, 
Costa Rica, Venezuela, and Brazil), Le. lateritia (southeast Asia 
and Australasia), Le. novae-zelandiae (New Zealand) and Le. 

Fig. 99. Cultivated Lentinula edodes on a farm in China.
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madagasikarensis (Madagascar) (Spegazzini 1883, Pegler 1983b, 
Looney et al. 2020).

Shimomura et al. performed a hybridisation test between the 
shiitake mushroom (Le. edodes) from East Asia, the brick red shiitake 
mushroom (Le. lateritia) from Southeast Asia and the New Zealand 
shiitake mushroom (Le. novae-zelandiae). The results indicated 
that there was no reproductive isolation within the three species 
and that they should be considered different morphospecies of the 
same species. This was also confirmed using molecular methods 
(Shimomura 1992, Fukuda et al. 1994, Nicholson & Royse 1997). 
Therefore, it has been suggested that these three morphospecies be 
named Shiitake or Asian-Australasian Lentinula population (Hibbett 
et al. 1995, Nicholson et al. 2009). All three morphospecies belong 
to Le. edodes as originally named by Berkeley, and for ease of 
differentiation, the Le. edodes species of the three morphospecies 
were designated Le. edodes s. str. (Xu et al. 2006), and the total 
name of the three morphospecies was renamed Le. edodes s. lat. 
(Hibbett et al. 1995). Researchers conducted a cluster analysis of 
Le. edodes s. lat. using ITS sequences and found that in addition 
to the three existing morphospecies, a hidden morphospecies also 
exists, mainly in the southwestern and northwestern regions of 
China, the “alpine kingdom”-Nepal and the high-altitude regions of 
India (Hibbett et al. 1995, 1998, Xu et al. 2006). Xu et al. (2006) 
found that Le. edodes s. str. has a tendency to diverge into two 
branches. One branch is mainly distributed in northern East Asia 
(northeast and northwest China, Russia, Japan, and Korea), and 
the other branch is mainly distributed in southern East Asia (central 
and southern China, Thailand) (Xu et al. 2006). In terms of the 
distribution of shiitake mushrooms in the world, China should be 
the centre of the distribution of important natural populations of 
shiitake mushrooms (Xu et al. 2006).

Ecological and economic significance

Lentinula edodes, commonly known as “Shiitake” in Japan and 
“Xianggu” in China, is the most studied species within Lentinula. 
Lentinula edodes are more and more popular because of their high 

nutritional and medicinal value; it is rich in protein and amino acids, 
vitamins, minerals, trace elements and volatile flavour substances 
(Chang 1980, Li et al. 2019c). In addition to seven essential amino 
acids, it also contains 18 amino acids, such as aspartic acid, 
glutamic acid, and alanine (Li et al. 2020d). It has been proven 
that lentinan in Le. edodes could inhibit tumour growth (Mallard et 
al. 2019). Additionally, it contains many pharmaceutical compounds 
with antiviral, anti-tumour, antioxidant, and immune-enhancing 
properties (Cao et al. 2013c, Kang et al. 2013, Rincão et al. 2013, 
Xu et al. 2013a, Dai et al. 2015).

Lentinula edodes is a traditional food in East Asia and it has 
reportedly been artificially cultivated in China during the Song 
dynasty (Chang & Miles 1987). Currently, it is one of the most 
economically important cultivated mushrooms (Fig. 99), and China 
has the highest Le. edodes production and export in the world 
(Chang & Miles 1989) accounting for over 90 % of the total global 
production (Royse et al. 2017). According to the statistics of the 
China Edible Fungi Association (http://www.cefa.org.cn), the total 
output of edible mushrooms in China was 40.61 million tons in 2020, 
of which Le. edodes accounted for 11.88 million tons, or 29.23 % 
of the total Chinese edible mushroom production, which represents 
a year-on-year increase of 6 % and a value of 13.42 billion US 
dollars. There was a 30-fold production increase in the past several 
decades (Royse et al. 2017). According to the statistics of China’s 
ministry of commerce, China exported 606 600 tons of Le. edodes 
in 2020, With Asia, Africa, North and South America, and Oceania 
being the main export regions.

Research interests

There are 821 publications and 8 733 citations from 2011–2021 
in the Web of Science (Fig. 100). The top 10 most cited articles 
are listed in Table 76. Most publications focused on food science, 
chemical composition and pharmacological activity, as well as 
molecular research.

Fig. 100. Trends in research of Lentinula in the period 2011–2021.
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Nutrition composition and pharmacological activity
Lentinula edodes is rich in nutrients such as protein, fat, 
carbohydrates, crude fibre, trace elements and vitamins. In recent 
years, many scholars have found that lentinan from Le. edodes has 
various biological activities such as anti-tumour, antioxidation and 
immune regulation. Sun et al. (2015) combined lentinan and other 
drugs to treat bladder cancer, significantly reducing the number of 
cancer cells. Suga et al. (2017) found that lentinan combined with 
Tegafur oral agent for cancer treatment in BALB/c mouse colon cancer 
model can reduce the number of apoptotic bodies in ileal recess and 
significantly reduce the toxic and side effects of Tegafur oral agent (P 
< 0.05 or P < 0.01). Li et al. (2018b) proved that lentinan can stimulate 
autophagy by detecting autophagosome and autophagy flow. Tian et 
al. (2012) found that lentinan can effectively remove hydroxyl free 
radicals and achieve the purpose of antioxidants. Lentinan can 
selectively treat the inflammatory symptoms of melanoma, reduce 
adriamycin mediated bone marrow suppression (Liu et al. 2016c), 
and trigger humoral immunity and other related immune responses 
in mice by activating mouse peritoneal macrophages and producing 
bioactive serum factors (Zákány et al. 1980).

Molecular research
Molecular research on Le. edodes has focused on genetic diversity, 
genomic features, gene functions, etc. Moon et al. (2021) constructed 
a CRISPR/Cas9-mediated genome editing system in Le. edodes, 
laying the foundation for subsequent gene function studies. The 
genomic features of different Le. edodes strains have been reported 
and it has been revealed that Le. edodes has a rapid sporocarp 
autolysis system, and there have been insights into lignocellulose 
degradation, genetic architecture, breeding history and genes related 
to cadmium accumulation (Chen et al. 2016a, Sakamoto et al. 2017, 
Yu et al. 2022b). Genes involved in lignocellulose degradation 
cadmium resistance were always studied in Le. edodes (Ohga & 
Royse 2001, Zhao et al. 2015c, Chen et al. 2016a, Yan et al. 2019b, 

Yu et al. 2021, 2022). It could be beneficial to reveal the degradation 
mechanism of lignocellulose, search for replacing agricultural straws, 
and elucidate heavy metal resistance in basidiomycete fungi. Genetic 
maps of Le. edodes have been constructed using many molecular 
markers (SSR, SRAP, TRAP, InDel, etc.); based on these genetic 
maps, many important agronomic traits were mapped by QTL (Gong 
et al. 2014, 2018, Li et al. 2017a).

Food science
As the second most eaten mushroom in the world (Tian et al. 
2016), it is necessary to improve product quality and flavour, as well 
as extend its storage period. Shi et al. (2020) found that low-dose 
γ-irradiation could decrease water loss, retain the freshness, and 
extend the shelf-life of fresh Le. edodes mushrooms. It is useful as 
a potential preservative method. Lentinula edodes flavour is crucial 
to its quality; 25 volatile compounds have been considered key 
flavour components in Le. edodes, and microwave vacuum drying 
is an effective method to maintain larger amounts of taste-active 
amino acids (Tian et al. 2016, Li et al. 2019d).

Authors: R. Xu and C. Phukhamsakda

71. Erysiphe DC., in Lamarck & de Candolle, Fl. franç., Edn 
3 (Paris) 2: 272. 1805, nom. sanct. (Fr., Syst. Mycol. 3(1): 234. 
1829).

Type species: Erysiphe polygoni DC.

Classification: Ascomycota, Pezizomycotina, Leotiomycetes, 
Helotiales, Erysiphaceae.

Background

Erysiphe is the largest genus of the powdery mildews 
(Erysiphaceae, Helotiales, sensu Johnston et al. 2019), with 

Table 76. Top 10 cited articles related to Lentinula published in the period 2011–2021.
Rank Article title No. of citations References
1 Chemical composition and nutritional value of the most widely appreciated 

cultivated mushrooms: An inter-species comparative study
267 Reis et al. (2012a)

2 Macro and trace mineral constituents and radionuclides in mushrooms: 
health benefits and risks

238 Falandysz & Borovička (2013)

3 Laccase immobilization on chitosan/poly(vinyl alcohol) composite 
nanofibrous membranes for 2,4-dichlorophenol removal

144 Xu et al. (2013b)

4 Correlation evaluation of antioxidant properties on the monosaccharide 
components and glycosyl linkages of polysaccharide with different 
measuring methods

129 Lo et al. (2011)

5 Antimicrobial and antitumor activities of chitosan from shiitake stipes, 
compared to commercial chitosan from crab shells

127 Chien et al. (2016)

6 Genome sequence of the edible cultivated mushroom Lentinula edodes 
(Shiitake) reveals insights into lignocellulose degradation

126 Chen et al. (2016a)

7 Laccase immobilization and insolubilization: from fundamentals to 
applications for the elimination of emerging contaminants in wastewater 
treatment

103 Ba et al. (2013)

8 The effect of ultrasound-assisted immersion freezing on selected 
physicochemical properties of mushrooms

93 Islam et al. (2014)

9 Can fungi compete with marine sources for chitosan production? 89 Ghormade et al. (2017)
10 Biodiversity of Trichoderma (Hypocreaceae) in Southern Europe and 

Macaronesia
87 Jaklitsch & Voglmayr (2015)
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approximately 450 species (Braun & Cook 2012), comprising many 
common, widespread taxa (Takamatsu et al. 2015a, b). Some are 
taxonomically unresolved species complexes that are difficult to 
distinguish either morphologically or based on common species 
DNA barcode sequences (e.g., Bereczky et al. 2015, Braun et al. 
2017, Bradshaw et al. 2021). All powdery mildews are obligate 
biotrophic plant pathogens, taking up nutrients exclusively from living 
host plant tissues through specialised organs known as haustoria 
(Hückelhoven & Panstruga 2011); they cannot grow and develop 
spores without being functionally connected to infected host plant 
tissues. Erysiphe species produce haustoria in the living epidermal 
cells of their host plants (Gil & Gay 1977, Heintz & Blaich 1990). 
Their mycelia, consisting of hyphae, conidiophores, conidia, and in 
sexually reproducing species also their sexual sporocarps, known 
as chasmothecia, are ectophytic, being produced on the aerial 
host plant surfaces, mostly on leaves, green stems, young fruit, 
and other photosynthesizing organs (Glawe 2008). The superficial 
mycelia of Erysiphe appear as easily recognisable whitish and 
powdery spots on aerial plant surfaces, which sometimes cover 
large areas or the entire surface of the infected organs, eventually 
causing their distortion, yellowing and premature leaf fall or even 
death. At the seedling stage, infections caused by Erysiphe spp. 
can kill entire plants in the field (Marçais & Desprez-Loustau 2014, 
Demeter et al. 2021) while in adult plants, including shrubs and 
trees, infections may cause measurable biotic stress under natural 
conditions (Desprez-Loustau et al. 2014, Bert et al. 2016), serious 
yield losses in cropping systems (Calonnec et al. 2004, Fondevilla 
& Rubiales 2012, Fuller et al. 2014, Dunn & Gaynor 2020, Heick 
et al. 2020a, Kelly et al. 2021), and reduction of aesthetic value of 
ornamentals (Vajna et al. 2004, Seko et al. 2008).

Some Erysiphe species infect a single host plant species 
while others infect many, only distantly related plants (Braun 
& Cook 2012). The same host plant species can be infected by 
several Erysiphe spp., and also by other powdery mildew species 
that belong to other genera (Braun & Cook 2012, Marçais & 
Desprez-Loustau 2014, Takamatsu et al. 2016, Desprez-Loustau 
et al. 2018). Erysiphe conidia are airborne, short-lived, and their 
long-distance dispersal is debated (Glawe 2008). Many species 
regularly produce sexual morphs with ascospores, which survive 
unfavourable conditions in the field, such as winter, and initiate the 
polycyclic life cycle of the pathogen when fresh green host plant 
tissues become available again in the environment (Rossi et al. 
2010, Gadoury et al. 2012, Vági et al. 2016). Overwintering as 
dormant mycelia in buds (Rügner et al. 2002, Csikós et al. 2020) 
or on evergreen leaves (Szentiványi & Kiss 2002) also occurs in 
some Erysiphe species. Many powdery mildew taxa, especially 
those that attack crops and cause damage in forestry, have a global 
distribution and are considered invasive species (Kiss 2005, Jones 
& Baker 2007, Desprez-Loustau et al. 2018). Interestingly, a recent 
analysis indicated that powdery mildews were completely absent 
from Australia until 1788, the beginning of European colonisation of 
the continent (Kiss et al. 2020).

Erysiphe was introduced by De Candolle (1805) and was 
applied in a very broad sense, covering almost all powdery mildews 
until a comprehensive generic revision of the Erysiphaceae (Léveillé 
1851). Léveillé (1851) confined Erysiphe to species characterised by 
having sporocarps with mycelium-like appendages and numerous 
asci, irrespective of the characteristics of the asexual morphs. 
Salmon (1900) published the first powdery mildew monograph in 
which he followed Léveillé’s generic concept of Erysiphe. Salmon 
(1900) cited and treated Erysiphe polygoni as the first species under 
Erysiphe, which probably influenced Clements & Shear (1931) who 

designated E. polygoni as lectotype species. The generally wide 
species concept, with some modifications, prevailed in almost all 
subsequent taxonomic treatments of powdery mildew (e.g., Homma 
1937, Blumer 1933, 1967, Braun 1987), except for the exclusion 
of Erysiphe graminis, the powdery mildew of cereals and grasses, 
which was placed in a genus of its own, Blumeria (Speer 1973). The 
further splitting of Erysiphe s. lat. commenced when Braun (1978, 
1981) divided Erysiphe into sections – Erysiphe, Golovinomyces 
and Galeopsidis. Heluta (1988) raised sect. Golovinomyces to 
genus rank. Braun (1999) introduced the new genus Neoerysiphe 
for Erysiphe sect. Galeopsidis. Braun & Takamatsu (2000) reduced 
Microsphaera and Uncinula, including various smaller segregated 
genera, to synonymy with Erysiphe, based on the first broad-based 
phylogenetic examinations of the Erysiphaceae (Saenz & Taylor 
1999, Mori et al. 2000), which laid the foundation for the current 
taxonomy of Erysiphe. Further refinements of the circumscription 
and subdivision of Erysiphe were made in Braun & Cook (2012), 
based on results of previous and additional sequence analyses 
of particular groups of phylogenetically allied powdery mildew, 
such as the introductions of Erysiphe sect. Californiomyces 
(bas. Californiomyces) and Erysiphe sect. Typhulochaeta (bas. 
Typhulochaeta). A recent genome-scale phylogenetic analysis 
of the Erysiphaceae supported the delimitation of Erysiphe and 
other powdery mildew genera (Vaghefi et al. 2022). The most 
comprehensive phylogenetic studies on Erysiphe species were 
published by Takamatsu et al. (2015a, b), recently followed by 
Bradshaw et al. (2023a, b) who published the first two parts of a 
comprehensive phylogenetic-taxonomic treatment of Erysiphe 
species.

Ecological and economic significance

Being obligate biotrophic plant pathogens, all Erysiphe species 
cause plant diseases. Some are responsible for serious economic 
damage to important crops and forestry and pose plant health 
biosecurity risks due to their invasive nature as detailed below.

Powdery mildew of grapevine (Vitis vinifera) caused by Erysiphe 
necator is one of the economically most important plant diseases in 
the global crop protection market in terms of fungicide use (Gadoury 
et al. 2012). If no management strategies are implemented, the 
disease may result in up to 100 % yield loss and unmarketable 
juice and wine. Most wine, table and raisin grape varieties grown 
worldwide are highly susceptible to E. necator. Therefore, their 
production heavily relies on repeated fungicide applications during 
each season (Gadoury et al. 2012). It was estimated that grape 
powdery mildew control costs could be as high as 48 million US 
dollars per year in California alone (Fuller et al. 2014). Resistance 
to different groups of fungicides that control E. necator (Dufour 
et al. 2011, Frenkel et al. 2015) has already complicated disease 
management strategies worldwide (Vielba-Fernández et al. 
2020). Most probably, E. necator was introduced to Europe and 
all other grapevine producing regions from North America (Brewer 
& Milgroom 2010), although a recent study of powdery mildew on 
domesticated and wild Vitis spp. in the Middle East questioned 
this hypothesis (Gur et al. 2021). Another recent study did not 
support the hypothesis on the temporal isolation of two widespread 
genotypes of E. necator, A and B, with implications for fungicide 
resistance (Csikós et al. 2020).

Powdery mildew of oaks (Quercus spp.) can be caused by up 
to 33 powdery mildew species and two varieties belonging to 
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four genera in different parts of the world (Braun & Cook 2012, 
Meeboon et al. 2017, Cho et al. 2018, Siahaan et al. 2018). 
There is no other plant genus affected by so many powdery 
mildew species. Among oak powdery mildew, E. alphitoides 
and E. quercicola are the most intensively studied species due 
to their importance in forestry (Marçais & Desprez-Loustau 
2014, Desprez-Loustau et al. 2018). The intricate, confused 
nomenclature, phylogeny and taxonomy of the two species has 
recently been clarified by Bradshaw et al. (2022a) and Braun 
et al. (2022). These two species may be responsible for the 
failure of the natural regeneration of pedunculate oak (Q. robur) 
forests in Europe as they often kill seedlings and young plants 
in large areas (Demeter et al. 2021). Older Q. robur and Q. 
petraea trees seem to be much less affected by the disease, but 
infections caused by E. alphitoides decrease tree radial growth 
over the years, and have a cumulative and delayed impact 
on tree development (Bert et al. 2016). In addition to oaks, E. 
quercicola also infects a wide range of tropical fruit trees, such as 
cashew, citrus, durian, mango, rambutan, tamarindo, and jujube, 
and many other plants, as well, including Acacia spp., Bauhinia 
purpurea, Bixa orellana, Hevea brasiliensis, and Jatropha curcas, 
in subtropical and tropical areas (Limkaisang et al. 2005, 2006, 
Siahaan et al. 2016, Desprez-Loustau et al. 2017, Meeboon & 
Takamatsu 2020, Young & Kiss 2021). The host range of diverse 
E. quercicola strains, as well as their ecology and epidemiology in 
the subtropics and the tropics are only poorly known.

Powdery mildew of sugar beet (Beta vulgaris subsp. vulgaris) 
is an economically important foliar crop disease that may result in 
sugar yield losses of up to 25–30 % under conducive environmental 
conditions and if no management strategies are implemented 
(Francis 2002, Heick et al. 2020a). Erysiphe betae, the causal agent 
of the disease, became widespread in most sugar beet growing 
regions around the world by the 1960s (Francis 2002, Francis 

et al. 2007). The economic damage caused is mainly due to the 
reduction of the photosynthetic leaf area, which is mostly prevented 
by repeated applications of quinone outside inhibitor (QoI) and 
triazole fungicides every season (Karaoglanidis & Karadimos 
2006, Heick et al. 2020a). Resistance of E. betae populations to 
QoI fungicides was reported in the USA (Bolton & Neher 2014) and 
Scandinavia (Heick et al. 2019). In addition to Beta spp., E. betae 
also occurs on Spinacia oleracea and the invasive weed Dysphania 
ambrosioides (bas. Chenopodium ambrosioides) (Braun & Cook 
2012). Infections of the latter host by E. betae have been confirmed 
by ITS sequences of the pathogen (Park et al. 2012c, Anwar et al. 
2020).

Research interests

There are 956 publications and 8 683 citations from 2011–2021 
in the Web of Science (Fig. 101). The top 10 most cited articles 
are listed in Table 77. Most of the publications focused on the 
resistance of crops and Arabidopsis thaliana to Erysiphe infections, 
identification and phylogeny of different species, including new 
records in different parts of the world, Erysiphe spp. causing disease 
of diverse crops and oaks, fungicide use, and other management 
options to control crop powdery mildew infections.

Disease management
Historically, grape powdery mildew was amongst the first crop 
diseases extensively controlled with fungicide sprays, i.e., lime 
sulphur, in the 19th century (Gadoury et al. 2012). Sulphur is still 
widely used to suppress powdery mildew infections of grapes and 
many other crops throughout the world, because of its efficacy, low 
cost, and lack of resistance development in the target pathogen 
populations (Fondevilla & Rubiales 2012, Gadoury et al. 2012, Nasir 
et al. 2014). Modern fungicides used against Erysiphe spp. and other 
powdery mildews include benzimidazoles, ergosterol biosynthesis 

Fig. 101. Trends in research of Erysiphe in the period 2011–2021.
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inhibitors (sterol demethylation inhibitors, DMIs, and morpholines), 
succinate dehydrogenase inhibitors (SDHIs), quinone outside 
inhibitors (QoIs), and quinolines. Many of these fungicides have 
single-site modes of action and their extensive use has already led 
to the development of reduced sensitivity or complete resistance 
in some target Erysiphe spp. populations (Dufour et al. 2011, 
Gadoury et al. 2012, Frenkel et al. 2015, Vielba-Fernández et al. 
2020). Integrated pest management (IPM) strategies can prevent, 
delay, or manage such situations, and extend the effective life of 
most highly specific, single-site fungicides (Vielba-Fernández et 
al. 2020). Sprays with biofungicides and other alternative products 
such as soluble silicon, oils, salts, and plant extracts have shown 
some promise in controlling E. necator, other Erysiphe spp., and 
other powdery mildews (Fondevilla & Rubiales 2012, Gadoury et 
al. 2012, Legler et al. 2016), but none have become widely used on 
a commercial scale. Breeding cultivars that are resistant or tolerant 
to Erysiphe spp. was successful in some crops, such as soybean 
(Dunn & Gaynor 2020), tomato (Seifi et al. 2014), pea (Humphry 
et al. 2011, Fondevilla & Rubiales 2012, Sun et al. 2016) and 
mung bean (Kelly et al. 2021), but not in Vitis vinifera, where a real 
breakthrough in breeding grape varieties resistant to E. necator has 
not yet happened (Barba et al. 2014, Fuller et al. 2014, Merdinoglu 
et al. 2018).

Taxonomy and phylogeny
To date, nrDNA ITS sequences have been the most widely used 
DNA barcodes for species delimitation in Erysiphe (Takamatsu et 
al. 2015a, b). Other DNA markers have also been tested for this 
purpose in Erysiphe and other powdery mildew genera (Seko et al. 
2011, Desprez-Loustau et al. 2017, Ellingham et al. 2019, Shirouzu 
et al. 2020, Bradshaw et al. 2022b), but these studies have not 
resulted in the development of new DNA barcodes that are useful 
to distinguish species across the genus. The first comprehensive 
genome-scale phylogenetic analyses of the Erysiphaceae based 
on 751 single-copy orthologous sequences extracted from 24 
selected powdery mildew genomes have largely confirmed 
previous phylogenies based on nrDNA sequences (Vaghefi et al. 

2022). These analyses have also revealed serious quality issues 
with some of the published powdery mildew genomes, including 
the genomes of some Erysiphe spp. (Vaghefi et al. 2022, Kusch 
et al. 2023). Another bias of the molecular identification of 
Erysiphe spp. is the lack of DNA sequence information from the 
type specimens of hundreds of species described decades ago. 
Epitypification (ICNafp, Art. 9.9) is an established and useful tool 
to overcome such problems in many fungal groups, including 
Erysiphe (Bradshaw et al. 2020a, b). On the other hand, new 
methods to sequence old herbarium specimens of powdery mildew 
have recently been developed (Bradshaw & Tobin 2020, Smith et 
al. 2020, 2021, Bradshaw et al. 2022a), and have recently been 
successfully applied to Erysiphe spp. (Bradshaw et al. 2023b, c). 
The new techniques have already allowed successful sequencing 
of DNA species barcodes of powdery mildew specimens from the 
19th century, and provide an additional useful tool to get sequences 
from old type collections and other herbarium samples, at least 
when the condition and quantity of the specimens enable the 
extraction of DNA, and if destructive methods are allowed.

Authors: L. Kiss, U. Braun and S. Takamatsu

72. Scedosporium Sacc. Ex Castell. & Chalm., Manual of 
Tropical Medicine (London): 1122. 1919.

Type species: Scedosporium apiospermum Sacc. ex Castell. & 
Chalm.

Classification: Ascomycota, Pezizomycotina, Sordariomycetes, 
Microascales, Microascaceae.

Background

Historically, Scedosporium species have been reported to produce 
opportunistic infections in humans. The first report of Scedosporium 
apiospermum was a case of foot subcutaneous infection in a man 
in Italy (Radaeli 1911). Different sorts of localised infections have 

Table 77. Top 10 cited articles related to Erysiphe published in the period 2011–2021.
Rank Article title No. of citations References
1 Hyperspectral imaging for small-scale analysis of symptoms caused by different sugar 

beet diseases
167 Mahlein et al. (2012)

2 Evolution and expression analysis of the grape (Vitis vinifera L.) WRKY gene family 162 Guo et al. (2014)
3 Genome and transcriptome analysis of the grapevine (Vitis vinifera L.) WRKY gene 

family
159 Wang et al. (2014c)

4 Identification of the dehydrin gene family from grapevine species and analysis of their 
responsiveness to various forms of abiotic and biotic stress

121 Yang et al. (2012f)

5 Grapevine powdery mildew (Erysiphe necator): a fascinating system for the study of 
the biology, ecology and epidemiology of an obligate biotroph

118 Gadoury et al. (2012)

6 Durable broad-spectrum powdery mildew resistance in pea er1 plants is conferred by 
natural loss-of-function mutations in PsMLO1

113 Humphry et al. (2011)

7 Design, synthesis, biological activities, and 3D-QSAR of new N,N’-diacylhydrazines 
containing 2-(2,4-dichlorophenoxy) propane moiety

97 Liu et al. (2011)

8 Modelling the impact of climate change on the interaction between grapevine and its 
pests and pathogens: European grapevine moth and powdery mildew

89 Caffarra et al. (2012)

9 Using a limited mapping strategy to identify major QTLs for resistance to grapevine 
powdery mildew (Erysiphe necator) and their use in marker-assisted breeding

86 Riaz et al. (2011)

10 The Chinese wild grapevine (Vitis pseudoreticulata) E3 ubiquitin ligase Erysiphe 
necator-induced RING finger protein 1 (EIRP1) activates plant defense responses by 
inducing proteolysis of the VpWRKY11 transcription factor

84 Yu et al. (2013)
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been described in humans, such as the production of eumycetoma, 
muscle-bone-joint infections, and keratitis by traumatic inoculation 
of fungal-contaminated fomites such as spines or wood chips. In 
addition, disseminated infections occur in immunocompromised 
patients (Ramirez-Garcia et al. 2018). Especially during the last 
two decades, Scedosporium spp. and phylogenetically related 
taxa in the order Microascales have become important pathogens 
for cystic fibrosis patients. Scedosporium spp. can grow on/in 
diverse substrata and are the inhabitants of different substrates, 
mainly soils and dung (Rougeron et al. 2018, Mouhajir et al. 2020). 
Scedosporium was proposed by Pier Andrea Saccardo (Saccardo 
1911) to relocate Monosporium apiospermum (which was isolated 
and described by Francesco Radaeli in 1911, but P.A. Saccardo 
erected the new taxon), based on morphological differences 
to Monosporium acremonioides (syn. Harzia acremonioides) 
(Costantin 1888). The genus Scedosporium was later validated 
by Aldo Castellani and Albert John Chambers in 1919, who 
accepted Sc. apiospermum over M. apiospermum. Pablo Negroni 
and Ida Fischer (Negroni & Fischer 1943) isolated a fungus which 
simultaneously produced the asexual and sexual morphs. Despite 
its morphological similarity to Allescheria boydii, they erected the 
new genus and species Pseudallescheria shearii. Subsequently, 
the holomorph received a different scientific name than the most 
common asexual morph (Scedosporium). In 2014, thanks to the 
premise “One Fungus = One Name” adopted by “The Amsterdam 
Declaration” of The International Code of Botanical Nomenclature 
(Hawksworth et al. 2011), Pseudallescheria was proposed as a 
synonym of Scedosporium (Lackner et al. 2014). Scedosporium is 
a pleomorphic genus, whose species may or may not reproduce 
sexually (homothallic and heterothallic species, respectively), 
but also present one or more asexual reproductive morphs 
(scedosporium-like, graphium-like, polycytella-like and sessile 
conidia) (Abrantes et al. 2021). Morphological discrimination 
between the species, especially within the Scedosporium 
apiospermum species complex, is difficult (Ramirez-Garcia et al. 

2018). However, species of Scedosporium are easily distinguishable 
by comparing the nucleotide sequences of a fragment of the tub 
gene (Chen et al. 2016b, Ramirez-Garcia et al. 2018). Fifteen 
species are recognised, namely Scedosporium angustum, Sc. 
apiospermum, Sc. aurantiacum, Sc. boydii, Sc. cereisporum, Sc. 
desertorum, Sc. dehoogii, Sc. ellipsoideum, Sc. fusoideum, Sc. 
haikouense, Sc. hainanense, Sc. minutisporum, Sc. multisporum, 
Sc. rarisporum and Sc. sanyaense (Saccardo 1911, Gilgado et al. 
2005, 2007, Borman et al. 2006, Lackner et al. 2014, Crous et al. 
2016, Han et al. 2017, Abrantes et al. 2021, Zhang et al. 2021f). 
However, according to the latest phylogenetic tree using ITS region 
(ITS plus the 5.8S nrRNA gene) and bt2 (other fragments of the tub 
gene) nucleotide sequences (Zhang et al. 2021f), Sc. haikouense 
and Sc. rarisporum should be transferred to Sc. cereisporum. It 
is important to note that Sc. inflatum, a very important multi-drug 
resistant fungal opportunistic pathogen, has been transferred to a 
different genus as Lomentospora prolificans, due to results of the 
phylogenetic reconstruction of the genus Scedosporium and by the 
aforementioned nomenclatural changes (Lackner et al. 2014).

Ecological and economic significance

Since the description of Scedosporium apiospermum, the type 
species of the genus, from a case of human eumycetoma (Radaeli 
1911), most of the environmental reports (mainly from human 
clinical specimens) of Scedosporium spp. are from organic matter-
rich subtracts, such as soil and dung (Rougeron et al. 2018). 
Studies on the ecology and distribution of Scedosporium spp. 
have been carried out in Australia (Harun et al. 2010), Austria 
and the Netherlands (Kaltseis et al. 2009), Chile (Alvarez et al. 
2016), France (Rougeron et al. 2015), Mexico (Elizondo-Zertuche 
et al. 2017), Morocco (Abdallaoui et al. 2007, Hallouti et al. 2017, 
Mouhajir et al. 2020), Nigeria (Nweze & Okafor 2010) and Thailand 
(Luplertlop et al. 2016). Scedosporium apiospermum was the 
most abundant species in Austria, Mexico, The Netherlands and 

Fig. 102. Trends in research of Scedosporium in the period 2011–2021.
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Thailand, but Sc. aurantiacum was most common in Australia 
and Sc. dehoogii in Western France. Scedosporium spp. are also 
present in water and soils highly contaminated with xenobiotics 
due to human economic activities, probably due to the metabolic 
ability of the fungus to use them as sources of carbon and energy 
(Davies et al. 1973, Claussen & Schmidt 1988, Janda-Ulfig et al. 
2008, Skinner et al. 2009, Tigini et al. 2014).

Species of Scedosporium are thermotolerant, can survive at 
very low levels of oxygen in the atmosphere, and tolerate high salt 
concentrations and high osmotic pressures (Guarro et al. 2006, 
Cortez et al. 2008, Kaltseis et al. 2009). One study proved that the 
abundance of Scedosporium spp. in soils rises when the pH range 
is between 6 and 7.5 and the nitrogen concentration increases 
(Kaltseis et al. 2009).

Different culture media have been developed for the selective 
isolation of Scedosporium spp. from environmental samples: DRBC 
plus benomyl (Gilgado et al. 2005), and Sce-Sel+ or Scedo-Select 
III (Rainier et al. 2008, Pham et al. 2015).

Research interests

There are 789 publications and 8 662 citations from 2011–2021 in 
the Web of Science (Fig. 102) with the top 10 most cited articles 
listed in Table 78. Most publications are focused on diagnosis, 
susceptibility and resistance to antifungals, among other topics.

Diagnosis
Species identification in Scedosporium and other Microascales is 
mainly based on the sequencing of a fragment of the beta-tubulin 
gene (tub or bt2) or by using the comparison among MALDI-TOF 
generated ribosomal protein mass spectra (Sitterle et al. 2014). 
This implies the necessity of obtaining a pure culture from clinical 
specimens. Identification of Lomentospora/Scedosporium at the 
species level is very important in terms of clinical presentations or 
outcomes (Bronnimann et al. 2021). Other molecular markers and 
methodologies are under study. For patients with cystic fibrosis, an 
ELISA test based on the detection of IgG against whole cell proteins 
displayed very high sensitivity and specificity to discriminate 

Lomentospora/Scedosporium infections from those produced by 
Aspergillus spp. (Martin-Souto et al. 2020). However, certain of the 
antigens of these whole cell crude extracts are common between 
Aspergillus and Scedosporium spp., and this is the reason why 
immunological tests usually display cross-reactions. Consequently, 
other antigens able to discriminate between infections caused by 
Aspergillus and Scedosporium spp. have been studied. Among 
them, the Scedosporium catalase A1 and cytosolic Cu, Zn-
superoxyde dismutase were the most promising to develop a highly 
sensitive and specific ELISA assay (Mina et al. 2017).

Therapy
An important problem with Lomentospora prolificans/Scedosporium 
spp. infections are low susceptibility to the available antifungals. 
So, many researchers are exploring substances that act on new 
molecular targets. One of these promising molecules is F901318, a 
potent inhibitor of the dihydroorotate dehydrogenase having potent 
in vitro activity on L. prolificans and Scedosporium spp. (Wiederhold 
et al. 2017). This antimycotic drug called olorofim displays promising 
in vitro activity against L. prolificans/Scedosporium spp. (Rivero-
Méndez et al. 2020), and also in murine models (Seyedmousavi 
et al. 2021).

Author: A.M. Stchigel

73. Zymoseptoria Quaedvl. & Crous, Persoonia 26: 64. 2011.

Type species: Zymoseptoria tritici (Roberge ex Desm.) Quaedvl. & 
Crous

Classification: Ascomycota, Pezizomycotina, Dothideomycetes, 
Mycosphaerellales, Mycosphaerellaceae.

Background

The genus Zymoseptoria was established by Quaedvlieg et al. (2011) 
to accommodate Zy. brevis and three previously described Septoria 
species, namely Zy. halophila (syn. S. halophila), Zy. passerinii 

Table 78. Top 10 cited articles related to Scedosporium published in the period 2011–2021.
Rank Article title No. of citations References
1 Histopathologic diagnosis of fungal infections in the 21st century 375 Guarner & Brandt (2011)
2 ESCMID and ECMM joint guidelines on diagnosis and management of 

hyalohyphomycosis: Fusarium spp., Scedosporium spp. and others
271 Tortorano et al. (2014)

3 Mycotic keratitis: epidemiology, diagnosis and management 245 Thomas & Kaliamurthy (2013)
4 Invasive non-Aspergillus mold infections in transplant recipients, United 

States, 2001-2006
188 Park et al. (2011)

5 Antifungal resistance: current trends and future strategies to combat 180 Wiederhold (2017)
6 Species-specific antifungal susceptibility patterns of Scedosporium and 

Pseudallescheria species
176 Lackner et al. (2012)

7 International Society of Human and Animal Mycology (ISHAM)-ITS 
reference DNA barcoding database-the quality controlled standard tool for 
routine identification of human and animal pathogenic fungi

175 Irinyi et al. (2015)

8 Triazole antifungal agents in invasive fungal infections a comparative review 174 Lass-Flörl (2011)
9 European Society of Clinical Microbiology and Infectious Diseases Fungal 

Infection Study Group; European Confederation of Medical Mycology. 
ESCMID and ECMM joint clinical guidelines for the diagnosis and 
management of systemic phaeohyphomycosis: diseases caused by black 
fungi

173 Chowdhary et al. (2014c)

10 The changing epidemiology of invasive fungal infections 168 Enoch et al. (2017)
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(syn. S. passerinii), Zy. tritici (syn. S. tritici). Subsequently, several 
more species were added to the genus, including Zy. ardabiliae, 
Zy. pseudotritici (Stukenbrock et al. 2012), Zy. verkleyi and Zy. 
crescenta (Crous et al. 2012, 2018). Species of Zymoseptoria 
can be morphologically distinguished from Septoria by the yeast-
like growth in culture, and the mode of conidiogenesis, e.g., 
phialidic, with periclinal thickening and inconspicuous percurrent 
proliferation(s), as well as the formation of up to three different 
conidial types (Type I, pycnidial conidia; Type II, phragmospores 
on aerial hyphae; Type III, yeast-like growth proliferating via 
microcyclic conidiation; Quaedvlieg et al. 2011, Videira et al. 2017). 
Zymoseptoria formed a single clade apart from Septoria based on 
the 28S nrDNA phylogeny (Quaedvlieg et al. 2011), and for accurate 
identification of species, multi-locus sequences of ITS, act, tub, cal, 
rpb2, and tef1 are often used (Quaedvlieg et al. 2011, Crous et al. 
2012, 2018, Stukenbrock et al. 2012, Videira et al. 2017).

Zymoseptoria species have been recorded causing leaf spots 
or leaf blotch worldwide on graminicolous hosts including Aegilops 
triuncialis, Dactylis sp., Elymus sp., Hordeum spp., Lolium sp., 
Phalaris spp., Poa annua and Triticum eastivum (Quaedvlieg et al. 
2011, Crous et al. 2012, 2018, Stukenbrock et al. 2012, Videira et 
al. 2017).

Ecological and economic significance

Zymoseptoria species are important causal agents of diseases in 
wheat and barley, which lead to severe yield losses, and two are 
detailed below.
Septoria tritici blotch of wheat (Triticum aestivum) caused by 
Zymoseptoria tritici is a serious and persistent threat in the fields of 
temperate climates throughout the world, and the most devastating 
foliar disease in Europe (Fones & Gurr 2015). Zymoseptoria tritici 
(formerly Mycosphaerella graminicola) was voted one of the top 10 
fungal pathogens (Dean et al. 2012). The fungus Zy. tritici undergoes 
a prolonged and asymptomatic phase as a biotroph during the 
initial infection on wheat and then switches to a necrotroph after 

the host has triggered a strong necrotic response (Sánchez-
Vallet et al. 2015, Hartmann et al. 2018). The sexual ascospores 
are airborne for long-distance dispersal as a primary source of 
inoculum (Shaw & Royle 1989, Stukenbrock et al. 2007), while 
the asexual conidia are dispersed via rain splash as a secondary 
source of inoculum (Banke & McDonald 2005, Fones & Gurr 2015, 
Tiley et al. 2018). The disease causes 5–10 % year-on-year losses 
in France, Germany and the UK with direct costs ranging between 
120 and 700 million euros, and up to 50 % yield losses during 
severe epidemics, with fungicide control costs exceeding 1 billion 
euros (70 % of all fungicides) per year in Europe alone (Eyal et al. 
1973, 1987, Fones & Gurr 2015, Torriani et al. 2015). High relative 
humidity, frequency of wet days and moderate temperatures have 
important effects on the development of the disease (Berraies et al. 
2014). Weather fluctuations and farming practices may also affect 
the severity of the disease (Fones & Gurr 2015). Management 
of this disease relies mainly on the use of fungicides, but there 
is reduced sensitivity to certain classes of fungicides (Tiley et al. 
2018). Although the planting of resistant varieties is one of the most 
effective practices to alleviate yield losses, there are no wheat 
varieties fully resistant to Zy. tritici (Berraies et al. 2014, Fones 
& Gurr 2015, Tiley et al. 2018). Currently, there is no completely 
durable method for controlling Septoria tritici blotch of wheat (Tiley 
et al. 2022).

Septoria speckled leaf blotch of barley (Hordeum vulgare and 
closely related species) caused by Zymoseptoria passerinii is one 
of the most common foliar diseases in Northern Europe, North 
America, Northern Africa, Western Asia and Australia (Shearer et 
al. 1997, Mathre 1997, Cunfer & Ueng 1999, Lee & Neate 2007, 
Ware et al. 2007). This disease can cause yield losses of up to 
38 % in Minnesota and North Dakota of the United States, and 
20 % in Canada. In addition, the disease significantly reduces 
kernel weight and measured bushel weight of barley (Green & 
Bendelow 1961, Toubia-Rahme & Steffenson 1999, Ware et al. 
2007). The application of fungicides is most effective in reducing 

Fig. 103. Trends in research of Zymoseptoria in the period 2011–2021.
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disease severity, but resistant cultivars are more economical and 
environment-friendly to control the disease (Yu et al. 2010).

Research interests

There are 529 publications and 8 661 citations from 2011–2021 
in the Web of Science (Fig. 103) with the top 10 most cited 
articles listed in Table 79. Most publications focused on the 
pathogenic species, Zymoseptoria tritici (colonisation pattern, host-
pathogen interaction, population biology, genome evolution) and 
management strategies for disease control (fungicide resistance, 
disease resistance).

Disease management
Research on the control of leaf diseases caused by Zymoseptoria 
on Poaceae has been widely conducted. It is suggested that a 
related dynamically diverse combination of methods should be 
employed, which integrates cultural, chemical, biological and 
resistance breeding strategies (Torriani et al. 2015, McDonald & 
Mundt 2016, Arraiano & Brown 2017, Figueroa et al. 2018, Tiley 
et al. 2018). Disease control has relied heavily on fungicides, 
which belong to two classes, 14α-demethylase inhibitors (azole; 
DMI) and succinate dehydrogenase inhibitors (carboxamide; 
SDHI) (Jørgensen et al. 2018, Heick et al. 2020b). However, due 
to the rapid adaptation of Zymoseptoria populations, resistance to 
fungicides has evolved (Figueroa et al. 2018, Heick et al. 2020a). 
The evolution of fungicide resistance is mainly determined at 
the regional scale, and spatiotemporal patterns of resistance 
evolutions have been reported primarily in Europe (Wieczorek et 
al. 2015, Heick et al. 2017, Garnault et al. 2020, Mäe et al. 2020). 
The use of a mixture consisting of different active, cross-resistant 
chemicals is recommended to avoid resistance to fungicides (Heick 
et al. 2020b). Major specific resistance genes which act on gene-
for-gene relationships, and numerous minor-effect resistance 
quantitative trait loci have been mapped genetically (Yu et al. 2010, 
Brown et al. 2015, Saintenac et al. 2018, Tiley et al. 2018). Great 

efforts to study the mechanisms of genetic resistance would support 
the development of a new breeding strategy, which places prior 
emphasis on accumulating independent sources of quantitative 
resistance (McDonald & Mundt 2016).

Authors: Q. Chen and L. Cai

74. Phellinus Quél., Enchir. Fung. (Paris): 172. 1886.

Type species: Phellinus igniarius (L.: Fr.) Quél.

Classification: Basidiomycota, Agaricomycotina, Agaricomycetes, 
Hymenochaetales, Hymenochaetaceae.

Background

The genus Phellinus was established by L. Quelét in 1886, with 
Phe. igniarius as the type species. Several hundred species are 
acknowledged within Phellinus s. lat. and associated genera 
included in it (Larsen & Cobb-Poulle 1990, Index Fungorum 2022). 
The generic concept of Phellinus s. lat. was traditionally based 
on characters of the hyphal system (dimitic) and consistency of 
the sporocarps (perennial), but is nowadays widely accepted as 
being artificial (Fiasson & Niemelä 1984, Dai 1995, 1999, Hansen 
& Knudsen 1997, Wagner & Fischer 2001, 2002). Numerous 
characters derived from morphology, anatomy, sexuality, nuclear 
behaviour and ecology suggest Phellinus s. lat. to be heterogeneous 
(Murrill 1905, 1907, Fiasson & Niemelä 1984, Fischer 1996, Hansen 
& Knudsen 1997). In addition, extensive molecular data, based on 
ITS and LSU sequences and discussed in relation to the characters 
above, were generated subsequently. As a result, Phellinus s. lat. 
has been split into several smaller, more natural genera (Wagner 
& Fischer 2001, 2002, Larsson et al. 2006, Dai 2010, Wu et al. 
2022). These include Phellinus s. str., Fomitiporia, Fomitiporella, 
Porodaedalea, Ochroporus, Fulvifomes, Fuscoporia, Phylloporia, 
Phellopilus, Phellinopsis, Tropicoporus, or Phellinidium. Additional 
DNA regions such as tef1 and rpb2 genes may be necessary for 

Table 79. Top 10 cited articles related to Zymoseptoria published in the period 2011–2021.
Rank Article title No. of citations References

1 The top 10 fungal pathogens in molecular plant pathology 1 769 Dean et al. (2012)
2 Finished genome of the fungal wheat pathogen Mycosphaerella graminicola reveals 

dispensome structure, chromosome plasticity, and stealth pathogenesis
360 Goodwin et al. (2011)

3 The two-speed genomes of filamentous pathogens: waltz with plants 240 Dong et al. (2015)
4 The impact of Septoria tritici Blotch disease on wheat: An EU perspective 202 Fones & Gurr (2015)
5 The evolution of fungicide resistance 200 Lucas et al. (2015)
6 Analysis of two in planta expressed LysM effector homologs from the fungus 

Mycosphaerella graminicola reveals novel functional properties and varying 
contributions to virulence on wheat

196 Marshall et al. (2011)

7 Transcriptome and metabolite profiling of the infection cycle of Zymoseptoria tritici 
on wheat reveals a biphasic interaction with plant immunity involving differential 
pathogen chromosomal contributions and a variation on the hemibiotrophic lifestyle 
definition

159 Rudd et al. (2015)

8 A review of wheat diseases-a field perspective 153 Figueroa et al. (2018)
9 The evolutionary origins of pesticide resistance 153 Hawkins et al. (2019)
10 Update on mechanisms of azole resistance in Mycosphaerella graminicola and 

implications for future control
147 Cools & Fraaije (2013)
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further refinement within species groups of Phellinus s. lat., and 
well-studied examples are Phellinus s. str. (Phe. igniarius and 
relatives; Tomšovský et al. 2010b), Fomitiporia (Phe. robustus and 
relatives; Decock et al. 2007, Amalfi et al. 2012) or Porodaedalea 
(Phe. pini and relatives; Brazee & Lindner 2013).

In the present overview, Phellinus is treated in the broad sense, 
with cross references to the smaller units when necessary. Phellinus 
s. lat. has a worldwide distribution (Gilbertson & Ryvarden 1987, 
Ryvarden & Gilbertson 1994) and species live as parasites and/or 
saprobes on a wide variety of angiosperms and/or gymnosperms. 
For instance, more than 100 species of host plants are recorded 
for Phe. igniarius in the fungal databases (Farr & Rossman 2022), 
however, entries in part are based on questionable classification 
of collections as given in the underlying literature. Species of 
Phellinus s. lat. cause a white rot, essentially degrading the wood 
components, i.e., cellulose, hemicellulose and lignin (Gilbertson & 
Ryvarden 1987). Some of the taxa play a prominent role in forest 
ecosystems, orchards as well as street and park trees (Erkillä & 
Niemelä 1986, Hansen 1979, 1986, Adaskaveg & Ogawa 1990, 
Hansen & Goheen 2000, Schmidt et al. 2011).

Sporocarps are poroid throughout, resupinate, effused-reflexed 
or pileate. To some degree, the shape of sporocarps is variable, 
however, in relation to the position on the host, it may range 
between different shapes within single species or between closely 
related species.

In general, information is still sparse on the exact geographic 
distribution and life strategies of single members of Phellinus s. 
lat. Notwithstanding the necessity of molecular-based measures, 
this is due to the following reasons: (i) occurrence of the particular 
species is limited to the vegetative stage, i.e., the mycelium living 
inside the host plant; (ii) sporocarps may be inconspicuous, for 
instance by forming crust-like layers only; and (iii) sporocarps are 
in poor condition (without spores) in relation to specific climate 
conditions, in this way hampering a proper identification.

Usually, the natural dispersal of species of Phellinus s. lat. is 
by airborne basidiospores, produced in considerable quantities 
by actively growing sporocarps (Jahn 1963, Niemelä 1972, 1975). 
Spores are the predominant source of infection. They are spread 
by wind, water, and, to a minor degree, human impact such as 
logging. For some species, a biotic vector transmission by insects 
has been discussed (Nuss 1986; see also Moyo et al. 2014). The 
main reasons for infection are the removal or loss of branches 
from adult trees (Seehann 1979). Frost cracks or pruning wounds 
also provide easy entry into exposed trees, especially in forests, 
parks and on roadsides (Erkillä & Niemelä 1986, Adaskaveg & 
Ogawa 1990). The possibility of infection with Phellinus spp. 
increases with the lifespan of the host plant (Erkillä & Niemelä 
1986). For instance, park trees are kept much longer than is usual 
in forest rotation, in this way increasing the probability of decay. 
As an exception to the above pattern, Phellinus weirii has been 
demonstrated to spread mostly by ectotrophic mycelia, growing 
from tree to tree (Wallis & Reynolds 1965, Hansen & Doheen 
2000). All species belonging to Phellinus s. lat. cause a white 
rot in the wood of affected hosts. The life strategy may be either 
parasites and/or saprophytes.

Species of Phellinus s. lat. examined to date exhibit a 
homothallic or a heterothallic, unifactorial pattern of sexuality 
(Fischer 1987, 1996, Mallett & Myrholm 1995, Wagner & Fischer 
2001). The heterokaryotic formation is reached by the fusion of 
hyphae in the contact zone between compatible single-spore 
isolates. The resulting heterokaryotic mycelium is typically, but not 
always, restricted to the contact zone. Hyphal fusions between 

incompatible isolates result in the formation of a line of demarcation 
and, apparently, the death of the fusion cells (Fischer 1987).

Ecological and economic significance

Species of Phellinus s. lat. cause diseases both in crop plants as 
well as in forests, orchards and parks.

Esca of grapevine (Vitis vinifera and Vitis spp.) and associated 
diseases: In recent decades, Grapevine Trunk Diseases (GTDs) 
have become apparent in all vine growing countries worldwide. 
As a result, a serious reduction in the longevity and productivity 
of vineyards is to be observed. The worldwide estimated annual 
loss is estimated to be more than 1.5 billion US dollars (Fontaine 
et al. 2016, Gramaje et al. 2018). Esca and associated diseases 
are caused by an array of different fungi belonging to different 
taxonomic groups such as (mitosporic) ascomycetes and 
basidiomycetes (Mugnai et al. 1999, Bertsch et al. 2013). The 
pathogens are responsible for a wide range of symptoms affecting 
leaves, berries and the wood of host plants. Once established in 
the host the disease(s) are able to persist for many years. Several 
members of Phellinus s. lat. have been confirmed as being 
associated with wood deterioration of Vitis spp. worldwide. Involved 
species within the most prominent genus, i.e., Fomitiporia (Phe. 
robustus group), include Fomitiporia mediterranea (described from 
Europe, Northern Africa and parts of Asia; Fischer 2002, 2006), 
F. polymorpha and F. ignea (North America; Fischer & Binder 
2004, Brown et al. 2019), F. australiensis (Australia; Fischer et al. 
2005), and F. capensis (South Africa; Cloete et al. 2014). Other 
species are Fomitiporella sp. (Fischer 2006), Phellinus resupinatus 
(Cloete et al. 2016), or Tropicoporus texanus (Brown et al. 2019). 
Additional taxa belonging to the Hymenochaetales and, possibly, 
Phellinus s. lat., have been demonstrated by Cloete et al. (2015) 
and Fischer & González Garcia (2015). Pathogenic significance is 
not fully resolved for most of the above taxa and it remains an open 
question to what degree they are acting as sole agents and/or in 
combination with other fungal pathogens, such as Phaeomoniella 
chlamydospora and Phaeoacremonium spp. Further studies both 
in the field and under defined greenhouse conditions are therefore 
necessary for more definite statements.

Diseases in forests and parks: Phellinus weirii and relatives cause 
laminated root rot in conifers especially in Northwestern North 
America (Larsen et al. 1994, Hansen & Goheen 2000). Members 
of the Phe. pini group (Porodaedalea) are pathogens that cause 
heartwood rot on a wide range of conifers worldwide, mostly 
affecting butts and trunks (Jahn 1963, Niemelä & Kotiranta 1982, 
Gilbertson & Ryvarden 1987, Ryvarden & Gilbertson 1994, Dai 
1999, Tomšovský et al. 2010a, b, Brazee & Lindner 2013, Wu 
et al. 2019b). Members of the Phe. igniarius group (Phellinus s. 
str.; Tomšovský et al. 2010b) such as Phe. igniarius, Phe. alni or 
Phe. tremulae occur as wound parasites/saprobes or as parasites 
in forests, orchards and park trees, where they cause extensive 
heart rot along the trunk and branches (Niemelä & Kotiranta 1982, 
Erkillä & Niemelä 1986, Adaskaveg & Ogawa 1990, Ryvarden 
& Gilbertson 1994). Control of wood decay caused by Phellinus 
spp. involves proactive measures such as cultural practices that 
prevent stress and promote adequate tree vigour for rapid wound 
healing. When possible, pruning measures should be carried out 
when inoculum (basidiospores) is low or absent. Once the tree 
has succumbed to heart rot, no cure is possible (Erkillä & Niemelä 
1986, Schmidt et al. 2012).
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Research interests

There are 731 publications and 8 392 citations between 2011 and 
2021 in the Web of Science core collection (Fig. 104), with the 
top 10 most cited articles presented in Table 80. Most articles are 
focused on “Human uses”, such as pharmacological applications, 
and plant diseases such as grapevine trunk diseases (“Esca”) and 
related disease management. Based on different modes of species 
recognition and concept, numerous studies have been performed 
aiming at a more accurate classification of the related taxa.

Human uses
Phellinus linteus (with obligate synonyms Inonotus linteus and 
Fulvifomes linteus) is a widely used medicinal mushroom in 

China (there known as “sanghuang”), Japan (“meshimakobu”) 
and Korea (“sangwhang”) for more than 2 000 years (Zhu et al. 
2008, Dai et al. 2009, Lee & Yun 2011, Chen et al. 2019c, He et 
al. 2021). Numerous studies have been conducted on this taxon 
and its relatives, with particular emphasis on medicinal properties 
and species identity. Several bioactive components such as 
polysaccharides, triterpenoids, polyphenols and furans have 
been isolated both from sporocarps and mycelium (Kozarski et 
al. 2011, Chen et al. 2019c), and are thought to be useful against 
several diseases including cancer or diabetes. Sporocarps occur 
on a variety of deciduous trees and have been demonstrated in 
East Asia, tropical America and Africa (Chen et al. 2019c). The 
correct classification of Phe. linteus and related species has been 
a constant source of discussion and its precise circumscription 

Fig. 104. Trends in research of Phellinus in the period 2011–2021.

Table 80. Top 10 cited articles related to Phellinus published in the period 2011–2021.
Rank Article title No. of citations References
1 Grapevine trunk diseases: complex and still poorly understood 292 Bertsch et al. (2013)
2 Managing grapevine trunk diseases with respect to etiology and epidemiology: 

current strategies and future prospects
187 Gramaje et al. (2018)

3 Conservation ecology of boreal polypores: A review 141 Junninen & Komonen (2011)
4 Phytotoxins produced by fungi associated with grapevine trunk diseases 140 Andolfi et al. (2011)
5 Medicinal mushrooms in prevention and control of diabetes mellitus 133 De Silva et al. (2012)
6 Styrylpyrone-class compounds from medicinal fungi Phellinus and Inonotus 

spp., and their medicinal importance
125 Lee et al. (2011)

7 Global diversity and taxonomy of the Inonotus linteus complex 
(Hymenochaetales, Basidiomycota): Sanghuangporus gen. nov., Tropicoporus 
excentrodendri and T-guanacastensis gen. et spp. nov., and 17 new 
combinations

78 Zhou et al. (2015a)

8 Species clarification for the medicinally valuable ‘sanghuang’ mushroom 63 Wu et al. (2012b)
9 Purification, characterization and antitumor activity of polysaccharides extracted 

from Phellinus igniarius mycelia
62 Li et al. (2015a)

10 Maxent modeling for predicting the potential distribution of Sanghuang, an 
important group of medicinal fungi in China

61 Yuan et al. (2015)
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and exact relationships between collections derived from different 
geographic areas remain unresolved (Tian et al. 2013b, Zhou et al. 
2015b, Han et al. 2016a).

Specimens putatively belonging to the Phe. igniarius group 
have been used by Native Americans for smoking and as a 
substitute for chewing tobacco (Blanchette 2001). In Alaska, and 
probably elsewhere in North America, the fungi were collected 
from paper birch (Betula papyrifera) trees; its use was widespread 
among Indian and Eskimo groups in Alaska (Agar & Agar 1980). 
The sporocarps were burned and the ashes were added to tobacco 
and other plant mixtures, such as cottonwood bark, for chewing. 
There is evidence that the fungus ash/cottonwood bark mixture 
was used until the 1940s (Blanchette 2001).

Disease management of grapevine trunk diseases
Control measures are variable among wine-growing regions. 
However, two main categories of control, both based on pruning 
wound protection in young and mature vines, may be distinguished 
(overviews in Bertsch et al. 2013, Fontaine et al. 2016, Gramaje et 
al. 2018). (i) Chemical treatment, for instance with a combination 
of Boscalid / Pyraclostrobin as part of a polymer suspension; 
and (ii) organic treatment using applications of Trichoderma spp. 
(Fourie et al. 2001, Halleen & Fourie 2016, Gramaje et al. 2018, 
Mondello et al. 2018a). For both types of treatment, the application 
is recommended as being timely with the winter pruning measures 
in the field. However, winter pruning wounds are susceptible for 
several weeks under field conditions (Eskalen et al. 2007, Elena 
& Luque 2016). Cultural practices such as minimum pruning or 
specific pruning techniques are thought to possibly reduce losses 
to the disease and also to inhibit its spread (Dumot et al. 2012, 
Kraus et al. 2019). No species of Phellinus s. lat. are involved 
with regard to plant material, where proactive measures such as 
hot-water treatment of plant material (usually 50 °C for 30 min) 
have been tested (Crous et al. 2001b, Fourie et al. 2001, Rooney 
& Gubler 2001, Edwards et al. 2004, Gramaje & Di Marco 2015). 
Results however remain inconclusive and may be dependent on 
the specific cultivar and overall nursery conditions (Whiting et al. 
2001, Armengol et al. 2007). In consequence, control ideas all are 
directed to delay the (re)colonisation of grapevine tissues by the 
causative fungal pathogens, including members of Phellinus s. lat.

Systematics and taxonomy, including species concepts/
recognition
Phellinus s. lat. represents a suitable field to study different modes 
of species recognition (for basic principles on speciation, species 
recognition and species concepts, see Petersen & Hughes 1999, 
Taylor et al. 2000, Kozak et al. 2011), which have been demonstrated 
in more detail in Phellinus s. str. (Niemelä 1975, Parmasto 1985, 
Mallett & Myrholm 1995, Fischer & Binder 2004, Sell 2008, Tomšovský 
et al. 2010b), the Phe. robustus group (Fomitiporia; Fischer & 
Binder 2004, Decock et al. 2007, Amalfi et al. 2010, 2012), and in 
the Phe. pini group (Porodaedalea; Fischer 1994, Tomšovský et al. 
2010a, Brazee & Lindner 2013, Wu et al. 2019a). Relationships of 
putatively conspecific collections originating from different locations 
and/or different hosts should preferably be resolved by using an 
integrative approach of different operational concepts (Taylor et 
al. 2000), including morphology and microscopy (morphological 
species recognition), mating pattern and pairing tests of single spore 
mycelia (biological species recognition) as well as molecular data, 
preferably derived from different gene regions (phylogenetic species 
recognition). Separate or incomplete application of recognition 
modes may lead to differing results concerning the status and the 

number of species, geographic distribution and host range, evident 
for instance in the treatment of the taxa next related to Phellinus 
igniarius (Niemelä 1975, Tomšovský et al. 2010b), or Fomitiporia 
punctata (Fischer 2002, Decock et al. 2007, Dai 2010, Moretti et al. 
2021, Wu et al. 2022).

Authors: M. Fischer and F.H. Behrens

75. Sporothrix Hektoen & C.F. Perkins, J. Exp. Med. 5: 80. 
1900.

Type species: Sporothrix schenckii Hektoen & C.F. Perkins

Classification: Ascomycota, Pezizomycotina, Sordariomycetes, 
Ophiostomatales, Ophiostomataceae.

Background

Sporothrix is the most important medically relevant genus in the 
order Ophiostomatales, with more than 110 species epithets listed 
in Index Fungorum (2022), and about 53 recognised species 
(Rodrigues et al. 2020). Sporothrix schenckii, a conidial relative of 
Ophiostoma, produces primary single-celled conidia in a sympodial 
manner. The hyaline conidia are usually ovoid to ellipsoid (2–3 × 
3–6 µm) and are displayed in a flower-like arrangement (“daisy-like 
bouquet”) at the tip of conidiophores. In a few species, a second 
type of conidia (sessile conidia) emerges from undifferentiated 
hyphae; they are melanised, of different shapes, such as pyriform 
and ovoid to spherical (2–4 × 2–6 µm). As is true of some of the 
onygenalean animal parasites, several Sporothrix species are 
known to develop a yeast-like state at elevated temperatures (35–
37 °C), which are cigar-shaped, round, or oval-bearing budding 
cells (3–5 × 5–10 µm). Remarkably, within a genus exhibiting an 
essentially environmental core, a few thermodimorphic species 
have emerged in recent years with the potential to infect warm-
blooded hosts. They are especially abundant in tropical and 
subtropical regions (Chakrabarti et al. 2015).

The classical species, Spo. schenckii, typifies Sporothrix 
(Hektoen & Perkins 1900). Benjamin R. Schenck published the first 
clinical case of sporotrichosis in 1898, based on the isolation of the 
agent from a patient’s finger injuries at John Hopkins Hospital in the 
United States (Schenck 1898). Schenck meticulously described the 
morphological characteristics, growth conditions, and outcomes of 
this microorganism infection. Based on these phenotypic features, 
Dr Erwin F. Smith (Department of Agriculture in Washington, USA) 
placed the fungus in Sporotrichum (Basidiomycota, Polyporales).

Hektoen & Perkins introduced the genus Sporothrix 
(Ascomycota, Ophiostomatales) in 1900, two years after Schenck’s 
isolation of the fungus. Two human cases were reported in Chicago 
during this period (Hektoen & Perkins 1900). Afterwards, the 
fungus was erroneously transferred to the genus Sporotrichum 
and named Sporotrichum schenckii for nearly 60 years (Beurmann 
& Ramond 1903). However, Sporothrix schenckii does not in 
the least resemble Sporotrichum (Carmichael 1962). Over the 
following years, Sporothrix schenckii and related species became 
the most important human and animal pathogens of the order 
Ophiostomatales (Guarro et al. 1999).

Lutz & Splendore (1907) identified a disease in rats (Mus 
decumanus) naturally infected in São Paulo’s sewage system. 
Natural infection (rat to rat) is caused by bites that introduce the 
causative agent into the host tissues. Sporothrix was isolated 
several times from the oral mucosa, and morphologically similar 
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forms were discovered in the stomach mucosa, confirming this 
transmission route (Lutz & Splendore 1907). The first case of 
zoonotic sporotrichosis (cat-human) was identified in 1952 in New 
York (Singer & Muncie 1952).

A century after discovering Sporothrix (Schenck 1898), we 
know that this genus is recognised for its remarkable genetic and 
ecological diversity, as reflected in the many different associations 
between species and their hosts or niches (Rodrigues et al. 
2018). Historically, Sporothrix taxonomy has been inconsistent 
due to extensive genetic, ecological, and biological diversities. A 
landmark in the Sporothrix classification system is the pioneering 
work of Marimon et al. that demonstrated the species boundaries 
in Sporothrix, leading to the description of Spo. brasiliensis, Spo. 
globosa, and Spo. luriei in addition to Spo. schenckii s. str. (Marimon 
et al. 2006, 2007, 2008). Recent progress eliminates dilemmas of 
paraphyly inherent in previous classifications by splitting Sporothrix 
and Ophiostoma and providing diagnoses of these genera (De 
Beer et al. 2016b). These developments were only possible with 
the introduction of a taxonomy approach incorporating phenotypic 
and genotypic features (De Beer et al. 2003, Marimon et al. 2006).

Ecological and economic significance

Sporothrix schenckii and Spo. globosa are cosmopolitan pathogens 
transmitted after a traumatic inoculation through infected plant 
debris in the field. This classical route (sapronosis) has been known 
as “rose gardener’s disease” for over a century, affecting various 
occupational groups such as farm workers and gardeners. On the 
other hand, Spo. brasiliensis, a highly virulent offshoot, is related to 
animal infections, and zoonotic transmission occurs through deep 
scratches and bites from infected cats (alternative route).

A host jump from plant to animal transmission is an emerging 
feature among the Ophiostomatales, suggesting that cat-
transmitted sporotrichosis is an occupation-independent disease. 
Therefore, animal transmission and plant origin are the two primary 
sources of clinical sporotrichosis in mammals and often escalate to 
outbreaks or epidemics.

Human sporotrichosis

The ophiostomatalean Sporothrix schenckii and related species 
are well-known human pathogens. As a classical mycosis of 
implantation, Sporothrix propagules are traumatically introduced 
into the skin. Sporotrichosis is most frequently a chronic infection 
characterised by nodular lesions of the cutaneous or subcutaneous 
tissues and adjacent lymphatics that suppurate, ulcerate, and drain 
(Orofino-Costa et al. 2017). Sporothrix frequently affects the skin 
and mucous membranes, but it may also disseminate and affect the 
joints, bones, central nervous system, and lungs in unusual clinical 
manifestations (Queiroz-Telles et al. 2017). Over three years, a 
mass infection of nearly 3 000 miners occurred in many South 
African gold mines (Pijper & Pullinger 1927). Infested mine timbers 
were found to be the source of infection, which had an environment 
held at a constant optimal temperature of about 25 ºC and relative 
humidity of nearly 100 % in the mines. Recent studies revealed 
that the fungus could proliferate in certain types of wood, but much 
remains unknown about its ecology. A few other Ophiostomatales 
associated with wood may cause sporadic infection in humans, and 
they are embedded in the Sporothrix pallida complex (e.g., Spo. 
chilensis, Spo. mexicana, and Spo. pallida s. str.) (Rodrigues et 
al. 2016). Despite limited global data, in 2017, Bongomin et al. 
estimated the annual incidence of sporotrichosis at > 40 000 cases 

globally (Bongomin et al. 2017), with highly endemic areas in Brazil, 
China, and South Africa (Lopez-Romero et al. 2011).

Feline sporotrichosis

Felines develop a wide variety of clinical sporotrichosis, from single 
lesions to disseminated systemic forms that are lethal. The most 
common manifestations seen in cats are multiple skin lesions 
with mucosal involvement, especially mucous membranes of the 
respiratory tract (Gremião et al. 2015). Skin lesions with nodules 
and ulcers, occur most frequently in the cephalic region, especially 
on the nose, and lymphangitis and lymphadenitis, may be found 
in three or more noncontiguous anatomical sites (Gremião et al. 
2017).

Sporothrix is easily transmitted from symptomatic cat to cat, 
and cat to human, through deep scratching and biting, which 
inoculates a high burden of Sporothrix yeasts (Macêdo-Sales et 
al. 2018). Phylogenetic evidence supports a recent habitat shift in 
Sporothrix from plant to cat in southeastern Brazil, leading to the 
emergence of Spo. brasiliensis, which relies on its feline host to 
spread (Rodrigues et al. 2013b). Cats are the primary vectors of 
Spo. brasiliensis transmission to humans in Brazil, but the role of 
other mammals (e.g., rats) should also be evaluated.

The metropolitan area of Rio de Janeiro (Brazil) was the epicentre 
of a long-lasting epidemic of cat-transmitted sporotrichosis, with 
more than 5 000 human cases during 1998–2015 and 5 113 feline 
cases during 1998–2018 diagnosed with an overwhelming frequency 
of Spo. brasiliensis (Gremião et al. 2020). Similar epidemics are 
emerging in the Rio Grande do Sul, São Paulo, and Espírito Santo 
(Brazil), where Spo. brasiliensis infections are prevalent. Epizooties 
caused by Spo. brasiliensis seems to be driven by urban areas with 
high feline population densities (Montenegro et al. 2014, Sanchotene 
et al. 2015, Rocha et al. 2020).

Ecology of Sporothrix species

Commensalism, mutualism, and parasitism are examples of 
relationships in Sporothrix, and they can be found worldwide 
(Rodrigues et al. 2017). Beetles are undoubtedly an essential 
mode of dispersal for environmental Sporothrix and Ophiostoma 
species (Zipfel et al. 2006, Romon et al. 2014). However, we cannot 
extrapolate this route to medically relevant Sporothrix (Rodrigues et 
al. 2017). Therefore, little is known about the ecology of medically 
relevant Sporothrix, making it difficult to predict the emergence and 
promote public health policies in the future to mitigate the spreading 
of sporotrichosis.

Pathogenic Sporothrix have been found in soil with a broad 
temperature range (6.6–28.8 °C) and a wide relative humidity 
range (37.5–99 %), but they are also associated with a variety of 
trees, flowers, rotting wood, and cane leaves, potentially aiding 
their development and spread in nature (Ramírez-Soto et al. 2018). 
Several studies linked the fungi isolated in nature and the agents 
isolated from human lesions. However, it is not unusual to find 
evidence of a lack of pathogenicity in environmental strains, as well 
as reduced fungal growth at elevated temperatures (35–40 °C) 
or even poor thermal dimorphism (Howard & Orr 1963, Ghosh et 
al. 2002, Mehta et al. 2007, Criseo & Romeo 2010, Madrid et al. 
2010, Romeo et al. 2011). Overall, these examples show that these 
historical environmental isolates are likely part of the environmental 
clade (mostly members of the Spo. pallida and Spo. stenoceras 
complexes). Therefore, it is essential to use molecular diagnostic 
tools to correctly speciate Sporothrix present in the environment 
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(Criseo & Romeo 2010, Rodrigues et al. 2015a). Robust ecological 
surveys are needed to uncover the elements related to Sporothrix 
density, diversity, seasonal fluctuation, and distribution in nature 
(Rodrigues et al. 2014a).

Research interests

There are 778 publications and 8 267 citations from 2011–2021 in the 
Web of Science (Fig. 105), with the top 10 most cited articles listed in 
Table 81. Most of the publications focused on Sporothrix taxonomy 
(species boundaries and phylogenetic analysis), case reports (patient 
and diagnosis), antifungal activity, and research on host-pathogen 
interaction (cell biology and murine model of infection).

Taxonomy and phylogeny
The developments achieved following the new taxonomic 
classification in Sporothrix are fascinating. Differences among 

pathogenic Sporothrix spp. include morphological (Zhao et al. 2015), 
physiological (Fernandes et al. 2009), genetic (Sasaki et al. 2014), 
epidemiological (Rodrigues et al. 2013b), serological (Rodrigues et 
al. 2015b), and virulence traits (Fernandes et al. 2013), as well as 
varying susceptibility to antifungals (Rodrigues et al. 2014b, Brilhante 
et al. 2016), among other biological aspects. As it is a diverse genus, 
studies involving the biology of the fungus and genetic diversity 
should include, whenever possible, representatives of the clinical and 
environmental clades. This will undoubtedly bring uplifting answers to 
understand the drivers of the emergence of Sporothrix.

Marimon et al. (2006) revealed that Cal is a strong candidate 
for species delimitation in Sporothrix along with tub and tef1. The 
ITS regions in the rDNA (ITS1+5.8S+ITS2) work as a primary 
barcoding marker, capable of recognising species embedded in the 
clinical clade (Zhou et al. 2014). The use of a consilient taxonomy 
approach to identify Sporothrix species is mandatory (Rodrigues 
et al. 2013a).

Fig. 105. Trends in research of Sporothrix in the period 2011–2021.

Table 81. Top 10 cited articles related to Sporothrix published in the period 2011–2021.
Rank Article title No. of citations References
1 Sporothrix schenckii and sporotrichosis 289 Barros et al. (2011)
2 Global epidemiology of sporotrichosis 221 Chakrabarti et al. (2015)
3 Phylogenetic analysis reveals a high prevalence of Sporothrix brasiliensis in 

feline sporotrichosis outbreaks.
154 Rodrigues et al. (2013b)

4 Zoonotic epidemic of sporotrichosis: Cat to human transmission 122 Gremião et al. (2017)
5 Sporothrix schenckii complex and sporotrichosis, an emerging health problem 115 Lopez-Romero et al. (2011)
6 The divorce of Sporothrix and Ophiostoma: solution to a problematic relationship 113 De Beer et al. (2016a)
7 Neglected endemic mycoses 113 Queiroz-Telles et al. (2017)
8 Phylogeography and evolutionary patterns in Sporothrix spanning more than 14 

000 human and animal case reports
112 Zhang et al. (2015)

9 Characterization of virulence profile, protein secretion and immunogenicity of 
different Sporothrix schenckii sensu stricto isolates compared with S. globosa 
and S. brasiliensis species

100 Fernandes et al. (2013)

10 Emergence of pathogenicity in the Sporothrix schenckii complex 95 Rodrigues et al. (2013a)
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Epidemiology
Epidemiological data are scarce and vary from country to country 
based on case reports. Therefore, it is difficult to establish the actual 
magnitude of the disease globally. Until mid-2018, Spo. brasiliensis 
was restricted to the south and southeast of Brazil (Rodrigues et 
al. 2014c), but recently zoonotic sporotrichosis spread towards 
northeast Brazil (Rodrigues et al. 2020). Moreover, zoonotic 
sporotrichosis due to Spo. brasiliensis is spreading to neighbouring 
countries in Latin America, especially those bordering the southern 
region of Brazil (e.g., Argentina and Paraguay) (Córdoba et al. 
2018). The rise of Spo. brasiliensis is of international concern due 
to the harmful potential of Sporothrix for humans and animals.

Ongoing outbreaks and epidemics should be tracked using robust 
genetic markers. The primary markers used in epidemiological and 
genetic diversity studies include protein coding genes and the ITS 
region (Zhou et al. 2014, Zhang et al. 2015). Most epidemiological 
studies were carried out using a single marker, which may mask 
cryptic diversity in less diverse species. Markers capable of large-
scale screening polymorphisms across the genome are desirable in 
settings where hundreds of isolates are recovered during outbreaks. 
Therefore, AFLP markers and microsatellites stand out to reveal 
hidden diversity in Sporothrix (De Carvalho et al. 2020). Likewise, 
the sequencing of complete genomes will allow us to understand the 
evolution of pathogenicity in Sporothrix (Cuomo et al. 2014).

Antifungal agents
The spread of the fungus is not followed at the same pace as 
new drugs are discovered and applied to treat sporotrichosis. The 
recommended therapeutic agents are itraconazole, amphotericin 
B and its lipid formulations (invasive/disseminated disease), 
terbinafine, and fluconazole; a saturated solution of potassium 
iodide has been an alternative for lymphocutaneous/cutaneous 
infections (Barros et al. 2011, Espinel-Ingroff et al. 2017). Intrinsic 
antifungal resistance in Sporothrix has also been found, and 
studies correlating antifungal susceptibility and genetic diversity 
among etiological agents are essential to uncover isolates that are 
potentially refractory to therapy and to overcome the limitations 
of currently existing antifungal classes (Rodrigues et al. 2014b, 
Borba-Santos et al. 2015).

Author: A.M. Rodrigues

76. Macrophomina Petr., Ann. Mycol. 21(3/4): 314. 1923.

Type species: Macrophomina phaseolina (Tassi) Goid.

Classification: Ascomycota, Pezizomycotina, Dothideomycetes, 
Botryosphaeriales, Botryosphaeriaceae.

Background

Macrophomina is a cosmopolitan genus but mainly occurs in 
tropical and subtropical areas around the world (Liu et al. 2012b, 
Phillips et al. 2013, Slippers et al. 2013). The genus Macrophomina 
has been associated with damping-off, seedling blight, stem and 
charcoal rot of more than 800 plant species, such as soybean, 
common bean, corn, sorghum, cowpea, peanut and cotton (Su et 
al. 2001, Ndiaye et al. 2010, Sarr et al. 2014, Machado et al. 2019, 
Farr & Rossman 2022, Poudel et al. 2021).

Macrophomina is an asexual pycnidial fungus, without a known 
sexual morph. Charcoal rot occurs in hot and dry conditions. The 
pathogen attacks during moisture stress. Its life cycle consists of four 

phases, germination, penetration, parasitic, and saprophytic phases 
(Dhingra & Sinclair 1978). It can infect the roots of the host plant at 
the seedling stage via multiple germinating hyphae. During the short 
parasitic phase of its disease cycle, Macrophomina penetrates and 
colonises living root tissues. Necrosis of the host tissues also causes 
fragility of the root tissues and inadequate nutrient and water uptake 
by the host, leading to arrested plant growth and yield reduction 
(Anis et al. 2013, Lodha & Mawar 2020). Severe infections cause 
defoliation, wilting and premature seedling death due to occlusion 
of xylem vessels by penetrating hyphae which restrict nutrients and 
water uptake. The saprophytic phase of the fungus in host tissue is 
in the form of mycelia, pycnidia, and microsclerotia. Microsclerotia 
are small and black or greyish-black and produced in abundance 
on heavily infected plants. The microsclerotia germinate and are 
released into the soil during the decomposition of the host (Basandrai 
et al. 2021). They can overwinter in soil for 2–15 years (Meyer et 
al. 1974, Gupta et al. 2012a) and serve as the primary source of 
inoculum (Zveibil et al. 2012). The population of viable microsclerotia 
present in the soil is directly correlated to disease severity (Gupta 
et al. 2012a). Soil moisture content is an important factor that 
influences the survival of microsclerotia. High soil moisture and 
flooding may significantly reduce the viability of microsclerotia to a 
few weeks (Dhingra & Sinclair 1975, Pratt 2006a, Zveibil et al. 2012). 
Macrophomina can also survive as mycelium and microsclerotia in 
symptomatic seeds (Dhingra & Sinclair 1978, Gupta et al. 2012a).

Nine species have been assigned within Macrophomina, 
viz. M. euphorbiicola, M. limbalis, M. phaseoli, M. phaseolina, 
M. philippinensis, M. pseudeverniae, M. pseudophaseolina, M. 
tecta and M. vaccinia. However, M. limbalis was transferred to 
Dothiorella (as D. limbalis), M. pseudeverniae to Didymocyrtis (as 
D. pseudeverniae), while M. phaseoli and M. philippinensis were 
treated as the synonym of M. phaseolina. Thus, only five species, 
M. euphorbiicola, M. phaseolina, M. pseudophaseolina, M. tecta 
and M. vaccinii are currently accommodated within Macrophomina 
(Sarr et al. 2014, Machado et al. 2019, Zhao et al. 2019a, Poudel 
et al. 2021).

Macrophomina is characterised by brown to hyaline, septate 
mycelium with abundant production of black microsclerotia, 
and pycnidial unilocular conidiomata with papillate ostiole. 
Conidiophores are reduced to phialidic conidiogenous cells with 
a minute collarette. Conidia are aseptate, cylindrical to fusiform, 
hyaline with apical mucoid appendages when young, sometimes 
becoming dark and septate with age. Ascomata have not been 
reported (Crous et al. 2006b, Phillips et al. 2013).

Macrophomina phaseolina is the type species of the genus 
and is also the most common species. It was originally described 
from Phaseolus collected in Italy (Tassi 1901). It is a necrotrophic 
pathogen with a broad host range of nearly 900 plant species (Farr 
& Rossman 2022), many of which are economically important crops 
(Gupta et al. 2012a, Sarr et al. 2014). Macrophomina euphorbiicola 
has only been reported as the causal agent of charcoal rot on 
Ricinus communis, Jatropha gossypiifolia and sweet potato 
(Ipomoea batatas) in Brazil (Machado et al. 2019, De Mello et 
al. 2021). Macrophomina pseudophaseolina has been reported 
to cause charcoal rot disease on a few plant species, namely, 
Abelmoschus esculentus, Arachis hypogaea, Hibiscus sabdariffa, 
and Vigna unguiculata in Senegal (Sarr et al. 2014), Lens culinaris 
in Algeria (Kouadri et al. 2021), Sorgum bicolor in Australia (Poudel 
et al. 2021, 2022), Arachis hypogaea, Gossypium hirsutum, Ricinus 
communis, and associated with seed decay of Jatropha curcas in 
Brazil (Machado et al. 2019). Macrophomina tecta was isolated 
from stems of Sorghum bicolor and Vigna radiata with charcoal 
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rot symptoms in New South Wales and Queensland (Poudel et 
al. 2021, 2022) and Macrophomina vaccinii has been reported to 
cause blueberry stem blight (Zhao et al. 2019a) and stem and root 
rot of patchouli (Pogostemon cablin) in China (Fang et al. 2022).

Ecological, economic and health significance

Charcoal rot is the most economically important disease caused by 
M. phaseolina which affects many crop plants in North and South 
America, Asia, Africa and some parts of Europe (Wrather et al. 
1997). Plant hosts with the most publications with Macrophomina 
cited in the past 10 years are soybean and sunflower. Macrophomina 
phaseolina has also been reported as an opportunistic human 
pathogen. The economic importance of charcoal rot on soybean 
and sunflower as well as its role as an opportunistic human 
pathogen is detailed below.

Charcoal rot of soybean, caused by Macrophomina phaseolina, 
is one of the most important soil-borne or seed-borne pathogens 
(Su et al. 2001, Babu et al. 2007, Sarr et al. 2014). It is among the 
most destructive diseases resulting in significant losses in yield and 
seed quality (Kaur et al. 2012, Marquez et al. 2021). Symptoms 
of charcoal rot are referred to as dry-weather wilt or summer wilt 
because it often occurs when plants are under heat and drought 
stresses. These stresses can also occur in irrigated soybeans 
causing losses from 6 to 33 % in experimental plots (Mengistu et al. 
2011). The combination of stress and the presence of M. phaseolina 
caused higher yield loss on soybeans than drought alone, with the 
combined effects contributing an additional 7 % yield loss (Mengistu 
et al. 2011). In South America, charcoal rot has caused severe 
problems in soybean crops in Paraguay, where the prevalence of 
the disease was 100 % in 48 localities evaluated from April to August 
2008 (Orrego Fuente et al. 2009). In Brazil, the disease has reduced 
yields by up to 50 % where drought occurs in January (Wrather et 
al. 2010). In the USA, charcoal rot has been a problem for soybean 
farmers for many years. From 1974 to 1994, charcoal rot caused 

significant yield losses estimated at 8.54 × 105 tonnes per year in 
non-irrigated fields in the 16 southern states (Wrather et al. 2006, 
2009). The disease was ranked in the top six among economically 
important diseases in the USA from 2006–2009 (Koenning & Wrather 
2010, Wrather et al. 2010). Yield reduction due to charcoal rot in the 
top eight soybean-producing countries during 2006 was estimated at 
2.505 million metric tons (Wrather et al. 2010). Wrather & Koenning 
(2010) stated that average yield losses due to charcoal rot in the 
USA were estimated at 27 million bushels of soybeans per year from 
1996 to 2009. From 2010 to 2014, charcoal rot was nearly always 
in the top five diseases causing the most yield losses. Losses from 
charcoal rot, a disease favoured by hot and dry conditions, were 
greater in 2012 than losses caused by that disease in any other year 
(Allen et al. 2017). Information on the influence of charcoal rot on 
seed composition (protein, oil, and fatty acids) is scarce (Bellaloui et 
al. 2008, 2012, 2021).

Charcoal rot of sunflowers, caused by M. phaseolina, is also a 
significant threat to yield production (Ijaz et al. 2013, Iqbal et al. 
2014). In Pakistan, sunflower charcoal rot results in significant 
yield losses (Khan 2007). Mirza & Beg (1983) reported yield losses 
of up to 90 % due to M. phaseolina in the central and northern 
areas of Pakistan. The disease can cause a significant reduction in 
plant height, stem width and head weight (Ijaz et al. 2013) and can 
negatively influence oil production. Tewari & Arora (2014) observed 
up to 70 % reduction in oil production in salinised regions.

Opportunistic human infections can be caused by 
Macrophomina phaseolina, especially in immunosuppressed 
patients, including those receiving prophylactic antifungal 
therapy (Tan et al. 2008, Srinivasan et al. 2009, Arora et al. 
2012). As the organism is soilborne, patients may acquire the 
infection from environmental exposure. From the early 1970s, 
in immunosuppressed patients, disseminated infection with 
various fungal cultures including M. phaseolina was among the 
common problems. The major routes of infection could be soil 

Fig. 106. Trends in research of Macrophomina in the period 2011–2021.
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contamination of hands and feet and inhalation and ingestion 
of aerosolised conidia. At times, the risk of invasive infections 
is amplified by skin trauma, sinusitis, burns, and corneals by 
conquering the local host factors (Arora et al. 2012).

Research interests

There are 921 publications and 8 240 citations from 2011–2021 
in the Web of Science (Fig. 106), with the top 10 most cited 
articles listed in Table 82. Most publications focused on the use 
of nanoparticles and biocontrol agents in disease management 
strategies, and research on pathogenicity mechanisms and 
interactions, as well as taxonomy.

Disease management strategies
Several disease management strategies have been evaluated in 
recent decades, including chemical control, agronomic practices, 
biological control, plant metabolites, and elicitors of plant 
defense (Marquez et al. 2021); however, none have proved to 
be commercially reliable for treating charcoal rot. The chemical 
control of M. phaseolina is difficult since there are no systemic 
fungicides available that can successfully be taken up by the roots. 
As far as we know, no fungicides have been registered to control 
this pathogen. However, systemic and non-systemic fungicides 
(i.e., carbendazim, difenoconazole, benomyl, azoxystrobin, 
dazome) at different concentrations were evaluated in vitro and 
in vivo against M. phaseolina (Marquez et al. 2021). Due to the 
excessive use of chemical fungicides, and environmental hazards 
to humans, flora and fauna major concerns have been raised over 
the years. Uncontrolled use of chemical agents can also cause 
the development of resistance in phytopathogenic fungi against 
fungicides (Saharan et al. 2013).

In the last few decades, much research has focused on 
environmentally friendly alternative control methods including 
biological control agents (BCAs) as well as plant metabolites and 
elicitors of plant defenses (Marquez et al. 2021). Trichoderma spp. 

are effective BCAs for several soil-borne fungal plant pathogens 
including M. phaseolina (Bastakoti et al. 2017, Hyder et al. 2017). 
Bacillus and Streptomyces isolates can inhibit the growth of 
Macrophomina sp. (Gopalakrishnan et al. 2011, 2014, Kumar et al. 
2012b, Verma et al. 2015, Torres et al. 2016). Endophytic fluorescent 
Pseudomonas bacteria (Tewari & Arora 2014, 2016, Moin et al. 
2020), antagonistic and growth-promoting yeast Brettanomyces 
naardensis combined with arbuscular mycorrhizal fungi (Nafady et 
al. 2019) also showed promising results for control of charcoal rot 
on sunflower. Secondary metabolites such as terpenes, phenolics, 
nitrogen and sulphur-containing compounds, secreted by the BACs 
act as natural fungicides (Saraf et al. 2014, Zaynab et al. 2018). 
Other management strategies including cultural practices, organic 
amendments, seed treatment and genetic host resistance have 
been recommended (Gupta et al. 2012a, Siddique et al. 2021), 
however, they are limited and do not provide complete control 
against charcoal rot (Cross et al. 2012).

Marzano et al. (2016) used the metatranscriptomics approach 
to characterise fungal viromes of five major fungal pathogens 
including, M. phaseolina. They recovered 14 mycoviruses from M. 
phaseolina, including some putative novel viruses, and postulated 
that these viruses may have the potential to be used as biocontrol 
agents against their fungal hosts.

In the last few years, there has been considerable research 
interest in the use of nanoparticles due to their wide application 
potential to combat disease in agricultural systems. Synthesis 
of silver nanoparticles using green chemistry, i.e., producing 
nanoparticles using biological sources such as leaf extracts 
(Krishnaraj et al. 2012, Bahrami-Teimoori et al. 2017, Ruiz-Romero 
et al. 2018, Bernardo-Mazariegos et al. 2019), chitosan (Saharan 
et al. 2013) and cell-free filtrates of the fungus Macrophomina 
phaseolina, antagonistic and growth-promoting yeast 
Brettanomyces naardensis combined with arbuscular mycorrhizal 
fungi, were studied. These nanoparticles proved to be effective in 
vitro to inhibit the growth of fungi such as Macrophomina phaseolina 
(Krishnaraj et al. 2012, Saharan et al. 2013, Bahrami-Teimoori et 

Table 82. Top 10 cited articles related to Macrophomina published in the period 2011–2021.
Rank Article title No. of citations References
1 Bacillus strains isolated from rhizosphere showed plant growth promoting and 

antagonistic activity against phytopathogens
223 Kumar et al. (2012)

2 Towards a natural classification of Botryosphaeriales 215 Liu et al. (2012b)
3 Soybean yield loss estimates due to diseases in the United States and Ontario, 

Canada, from 2010 to 2014 
214 Allen et al. (2017)

4 Optimization for rapid synthesis of silver nanoparticles and its effect on 
phytopathogenic fungi 

202 Krishnaraj et al. (2012)

5 Synthesis of chitosan based nanoparticles and their in vitro evaluation against 
phytopathogenic fungi

159 Saharan et al. (2013)

6 Tools to kill: Genome of one of the most destructive plant pathogenic fungi 
Macrophomina phaseolina

129 Islam et al. (2012)

7 Identification of diverse mycoviruses through metatranscriptomics characterization 
of the viromes of five major fungal plant pathogens

128 Marzano et al. (2016)

8 Green synthesis of protein capped silver nanoparticles from phytopathogenic 
fungus Macrophomina phaseolina (Tassi) Goid with antimicrobial properties 
against multidrug-resistant bacteria

97 Chowdhury et al. (2014)

9 Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of 
phytopathogens

97 Saraf et al. (2014)

10 Emerging phytopathogen Macrophomina phaseolina: biology, economic 
importance and current diagnostic trends

87 Kaur et al. (2012)
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al. 2017, Jogee et al. 2017, Ruiz-Romero et al. 2018, Bernardo-
Mazariegos et al. 2019).

Pathogenicity mechanisms and interactions
The wide host range and persistence of M. phaseolina in the soil 
as microsclerotia make disease control challenging. Therefore, 
understanding the basis of the pathogenicity mechanisms as well 
as pathogen interactions with host plants is crucial for controlling 
the pathogen (Marquez et al. 2021). To better understand the 
underlying mechanisms of resistance, several functional genomic 
strategies, including proteomics and transcriptomics, have been 
performed to analyse the interactions between several cultivars of 
various host plants and M. phaseolina. Islam et al. (2012) reported 
the M. phaseolina genome, which provided a framework for the 
infection process at the cytological and molecular level and uses 
a diverse arsenal of enzymatic and toxin tools to destroy the host 
plants. Further understanding of the M. phaseolina genome-based 
plant-pathogen interactions will be instrumental in designing rational 
strategies for disease control, essential to ensuring global agricultural 
crop production and security (Islam et al. 2012, Sarr et al. 2014).

Taxonomy and phylogeny
The genus Macrophomina was assigned to Botryosphaeriaceae 
(Botryosphaeriales) with type species M. phaseolina (Crous et al. 
2006b, Liu et al. 2012b, Phillips et al. 2013). Conidia have apical 
mucous appendages early in their development, which has in the 
past led to confusion and the allocation of this species to the genus 
Tiarosporella (Von Arx 1981). Although M. phaseolina can have 
apical mucoid appendages as found in Tiarosporella (Sutton & 
Marasas 1976), it is distinguished by having percurrent proliferating 
conidiogenous cells (Phillips et al. 2013). The concatenation 
of multiple loci has been widely used for taxonomic studies of 
phytopathogenic fungi (Groenewald et al. 2013, Sarr et al. 2014). 
Sarr et al. (2014) conducted a multi-gene DNA analysis looking at 
five loci in the pathogen genome. Although they found considerable 
variation within the species, this genetic variation could not be 
correlated to host or geographic origin. Therefore, there will most 
probably be more new species to be discovered than the currently 
known five Macrophomina species.

Authors: B. Coetzee, G.J. Makhathini Mkhwanazi, L. Mostert and 
L. Zhao

77. Flammulina P. Karst., Meddeland Soc. Fauna Fl. Fenn. 
18: 62. 1891.

Type species: Flammulina velutipes (Curtis) Singer

Classification: Basidiomycota, Agaricomycotina, Agaricomycetes, 
Agaricales, Physalacriaceae.

Background

Flammulina belongs to the family Physalacriaceae (Agaricales), 
which harbours nearly 20 species mainly distributed in the Northern 
Hemisphere (Bas 1983, 1995, Redhead & Petersen 1999, Redhead 
et al. 2000, Ge et al. 2008, 2015, Wang et al. 2018e). Most species 
occur in temperate regions, although a few species, such as F. rossica, 
F. yunnanensis, and F. mexicana, have been collected from subtropical 
regions but often at higher altitudes (Redhead & Petersen 1999, 
Redhead et al. 2000, Ge et al. 2008, Ge et al. 2015). Many species of 
Flammulina sporulate during late autumn to early spring and hence are 

often called “Winter Mushroom” (Ingold 1980, Fultz 1988). All species 
are wood-decayers, growing on dead wood of Salix, Picea, Quercus, 
and Lithocarpus, among others (Bas 1983, Redhead & Petersen 1999, 
Ge et al. 2008, 2015, Wang et al. 2018e). Some species show a specific 
correlation with host plants, such as F. ononidis and F. populicola with 
their substrates of Ononis spinosa and Populus spp., respectively 
(Arnolds 1977, Redhead & Petersen 1999).

The most popular species is the edible golden needle mushroom 
(Enokitake) in East Asia, which was previously regarded as “F. 
velutipes (Curtis) Singer”. However, Wang et al. (2018h) revealed 
that “F. velutipes” in East Asia differs from the European F. velutipes 
based on morphological and molecular evidence. Similar results 
were also demonstrated in other studies (Hughes et al. 1999, 
Hughes 2000, Methven et al. 2000, Ge et al. 2008, 2015, Ripková 
et al. 2010). Therefore, Enokitake in East Asia was described as an 
independent species, F. filiformis (Wang et al. 2018e).

Like most species of Basidiomycota, Flammulina species are 
heterothallic with a tetrapolar mating system, which is different from 
species in Ascomycota (Kües 2000, Du & Yang 2021, Virágh et al. 
2021, Xie et al. 2021). Recently, genome-based studies revealed 
the structure of F. filiformis mating-type loci HD and PR (Van Peer et 
al. 2011, Wang et al. 2016h). Cross experiment indicates the HD-b 
sub-locus and PR loci are involved in compatible nuclei recognition 
and migration, while the function of the HD-a sub-locus remains 
unclear (Wang et al. 2016h). The sexual life cycle starts with the 
haploid spores developing into monokaryotic mycelia (Kües 2000, 
Virágh et al. 2021). Compatible monokaryotic mycelia may fuse and 
become dikaryotic mycelia (Kües 2000, Virágh et al. 2021). Then, 
environmental factors (nutrient, light, temperature, etc.) may trigger 
the dikaryotic mycelium to aggregate and develop into primordia, 
which then differentiate into sporocarps (Ingold 1980, Kües 2000). 
Karyogamy and meiosis will take place in the basidia within the 
hymenium, and additional mitosis results in basidiospores (Kües 
2000). In addition, both monokaryotic and dikaryotic mycelia could 
produce monokaryotic oidia to complement the asexual life cycle 
(Ingold 1980).

Ecological and economic significance

As wood-decayers, Flammulina species play an essential role 
in nutrient cycling in the ecosystem. Genome and transcriptome 
studies revealed that F. filiformis, F. rossica, F. elastica and F. 
ononidis harbour abundant lignin, cellulose, carbohydrate, and 
alcohol dehydrogenase genes and they are dynamically expressed 
in the vegetative mycelium (Park et al. 2014, 2019, Wang et al. 
2015d, Park & Kong 2018, Yu et al. 2021). This suggests the 
potential application of Flammulina species in the bioconversion 
of agro-residues, which cause serious environmental problems all 
over the world, especially in developing countries (Leifa et al. 2001, 
Harith et al. 2014, Park et al. 2014, Xie et al. 2017a, Hyde et al. 
2019a, Ibitoye et al. 2021).

Flammulina filiformis is one of the top five cultivated edible 
mushrooms in the world and is cultivated on a large scale in East 
Asia (Royse 2014). China is currently the largest producer of F. 
filiformis with more than 2.5 million tons per year (Liu et al. 2016e). 
However, the cultivation of F. filiformis requires a low temperature (≤ 
15 °C), which costs large amounts of energy, especially in summer 
(Fultz 1988, Kong et al. 2004a, Kang et al. 2013, Kim et al. 2015). 
This is also the main reason that countries in Southeast Asia need 
to import F. filiformis from China, Japan, or South Korea (Royse 
2014). Therefore, a heat-resistant strain with perfect commodity 
traits may have a potentially big market.
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Over the past 50 years, more than 100 cultivars have been 
selected for cultivation (Liu et al. 2016e, Gao et al. 2021). However, 
strain name confusion is common, which is caused by the different 
nomenclature systems used by breeders (Liu et al. 2016e). The 
same situation also exists in other edible mushrooms (Ramírez et 
al. 2001, Xiao et al. 2010, Li et al. 2019a, c). Thus, researchers 
developed multiple molecular markers aimed to identify genetically 
different strains (Palapala et al. 2002, Zhang et al. 2010, Kong et 
al. 2014b, Liu et al. 2016e, Wang et al. 2018f, Shen et al. 2020b, 
Gao et al. 2021a). Moreover, researchers further constructed the 
core germplasm of F. filiformis which includes cultivars and wild-
type strains (Liu et al. 2018c, Gao et al. 2021a). These studies 
provide a potential way to help precisely identify and choose the 
proper strains in further breeding work.

Research interests

There are 535 publications and 8 218 citations from 2011–2021 in 
the Web of Science (Fig. 107), with the top 10 most cited articles 
listed in Table 83. Most of the publications focused on bioactive 
compounds, taxonomy and phylogeny, and sporocarp development.

Bioactive compounds
Flammulina filiformis is the most popular species in this genus and 
has attracted much research on its bioactive compounds. Flammulina 
filiformis (often under the name F. velutipes) can produce abundant 
polysaccharides, sterol, terpenes, glycoproteins, norsesquiterpe 
alkaloid, thione and lectins. These compounds possess antioxidant, 
anti-tumour, immunomodulatory, and antimicrobial activity, among 
others (Ko et al. 1995, Yang et al. 2001, 2012d, Beluhan & Ranogajec 
2011, Xu et al. 2011b, Chen et al. 2012a, Patel & Goyal 2012, Reis 
et al. 2012a, El Enshasy & Hatti-Kaul 2013, Yi et al. 2013, Guo et 
al. 2015a, Kumar et al. 2015, Tao et al. 2016, Wang et al. 2016f, 
Fukushima-Sakuno 2020). Interestingly, studies revealed cultivars 
and wild-type strains have different chemical compositions, including 
sugar, fatty acid, and tocopherols profiles (Reis et al. 2012a). A wild-
type strain collected from subtropical areas in China was reported to 

have rich and specific sesquiterpenoids compared with other cultivars 
(Tao et al. 2016, Chen et al. 2020b). Recent studies of F. rossica 
revealed it contains diverse enokipodins and exopolysaccharides 
which have antimicrobial and anti-tumour activity (Tabuchi et al. 
2020). In addition, Enokitake exhibited a high umami taste and flavour 
components (Phat et al. 2016, Yang et al. 2016b). Since Flammulina 
species are widely distributed, and only F. filiformis was extensively 
studied so far, it is worth including other species/strains from different 
habitats to explore the bioactive compounds and their functions.

Taxonomy and phylogeny
Flammulina is easily characterised by its more or less yellow-brown 
pileus, yellowish lamellae, and brown to dark brown stipe densely 
covered with brown velvety hairs (Ge et al. 2008, 2015). However, 
due to morphological plasticity, species in this genus look similar to 
one another. Before the 1970s, Flammulina was thought to consist 
of a single species with a pan-northern hemisphere distribution 
(Hughes 2000). Arnolds (1977) described F. ononidis on Ononis 
spinosa from Germany. Later, Bas (1983) reported F. fennae as 
a new species based on spore shape and size and summarised 
the Flammulina species in Europe (Bas 1983, 1995). Several new 
species were recognised in North America, based on morphological 
data and mating experiments, such as F. rossica, F. populicota 
and F. elastica (Petersen et al. 1999, Redhead & Petersen 1999, 
Redhead et al. 2000). Over the past 10 years, researchers 
discovered several new species based on molecular phylogeny and 
morphological data, indicating that East Asia is a biodiversity centre 
for Flammulina. They found the pileipellis structure is important in 
species delimitation in this genus and declared the golden needle 
mushroom (Enokitake) an independent species, named F. filiformis, 
which is different from F. velutipes (Wang et al. 2018e). Future 
phylogenomic studies may well elucidate the origin and evolution 
of the genus.

Sporocarp development
Based on morphological study, researchers described cell number 
variation, cell differentiation, and programmed cell death during 

Fig. 107. Trends in research of Flammulina in the period 2011–2021.
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sporocarp development, and also investigated light/dark influence 
on cap expansion and stipe elongation (Aschan & Norkrans 
1953, Aschan-Åberg 1960, Bevan & Kemp 1958, Sakamoto et al. 
2004). Besides the development of molecular biology, researchers 
identified hydrophobin, chitin deacetylase, expansin, and other 
sporocarp-specific genes in F. filiformis (Ando et al. 2001, Yamada 
et al. 2005, 2008, Sakamoto et al. 2007, Fang et al. 2014). In 
recent years, RNAseq-based studies uncovered a large number 
of sporocarp-specific genes related to sexual development, water 
absorption, stipe elongation, basidium formation, and sporulation, 
among others (Park et al. 2014, Yan et al. 2019a, Liu et al. 2020a). 
Interestingly, most of the sporocarp developmental genes showed 
conserved expression patterns among other mushroom-forming 
fungi (Liu et al. 2020a, Merényi et al. 2020). For some important 
genes, researchers performed RNAi approaches to further 
elucidate their roles in sporocarp formation (Tao et al. 2019, Wu 
et al. 2019d, 2020b, Meng et al. 2021). The low-temperature 
sporulation property drove researchers to investigate its heat/
cold response from morphological, chemical, protein, and gene 
expression levels (Ko et al. 2007, Liu et al. 2016b, Liu et al. 2017c, 
Liu et al. 2020a). The above studies uncovered several important 
genes involved in sporocarp development. However, the difficulty 
with gene manipulation in mushroom-forming fungi hindered further 
understanding of these gene functions. Currently, the CRISPR/Cas9 
gene-editing tool is widely used in model organisms. Therefore, 
building the CRISPR/Cas9 system in Flammulina species to further 
investigate the gene function should be the future perspective.

Authors: X.B. Liu and Z.L. Yang

78. Pseudogymnoascus Raillo, Zentralbl. Bakteriol. 2. Abt. 
78: 520. 1929.

Type species: Pseudogymnoascus roseus Raillo

Classification: Ascomycota, Pezizomycotina, Leotiomycetes, 
Thelebolales, Pseudeurotiaceae.

Background

Pseudogymnoascus is a diverse collection of psychrophilic or 
psychrotolerant ascomycete fungi (Rice & Currah 2006). Species 
of Pseudogymnoascus are commonly isolated from soils, rotting 
wood, and plant-associated rhizospheres (Rice & Currah 2006). 
Despite the almost ubiquitous presence of gymnothecia, there is a 
relatively high diversity of other characteristics and morphological 
features, such as conidia production, ascospore morphology, 
and hyphal structure within the genus (Rice & Currah 2006). This 
diversity has resulted in the movement of several species between 
Pseudogymnoascus and its allied genera, particularly Geomyces 
and Gymnostellatospora.

Index Fungorum (2022) lists 16 distinct species within 
Pseudogymnoascus. The genus was erected in 1929 by Raillo for 
two newly described species, Ps. roseus and Ps. vinaceus (Raillo 
1929). No type species existed for the genus until 1972 when a 
taxonomic treatment resulted in the retention of three species (Ps. 
roseus, Ps. bhatti and Ps. caucasicus) and the synonymisation of 
Ps. vinaceus with Ps. roseus, and Ps. roseus designated as the 
type species (Samson 1972). Despite receiving relatively little 
research interest during the 20th century, several additional species 
were described. Pseudogymnoascus alpinus was isolated and 
described from Swiss alpine soil (Muller 1982) and Ps. dendroideus 
from Algerian cattle dung (Locquin-Linard 1982). Additionally, Rice 
and Currah isolated and described both Ps. appendiculatus and 
Ps. verrucosus from Canadian tundra soil (Rice & Currah 2006).

In 2013, the causative fungal pathogen of emerging white-nose 
syndrome (WNS) in bats was identified as a species of Geomyces 
(G. destructans), sparking a huge surge of research interest in the 
genus and its allies. Subsequent phylogenetic analyses resulted 
in the reclassification of G. destructans and several other species 
of Geomyces and Gymnostellatospora into Pseudogymnoascus 
(Minnis & Lindner 2013). This reclassification resulted in an 
additional three Pseudogymnoascus species, Ps. destructans, 
Ps. carnis, and Ps. pannorum. Increased survey efforts of bat 
hibernacula in North America, in response to the emergence 

Table 83. Top 10 cited articles related to Flammulina published in the period 2011–2021.
Rank Article title No. of citations References
1 Chemical composition and nutritional value of the most widely 

appreciated cultivated mushrooms: An inter-species comparative study
267 Reis et al. (2012a)

2 Recent developments in mushrooms as anti-cancer therapeutics: a 
review

216 Patel & Goyal (2012)

3 Recent trends in the use of natural antioxidants for meat and meat 
products

215 Kumar et al. (2015)

4 Mushroom immunomodulators: unique molecules with unlimited 
applications

165 El Enshasy & Hatti-Kaul (2013)

5 Evaluation of umami taste in mushroom extracts by chemical analysis, 
sensory evaluation, and an electronic tongue system

154 Phat et al. (2016)

6 Bioactive proteins from mushrooms 142 Xu et al. (2011c)
7 Chemical composition and non-volatile components of Croatian wild 

edible mushrooms
136 Beluhan & Ranogajec (2011)

8 Contents of lovastatin, γ-aminobutyric acid and ergothioneine in 
mushroom fruiting bodies and mycelia

120 Chen et al. (2012a)

9 Effect of hot air drying on volatile compounds of Flammulina velutipes 
detected by HS-SPME-GC-MS and electronic nose

110 Yang et al. (2016b)

10 Easy conversion of protein-rich enoki mushroom biomass to a nitrogen-
doped carbon nanomaterial as a promising metal-free catalyst for 
oxygen reduction reaction

109 Guo et al. (2015a)
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of WNS, have identified numerous undescribed isolates likely 
belonging to Pseudogymnoascus (Lorch et al. 2013a). Subsequent 
efforts have seen three of these uncharacterised isolates, Ps. 
turneri, Ps. linderni and Ps. palmeri, raised to species status (Crous 
et al. 2020a). Surveys of Chinese soils have also discovered three 
more species of Pseudogymnoascus, Ps. shaanxiensis, Ps. 
guizhouensis and Ps. sinensis (Zhang et al. 2020).

Ecological and economic significance

The ecological and economic significance of the genus 
Pseudogymnoascus is undoubtedly attributable to the emerging 
fungal pathogen Ps. destructans, which is responsible for WNS, 

one of the deadliest wildlife diseases ever observed (Blehert et al. 
2009). Initial classification placed Ps. destructans into the allied 
genus Geomyces (Gargas et al. 2009); however subsequent genetic 
analyses prompted a reclassification into Pseudogymnoascus 
(Minnis & Lindner 2013).

White-nose syndrome is a fungal skin disease which impacts 
hibernating bat species in North America (Blehert 2012). Typically, 
diseased bats exhibit visible fungal growth around the muzzle, 
lending the disease its name (Lorch et al. 2011). However, infection 
with Ps. destructans also affects the wings and fungal growth 
around the muzzle is not required for severe disease to present 
(Meteyer et al. 2012). White-nose syndrome was first observed in 
bats in a single cave in New York State in 2006 but has now been 

Fig. 108. Trends in research of Pseudogymnoascus in the period 2011–2021.

Table 84. Top 10 cited articles related to Pseudogymnoascus published in the period 2011–2021.
Rank Article title No. of citations References
1 Experimental infection of bats with Geomyces destructans causes white-nose syndrome 313 Lorch et al. (2011)
2 Inoculation of bats with European Geomyces destructans supports the novel pathogen 

hypothesis for the origin of white-nose syndrome
263 Warnecke et al. (2012)

3 Sociality, density-dependence and microclimates determine the persistence of 
populations suffering from a novel fungal disease, white-nose syndrome

235 Langwig et al. (2012)

4 Phylogenetic evaluation of Geomyces and allies reveals no close relatives of 
Pseudogymnoascus destructans, comb. nov., in bat hibernacula of eastern North America

177 Minnis & Lindner (2013)

5 Frequent arousal from hibernation linked to severity of infection and mortality in bats with 
white-nose syndrome

174 Reeder et al. (2012)

6 Temperature-dependent growth of Geomyces destructans, the fungus that causes bat 
white-nose syndrome

153 Verant et al. (2012)

7 Disease alters macroecological patterns of North American bats 151 Frick et al. (2015)
8 Pan-European distribution of white-nose syndrome fungus (Geomyces destructans) not 

associated with mass mortality
138 Puechmaille et al. (2011)

9 Host and pathogen ecology drive the seasonal dynamics of a fungal disease, white-nose 
syndrome

129 Langwig et al. (2015)

10 Investigating and managing the rapid emergence of white-nose syndrome, a novel, fatal, 
infectious disease of hibernating bats

103 Foley et al. (2011)
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documented in 33 US States and five Canadian provinces (Blehert 
et al. 2009, Lorch et al. 2016b). The emergence of WNS within a 
bat hibernaculum has the potential to cause significant population 
decline or even complete extirpation of both single species and 
multi-species communities (Langwig et al. 2015b, Ingersoll et al. 
2016, Frick et al. 2017). During its spread across continental North 
America, WNS is believed to have caused the death of millions of 
hibernating bats from several different species (Hoyt et al. 2021). 
Worryingly, still more species of hibernating bats are likely to be 
impacted by WNS as the westward spread continues (Lorch et al. 
2016a).

Research interests

Besides the conservation threat to North American bat populations 
posed by WNS, the ecosystem services provided by bats, both 
in terms of agricultural pest control and pollination, are valued at 
hundreds of millions of US dollars annually (Boyles et al. 2011). 
The potentially profound ecological and economic impacts of WNS 
have therefore spurred significant research efforts. From 2011–
2021, 566 publications which focused on Pseudogymnoascus, 
accounting for 7 988 citations, were catalogued in the Web of 
Science (Fig. 108). Most of these publications detail research into 
the ecology, pathology and mitigation of WNS (Table 84).

Ecology
To understand the emergence of WNS and to successfully predict 
how the outbreak will progress, it is critical that the ecology 
of the disease is fully understood. As such, studies aimed at 
understanding various aspects of the ecology of WNS have formed 
a significant portion of the published work regarding Ps. destructans 
and WNS. The cause of WNS was identified in 2011 (Lorch et al. 
2011). Early efforts to determine the origin of Ps. destructans led 
bat researchers around the world to discover that this fungus is 
present in bat hibernacula in both Europe and Asia (Puechmaille et 
al. 2011, Leopardi et al. 2015, Zukal et al. 2016). However, mortality 
due to WNS, as observed in North America, is absent in Europe 
and Asia (Puechmaille et al. 2011, Zukal et al. 2016). Phylogenetic 
and cross infection studies point conclusively to Ps. destructans 
being an invasive pathogen in North America (Leopardi et al. 2015).

Studies regarding the ecological niche of Ps. destructans have 
proved informative in predicting its distribution and spread; for 
example, it is known that Ps. destructans displays optimal growth 
at around 12 °C and does not proliferate at all at temperatures 
above 20 °C (Verant et al. 2012). In turn, these findings have 
informed predictive models of disease spread which suggest 
that bats are responsible for spreading the fungus between 
hibernacula, particularly during the hibernation season (Frick et al. 
2015, Langwig et al. 2015a). However, Ps. destructans is known to 
persist in the absence of bat hosts (Lorch et al. 2013b, Hoyt et al. 
2015b), and for long periods at elevated temperatures (Campbell 
et al. 2020), characteristics which have potentially profound 
impacts on its spread potential (Lorch et al. 2013b, Campbell et 
al. 2020). Given the uncertainty regarding how Ps. destructans 
is translocated across the landscape, continued surveillance of 
bat populations and the application of stringent decontamination 
protocols are key to tracking and limiting the spread of WNS both 
by bats and other mechanisms, such as humans and to making 
informed management decisions (Bernard et al. 2020).

Susceptibility to WNS varies on a species-by-species basis 
(Davy et al. 2017). Understanding which factors influence this 
variation in susceptibility is likely to be key in developing effective 

mitigation strategies against the disease. For example, the severity 
of the disease is strongly associated with climactic conditions, both 
in the region as a whole and within the individual hibernaculum 
(Langwig et al. 2012, Maher et al. 2012). Continuing preference 
for hibernating in suboptimal microclimates has been linked to 
population declines in some bat species (Hopkins et al. 2021).

Pathology
A clear understanding of how WNS impacts individual bats is vital 
foundational knowledge in pursuit of effective mitigation strategies. 
Much of the research regarding WNS, and by extension Ps. 
destructans, has investigated the pathology of acute WNS infections. 
During infections, Ps. destructans invades and disrupts the dermal 
tissues of the bat wing (Cryan et al. 2013, Warnecke et al. 2013). 
The wings constitute an enormous proportion of the body surface 
area of bats and wing skin is therefore a particularly vital organ 
in the maintenance of homeostasis, particularly during hibernation 
(Cryan et al. 2013, Verant et al. 2014). Besides locomotion, wing 
skin plays a critical role in several physiological functions such as 
thermoregulation, oxygen exchange, water and electrolyte balance 
(Cryan et al. 2013). Through disruption of the wing membranes, 
infection with Ps. destructans causes a cascade of physiological 
disturbances that causes bats with WNS to arouse more often from 
torpor during hibernation (Verant et al. 2014). This increased rate 
of arousal in turn results in dehydration and starvation due to a lack 
of available food and water, which ultimately leads to death (Cryan 
et al. 2010, Ehlman et al. 2013, Verant et al. 2014, Hayman et al. 
2017, McGuire et al. 2017). Despite the severity of WNS, effective 
immunological response appears to be limited in many bat species, 
and potentially limited to periods of arousal during hibernation, 
likely explaining the devastating impact that WNS is having on 
North American bat populations (Moore et al. 2013, Johnson et al. 
2015, Lilley et al. 2017, Pikula et al. 2017). Histological findings 
do not vary significantly between North American bats and bats 
in regions where Ps. destructans is non-invasive, however, the 
outcome of acute infections is significantly worse in North America 
(Pikula et al. 2017). Evidence suggests that this is due to selective 
pressures placed on European bats by a historical exposure to Ps. 
destructans (Harazim et al. 2018).

Mitigation
To best prevent WNS from extirpating huge numbers of hibernating 
bat populations in North America it is essential that researchers 
develop effective mitigation strategies against the disease. 
Research into mitigation strategies has formed the third major 
component of WNS research to date. The bulk of this research 
aims to interrupt or prevent the spread of Ps. destructans across 
the landscape or to reduce the impact of WNS on individual hosts 
or poulations.

To date, most research on the mitigation of disease spread has 
focussed on limiting the potential for long distance transmission 
of Ps. destructans by humans who recreate in bat hibernacula. 
Decontamination protocols using both chemicals and heat have 
been assessed and proven to be effective at inactivating Ps. 
destructans (Shelley et al. 2013). A more diverse selection of 
research has focused on limiting the impacts of WNS in individual 
bats and whole populations. Much of this work has investigated the 
potential of microbial communities which inhabit skin to inhibit the 
growth of Ps. destructans. It has been shown that both the presence 
of the fungus and species level susceptibility to WNS correlate 
with the structure of wing microbial communities in bats (Lemieux-
Labonté et al. 2017, Vanderwolf et al. 2020). This research has led 
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to the development of probiotic treatment strategies which aim to 
augment the microbiomes of susceptible host species with microbial 
taxa that can inhibit the proliferation of Ps. destructans (Hoyt et al. 
2015a, Cheng et al. 2017b, Hoyt et al. 2019). Research is also 
ongoing into the development of an orally administered vaccine 
which will be distributed throughout bat colonies by leveraging the 
social behaviours of bats such as grooming (Rocke et al. 2019).

Author: L.J. Campbell

79. Podospora Ces., Hedwigia 1(15): 103. 1856.

Type species: Podospora fimiseda (Ces. & De Not.) Niessl

Classification: Ascomycota, Pezizomycotina, Sordariomycetes, 
Sordariales, Podosporaceae.

Background

Podospora is a genus of saprotrophic fungi frequently found in 
soils, dung, decaying woody materials, and also as an endophyte in 
many different plants. The genus was introduced by Cesati (1856) 
and now belongs to the order Sordariales (accordingly Podospora 
species reproduce through the production of isolated perithecia 
coloured with greenish to black melanins). The genus has a 
complex history because the character used to define Podospora 
species (the form of the ascospore with one large darkly pigmented 
cell and an apoptosed smaller one-celled pedicel) proved to be 
highly homoplasic, hence rendering the genus polyphyletic with 
species now scattered among at least four families. Also, the 
type species of the genus has been debated (see Vogan et al. 
2021b for a review). Wang et al. (2019d) introduced a new family, 
the Podosporaceae, with three genera: Podospora with the type 
species Podospora fimicola, Cladorrhinum with the type species 
Cladorrhinum foecundissimum and Triangularia with the type 
species Triangularia bambusae. This changed the name of several 
Podospora species, including one of the best-known species 
from Podospora anserina to Triangularia anserina. Yet, biologists 
working with this model continue (and likely will continue) to call 
it Podospora anserina. This prompted synonymising Podospora, 
Cladorrhinum and Triangularia (Ament-Velásquez et al. 2020) 
and hence Podospora now encompasses all species of the family 
Podosporaceae. In a second ongoing step, it is proposed to change 
the type species of the genus from Po. fimicola (syn. Po. fimiseda) 
to Po. anserina to conserve the name of this species if further 
taxonomic modifications are made (Vogan et al. 2021b).

Presently, there are over 200 species epithets recorded 
for Podospora in Index Fungorum (2022), but many of these do 
not belong to Podospora. Ongoing taxonomic revisions (Wang 
et al. 2019b, Marin-Felix et al. 2020b, Huang et al. 2021c) 
segregate the species into other genera such as Schizothecium, 
Neoschizothecium and Pseudoechria in the Schizotheciaceae 
or Rhyphophila in the Naviculisporaceae. Similarly, pending the 
decision on the type species of the genus, many other species may 
join Podospora (including Triangularia bambusae). Because of this 
taxonomic confusion and awaiting decisions regarding the type 
genus of Podospora, we will mostly focus in this entry on the fungus 
known to the general audience as Po. anserina (Silar 2020) and 
its sibling species of the Po. anserina species complex (Boucher 
et al. 2017).

There are seven species in the Po. anserina species complex: 
Po. anserina, Po. comata, Po. pauciseta, Po. bellae-mahoneyi, 

Po. pseudoanserina, Po. pseudopauciseta and Po. pseudocomata 
(Boucher et al. 2017). All thrive on herbivore dung, and these 
species may also be isolated from soil (P. Silar, unpubl. data), 
decaying matter (see for example Griffiths 1901) in which the 
fungus is called Pleurage anserina) or as endophyte (Matasyoh 
et al. 2011). Their closest relative appears to be Cercophora 
samala, which is also coprophilous (Udagawa & Muroi 1979). 
More distant species belonging to the “Triangularia” section of the 
Podosporaceae, such as Podospora setosa and Arnium arizonense 
(syn. Podospora arizonensis), which are also coprophilous, while 
others such as Zopfiella tetraspora, Z. longicaudata, Triangularia 
bambusae, Apiosordaria backusii or A. verruculosa are soil fungi. 
The species complex has a worldwide distribution and some 
geographic separation of the different species is likely (Boucher et 
al. 2017; note that prior to the Boucher et al. paper all members of 
the species complex were thought to belong to the same species 
limiting our knowledge of the actual division of each species). 
In Western Europe, the predominant species appears to be Po. 
anserina. Podospora comata can be found in the northern part of 
Europe (it can, for example, be found fairly frequently in the north of 
the Hauts-de-France, the most northern French region, but has yet 
to be found in the Southern regions); conversely, Po. pauciseta can 
be found fairly frequently in Camargue, one of the most southern 
regions of France but has not yet been isolated from other regions 
of Europe (P. Silar, unpubl. data).

All seven species are easy to cultivate and reproduce in 
vitro and two (Po. anserina and to a lesser extent Po. comata) 
have been used as experimental models to study mechanisms 
of sexual development, prion and prion-like biology, genome 
evolution, secondary metabolite production and the degradation 
of substrates, among others. However, Po. anserina is foremost 
known as an experimental model to study ageing. Indeed, Po. 
anserina in contrast to most other fungi is characterised by a 
limited lifespan (Rizet 1953). A vigorous thallus develops from a 
germinating ascospore by hyphal tip growth. After a strain-specific 
period of a few weeks, growth slows down until it completely stops 
and the peripheral hyphae die. This phenomenon is exhibited by all 
the strains of the species complex investigated.

Ecological and economic significance

Podospora anserina and its related species (including those of the 
“Triangularia” section of the Podosporaceae) are saprotrophic and 
live usually on dead decaying plant materials, although they can 
also be found as endophytes. Few are known to cause diseases 
in humans and animals and to the best of our knowledge, none 
are known to infect plants. Indeed, there is a single documented 
case of keratitis caused by these fungi, that of Po. austroamericana 
resulting in the removal of an eye in a patient (Rameshkumar et al. 
2018). However, species more closely related to Po. fimiseda and 
known either as Papulaspora spp. or Cladorrhinum spp. can cause 
keratitis in horses and humans, albeit rarely (Shadomy & Dixon 
1989, Reed et al. 2013, Selvin et al. 2014).

Sordariales fungi, including Podospora spp., are very common 
in the soil since they are among those most frequently identified in 
metagenomic analyses (Egidi et al. 2017). Unfortunately, we do not 
have a clear idea of the contribution of Po. anserina and related 
species of the Podosporaceae to this presence, since metagenomic 
analyses usually do not go beyond the identification of the species 
as belonging to Sordariales and they have not yet implemented 
the recently newly defined families. Sordariales species appear to 
be associated with soils in good health (see for example Liu et al. 



217www.studiesinmycology.org

What are the 100 most cited fungal genera?

2019b). As stated above, Po. anserina and its related species may 
be isolated from soils. Nevertheless, they are mostly reported from 
dung from all regions around the world, on which they are very 
frequent (Mirza & Cain 1969).

Overall, Po. anserina and related species’ importance and roles 
in the ecosystems, beyond the fact that they are ubiquitous and that 
they degrade dead plant materials, are poorly known. Note that 
they are not reported as being involved in damage to artefacts such 
as books, paintings and historical monuments. Also, since few have 
impacts on humans, farm animals and crop health they have limited 
economic significance apart from providing interesting enzymes 
and secondary metabolites for industrial purposes (Matasyoh et 

al. 2011). This genus is thus best-known thanks to Po. anserina, 
which is a very effective model system, especially in studies 
involving genetic studies, which prompted an early determination 
of its genome sequence and the development of genomic tools for 
this fungus (Bidard et al. 2011, Grognet et al. 2014a, Guevara et al. 
2016, Espagne et al. 2018, Benocci et al. 2019).

Research interests

There are 368 publications and 7 890 citations from 2011–2021 in 
the Web of Science (Fig. 109), with the ten most cited articles listed 
in Table 85. The majority of the publications focused on four main 

Fig. 109. Trends in research of Podospora in the period 2011–2021.

Table 85. Top 10 cited articles related to Podospora published in the period 2011–2021.
Rank Article title No. of citations References
1 Comparative genomics yields insights into niche adaptation of plant vascular 

wilt pathogens
314 Klosterman et al. (2011)

2 Horizontal transfer of a large and highly toxic secondary metabolic gene 
cluster between fungi

160 Slot & Rokas (2011)

3 Substrate specificity and regioselectivity of fungal AA9 lytic polysaccharide 
monooxygenases secreted by Podospora anserina

159 Bennati-Granier et al. (2015)

4 Age-dependent dissociation of ATP synthase dimers and loss of inner-
membrane cristae in mitochondria

149 Daum et al. (2013)

5 Soil fungal community structure along a soil health gradient in pea fields 
examined using deep amplicon sequencing

138 Xu et al. (2012a)

6 Cello-oligosaccharide oxidation reveals differences between two lytic 
polysaccharide monooxygenases (family GH61) from Podospora anserina

125 Bey et al. (2013)

7 The mechanism of toxicity in HET-S/HET-s prion incompatibility 88 Seuring et al. (2012)
8 The [Het-s] prion of Podospora anserina and its role in heterokaryon 

incompatibility
85 Saupe (2011)

9 Podospora anserina hemicellulases potentiate the Trichoderma reesei 
secretome for saccharification of lignocellulosic biomass

76 Couturier et al. (2011)

10 Structural and biochemical analyses of glycoside hydrolase families 5 and 
26 beta-(1,4)-mannanases from Podospora anserina reveal differences 
upon manno-oligosaccharide catalysis

69 Couturier et al. (2013)
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topics: ageing, development, prion biology, and biodegradation of 
substrates.

Ageing
The basis of ageing of Po. anserina has been extensively 
investigated over more than 60 years and it has served as a model 
to unravel mechanisms of ageing and lifespan in biological systems 
from yeasts to humans. Since the ageing process is very complex 
and since various molecular pathways and many environmental 
factors impinge on lifespan, research on Po. anserina can be 
expected to provide significant novel clues in this field of biology 
in the future.

Ageing and lifespan of Po. anserina are controlled by 
environmental and genetic traits. Early investigations revealed both 
nuclear as well as extranuclear factors (Marcou 1961, Esser & Keller 
1976). Since this time, investigations of the genetic basis of ageing in 
Po. anserina developed into a model organism in ageing research in 
which mechanisms of ageing on the organismic level are extensively 
studied. These studies uncovered a key role of mitochondria and a 
network of pathways controlling the quality of mitochondria which 
strongly affects the ageing process (Scheckhuber & Osiewacz 2008, 
Osiewacz & Schürmanns 2021). From these studies, a general 
knowledge of various molecular pathways was generated (Fischer 
et al. 2012). But more relevant pathways remain to be identified. In 
addition, interactions between the different pathways remain to be 
precisely unravelled. In this kind of work, the genetic modulation of 
Po. anserina via deletion or overexpression of selected genes and 
the analysis of the impact of such interventions was and will be 
instrumental to generate a holistic view of processes involved in 
ageing. This view will also in the future be of great value to investigate 
corresponding processes in other organisms including the human 
species (Osiewacz et al. 2013).

Mitochondrial DNA reorganisation
Investigations aimed at the identification of the genetic traits 
controlling the ageing process of Po. anserina identified 
mitochondrial DNA (mtDNA) as the genetic information that 
grossly rearranges during the ageing process. A covalently closed 
circular molecule, termed plasmid-like DNA (plDNA), was found 
to accumulate during ageing in mitochondria (Stahl et al. 1978, 
Cummings et al. 1979). In juvenile cultures, this DNA corresponds 
to the first intron of the gene coding for cytochrome c oxidase 
subunit I and becomes liberated and amplified as a circular plasmid 
(Kück et al. 1981, Osiewacz & Esser 1984). This element acts as 
a genetic mutator that reintegrates at specific “homing sites” into 
the mtDNA and generates duplicated sequences between which 
reorganisation processes occur leading to the deletion of large 
parts of the mtDNA (Kück et al. 1985, Sellem et al. 1993). During 
this process, essential mitochondrial genes are deleted leading to 
defective mitochondria.

Mitochondrial dynamics and ultrastructure
During the ageing of Po. anserina mitochondria change their 
morphology from branched filamentous to punctate units. 
Molecular interventions by deletion of the PaDnm1, which controls 
mitochondrial fission, were found to lead to a strong lifespan 
extension by increasing cellular resistance to the induction 
of apoptosis (Scheckhuber et al. 2007). Another series of 
experiments uncovered age-related changes in the ultrastructure 
of mitochondria. During ageing the inner mitochondrial membrane 
reorganises. Instead of mitochondria with a tubular cristae structure, 
mitochondria from old cultures have no cristae and contain vesicles 

inside the mitochondrial matrix (Brust et al. 2010, Daum et al. 2013, 
Strobel & Osiewacz 2013). These vesicles are thought to give rise 
to a disruption of the outer mitochondrial membrane releasing 
the content of the organelle to the cytoplasm and induction of 
apoptosis. The process of reorganisation of the inner mitochondrial 
membrane is linked to the impaired formation of F1Fo-ATP-synthase 
dimers (Davies et al. 2011, Daum et al. 2013, Rampello et al. 2018, 
Warnsmann et al. 2021).

Oxidative stress and ROS scavenging
Reactive oxygen species (ROS), which are generated by metabolic 
processes (i.e., respiration), are essential signalling molecules 
in organism development. However, if their abundance passes 
threshold limits, they are dangerous and cause molecular damage 
and contribute to biological ageing. In Po. anserina this aspect 
has been demonstrated in various studies. For instance, specific 
mutants which generate reduced mitochondrial superoxide 
free radical anions live longer than the wild type (Gredilla et al. 
2006). Also, specific strains overexpressing ROS scavengers like 
carotinoids or the methyltransferase PaMTH1are protected against 
oxidative stress ( Kunstmann & Osiewacz 2008, 2009, Strobel et 
al. 2009, Chatterjee et al. 2015). In contrast, overexpression of the 
mitochondrial superoxide dismutase gene PaSod3, did not lead 
to a lifespan increase demonstrating that a fine-tuned balancing 
of cellular ROS levels is of paramount importance for unimpaired 
development and growth (Zintel et al. 2010).

Proteases
During the lifespan of every organism, damage to cellular 
components accumulates. The degradation of damaged proteins 
and the resynthesis of functional ones can be beneficial. For the 
degradation of proteins, there are specific proteases active. In Po. 
anserina overexpression of the gene coding for the mitochondrial 
matrix protease PaLON was found to increase the health span. 
In this mutant, damaged aconitase, an essential enzyme of the 
Krebs cycle, was found to be degraded (Luce & Osiewacz 2009). 
Deletion of PaLon resulted in a short-lived phenotype (Adam et 
al. 2012). Studies investigating the role of two other mitochondrial 
proteases led to unexpected results. Deletion of the gene coding 
for the mitochondrial inner membrane protease PaIAP resulted 
in a lifespan increase. The same is true for the deletion of the 
two proteins PaCLPP and PaCLPX of the PaCLPXP complex. In 
the PaIap deletion strain, it was found that at laboratory growth 
temperature the respiratory super complexes were stabilised 
leading to the observed positive effect (Weil et al. 2011). This effect 
is not observed at increased growth temperature. In the PaClpXP 
deletion strains, the induction of autophagy as the vacuolar 
degradation of cellular material is induced and compensates for the 
loss of the ablated protease (Fischer et al. 2013). Recently, high 
confident substrates of the CLPXP were identified in Po. anserina 
(Fischer et al. 2015). The demonstration of some substrate overlaps 
in Po. anserina, the plant Arabidopsis thaliana and mice suggests 
some conservation in the function of this specific mitochondrial 
protease (Huang et al. 2020) which, in humans, is linked to cancer 
and hearing loss (Gispert et al. 2013, Cole et al. 2015).

Autophagy
More recent studies found that the expression of genes coding 
for components of autophagy first increases during ageing before 
decreasing in very old age. In parallel, the expression of genes 
coding for proteins of the proteasome decreases, suggesting that 
autophagy acts as a mechanism of compensation impairment in 
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proteasomal functions (Philipp et al. 2013). The same compensation 
function of autophagy was found in cases in which other components 
(e.g., PaSOD3, PaCLPXP) are affected in function (Knuppertz & 
Osiewacz 2017, Knuppertz et al. 2017). Ablation of PaATG1, a key 
protein involved in the control of autophagy, leads to a reduced 
lifespan (Knuppertz et al. 2014) demonstrating that autophagy 
is a longevity assurance mechanism. Moreover, autophagy 
induced by low-stress conditions was found to be beneficial while 
excessive stress leads to adverse effects resulting in “autophagy-
dependent cell death” (ADCD) or “type-II programmed cell death 
(PCD)” (Kramer et al. 2016, Warnsmann et al. 2021). Autophagy, 
including selective autophagy of mitochondria (mitophagy), can be 
triggered by the addition of exogenous substances like curcumin 
and gossypol (Warnsmann & Osiewacz 2016, Warnsmann et al. 
2018), or by the increase of endogenous oxidative stress resulting 
from induced impairments in mitochondrial functions (Rampello 
et al. 2018, Warnsmann et al. 2021). The mitochondrial peptidyl 
prolyl-cis,trans-isomerase (cyclophilin D, PaCYPD) was found to 
be active in the induction of ADCD (Kramer et al. 2016).

Apoptosis
In Po. anserina an apoptosis-like form of programmed cell death, 
termed “type-I programmed cell death (PCD)”, is also active 
(Hamann et al. 2008). Generally, specific proteins (caspases, 
metacaspases) control this process (Minina et al. 2020). In 
Po. anserina, two copper-dependent metacaspases, different 
“apoptosis-inducing factors”, and cyclophilin D, are components 
involved in this form of PCD (Hamann et al. 2007, Brust et al. 
2010a, b).

Podospora anserina as a model for studying 
incompatibility, regulated cell death and amyloid prion 
propagation and structure
Podospora anserina has been developed as a model species for 
the study of heterokaryon incompatibility since the late 1940s by 
Georges Rizet and Jean Bernet in particular (Rizet 1952, Bernet 
1965). Incompatibility denotes the occurrence of a cell death 
reaction following cell fusion between two distinct strains. This 
allorecognition process is genetically controlled by so-called 
het loci. With Neurospora crassa and Cryphonectria parasitica, 
Podospora anserina is a species in which the molecular aspects 
of incompatibility have been most studied (Daskalov et al. 2017). 
Genetically, nine het loci have been identified in that species 
(het-b, c, d, e, q, r, s, v, z) and of those eight have currently 
been characterised at the molecular level (het-c, d, e, q, r, s, v, z) 
(Pinan-Lucarre et al. 2007). Genetically, incompatibility can result 
from allelic interactions (between two antagonistic alleles) or non-
allelic interactions (between alleles of distinct unlinked genes). In 
one case, however, the apparent allelic interaction (het-z1/het-z2) 
was found to be pseudo-allelic and to involve interaction between 
distinct but tightly linked genes (Heller et al. 2018). In line with 
their biological role in non-self-recognition, incompatibility genes 
in Podospora appear subjected to positive selection (diversifying 
and/or balancing selection), a situation also described in 
Neurospora crassa and Cryphonectria parasitica (Wu et al. 1998, 
Paoletti et al. 2007, Bastiaans et al. 2014, Zhao et al. 2015b, 
Milgroom et al. 2018, Ament-Velásquez et al. 2022). Some 
general trends have emerged from the characterisation of the het-
genes in Po. anserina, which at least in some instances seems 
to apply also to other species. Several domains and domain 
architectures identified in het-gene encoded proteins are also 
found in immune signalling cascades from metazoans and plants 

(Daskalov 2023). Several of the het loci encode for proteins with 
a NLR domain architecture (Espagne et al. 2002, Chevanne et al. 
2009, Saupe et al. 2015, Heller et al. 2018). Nod-like receptors 
are intracellular immune receptors controlling host defence and 
immune cell death both in animals and plants, they display a 
tripartite domain architecture associating an N-terminal effector 
domain to a central NOD (nucleotide-binding and oligomerisation 
domain) and C-terminal superstructure forming repeats (most 
often of the LRR, leucine-rich repeat type) (Jones et al. 2016). 
Filamentous fungi contain large and diversified repertoires of 
genes encoding proteins with related architectures (although the 
superstructure forming repeats are generally of the ANK, TPR 
or WD-type) and their identification as incompatibility genes has 
shown that at least some of them also have roles in non-self-
recognition and regulated cell death similar to their animal and 
plant counterparts (Dyrka et al. 2014, Daskalov et al. 2020). The 
HET domain which has a role in cell death execution (Paoletti 
& Clave 2007), was identified in many different het-genes in 
Podospora and other species (Smith et al. 2000a) and shows a 
remote homology with the TIR domain which is found in various 
immune-related proteins in plants and animals (Dyrka et al. 2014). 
Characterisation of the het-s gene of Po. anserina also led to the 
identification of a prion system in that fungus and subsequently 
of related prion-forming domain in the same species and a range 
of other filamentous fungi (Coustou et al. 1997, Saupe 2020). 
The het-s locus displays two incompatible alleles termed het-s 
and het-S. The HET-s protein can exist under a soluble state 
[designated (Het-s*)] and an infectious aggregated prion state 
(Het-s). Incompatibility is triggered when the prion form of HET-s 
interacts with the HET-S and converts its prion forming region 
to the amyloid fold (Seuring et al. 2012). This conformational 
transition in turn induces activation of the N-terminal HeLo 
domain which targets the cell membrane and induces cell death 
as a pore-forming toxin. Importantly, the HeLo domain shows 
homology to membrane-targeting cell-death execution domains 
acting in plant and animal immune cell death pathways (Daskalov 
et al. 2016, Hofmann 2020). There is another pathway that can 
lead to the activation of HET-S and involves a NLR protein termed 
NWD2 encoded by the gene immediately adjacent to het-s and 
relying on an amyloid signalling mechanism found in Podospora 
but also in many other filamentous fungi (Daskalov et al. 2015). 
The het-s system also displays an effect during the sexual cycle 
as the het-s gene was found to behave as a meiotic drive element 
leading to spore-killing (Dalstra et al. 2003), the mechanism of 
spore-killing appears based on the same mechanism as the cell 
death observed in incompatibility and to differ from the other 
spore-killing systems described in Po. anserina (Grognet et al. 
2014b, Vogan et al. 2019). As the characterisation of het-genes 
progresses, it becomes possible to propose a general scheme 
for the emergence of these allorecognition systems. What is 
currently believed is that these systems are derived by exaptation 
from genes that are part of the general fungal immune system 
and that in particular control regulated cell death in the context of 
host defense (Paoletti & Saupe 2009, Daskalov & Saupe 2015, 
Clavé et al. 2022, Daskalov 2023). The C-terminal prion forming 
domain of HET-s [HET-s(218–289)] has also become a relatively 
popular model system to study various aspects of the biophysics 
of amyloids (see for instance Wan & Stubbs 2014, Walti et al. 
2017, Terruzzi et al. 2020). In particular, the structure of the 
amyloid state of the HET-s prion forming domain solved by solid 
state NMR has arguably been the first high-resolution structure of 
a prion to be established (Wasmer et al. 2008).
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Podospora anserina as a model to study sexual 
reproduction
Podospora anserina has also been instrumental in understanding 
sexual reproduction in ascomycetes. Although it was not the first 
fungus for which the mating type loci were identified, it has been 
used to analyse the molecular and cellular pathways enabling 
sexual mating compatibility (Debuchy & Coppin 1992, Debuchy 
et al. 1993, Zickler et al. 1995, Martin et al. 2010, Ait Benkhali et 
al. 2013). This includes both the role of the mating pheromones 
(Coppin et al. 2005) and the deciphering of the network of HMG 
transcription factors, including those located at the mating type 
locus, which controls their expression (Ait Benkhali et al. 2013). 
Knowledge of mating type biology led to the construction of a 
self-fertile strain in which recessive mutations affecting zygotic 
development could easily be obtained (Xie et al. 2017b). Also, 
methods based on genetic mosaics and sporulation grafting (Silar 
2011, 2014) and powerful cytological methods (see Thompson-Coffe 
& Zickler 1994, López-Fuentes et al. 2021 as examples) enable to 
delineate finely the tissues and stages at which proteins involved 
in development are required. Overall, Po. anserina has contributed 
to uncover the roles of organelles (e.g., peroxisomes, mitochondria 
and endoplasmic reticulum; reviewed in Navarro-Espíndola et al. 
2020, see also López-Fuentes et al. 2021), homeobox transcription 
factors (Coppin et al. 2012), MAP kinase pathways (Lalucque et al. 
2012) and inositol phosphate signalling (Xie et al. 2017b) among 
others to build and to shape the sporocarps.

Podospora anserina and the study of genome evolution
Podospora anserina was among the first species for which a high-
quality nuclear genome sequence was available, at first only for the 
S mat+ homokaryon (Espagne et al. 2018) and later on for the S 
mat- one (Grognet et al. 2014a). This was in line with the fact that its 
complete 100-kb mitochondrial genome sequence was determined 
as early as the 1980s (Cummings et al. 1990). The availability 
of both sequences, in addition to boosting reverse genetic and 
enabling microarray/RNAseq analyses in the case of the nuclear 
genome sequence, triggered several studies dealing with genome 
content and evolution. Among the significant results obtained, one 
can cite the demonstration that mitochondrial group II introns are 
transposons (Sellem et al. 1993), the finding that the recombination 
inhibition in the region surrounding the mating type was not 
associated with an inversion complex (Grognet et al. 2014a), is 
labile and vary between strains of Po. anserina, but also of its sibling 
species (Hartmann et al. 2021b) or that spore killer genes shape 
the genomes (Vogan et al. 2019) and especially are likely involved 
in the propagation of massive transposon-like elements (Vogan 
et al. 2021b). Importantly, these three latter studies (Vogan et al. 
2019, 2021b, Hartmann et al. 2021a) involved the determination of 
genome sequence for several strains of Po. anserina and its sibling 
species, providing tools to further study genome evolution. A recent 
study indicated that Po. anserina populations are split into two 
reproductively isolated groups as a result of sexual incompatibility 
arising as a by-product of heterokaryon incompatibility (Ament-
Velásquez et al. 2022).

Podospora anserina and biomass degradation
Determination of Po. anserina genome sequence showed that it 
is endowed with a large repertoire of enzymes involved in plant 
biomass degradation, including several auxiliary enzymes involved 
in lignin breakdown (Espagne et al. 2018). Accordingly, this fungus 
has recently been shown to break down lignin (Dicko et al. 2020, 
Van Erven et al. 2020). Owing to this large repertoire and the ease 

of its genetic and biochemical manipulation, Po. anserina is now a 
convenient model used to study biomass breakdown (Couturier et 
al. 2016). Research on biomass breakdown with Po. anserina has 
followed three main lines of investigation. Firstly, fine biochemical 
characterisations were made on several enzymes involved 
in polysaccharide breakdown (see Couturier et al. 2016 for a 
review). Secondly, studies aimed to develop enzymatic cocktails 
to breakdown biomass were reported (Mäkelä et al. 2017). Finally, 
reverse genetic studies involving targeted deletion of several genes 
potentially involved in cellulose and/or lignin break down have 
for example evidenced the crucial role in vivo of catalases and 
multicopper oxidases for efficient biomass degradation (Bourdais 
et al. 2012, Xie et al. 2014, 2015).

Authors: P. Silar, S.J. Saupe and H.D. Osiewacz

80. Amanita Pers., Neues Mag. Bot. 1: 145. 1794.

Type species: Amanita muscaria (L.) Lam.

Classification: Basidiomycota, Agaricomycotina, Agaricomycetes, 
Agaricales, Amanitaceae.

Background

Amanita is a well-known and globally distributed basidiomycete 
genus encompassing species producing mostly epigeous, 
ballistosporic, or in rare cases hypogeous statismosporic 
sporocarps. Approximately 1 600 taxa are registered in Index 
Fungorum (2022), about 600 of which are thought to be good 
species (Cui et al. 2018, Yang et al. 2018c). Although the genus is 
phenotypically diverse, the majority of species produce stipitate and 
pallid-spored basidiocarps with a schizohymenial ontogeny, with 
basidiocarps typically emerging from an ephemeral universal veil, 
the remnants of which are usually preserved at the base of the stipe 
in the form of a discrete “volva”. However, the universal veil can be 
adnate in some species leaving no obvious volva at the base, while 
a handful of taxa produce sequestrate or non-stipitate cleistocarpic 
basidiocarps. Microscopically, species are characterised by 
bilateral lamellar trama, hyaline basidiospores, and clavate or long-
clavate (acrophysalidic) cells in the tissue, usually more prominent 
in the stipe trama (Bas 1969, Yang & Oberwinkler 1999, Tulloss et 
al. 2016, Cui et al. 2018, Yang et al. 2018c).

Most species of the genus are symbiotic, forming 
ectomycorrhizal (EcM) associations with a wide range of trees and 
shrubs, mostly members of the Betulaceae, Fagaceae, Myrtaceae, 
Nothofagaceae and Pinaceae (Cripps & Miller 1995, Yang et al. 
2000, Neville & Poumarat 2004, Tedersoo et al. 2010a, Wolfe et 
al. 2012b, Cui et al. 2018, Hyde et al. 2018b). Quercus and certain 
members of Pinaceae, in particular, are important hosts (Tulloss 
2005). Some taxa are known from Arctic and Alpine dwarf-shrub 
(Rosaceae, Salicaceae) ecosystems (Gulden et al. 1985, Watling 
1985, 1987, Knudsen & Borgen 1987, Hutchison et al. 1988, Cripps 
& Horak 2010), while others, especially in the Mediterranean region, 
are broadly or strictly associated with shrubs of the Cistaceae 
family such as Cistus, Halimium and Helianthemum (Comandini et 
al. 2006, Loizides 2016, Vizzini et al. 2016, Leonardi et al. 2020). 
In sect. Lepidella (subg. Lepidella), on the other hand, species like 
Am. pruittii, Am. thiersii, or Am. vittadinii, are putative saprotrophs 
and grow without the presence of an obvious host (Wolfe et al. 
2012a, b, Redhead et al. 2016, Tulloss et al. 2016, Vizzini et al. 
2017). While some species like Am. phalloides show considerable 
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ecological plasticity with a transcontinental distribution and an 
invasive potential (Pringle & Vellinga 2006, Wolfe et al. 2009), other 
species-aggregates like Am. caesaria s. lat. or Am. muscaria s. lat., 
encompass several regionally endemic cryptic lineages with highly 
specific ecological niches (Geml et al. 2006, Sánchez-Ramírez et 
al. 2015). Most of these lineages appear to be climatic refugia that 
formed as a result of fragmentation and geographic isolation of the 
ancestral populations, formed by the dramatic climate fluctuations 
in the late Tertiary and Quaternary (Geml et al. 2008, Sánchez-
Ramírez et al. 2015).

With the advent of molecular phylogenetics, a great deal of 
cryptic and previously overlooked diversity has been recognised, 
and the number of described taxa in the genus has significantly 
increased (Wartchow et al. 2009, Cho et al. 2015, Hosen et al. 
2015, Wartchow & Cortez 2016, Truong et al. 2017, Cui et al. 
2018, Kiran et al. 2019a, b, Mighell et al. 2019, Jabeen et al. 2019). 
Especially in the species-rich sect. Vaginatae (subg. Amanita), 
large numbers of previously undescribed lineages have been 
detected, the majority of which appear to be highly regionalised 
or continentalised (Davison et al. 2015a, Malysheva & Kovalenko 
2015, Tang et al. 2015, Mehmood et al. 2016, Cui et al. 2018, 
Lambert et al. 2018, Liu et al. 2017b, Crous et al. 2018, 2020, 2021, 
Loizides et al. 2018, Thongbai et al. 2018, Hanss & Moreau 2020, 
Ševčíková et al. 2021).

Ecological and economic significance

The genus is remarkable in that it accommodates some of the 
most potently toxic fungi exemplified by the highly lethal Am. 
phalloides, but also prime edibles of economic value. Species of 
Amanita are responsible for most human poisonings and fatalities 
by fungi worldwide. Moreover, due to their psychoactive properties, 
the fly agaric (Amanita muscaria) and related species have long 
been used by humans as entheogens and occupy a central place 
in ethnomycology. According to Wasson (1968), the Soma, as 
described in the Vedic hymns, strongly resembles Am. muscaria. 

The sacralisation of the “inebriating” urine of the consumer, as well 
as the metaphorical use inspired by the red colour of the fungus, 
seem to corroborate this hypothesis. The psychoactive properties 
of Am. muscaria are now better understood from a toxicological 
perspective: inebriating, prostration, hallucinations or coma partly 
define the neurotoxic effects of this poisoning syndrome. Ibotenic 
acid and muscimol, the two compounds responsible for the 
psychoactive properties of Am. muscaria, are indeed present in 
urine (Eugster et al. 1965). Ethnographers report that its usage must 
have been widespread due to recent accounts of its entheogenic 
use by some Finno-Ugric North European populations (Saar 1991); 
after consumption of the fungus, the urine of the shaman would be 
highly esteemed for its effects. Its origins as an entheogen might 
be traced to the Indo-Iranian peoples of Eurasia, linguistically 
demonstrated by many borrowings from Uralic languages. 
Wasson (1968) detected the verbal form “Pon” which connotes 
the mushroom, the drum of the shaman, the drunkenness, which 
might be the origin of the Greek word “sphongos” and the Latin 
word “fungus” (Jacquession 2016). On this somewhat speculative 
basis, Wasson proposed the entheogenic theory of religions, later 
popularised and discussed by Lévi-Strauss (1973).

On another note, several species of the genus are edible, 
either raw or cooked. Because the most prized Amanita species 
are mostly endemic and decay quickly after picking, they are only 
sold fresh in local markets and do not contribute significantly to 
the international mushroom trade, representing only 4 % out of 
an estimated ~1 018 edible species worldwide (Pérez-Moreno 
& Martínez-Reyes 2014). For instance, the highly sought-after 
Caesar’s mushroom (Am. caesarea) is endemic to western 
Europe and the Mediterranean basin (Neville & Poumarat 2004) 
and is sold at local markets for 10–15 US dollars in Turkey (where 
its harvest was estimated at 33.365 kg in 2019), or 30–100 US 
dollars in France (Yilmaz & Zenrici 2016, NWFP 2020). Relatives 
of Am. caesarea in Asia and Australia (Am. caesareoides, Am. 
hemibapha), as well as North and Central America (Am. basii, Am. 
hayalyuy, Am. laurae, Am. yema), are all locally marketed (Ruan-

Fig. 110. Trends in research of Amanita in the period 2011–2021.
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Soto 2018b, Haro-Luna et al. 2019). In southwest Africa, Am. loosii 
is a common species of tropical forests (Miombo woodlands) where 
it is commonly consumed (Walleyn & Verbeken 1998). However, 
the most commercially important species of Amanita worldwide 
might be Am. ponderosa, a sub-hypogeous spring-fruiting fungus 
endemic to the southwest Iberian Peninsula (Europe). Locally 
known as “gurumelo”, Am. ponderosa is highly esteemed, fetching 
the highest commercial yield of a wild mushroom in southern Spain 
at 631.543 kg/year, or 11 367 776 euros (about 12.5 million US 
dollars) in the province of Huelva alone (Junta de Andalucia 2019).

Research interests

There are 685 publications and 7 672 citations from 2011–2021 
in the Web of Science (Fig. 110), with the 10 most cited articles 
listed in Table 86. The majority of the publications focused on 
the properties of chemical compounds identified from Amanita 
sporocarps (Wasser 2011, Phat et al. 2016). Betalains, a family of 
chromo-alkaloid pigments, are cited as an example of biochemical 
evolutionary convergence between Amanita muscaria (in which 
betalains are responsible for the red colour of the pileus surface), 
and plants of the Caryophyllaceae family.

Toxins and poisoning syndromes
White et al. (2018) recently proposed a revised clinical 
classification of mushroom-poisoning syndromes, in which three 
distinct syndromes are caused by species of Amanita. The species 
responsible for each syndrome belong to the same phylogenetic 
clades and corresponding sections, indicating a common 
evolutionary origin of the toxins implicated in each syndrome.

Cytotoxic poisoning — primary hepatotoxicity: Cyclopeptide 
containing species in Amanita sect. Phalloideae such as the 
transcontinental Am. phalloides, the European Am. verna, Am. 
vidua and Am. virosa, the North American Am. bisporigera and Am. 
ocreata, and the East Asian Am. exitialis and Am. fuliginea, are 
responsible for the overwhelming majority of mushroom-poisoning 
fatalities worldwide (Broussard et al. 2001, Karlson-Stiber & 
Persson 2003, Cui et al. 2018, Alvarado et al. 2022). Additional 

species including Am. amerivirosa, Am. arocheae, Am. eburnea, 
Am. elliptosperma, Am. fuligineoides, Am. hygroscopica, Am. 
longitibiale, Am. magnivelaris, Am. pallidorosea, Am. subjunquillea, 
Am. suballiacea, Am. tenuifolia and Am. virosiformis have also been 
found or are suspected to contain cyclopeptides, with the highest 
concentrations detected in Am. rimosa, up to four times higher than 
in Am. phalloides (Ammirati et al. 1977, Tulloss 1989, Tulloss et 
al. 1992, 1995, Karlson-Stiber & Persson 2003, Zhou et al. 2017d, 
Tang et al. 2016, Tulloss & Yang 2022). Although three groups of 
toxins are present, namely amatoxins, phallotoxins and virotoxins, 
the latter two seem to contribute little to poisoning. Amatoxins 
and especially α-amanitine on the other hand, are thermostable, 
rapidly absorbed through the gut, and inhibit RNA polymerase 
II, leading to disintegration of nucleoli and ultimately to massive 
hepatic central lobular cell necrosis (Fineschi 1996, Vetter 1998, 
Hallen et al. 2007, Garcia et al. 2015). Intoxication is biphasic, first 
presenting with severe gastrointestinal symptoms after a latent 
period of 8–24 h, followed by acute hepatic failure 36–48 h after 
ingestion, often accompanied by pronounced hyperbilirubinemia, 
hyperammonemia, renal failure, metabolic acidosis, hypoglycemia, 
mucosal haemorrhage, thrombocytopenia, encephalopathy and 
coma (Benjamin 1995, Santi et al. 2012, Garcia et al. 2015). The 
severity of the poisoning is dose-dependent and early onset of 
symptoms < 8 h is associated with a poor prognosis, for which 
liver transplantation should be considered (Escudié et al. 2007). 
Despite decades of research, an effective antidote remains elusive. 
Several symptomatic and supportive treatments have been tried 
(benzylpenicillin, ceftazidime, cimetidine, N-acetylcysteine, thioctic 
acid, silybin), all with questionable or suboptimal clinical efficacy 
and mortality rates remain high at 10–30 % (Enjalbert et al. 2002, 
Tong et al. 2007, Poucheret et al. 2010).

Cytotoxic poisoning — primary nephrotoxicity: Some species 
in sect. Roanokenses, including the Mediterranean Am. proxima 
and the North American Am. smithiana, are nephrotoxic (Tulloss & 
Lindgren 1992). Amanita proxima contains allenic norleucine, an 
aminohexadienoic acid (AHDA) causing early onset gastrointestinal 
symptoms, followed by delayed onset renal failure and mild 
cytolytic hepatitis (Leray et al. 1994, Ducros et al. 1995, De Haro 

Table 86. Top 10 cited articles related to Amanita published in the period 2011–2021.
Rank Article title No. of citations References
1 Current findings, future trends, and unsolved problems in studies of medicinal 

mushrooms
267 Wasser (2011)

2 Biosynthesis of betalains: yellow and violet plant pigments 168 Gandia-Herrero & Garcia-
Carmona (2013)

3 Evaluation of umami taste in mushroom extracts by chemical analysis, sensory 
evaluation, and an electronic tongue system

154 Phat et al. (2016)

4 Plant betalains: Chemistry and biochemistry 133 Khan & Giridhar (2015)
5 Invasive belowground mutualists of woody plants 113 Nunez & Dickie (2014)
6 Chemical and antioxidant properties of betalains 100 Belhadj Slimen et al. (2017)
7 The irreversible loss of a decomposition pathway marks the single origin of an 

ectomycorrhizal symbiosis
82 Wolfe (2012b)

8 Investigation and analysis of 102 mushroom poisoning cases in Southern China 
from 1994 to 2012

80 Chen et al. (2014e)

9 Community composition of root-associated fungi in a Quercus-dominated 
temperate forest: codominance of mycorrhizal and root-endophytic fungi

80 Toju et al. (2013)

10 Multi-locus phylogeny of lethal amanitas: Implications for species diversity and 
historical biogeography

77 Cai et al. (2014)
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et al. 1998, Courtin et al. 2009). Poisoning from Am. smithiana is 
similar, but there is some evidence that the toxin involved might 
not be identical (Kirchmair et al. 2011). Although renal failure is 
in most cases reversible, it is severe enough to require dialysis 
and can potentially be fatal (Saviuc & Danel 2006, West et al. 
2009). Amanita boudieri, Am. gracilior, Am. echinocephala, Am. 
neoovoidea and Am. oberwinklerana are probably also nephrotoxic 
(Kirchmair et al. 2011, Fu et al. 2017, Lee et al. 2018, Wang et al. 
2020b). Reports implicating Am. ovoidea in a number of poisonings 
(Biagi et al. 2014, Li Cavoli et al. 2019) are controversial, and its 
purported toxicity requires more thorough investigations (Riccioni 
et al. 2019, Loizides et al. 2022).

Neurotoxic poisoning — central nervous system neuroexcitatory 
mushrooms: In sect. Amanita, species in the Am. pantherina s. 
lat. and Am. muscaria s. lat. aggregates, including a number of 
undescribed or provisionally named species, as well as Am. 
ibotengutake, Am. inzengae, Am. multisquamosa and possibly Am. 
albocreata, Am. gioiosa, Am. gemmata, Am. parvipantherina, Am. 
pseudopantherina and Am. subglobosa, are neurotoxic (Cornué 
1961, Chilton & Ott 1976, Oda et al. 2002, Hiroshima et al. 2010, 
Cui et al. 2018, Vohra et al. 2021, Tulloss & Yang 2022). The 
psychoactive compounds involved are ibotenic acid and muscimol 
(isoxazoles), the former acting as a non-selective glutamate 
receptor agonist and the latter as a selective GABAA receptor 
agonist (Michelot & Melendez-Howell 2003). Symptoms appear 30 
min to 2 h after ingestion and are unpredictable. They may include 
drowsiness, nausea, sweating, salivation, vomiting, euphoria, 
confusion, lethargy, agitation, ataxia, irritability, obtundation, 
distorted time/space perception and visual/auditory hallucinations, 
but more serious symptoms like low blood pressure, prolonged 
psychosis and tonic-clonic seizures followed by coma can also 
occur (Benjamin 1992, Michelot & Melendez-Howell 2003, Satora 
et al. 2005, Brvar et al. 2006). Although fatalities are rare, regular 
use for recreational purposes might be harmful, and brain lesions 
in rodents treated with ibotenic acid and muscimol have been 
reported (Lescaudron et al. 1992).

Taxonomy and phylogeny
The systematic classification of Amanita has fluctuated over the 
years and the genus had been either arranged into infrageneric 
divisions by some authors or split into segregate genera by others 
(Gray 1821, Roze 1876, Gilbert 1940, Konrad & Maublanc 1948, 
Bas 1969, Singer 1986). A series of phylogenetic studies in recent 
years have demonstrated that the genus is monophyletic and 
subdivided into two highly supported clades, broadly corresponding 
to subgenera Amanita and Lepidella (Weiß et al. 1998, Drehmel et 
al. 1999, Moncalvo et al. 2000, 2002, Zhang et al. 2004, Wolfe et 
al. 2012b, Yang et al. 2018c). A few sequestrate and hypogeous 
taxa formerly ascribed to genera Torrendia (Bresadola 1902) 
and Amarrendia (Bougher & Lebel 2002) have also been shown 
to nest within the Amanita clade (Justo et al. 2010). Redhead et 
al. (2016) introduced the new genus Saproamanita for non-EcM 
species, a split that was contested by others (Tulloss et al. 2016, 
Yang et al. 2018c, Riccioni et al. 2019) who treated the clade as 
subgenus Lepidella. More recently, Cui et al. (2018) proposed a 
rearrangement of the genus into three subgenera and eleven 
sections based on five-locus phylogeny: subgen. Amanita, 
encompassing sections Amanita, Amarrendiae, Caesareae and 
Vaginatae; subgen. Amanitina, encompassing sections Amidella, 
Arenariae, Phalloideae, Roanokenses, Strobiliformes and 
Validae; and subgen. Lepidella encompassing section Lepidella. 
Considering phylogenetic relationships within Amanitaceae are still 

largely unresolved, but also that more than two genera and major 
nomenclatural disruptions would be needed should Amanita be 
split, it seems prudent that the three major clades are tentatively 
treated as subgenera and the taxonomic arrangement proposed by 
Cui et al. (2018) is for the time being endorsed. A phylotaxonomic 
revision of west-European Vaginatae has recently been published 
by Hanss & Moreau (2020), but the taxonomy in this challenging 
group also remains largely unresolved, especially with regard to 
seminal taxa like Am. vaginata and Am. mairei which are yet to be 
genetically characterised and epitypified.

Authors: M. Loizides, P.A. Moreau and S. Welti

81. Cercospora Fresen. ex Fuckel, Hedwigia 2(15): 133. 
1863.

Type species: Cercospora apii Fresen.

Classification: Ascomycota, Pezizomycotina, Dothideomycetes, 
Mycosphaerellales, Mycosphaerellaceae.

Background

Cercospora is one of the largest genera of plant pathogenic 
hyphomycetes (Jayawardena et al. 2020) with more than 3 000 
species epithets listed in Index Fungorum (2022), with about 700 
recognised species (Crous & Braun 2003). Species of Cercospora 
are commonly associated with leaf spots, causing disease on many 
economically important crops worldwide (Agrios 2005, To-Anun et 
al. 2011, Groenewald et al. 2013, Bakhshi et al. 2015a, 2018, Braun 
et al. 2020, Senwanna et al. 2021, Vaghefi et al. 2021). They are 
especially abundant in humid, tropical and subtropical regions of 
the world (Crous & Braun 2003, Groenewald et al. 2013, Bakhshi et 
al. 2015a, b, Nguanhom et al. 2016). Some species of Cercospora 
produce a nonspecific photosensitising perylenequinonoid toxin 
called cercosporin which enhances the virulence of the pathogen 
(Kuyama & Tamura 1957, Chen et al. 2007, Santos Rezende et 
al. 2020). Cercosporin can absorb light and converts itself to an 
excited state, which then reacts with oxygen to form both radical 
and nonradical species of activated oxygen. The activated oxygen 
then causes damage to the host plant and provides nutrients for 
fungal growth and propagation (Daub & Hangarter 1983, Daub & 
Ehrenshaft 2000, Tang et al. 2019).

Warm and wet conditions provide an ideal environment for 
disease development. The important primary source of inoculum is 
from infected residues in the field. Spores are dispersed by wind, 
rain splash and irrigation water, or mechanically by humans and 
equipment. The diseases cause necrotic lesions on leaves, flowers, 
fruits, seeds, bracts, and pedicels of the host. The symptoms 
initially formed are small water-soaked or chlorotic lesions, circular 
to angular, with or without a distinct border, mostly with red-purple 
to dark brown margins. As the disease progresses, the spots either 
stay relatively small and separate with an ashy-grey, thin, papery 
and brittle centre or individual spots enlarge and coalesce, resulting 
in leaf blights. Concentric rings may be observed. When the disease 
is severe, the leaves fall and crop yield is reduced (Crous & Braun 
2003, Westphal et al. 2006, Groenewald et al. 2013).

Cercospora was introduced by Fresenius (in Fuckel 1863) 
with pigmented conidiophores, conspicuous (thickened and 
darkened) conidiogenous loci and hyaline scolecosporous conidia 
with thickened and darkened hila (Braun et al. 2013, Bakhshi et 
al. 2015a). Comparatively, only a few sexual morphs have been 
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studied (Hyde et al. 2013, Vale et al. 2021). The first monograph 
of cercosporoid hyphomycetes was published by Chupp (1954) 
which followed a very broad generic concept. He reduced many 
cercosporoid genera to synonymy with Cercospora, and also 
used host specificity to describe and identify new species when 
they were found on different hosts (Bakhshi et al. 2015a). The 
number of Cercospora species increased rapidly to more than 
3 000 when Pollack (1987) published her annotated list of 
Cercospora names. The generic concept of Cercospora s. str. 
was continuously revised and divided into smaller generic units 
by applying a combination of characteristics including mycelia, 
conidiomatal structures, conidiophores, conidiogenous cells and 
conidia (Deighton 1967, 1973, 1976, 1990, Ellis 1971, 1976, 
Braun 1995). Crous & Braun (2003) reviewed the cercosporoid 
genera and used the structure of conidiogenous loci and hila as 
well as the absence or presence of pigmentation in conidiophores 
and conidia as the most important characters in their revision 
of Cercospora and Passalora. They recognised 659 species of 
Cercospora s. str., with a further 281 names referred to synonymy 
with Ce. apii as they were morphologically indistinguishable 
(Crous & Braun 2003). Modern accounts of Cercospora and 
allied genera based on morphological features and host data 
were published by Braun et al. (2013, 2014, 2015a, b, 2016). 
With the implementation of molecular analyses, Groenewald et 
al. (2013) conducted a comprehensive molecular examination of 
Cercospora s. str. based on a multi-locus DNA sequence dataset 
(ITS, act, cal, histone, and tef1 genes). They stated that several 
species previously referred to Ce. apii s. lat. based solely on 
morphology (Crous & Braun 2003) were separated as different 
phylogenetic species (Groenewald et al. 2013). Bakhshi et al. 
(2015b) elucidated a cercospora-like taxon to represent a new 
genus, Neocercospora, by applying the consolidated species 
concept (Quaedvlieg et al. 2014). These findings led to the 
conclusion that a polyphasic approach including multi-locus DNA 

sequences, ecology, morphology and culture characteristics are 
necessary for delimitation of Cercospora species.

Ecological and economic significance

Cercospora species cause numerous economically important plant 
diseases and three are detailed below.

Cercospora leaf spot of sugarbeet (Beta vulgaris) caused by 
Cercospora beticola is one of the most destructive and common 
foliar diseases worldwide. Infected sugarbeet results in substantial 
root yield losses and extracted sucrose from the reduction of 
photosynthetic capacity (Sheane & Teng 1992, Franc 2010). 
The disease caused 6.29 trillion US dollars in losses from yield 
and quality reduction, and higher cultural practices and disease 
management costs in 1998 in ten countries (Wrather et al. 2001, 
Secor et al. 2010). Although the disease can be partially managed 
by growing Cercospora leaf spot tolerant hybrids, crop rotation, 
and field sanitation (Shrestha et al. 2020), applications of fungicide 
are still required in most sugarbeet cultivation (Secor et al. 2010). 
However, with its high genetic variability, polycyclic nature and 
prolific sporulation, Ce. beticola is considered a high-risk pathogen 
for fungicide resistance development (Bolton et al. 2012, Shrestha 
et al. 2020). Recent molecular studies based on concatenated 
phylogenetic analyses of eight nuclear loci (ITS, actA, cmdA, 
gapdh, his3, rpb2, tef1 and tub), confirmed the presence of cryptic 
speciation within Ce. beticola, and three species Ce. americana, 
Ce. gamsiana and Ce. tecta were described within this species 
complex (Bakhshi et al. 2018, Bakhshi & Zare 2020, Vaghefi et al. 
2021).

Grey leaf spot of maize (Zea mays) caused by Cercospora zeae-
maydis and/or Ce. zeina (Crous et al. 2006a) is a perennial and 
economically damaging disease (Wise 2010). The disease may lead 

Fig. 111. Trends in research of Cercospora in the period 2011–2021.
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to severe yield losses of over 50 % in the USA and from 20–60 % in 
South Africa (Lipps 1998, Nsibo et al. 2019). High temperature and 
humidity, maize monoculture or planting of susceptible hybrids, and 
the wide use of reduced-tillage (Lipps 1998, Ward et al. 1999) are 
equally important to grey leaf spot disease development. Currently, 
the use of resistant hybrids is the most efficient, cost-effective, and 
environmentally friendly method for disease control (Lv et al. 2020).

Frogeye leaf spot of soybean (Glycine max) caused by 
Cercospora sojina is an important and common disease that infects 
leaves, stems, and pods under warm and humid conditions. It leads 
to primary yield loss from lack of photosynthesis and/or premature 
defoliation. Infected seeds may germinate poorly and the resulting 
seedlings are weak (Lin & Kelly 2018).

Apart from being pathogens of economically important plants, 
some Cercospora species have also been used as biocontrol 
agents, such as Ce. caricis used to control Cyperus rotundus 
(Cyperaceae) (Inglis et al. 2001), Ce. rodmanii used to control 
Eichhornia crassipes (Praveena & Naseema 2006, Montenegro-
Calderón et al. 2011) and Ce. resedae used to control Reseda lutea 
(Resedaceae) (Giles et al. 2002).

Research interests

There are 902 publications and 7 493 citations from 2011–2021 in 
the Web of Science (Fig. 111), with the top 10 most cited articles 
listed in Table 87. Most of the publications focused on disease 
management (fungicide resistance, disease resistance), and 
research on pathogenic Cercospora species (in vitro, cercosporin 
toxin biosynthesis, host-species interaction), as well as taxonomy.

Disease management
Disease control strategies for Cercospora leaf spot diseases 
have been extensively studied, including the laboratory/field trial 
of fungicides (Ioannidis & Karaoglanidis 2000, Laufer et al. 2020), 
breeding resistant varieties (Mechelke 2000, Wolf & Verreet 2002, 
Weiland & Koch 2004) and integration of cultural practices. Cercospora 
diseases have been effectively controlled by a combination of 
protectant (e.g., organo-tins and ditihiocarbamates) and systemic 

(e.g., quinone outside inhibitors (QoI) and demethylation inhibitors 
(DMI)) fungicides (Rosenzweig et al. 2020). However, the efficacy 
of fungicides has been continuously marred by the emergence of 
resistant strains after repeated and widespread use of the same 
fungicide classes (Giannopolitis 1978, Dixon et al. 2020, Rangel et al. 
2020). Rotating fungicides with a different mode of action have been 
implemented to suppress the selection of fungicide-resistant strains 
(Rangel et al. 2020). Studies on the inheritance of disease resistance 
controlled by quantitative trait loci will improve the efficiency of 
marker-assisted breeding (Menkir & Ayodele 2005, Du et al. 2020, 
Lv et al. 2020). Enhanced knowledge of pathogen-host interactions 
and breeding for effective host resistance cultivars, will continue to be 
important and provide a good strategy for the integrated management 
of Cercospora diseases.

Toxins
Cercosporin, an important research topic in this genus, is a non-
host-specific and light-activated phytotoxin produced by most 
Cercospora species (Daub & Ehrenshaft 2000, Tang et al. 2019, 
Santos Rezende et al. 2020). Cercosporin may enhance virulence 
(Upchurch et al. 1991). However, there are phytopathogenic 
Cercospora species that lack the ability to produce cercosporin, 
and this led to the conclusion that cercosporin is not necessary 
a pathogenicity factor (Goodwin et al. 2001, Weiland et al. 2010). 
Besides, it was reported that not only Cercospora spp. but also 
Colletotrichum and Pyricularia species have the ability to produce 
cercosporin (De Jonge et al. 2018).

Beticolins (B0 to B19) are another group of non-host-specific 
and photosensitising phytotoxins produced by Cercospora beticola 
and Ce. berteroae (Milat & Blein 1995, Goudet et al. 2000). 
Schlösser (1962) indicated that beticolins have anti-bacterial and 
phytotoxic properties. Beticolins inhibit tumoural cell growth in 
mice with an ability to form complexes with Mg2+ (Ding et al. 1996), 
interfere with H+-ATPase activity (Gomès 1996), and are able to 
form ion channels with poor ion selectivity (Goudet et al. 2000).

Taxonomy and phylogeny
According to the lack of useful morphological characters and high 
level of intraspecific variation, traditionally the identification of 

Table 87. Top 10 cited articles related to Cercospora published in the period 2011–2021.
Rank Article title No. of citations References
1 Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens 

uncovered by genome and RNA sequencing
329 De Jonge et al. (2012)

2 Xanthones from fungi, lichens, and bacteria: The natural products and their 
synthesis

271 Masters & Braese (2012)

3 Development of spectral indices for detecting and identifying plant diseases 254 Mahlein et al. (2013)
4 Species concepts in Cercospora: spotting the weeds among the roses 216 Groenewald et al. (2013)
5 A review on the main challenges in automatic plant disease identification based on 

visible range images
172 Barbedo (2016)

6 Hyperspectral imaging for small-scale analysis of symptoms caused by different 
sugar beet diseases

165 Mahlein et al. (2012)

7 Phylogenetic lineages in Pseudocercospora 133 Crous et al. (2013a)
8 The evolution of species concepts and species recognition criteria in plant 

pathogenic fungi
129 Cai et al. (2011)

9 Zymoseptoria gen. nov.: a new genus to accommodate Septoria-like species 
occurring on graminicolous hosts

126 Quaedvlieg et al. (2011)

10 Xanthone dimers: a compound family which is both common and privileged 117 Wezeman et al. (2015)
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Cercospora species has mainly relied on host taxonomy (Chupp 
1954, Ellis 1971, Crous & Braun 2003). However, as many 
Cercospora spp. are not restricted to a single host plant, host 
data should be avoided as the primary criterion for identification 
purposes (Crous & Braun 2003, Lartey et al. 2005, Groenewald et 
al. 2013, Bakhshi et al. 2015a, 2018). At the moment, multi-locus 
phylogenetic investigations combined with ecology, morphology 
and host data, is the most operational approach for the delimitation 
of Cercospora species (Groenewald et al. 2010, 2013, Bakhshi et 
al. 2018).

To date, DNA-based phylogenetic studies of Cercospora 
species have been conducted based on ITS nrDNA (Stewart et al. 
1999, Crous et al. 2000, 2009a, b, Goodwin et al. 2001) as well as 
multi-gene sequence data (Groenewald et al. 2005, 2006, 2013, 
Sharma et al. 2013a, Dianese et al. 2014, Bakhshi et al. 2015a, 
b, 2018, Shivas et al. 2015, Soares et al. 2015, Albu et al. 2016, 
Nguanhom et al. 2016, Guatimosim et al. 2017, Guillin et al. 2017, 
Bakhshi 2019, Vaghefi et al. 2021). A backbone phylogeny for 
Cercospora species based on a multi-locus (ITS, actA, cmdA, his3 
and tef1) phylogenetic investigation of a large sampling of species 
was provided by Groenewald et al. (2013). Three more genomic 
regions including gapdh, rpb2, and tub were then investigated by 
Bakhshi et al. (2018) to perform eight-gene phylogeny (ITS, actA, 
cmdA, gapdh, his3, rpb2, tef1 and tub) for Cercospora spp. Even 
though none of these genes has discriminatory power to distinguish 
all Cercospora species, Bakhshi et al. (2018) indicated that the 
gapdh locus is a promising DNA barcode for improved species 
recognition in Cercospora and provides better insight, especially 
into species complexes, thus this locus should be used in the 
concatenated alignment when molecular data from multiple gene 
loci are considered.

Cercospora taxonomy is complicated and most of the taxa in 
this genus lack ex-type cultures or sequences from type materials, 
thus it is problematic to assign existing names to the derived 
phylogenetic clades (Groenewald et al. 2013, Bakhshi et al. 2015a, 
2018). Therefore, it is necessary to recollect and epitypify the 
described taxa and amplify all the necessary genes for accurate 
species delimitation.

Authors: Y.J. Chen and M. Bakhshi

82. Lactarius Pers., Tentamen dispositionis methodicae 
Fungorum: 63. 1797.

Type species: Lactarius torminosus (Schaeff.) Pers.

Classification: Basidiomycota, Agaricomycotina, Agaricomycetes, 
Russulales, Russulaceae.

Background

Lactarius forms, together with Lactifluus and Russula, the largest 
agaricoid genera in Russulales (De Crop et al. 2021). These genera 
exhibit a high worldwide diversification. Lactarius is a well-known 
ectomycorrhizal fungus, which produces agaricoid, secotioid to 
gasteroid basidiomata (Verbeken & Nuytinck 2013), originally 
characterised by the latex exudation (Persoon 1797). Species of 
Lactarius are popularly known, mainly in the temperate and boreal 
regions, where conspicuous edible and tasty sporocarps grow.

A recent molecular multi-locus study showed that the milk cap 
species are spread among three distinct well-supported clades. 
The smallest one contains russuloid and lactarioid species and 

was recognised as a monophyletic branch proposed as a new 
genus called Multifurca. The largest, which harbours most of the 
known milk caps species, was divided into the genera Lactarius 
s. str. and Lactifluus (Buyck et al. 2008). Despite this partition, 
no synapomorphies have been satisfactorily found to distinguish 
Lactarius from Lactifluus. However, Lactarius has a tendency to 
produce a humid pileus with a zoned surface while Lactifluus has a 
dry and non-zonate one; and Lactifluus frequently has thick-walled 
elements mostly in the pileipellis, and less conspicuous spherocytes 
in hymenophoral trama (Verbeken & Nuytinck 2013). They also 
differ in geographic distribution: Lactarius is mainly distributed in 
the Northern Hemisphere, while Lactifluus has its main range in the 
tropics (Verbeken & Nuytinck 2013). 

The genus Lactarius has approximately 450 accepted species 
but at least 1 000 species are estimated (He et al. 2019b). The 
genus is formed by three well-supported clades corresponding to 
the three subgenera that are detailed below.

Lactarius subg. Lactarius (the former subg. Piperites) with 
natural distribution in temperate regions, and few representatives 
in tropical Africa (Verbeken & Walleyn 2010), but also found 
in the Southern Hemisphere related with an unintentional co-
introduction with their ectomycorrhizal host trees Pinus (Dickie et 
al. 2010, Sulzbacher et al. 2018, Silva-Filho et al. 2018, 2020). This 
subgenus is characterised by slimy to viscid or shiny pileus, with an 
often zonate surface, sometimes drier or scrobiculated, and with 
or without a hairy margin; the latex colour may range from white 
to orange, reddish, wine and greenish, often changing colour; and 
microscopically it is characterised by an ixocutis pileipellis structure 
(Verbeken & Nuytinck 2013).

Lactarius subg. Russularia is distributed in temperate regions 
and South-East Asia, from where many new species have been 
recently described (e.g., Wisitrassameewong et al. 2014, 2015). 
Species of this subgenus are recognised by orange to brick red or 
brownish basidiomata and a dry to somewhat greasy pileus, the 
latex is usually white and unchanging, and the pileipellis structure 
ranges from a trichoderm to trichopalisade with globose elements 
(Verbeken & Nuytinck 2013, Wisitrassameewong et al. 2015).

Lactarius subg. Plinthogali is dominant in temperate regions (e.g., 
Stubbe & Verbeken 2012), but is also well represented in South-East 
Asia (Le et al. 2007, Das & Chakraborty 2014, Lee et al. 2015, Das 
et al. 2017) and some taxa in Africa (Verbeken 2000). The subgenus 
is recognised by dry, velvety and dull-coloured pileus; a grey, brown 
and cream colour, pinkish or reddish discolouration of the context; 
white to yellow latex; a palisade, hymeniderm to a trichopalisade 
pileipellis structure; and highly ornamented zebroid basidiospores 
(Le et al. 2007, Stubbe & Verbeken 2012, Uniyal et al. 2018).

Ecological and economic significance

In general, the ectomycorrhizal (ECM) forest community has 
been composed of numerous fungal species belonging to families 
Amanitaceae, Russulaceae, Thelephoraceae, Boletaceae, 
Inocybaceae, and Sclerodermatacea. Among them, Lactarius 
seems to be a dominant genus in this type of ecosystems. Although 
Lactarius is treated as having an almost worldwide distribution, it 
is more diverse in the temperate-zone ecosystems (Verbeken & 
Nuytinck 2013). It occurs in forests of arctic tundra and boreal 
forest (Geml et al. 2009), Mediterranean shrubland (Nuytinck et al. 
2004), as well as tropical and subtropical Africa (Verbeken & Buyck 
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2002, Riviere et al. 2007), tropical Asia (Watling et al. 2002, Le et 
al. 2007, Stubbe et al. 2007, 2008, Wisitrassameewong et al. 2014, 
2015), and mesoamerican tropical forests (Lamus et al. 2012, 
Herrera et al. 2018). This genus is associated with many different 
tree species belonging to Abies, Alnus, Betula, Castanopsis, Larix, 
Lithocarpus, Pinus, Pseudotsuga, Quercus, Tsuga, among others 
(Nuytinck & Verbeken 2005, Nuytinck & Ammirati 2014, Desjardin 
et al. 2015, Wang 2016). Some species have a wide host range 
while others are very host-specific (Nuythink & Verbeken 2005, 
Nuytinck et al. 2004, Comandini et al. 2006).

Wild mushrooms are important components in the human diet 
(Voces et al. 2012), and some Lactarius species (mainly La. sect. 
Deliciosi) are the most popular edible mushrooms in North America, 

Europe and Asia, where they are abundant (Boa 2004, Voces et al. 
2012). Edible Lactarius are considered mushrooms of good quality 
and excellent flavour and a good source of protein, fibre, vitamins 
and minerals (Barros et al. 2007, Kalač 2009). Furthermore, they 
contain nutritional organoleptic and medicinal characteristics 
(Kalač 2009, Joshi et al. 2013). Species of Lactarius have great 
interest due to containing a large diversity of compounds with a 
wide range of nutritional and health benefits, such as stimulation 
of the immune system, providing an anticancer function, control of 
lipids in humans and antioxidant activity (Kalač 2009, Ferreira et 
al. 2013, Joshi et al. 2013). A recent review of the world’s edible 
mushroom species listed 87 edible Lactarius species (Li et al. 
2020a) from approximately 40 countries (Boa 2004).

Fig. 112. Trends in research of Lactarius in the period 2011–2021.

Table 88. Top 10 cited articles related to Lactarius published in the period 2011–2021.
Rank Article title No. of citations References
1 Antioxidant properties of phenolic compounds occurring in edible mushrooms 250 Palacios et al. (2011)
2 Recent developments in mushrooms as anti-cancer therapeutics: a review 216 Patel & Goyal (2012)
3 An arctic community of symbiotic fungi assembled by long-distance dispersers: 

phylogenetic diversity of ectomycorrhizal basidiomycetes in Svalbard based on 
soil and sporocarp DNA

121 Geml et al. (2012)

4 Ectomycorrhizal fungal diversity and community structure on three co-occurring 
leguminous canopy tree species in a Neotropical rainforest

114 Smith et al. (2011)

5 Anti-inflammatory activity of methanolic extracts from edible mushrooms in LPS 
activated RAW 264.7 macrophages

113 Moro et al. (2012)

6 95% of basidiospores fall within 1 m of the cap: a field- and modeling-based 
study

102 Galante et al. (2011)

7 Environmental drivers of ectomycorrhizal communities in Europe’s temperate 
oak forests

95 Suz et al. (2014)

8 Bioactive microconstituents and antioxidant properties of wild edible 
mushrooms from the island of Lesvos, Greece

87 Kalogeropoulos et al. (2013)

9 Community composition of root-associated fungi in a Quercus-dominated 
temperate forest: “codominance” of mycorrhizal and root-endophytic fungi

80 Toju et al. (2013)

10 Trace metal contents in wild edible mushrooms growing on serpentine and 
volcanic soils on the island of Lesvos, Greece

79 Aloupi et al. (2012)
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Research interests

There are 543 publications and 7 481 citations from 2011–2021 
in the Web of Science (Fig. 112), with the top 10 most cited 
articles listed in Table 88. Most of the publications focused on 
biotechnological processes (biochemical compounds, chemistry 
and pharmacology), followed by publications of taxonomy and 
phylogeny, ecology and ethnomycology.

Biotechnological process
Various bioactive compounds have been isolated from Lactarius 
species, especially from La. deliciosus. These include polyols, 
phenylpropanoid glycoside, steroids, phenolic and acids compounds 
(Zhou et al. 2011, Muszynska et al. 2013). Some polysaccharides 
isolated from this species exhibited significant anti-tumour, and 
immunostimulant activity, as well as antimicrobial and antibiofilm 
(Ding et al. 2012, Hou et al. 2013, Karaca et al. 2017). Antioxidant 
activity was observed from the phenolic contents of La. salmonicolor 
(Athanasakis et al. 2013). Anti-bacterial activity has been shown with 
compounds from La. sanguifluus and La. indigus (Ochoa-Zarzosa et 
al. 2011, Sagar & Thakur 2013). The polysaccharides extracted from 
La. flavidulus showed anticancer properties (Wu et al. 2011). Yellow, 
orange, and red pigments have been extracted from carotenoids and 
terpenoids compounds from coloured Lactarius species, such as 
La. deliciosus, La. blennius, La. deterrimus and La. fuliginosus (De 
Bernardi et al. 1992, Spiteller & Steglich 2002).

Ecology
Many Lactarius species display some level of host-specificity and 
form ECMs with a single plant species (e.g., La. porninsis with 
Larix decidua; Nuythink & Verbeken 2005). Some species form 
ECM with a single plant genus, for example, La. quieticolor with 
Pinus sylvestris, P. pinaster, P. radiata, and P. taeda (Silva-Filho et 
al. 2020). Other taxa are found associated with other plant genera 
belonging to the same family, e.g., La. tesquorum with Cistus and 
Halimium (Nuytinck et al. 2004, Comandini et al. 2006). However, 
studies with molecular phylogenetic approaches are needed to test 
the intercontinental conspecificity of Lactarius species.

Edibility
As mentioned above, the tradition of eating Lactarius species is 
intense in Europe, Asia and some American countries. Species 
of sect. Deliciosi, for example La. deliciosus, La. quieticolor, La. 
sanguifluus, and La. vinosus are much appreciated in Europe, 
where they are sold in local markets (Boa 2004). Fresh La. deliciosus 
is among the most popular and highly priced species in many 
countries as in Spain (Voces et al. 2012). Closely related species 
are also consumed in China and Japan, for example, La. hatsudake 
(Nuytinck et al. 2006). Lactarius resimus and La. scrobiculatus are 
the highest prized in Russian markets (Singer 1949), La. indigo is a 
very popular edible mushroom in Mexico (e.g., Ruan-Soto 2018a). 
In South America, the introduced La. quieticolor has become better 
known where it has been commercialised (Silva-Filho et al. 2020).

Taxonomy and phylogeny
About 450 species of Lactarius have been described, but the real 
number could reach 1 000 species (He et al. 2019b). The diversity 
in Europe and North America is better known, but most of the 
novelties in the last years came from Southeast Asia, India, and 
China, regions that remain under-explored (Wisitrassameewong et 
al. 2014, 2015, Liu et al. 2015d). The markers, nuc-ITS, nuc-LSU 
and rpb2 gene have been used for taxonomic and systematic studies 

in Russulaceae (e.g., Buyck et al. 2008, Stubbe et al. 2012), and 
are effective for Lactarius. The ITS, combined with morphological 
and ecological data, has been shown a good gene marker to delimit 
species in Lactarius (Shi et al. 2018, Verma et al. 2021). The rpb2 
was also considered a good gene marker for phylogenetic inference 
in Lactarius because it contains most phylogenetic signals at the 
subgenus and species level (Wisitrassameewong et al. 2016).

Authors: A.G.S. Silva-Filho and F. Wartchow

83. Lasiodiplodia Ellis & Everh., Bot. Gaz. 21: 92. 1896.

Type species: Lasiodiplodia theobromae (Pat.) Griffon & Maubl.

Classification: Ascomycota, Pezizomycotina, Dothideomycetes, 
Botryosphaeriales, Botryosphaeriaceae.

Background

Lasiodiplodia was introduced by Ellis & Everhart (1894) with L. 
tubericola as the type species, but without a description. Clendenin 
(1896) provided a description, but did not refer to any type or other 
specimens of the genus or species. A clear concept of Lasiodiplodia 
was provided by Pavlic et al. (2004), but the types or any specimens 
from the original hosts or origins could not be located. Therefore, 
Phillips et al. (2013) designated an ex-neotype culture and a dried 
specimen as the neotype. As Botryodiplodia theobromae was more 
suitably accommodated in Lasiodiplodia (Griffon & Maublanc 1909) 
and the epithet theobromae (1892) is older than tubericola (1896), 
L. theobromae was designated as the type species (Phillips et 
al. 2013). Lasiodiplodia was previously considered a synonym of 
Diplodia (Denman et al. 2000), but are separated in distinct clades 
in phylogenetic analyses (Slippers et al. 2004a, b, Phillips et al. 
2008). Lasiodiplodia is morphologically different from Diplodia as it 
has longitudinal striations on mature conidia (Phillips et al. 2008). 
Lasiodiplodia can also be distinguished from closely related genera 
by the presence of pycnidial paraphyses (Phillips et al. 2008). 
Comprehensive molecular examination of the L. theobromae 
species complex based on ITS and tef datasets have led to the 
identification of cryptic species (Damm et al. 2007, Abdollahzadeh 
et al. 2010, Úrbez-Torres et al. 2012). There are over 80 epithets 
listed in Index Fungorum (2021), but only about 35 species have 
molecular data (Hongsanan et al. 2020b, Hyde et al. 2020a, 
Chethana et al. 2023).

Ecological and economic significance

Most Lasiodiplodia species are plant pathogens and have been 
associated with several disease symptoms including cankers, 
dieback, fruit or stem-end or root rot, gummosis and branch blight 
(Ismail et al. 2012, Phillips et al. 2013). Lasiodiplodia species are 
mostly distributed in tropical and subtropical regions (Alves et 
al. 2008). They have been reported to cause severe damage to 
a large number of hosts (Punithalingam 1980a, b, Burgess et al. 
2006, Abdollahzadeh et al. 2010, Phillips et al. 2013). Lasiodiplodia 
species also affect crops of economic importance, for example 
Mangifera indica (mango), Persea americana (avocado), Musa 
spp. (banana), Anacardium occidentale (cashew), Citrus spp. 
(citrus), Vitis sp. (grapevine), Carica papaya (papaya) and Citrullus 
lanatus (watermelon) (Freire et al. 2003, Costa et al. 2010, Ismail 
et al. 2012). Lasiodiplodia has also been associated with several 
human infections (Summerbell et al. 2004, Kindo et al. 2010). The 
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most common cases are ocular infections but there are also report 
of human death (Woo et al. 2008).

Research interests

There are 699 publications and 7 394 citations from 2011–2021 
related to Lasiodiplodia in the Web of Science (Fig. 113) with the 
top 10 most cited articles listed in Table 89. Most of the publications 
focused on the pathogenicity of Lasiodiplodia species, as well as 
its taxonomy. Grapevine diseases caused by Lasiodiplodia species 
are among the most cited papers (Urbez-Torres et al. 2012, Yan 
et al. 2013). Lasiodiplodia species are among the most virulent 
pathogens causing cankers on grapevines (Urbez-Torres et al. 
2012).

Authors: C.S. Bhunjun and C. Phukhamsakda

84. Exophiala J.W. Carmich., Sabouraudia 5: 122. 1966.

Type species: Exophiala salmonis J.W. Carmich.

Classification: Ascomycota, Pezizomycotina, Eurotiomycetes, 
Chaetothyriales, Herpotrichiellaceae.

Background

Exophiala is an asexual genus regarded as an evolutionary 
hotspot within the group of black yeasts. The genus contains many 
genotypically divergent species (De Hoog et al. 2003, Sterflinger 
2005). Morphologically, the species are similar and defined by 
annellidic conidiogenesis with the production of slimy heads of 
conidia (De Hoog et al. 2011a). Known sexual morphs belong to 
Capronia (De Hoog et al. 2011a). The appearance of black yeasts 
is caused by dihydroxynaphthalene melanin macromolecules in the 

Fig. 113. Trends in research of Lasiodiplodia in the period 2011–2021.

Table 89. Top 10 cited articles related to Lasiodiplodia published in the period 2011–2021.
Rank Article title No. of citations References
1 The Botryosphaeriaceae: genera and species known from culture 515 Phillips et al. (2013)
2 The status of Botryosphaeriaceae species infecting grapevines 238 Urbez-Torres (2011)
3 One stop shop: backbones trees for important phytopathogenic genera: I (2014) 235 Hyde et al. (2014)
4 Towards a natural classification of Botryosphaeriales 215 Liu et al. (2012b)
5 Families, genera, and species of Botryosphaeriales 113 Yang et al. (2017a)

6 Diversity and ecology of tropical African fungal spores from a 25,000-year 
palaeoenvironmental record in southeastern Kenya 108 Van Geel et al. (2011)

7 Characterization of fungal pathogens associated with grapevine trunk diseases in 
Arkansas and Missouri 106 Urbez-Torres et al. (2012)

8 Botryosphaeriaceae: Current status of genera and species 102 Dissanayake et al. (2016)

9 In vitro activity of eighteen essential oils and some major components against common 
postharvest fungal pathogens of fruit 101 Combrinck et al. (2011)

10 Species of Botryosphaeriaceae involved in grapevine dieback in China 75 Yan et al. (2013)
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outer cell. Depending on the environment, most strains can switch 
between three morphologies, (i) budding yeast-like, (ii) hyphal, or 
(iii) meristematic growth (De Hoog et al. 1994).

The genus was first described in 1966 by Carmichael. To date, 
65 Exophiala species are listed on MycoBank, of which 19 are 
associated with human and animal pathogenicity in the Atlas of 
Clinical Fungi (De Hoog et al. 2020). They are also known to be 
extremely environmentally versatile and polyextremophilic, thriving 
in harsh environments under acidic, alkaline, toxic and nutrient-
deprived conditions as well as with ionising radiation and osmotic 
stress (Dadachova et al. 2007, De Hoog et al. 2011b, Zalar et al. 
2011, Gümral et al. 2014). Exophiala species are frequently isolated 
from man-made niches such as sauna facilities or dishwashers 
(Zalar et al. 2011).

Ecological and economic significance

Clinical importance
Within the black yeasts, the genus Exophiala compromises 
the most clinical relevance (Chowdhary et al. 2014a) with its 
entities manifesting in numerous ways. Pathogenic species can 
cause deep and disseminated human infections in healthy and 
immunocompromised patients (Revankar et al. 2002, Song et al. 
2017).

The clinical picture caused by Exophiala species is 
phaehyphomycosis, literally meaning “condition of fungi with 
dark hyphae”, which was first introduced in 1974 (Ajello et al. 
1974, Revankar et al. 2002). In contrast to most life-threatening 
fungal infections, primary phaeohyphomycosis mostly affects 
immunocompetent patients and adults in their second or third 
decade of life (Jung & Kim 2014) with a mortality rate of 73 % 
(Revankar et al. 2004). In chromoblastomycosis, black fungi 
produce characteristic sclerotic bodies in the tissue, especially 
in tropical areas. Chromoblastomycosis was added to the World 
Health Organization’s list of neglected tropical diseases in 2016. 
Although associated with black yeasts, chromoblastomycosis is 
rarely caused by Exophiala species (Chowdhary et al. 2014a). 
Additionally, Exophiala species can cause mycetomas by myotic 
granules (McGinnis 1983). Exophiala species are frequently 

reported as coloniser of the respiratory tract from cystic fibrosis 
patients with a prevalence of 4.8–15.7 % in Germany and Belgium 
(Pihet et al. 2009, Lebecque et al. 2010). Known risk factors are 
mutations in the CARD9 gene, which is involved in the immune 
system (Lanternier et al. 2014, Wand et al. 2014). In the clinical 
context, the most prevalent Exophiala species are Ex. (formerly 
Wangiella) dermatitidis and Ex. spinifera, with a mortality rate of 
up to 80 % in systemic cases (Song et al. 2017). While Exophiala 
dermatitis is isolated worldwide from environmental niches as well 
as from the respiratory tract of cystic fibrosis patients, its neurotropic 
manifestation is mainly reported in Asia (Chowdhary et al. 2014a).

Exophiala spiniferna causes cases of phaeohyphomycosis 
and chromoblastomycosis worldwide (Hoerre & De Hoog 1999, 
Kantarcioglu & De Hoog 2004, Harris et al. 2009, Badali et al. 
2010). In 2014, the European Fungal Infection Study Group and 
the European Confederation of Medical Mycology published a 
joint clinical guideline on how to diagnose and treat systemic 
phaeohyphomycosis (Chowdhary et al. 2014c), which to date has 
been cited over 170 times (Table 90). The infection route hypothesised 
is related to the colonisation of man-made environments (Zalar et 
al. 2011, Babič et al. 2018). Infections happen either through small 
skin trauma (Sudhadham et al. 2011) or through inhalation. The 
awareness of opportunistic pathogens in man-made environments 
such as dishwashers, tap water or washing machines changed the 
importance of the genus for non-scientific audiences.

For human infection, thermotolerance of the pathogenic 
Exophiala species is crucial. Other Exophiala species that lack 
thermotolerance can infect cold-blooded animals such as fish, 
amphibians, or invertebrates (De Hoog et al. 2011c). Especially in 
farmed fish, infections by Exophiala psychrophila or Ex. salmonis 
are frequently reported with up to 50 % mortality (Pedersen & 
Langvad 1989).

Research interests

There are 551 publications and 7 344 citations in the Web of Science 
from 2011–2021 (Fig. 114). The ten most cited publications (Table 
90) focused on understanding virulence factors, routes of infection, 
survival in extreme environments and their relation to pathogenicity. 

Table 90. Top 10 cited articles related to Exophiala published in the period 2011–2021.
Rank Article title No. of citations References
1 European Society of Clinical Microbiology and Infectious Diseases Fungal 

Infection Study Group; European Confederation of Medical Mycology. ESCMID 
and ECMM joint clinical guidelines for the diagnosis and management of 
systemic phaeohyphomycosis: diseases caused by black fungi

173 Chowdhary et al. (2014c)

2 Unravelling the role of dark septate endophyte (DSE) colonizing maize (Zea 
mays) under cadmium stress: physiological, cytological and genic aspects

165 Wang et al. (2016b)

3 Waterborne Exophiala species causing disease in cold-blooded animals 150 De Hoog et al. (2011c)
4 Dishwashers – A man-made ecological niche accommodating human 

opportunistic fungal pathogens
141 Zalar et al. (2011)

5 Inherited CARD9 deficiency in otherwise healthy children and adults with 
Candida species-induced meningoencephalitis, colitis, or both

122 Lanternier et al. (2015b)

6 Why everlastings don’t last 99 Crous & Groenewald (2011)
7 Improved tolerance of maize (Zea mays L.) to heavy metals by colonization of a 

dark septate endophyte (DSE) Exophiala pisciphila
92 Li et al. (2011d)

8 Inherited CARD9 deficiency in 2 unrelated patients with invasive Exophiala 
infection

86 Lanternier et al. (2015a)

9 The diversity and distribution of fungi on residential surfaces 80 Adams et al. (2013)
10 Fungi in the cystic fibrosis lung: bystanders or pathogens? 78 Chotirmall & McElvaney (2014)
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This increased understanding of the underlying diseases generates 
suitable therapeutics, and use of non-pathogenic strains as well as 
their attributes for applications. Although studied for decades, a lot 
of questions remain.

Melanin
Melanin is a putative virulence factor and an agent to help survive 
hostile environments. The role of melanin in infections was studied 
using mice, Galleria mellonella larvae or ex-vivo skin models 
in combination with melanin-deficient mutants (Geis et al. 1984, 
Dixon et al. 1987, Feng et al. 2001, Calvo et al. 2010, Poyntner et 
al. 2016, 2018, Song et al. 2017, Olsowski et al. 2018). Frequently, 
Exophiala dermatitidis was used as a model organism for the group 
of black yeasts due to its pathogenic and extremophilic traits.

Colonisation of hostile environments
Next to melanin, other adaption factors and strategies to survive 
high radiation, low and high temperature, pH stress, low nutrient 
or toxicity were studied (Wang & Szaniszlo 2009, Blasi et al. 2015, 
Tesei et al. 2015, Zhao et al. 2015a, Schultzhaus et al. 2020, 
Mackenzie 2021). New technologies of the -omics era facilitated 
various studies on genome, transcriptome, and proteome levels. 
This enabled insight into the natural evolution of the genus, 
genomic patterns or genomic adaption to hostile environments 
(Moreno et al. 2018). The presence of circular RNAs (Blasi et al. 
2015), gene duplication processes (Teixeira et al. 2017), fine-tuning 
of the protein expression (Tesei et al. 2015) and expressed genes 
during alkaline conditions (Chen et al. 2014d) were discovered. 
Species such as Exophiala macquariensis (Zhao et al. 2010, Isola 
et al. 2013, Zhang et al. 2019a) can assimilate toxic monoaromatic 
hydrocarbons. It was hypothesised that this ability might be related 
to their pathogenicity due to the similar chemical structure to human 
neurotransmitters (Prenafeta-Boldú et al. 2006).

Overall, the results lead to the conclusion that pathogenic 
species of Exophiala did not originally evolve as pathogens but 

traits from their saprobic lifestyle allowed them to thrive in their 
hosts (Song et al. 2017, Moreno et al. 2018).

Authors: C. Poyntner and K. Sterflinger

85. Monilinia Honey, Mycologia 20: 153. 1928.

Type species: Monilinia fructicola (G. Winter) Honey

Classification: Ascomycota, Pezizomycotina, Leotiomycetes, 
Helotiales, Sclerotiniaceae.

Background

Monilinia is a genus of fungi with a pathogenic necrotrophic lifestyle, 
belonging to phylum Ascomycota, class Leotiomycetes, order 
Helotiales, family Sclerotiniaceae (Jayawardena et al. 2020), with 
about 50 species listed in Index Fungorum (2022). Monilinia species 
occur worldwide, affecting members of the Rosaceae, Ericaceae 
and Empetraceae families. Diseases caused by Monilinia species 
are often referred to as blossom blight, brown rot and mummy berry 
agents. The genus Monilinia was described by Honey (1928). It 
is characterised by elongate, stipitate, glabrate cup-like apothecia, 
originating from pseudosclerotia in mummified fruits or host plant 
fragments. The apothecia carry cylindrical asci containing eight 
oblong-ellipsoid spores. Monilinia can also produce microconidia 
(spermatia), globose no-germinative cells (Honey 1928), sometimes 
involved in the fertilisation process (Martini & Mari 2014). The 
hyphae are septate, hyaline or variously pigmented (grey, tan, olive 
green or black). Monilinia species are difficult to distinguish as they 
have similar life cycles, symptoms and host ranges (Batra 1991). 
The taxonomic classification has been problematic because this 
genus shares features with Sclerotinia (Gjaerum 1969, Penrose 
et al. 1976) and Ciboria (Honey 1936, Batra 1991). Monilinia 
has been divided into sections Disjunctoriae or Junctoriae based 

Fig. 114. Trends in research of Exophiala in the period 2011–2021.
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on asexual morphology, fungal biology, and host specialisation. 
Species of section Disjunctoriae possess chains of conidia 
intercalated by disjunctors, and both sexual (teleomorphic) and 
asexual (anamorphic) stages are frequently present and show high 
host specificity. Species of section Disjunctoriae can induce in host 
leaves the production of aromatic substances and sugars attractive 
to pollinator insects. These insects can thus act as vectors of the 
pathogen. Conidia in section Disjunctoriae are produced during a 
short period on young fruits that are mummified from the ovary wall 
outward (Holst Jensen et al. 1997). Their sporocarps are small and 
difficult to find in the field. Species in the section Junctoriae produce 
chains of conidia without disjunctors. These species show mainly 
asexual reproduction and low specificity for the hosts. They are 
pathogens of several species of domesticated and wild Rosaceae 
and can show also saprophytic behaviour. The conidia of species in 
section Junctoriae are long-lived, produced over a long period, and 
are dispersed by wind, rain, and insects that visit decayed fruits. 
The ripe fruits are infected and mummified from the outside inward.
Among the Monilinia species included in section Disjunctoriae 
are Mon. vaccinii-corymbosi and Mon. oxycocci, which are causal 
agents of Monilinia blight and mummy berry disease of blueberries 
(Vaccinium corymbosum) and cranberries (Oxycoccus species), 
respectively, and can result in severe crop losses, especially in North 
America (Batra 1991, Burchhardt & Cubeta 2015). Other species 
with minor impact on crops are Mon. urnula and Mon. baccarum, 
affecting Vaccinium hosts, especially in North America, and North 
Europe (Rehm 1885, Woronin 1888, Dennis 1968, Palmer 1988, 
Batra 1991). Monilinia linhartiana was reported on quince in Spain 
(Moral et al. 2011). The most destructive Monilinia species in 
agriculture belong to the section Junctoriae, and to date, six closely 
related species of brown rot agents have been reported on stone 
and pome fruit. Among these, Mon. fructicola, Mon. laxa, Mon. 
fructigena, and Mon. polystroma are among the most important 
pathogens of cultivated stone and pome fruit, causing significant 
losses in the field and postharvest (Petróczy et al. 2012). Other 
species involved in brown rot but with limited geographical spread 
are Mon. mumeicola and Mon. yunnanensis. Monilinia fructicola, 
Mon. laxa and Μ. fructigena have a global distribution (EFSA Panel 
on Plant Health 2011). Monilinia laxa is the most common agent of 
brown rot in stone fruit in Europe and it is widely distributed around 
the world, although it is a quarantine pathogen in China and some 
parts of North America (Martini & Mari 2014). Monilinia fructicola was 
originally identified in North and South America, Australia and Japan 
(Smith et al. 1997). In 2001, it was introduced in France (Lichou et 
al. 2002), and in the following decade, it was found in Spain and Italy 
(De Cal et al. 2009, Pellegrino et al. 2009, Landi et al. 2016, Abate 
et al. 2018). Monilinia fructigena occurs in Europe, Asia, North Africa 
and some parts of South America, and it is a quarantine pathogen 
in Canada, USA, Australia and New Zealand (http://www.cabi.org/
isc/datasheet/34747). This pathogen is the main cause of brown 
rot in pome fruit, but it has a relatively low incidence in stone fruit 
(Martini & Mari 2014). Monilinia polystroma, a species closely related 
to Mon. fructigena, was first described in Japan (Van Leeuwen et al. 
2002). The pathogen spread was restricted to Asiatic and European 
regions (Petróczy et al. 2012, Villarino et al. 2013, Rungjindamai et 
al. 2014, Abate et al. 2018) and it was reported as less aggressive 
and prevalent on stone and pome fruits. Monilinia mumeicola is 
another minor species reported on Prunus mume in Japan (Harada 
et al. 2004), and on peaches in China (Hu et al. 2011b, Yin et al. 
2014, 2015), while Mon. yunnanensis was reported on peaches in 
China (Hu et al. 2011b, Yin et al. 2014, 2015). Fungal isolation and 
micromorphological analysis can be useful for species identification 

(De Cal & Melgarejo 1999), but morphological features may vary 
depending on the incubation media and conditions, making an 
accurate species-specific identification difficult (Byrde & Willetts 
1977, Lane 2002). Different assays based on polymerase chain 
reaction (PCR) amplification of the ITS region (Ioos & Frey 2000), 
random amplified polymorphic DNA (Boehm et al. 2001, Côté et al. 
2004), PCR with sequence-characterised amplified region (SCAR) 
primers (Hughes et al. 2000), microsatellites using a nested PCR 
(Boehm et al. 2001, Ma et al. 2003), quantitative PCR (qPCR) (Van 
Brouwershaven et al. 2009, Guinet et al. 2016, Wang et al. 2018c), 
loop-mediated amplification (LAMP) assays (Ortega et al. 2019) 
or droplet digital PCR (ddPCR) (Raguseo et al. 2021) have been 
developed to differentiate the main species of Monilinia. Recently, 
draft de novo genome assemblies were generated for Mon. fructigena 
(Landi et al. 2018, Rivera et al. 2018), Mon. laxa (Naranjo-Ortíz et al. 
2018, Rivera et al. 2018, Landi et al. 2020), Mon. fructicola (Rivera 
et al. 2018, De Miccolis Angelini et al. 2019, Vilanova et al. 2021), 
Mon. polystroma (Rivera et al. 2018), Mon. vaccinii-corymbosi (Yow 
et al. 2021), and Mon. aucupariae (GenBank Accession Number 
GCA_002162555.1). These genomes provide new opportunities for 
studies on evolution and pathogenetic factors in Monilinia.

Ecological and economic significance

Monilinia species cause economically important plant diseases, 
and the most important are detailed below.

Brown rot of pome and stone fruits

Monilinia species are associated with brown rot, one of the most 
devastating diseases of stone fruits, such as peach, nectarine, 
apricot, cherry and plum worldwide. This disease affects blossom, 
twig, and ripe as well as unripe fruits during the pre- and postharvest 
stages. Despite infection occurring in the field, the main economic 
losses of brown rot appear during postharvest handling, storage, 
transportation, and shelf life. In the United States, where the stone 
fruit market has an annual value of approximately 4.4 billion US 
dollars (Cox et al. 2018), this disease has been associated with 
up to 80 % fruit loss during postharvest (Egüen et al. 2015). 
The universal annual losses from disease outbreaks have been 
estimated at 1.7 billion euros (Martini & Mari 2014). Monilinia 
laxa can colonise blossoms, twigs, and fruits, but is generally 
considered more of a problem on blossoms and twigs. Monilinia 
fructigena is primarily a problem on apples, pears and other pome 
fruits. Monilinia polystroma is reported to cause blossom blight 
and brown fruit on both pome and stone fruits. Currently, effective 
brown rot control in the orchard depends on integrated strategies 
that are largely based on fungicide sprays and cultural practices 
(Feliziani et al. 2013, Martini & Mari, 2014, De Curtis et al. 2019, 
Schnabel & Hopkins 2022). However, innovative strategies based 
on safer alternatives to synthetic fungicides are available and 
include biocontrol agents (Larena et al. 2005, Oro et al. 2014, 2018, 
Casals et al. 2021, 2022), physical methods (Usall et al. 2016), 
natural compounds and resistance inducers (Li & Yu 2000, Feliziani 
et al. 2013, Romanazzi et al. 2016).

Monilinia blight or “Mummy berry” is a disease of high economic 
concern in areas of blueberry production from the southern United 
States to Canada causing in some years yield reduction of 80 % 
(Obsie & Drummond 2020, Qu & Sun 2022). In Europe, it was 
first found in Austria (Gosch 2003). The disease results in the 
replacement of blueberry fruit with a fungal pseudosclerotium, 
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causing substantial crop loss. Symptoms are manifested in the 
blighting of emerging leaves and shoots during spring and the 
mummification of maturing fruit in summer (Batra 1983). Based 
on field observations, Monilinia blight management is extremely 
challenging, and fungicides have become the sole economically 
viable option (Percival et al. 2012).

Other diseases caused by Monilinia spp.

Other Monilinia species have been linked to mummy berry 
disease. Monilinia urnula causes a disease of Vaccinium vitis-
idaea and was reported in Europe, mainly from Scandinavia, 
Austria and the United Kingdom (Woronin 1888, Dennis 1968, 

Gjaerum 1969), and in Japan (Kobayashi 2007). As with Mon. 
vaccinii-corymbosi, it has a complex life cycle. From harvesting 
time, the mummies, compact masses of fungal tissue formed in 
infected berries, are found on the soil (Goheen 1953). Monilinia 
baccarum is restricted to Vaccinium myrtillus, causing blight 
of newly emerging shoots, that turn brown and fall. Monilinia 
baccarum is known from Scandinavia, Austria, Belgium, Germany 
and the UK (Rehm 1885, Woronin 1888, Dennis 1968, Gjaerum 
1969, Palmer 1988, Batra 1991). The infected berries turn pale 
and dry, shrivel, mummify, and fall to the ground. They are called 
white berries due to the fine whitish layer of host cells (including 
the epidermis) that cover the berry (Batra 1991).

Fig. 115. Trends in research of Monilinia in the period 2011–2021.

Table 91. Top 10 cited articles related to Monilinia published in the period 2011–2021.
Rank Article title No. of citations References
1 Genera of phytopathogenic fungi: GOPHY 1 185 Marin-Felix et al. (2017a)

2 Antimicrobial activity of bacteriocin-producing lactic acid bacteria isolated from 
cheeses and yogurts 126 Yang et al. (2012a)

3 Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity 
of its volatile compounds against Alternaria solani and Botrytis cinerea 114 Gao et al. (2017)

4 Chitosan and oligochitosan enhance the resistance of peach fruit to brown rot 104 Ma et al. (2013c)

5 Synthesis of silver nanoparticles using cow milk and their antifungal activity 
against phytopathogens 102 Lee et al. (2013)

6 Pre- and postharvest treatment with alternatives to synthetic fungicides to control 
postharvest decay of sweet cherry 81 Feliziani et al. (2013) 

7 Biological control of peach brown rot (Monilinia spp.) by Bacillus subtilis CPA-8 is 
based on production of fengycin-like lipopeptides 81 Yánez-Mendizábal et al. (2012)

8 Recommendations on generic names competing for use in Leotiomycetes 
(Ascomycota) 79 Johnston et al. (2014)

9 Effect of heat treatment on inhibition of Monilinia fructicola and induction of 
disease resistance in peach fruit 78 Liu et al. (2012a)

10 In vivo antifungal activity of two essential oils from Mediterranean plants against 
postharvest brown rot disease of peach fruit 73 Elshafie et al. (2015)
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Research interests

There are 646 publications and 7 268 citations from 2011–2021 in 
the Web of Science (Fig. 115), with the top 10 most cited articles 
listed in Table 91. Most publications focused on preharvest and 
postharvest brown rot management (fungicide activity and fungicide 
resistant isolates, alternatives to synthetic fungicides, biocontrol 
agents), and research on physiological and molecular properties 
of Monilinia species (molecular characterisation, host-pathogen 
interactions, pathogenic factors).

Disease management
Disease management strategies for brown rot have been extensively 
studied for both preharvest and postharvest on pome and stone 
fruit. Several studies cover the need for fungicide applications in 
the field to limit brown rot damage in humid seasons (Dowling et 
al. 2016, Lichtemberg et al. 2016). Nevertheless, resistance to site-
specific fungicides has been reported for different Monilinia species 
worldwide (Schnabel et al. 2004, Chen et al. 2013a, Spiegel & 
Stammler 2006). Strategies based on alternatives to synthetic 
fungicides cover the effectiveness of biocontrol agents, such 
as Bacillus spp. and Aureobasidium pullulans (Mari et al. 2012, 
Yánez-Mendizábal et al. 2012, Calvo et al. 2017, Gotor-Vila et al. 
2017, Grzegorczyk et al. 2017), or their volatile organic compounds 
(VOCs) (Gotor-Vila et al. 2017, Gao et al. 2018, Di Francesco 
et al. 2020) against Mon. fructicola and Mon. laxa, both in vitro 
and on peach and plum fruits. Studies on natural compounds and 
basic substances revealed the effectiveness of chitosan-based 
compounds in pre- and postharvest stages against Monilinia spp. 
in peach and sweet cherries (Romanazzi et al. 2003, Feliziani et al. 
2013, Ma et al. 2013c, Kowalczyk et al. 2015). Encouraging results 
were also obtained with applications of essential oils from Origanum 
vulgare and Thymus vulgaris (Mancini et al. 2014, Elshafie et al. 
2015, Santoro et al. 2018, Gruľova et al. 2020).

Investigation of pathogenetic factors
Several studies focused primarily on the Monilinia species involved 
in brown rot have been carried out on virulence/pathogenicity 
factors. The necrotrophic lifestyle of these pathogens involves 
secretion of cell-wall-degrading enzymes, such as endo-
polygalacturonase (Chou et al. 2015), cutinases, α-glucosidases, 
pectin lyases, proteases (Garcia-Benitez et al. 2019, Baró-Montel 
et al. 2019, Rodríguez-Pires et al. 2020), and toxic metabolites 
(Villarino et al. 2022) to destroy tissues and degrade plant cell-
wall components during the infection process. Some investigations 
indicated that changes in cellular redox status play a role in the 
regulation of virulence factors (Chiu et al. 2013, Yu et al. 2017). 
Analysis of the Mon. fructicola genome (Vilanova et al. 2021) and 
comparative genomics and transcriptomics including other Monilinia 
species (De Miccolis Angelini et al. 2018, 2022, Marcet-Houben et 
al. 2021) revealed species-specific and conserved genes encoding 
pathogenicity factors, such as candidate effectors, carbohydrate-
active enzymes, and secondary metabolites biosynthetic gene 
clusters. They include toxins, cell-death elicitors, and cell-wall-
degrading enzymes, as well as other putative virulence factors 
that might play key determinant roles in pathogenicity. Only a few 
Mon. fructicola genes known as virulence determinants have been 
characterised by functional analysis (Lee et al. 2010, Zang et al. 
2020). Transcriptional responses during nectarine and Mon. laxa 
interaction provided the top upregulated genes of this pathogen 
that could be possible target genes for brown rot control (Balsells-
Llauradó et al. 2019). New technologies might accelerate the 

translation of these knowledge advancements into tangible benefits 
for disease management.

Authors: G. Romanazzi, L. Landi, R.M. De Miccolis Angelini, S. 
Pollastro and R. Torres

86. Coccidioides C.W. Stiles, Johns Hopkins Hosp. Rep. 1: 
243. 1896.

Type species: Coccidioides immitis G.W. Stiles

Classification: Ascomycota, Pezizomycotina, Eurotiomycetes, 
Onygenales, Onygenaceae.

Background

The genus Coccidioides is an important member of the 
Onygenaceae (Teixeira et al. 2021). An important biological 
aspect of this fungus is thermodimorphism, an evolutionary 
characteristic that enables this genus to adapt to a parasitic 
phase into a vertebrate host (mammals). Coccidioides is the 
causative agent of coccidioidomycosis, an important systemic 
mycosis (Eulalio et al. 2001, Graupmann-Kuzma et al. 2008, 
Cordeiro et al. 2021). Coccidioidomycosis in humans may 
cause a disseminated disease from a lung initial infection, 
with elevated rates of mortality (Crum 2022). Phylogenetic 
analyses of the genus have revealed a close relationship with 
other ascomycetes, Blastomyces dermatitidis, Histoplasma 
capsulatum, and Paracoccidioides spp. The Coccidioides clade 
emerged about 40–50 million years ago (Whiston & Taylor 2015, 
Crum 2022) and is now known to encompass two species, 
Coccidioides immitis and Co. posadasii, both associated with 
infection in humans and other animals (armadillos, dogs, equines 
and camelids). The Coccidioides species are reproductively 
(genetically) isolated, having different geographic ranges 
(Cordeiro et al. 2012, 2021, Fernandez et al. 2018, Koistinen et 
al. 2018, Davidson et al. 2019).

Coccidioides genus and species

The taxonomic status of Coccidioides genus is Ascomycota 
(phylum), Pezizomycotina (subphylum), Eurotiomycetes (class), 
Eurotiomycetidae (subclass), Onygenales (order), Onygenaceae 
(family). Initially, only one species, Co. immitis, was known to belong 
to this genus (Stiles 1896), but after molecular phylogeographical 
studies, with isolates from different locations/countries, the species 
Co. posadasii was added (Fisher et al. 2002). The divergence 
time between these two species is about 5 million years ago. Both 
species cause coccidioidomycosis in humans. Coccidioides immitis 
infections occur in North and Central America, and Co. posadasii 
infections occur in South America, in the semiarid Northeast of 
Brazil and Argentina (Fisher et al. 2002, Nguyen et al. 2013, Crum 
2022).

First description

Coccidioides immitis was described in 1896, but the first case 
of Coccidioides infection was reported by Alejandro Posadas, 
in Buenos Aires, Argentina, four years earlier (Posadas 1892). 
Posadas reported a soldier with skin ulcerative lesions on the 
face. The first biopsy demonstrated a Coccidia-like (protozoan) 
organism, as well as in a second case reported in California, 
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USA, in the late 1890s. In both cases, the mycelial growth was 
discarded as a contaminant. After these cases, Casper Gilcrest and 
Emmet Rixford, 1896, named the organism as Coccidioides (“like 
Coccidia”) immitis. Ophuls (1905) determined that the Coccidioides 
sp. was not a protozoan but a dimorphic fungus (Hirschmann 
2007, Rixford & Gilchrist 1896, Ophuls 1905). The second species, 
Co. posadasii, was not described until 106 years later (Fisher et 
al. 2002), with comparative molecular genotyping of Co. immitis 
recognising it as a distinct species.

Morphological aspects

Coccidioides species have a peculiar cellular form, with important 
morphology changes in the parasitic phase. They are classified as 
thermodimorphic fungi that exist as a mycelial form at environmental 
temperatures and in the saprophytic phase, or as a spherule form, 
their parasitic phase, at 35–37 °C or in susceptible hosts (Kirkland 
& Fierer 2018). In nature, the mycelia grow in poor soils, with a 
shortage of nutrients and little humidity, which is a nutritional poor 
condition for most fungal species (Taylor & Baker 2019, Teixeira 
et al. 2019). Coccidioides maintenance occurs by asexual growth, 
but according to multi-locus analyses sexual reproduction is 
possible, although it has never been obtained and observed in the 
laboratory. On soil or laboratory culture media, the mycelial phase 
(hyphae) grows by apical extension and forms arthroconidia, 5 µm 
in diameter (Crum 2022). During the rainy season, the mycelia 
grow rapidly in soil and remain viable for many years (Chow et 
al. 2016, Crum 2022). The airborne dispersion of the arthroconidia 
from the soil is caused by mechanical disturbance, by human or 
other animals (like armadillo) activities, or by the wind. After the 
aerosolization of Coccidioides spores, susceptible hosts may 
be infected by inhalation of fungal cells, with initial pulmonary 
manifestations. On the pulmonary site, arthroconidia transform into 
spherical cells called spherules, a resistant form of Coccidioides 
spp. in the parasitic phase, though the lungs and sinuses sites 
may also have hyphal growth (Kirkland & Fierer 2018, Crum 
2022). Inside the spherules, endospores (4 µm diam) are formed, 
and after the rupture of the cell wall, about 300 endospores are 
released and disseminated by hematogenous route (Crum et al. 
2022). The endospore germination process results in the formation 
of new spherules after 4 d, completing the Coccidioides parasitic 
life cycle.

Ecological and economic significance

Endemic areas
Coccidioides immitis occurs in North America, from the central 
region of California (USA) to Southern Mexico (Galgiani et al. 2016, 
Kirkland & Fierer 2018). Coccidioides posadasii occurs in semiarid 
areas of the Northeast region of Brazil (with the highest occurrence 
in Ceará and Piauí states), and in the Sierras Pampeanas in 
Argentina (Wanke et al. 1999, Canteros et al. 2010, Cordeiro et 
al. 2021). Coccidioides spp. have been detected in soil samples 
from these regions by molecular techniques, such as PCR and 
NESTED-PCR using rRNA genes as targets (De Macêdo et al. 
2011, Bowers et al. 2019). Strategies for environmental detection 
of Coccidioides enable the adoption of measures to prevent 
and control coccidioidomycosis, which has high mortality rates 
for infected individuals. Some studies reported the presence of 
Coccidioides in armadillos, making these animals sentinels of the 
presence of Coccidioides in certain geographical locations. Hunting 
armadillos is considered an infection risk activity, as reported for 

Paracoccidioides spp., the causative agents of other systemic 
mycoses, that also infect these mammals (Eulalio et al. 2001, 
Bagagli et al. 2003). Coccidioides spores can disperse for 75 miles 
or more in strong winds (Johnson et al. 2021). Another possible 
dispersion mechanism is the migration of infected animals to new 
areas. After the death of these animals, Coccidioides spp. may 
return to the saprophytic phase. These aspects make it possible for 
Coccidioides to grow in a new site, as long as the fungus finds ideal 
conditions for its saprophytic maintenance (Taylor & Baker 2019).

Coccidioidomycosis and public health

Epidemiological data reveal that the USA has the highest incidence 
rate of coccidioidomycosis, with California and Arizona states having 
the largest number of cases. The Center for Disease Control and 
Prevention (CDC) estimated that the incidence of coccidioidomycosis 
increased from 5.3 per 100 000 inhabitants in 1998 to 42.6 in 2011 
(Smith & Beard 1946, CDC 2013, McCotter et al. 2019, Hirschmann 
& Smith 2020). Mexico is the second most affected country, mainly 
in states located close to the USA border, which present the highest 
number of cases and also the highest number of positive tests for 
cutaneous reactivity to Coccidioides antigens (Nguyen et al. 2013, 
Davila et al. 2018). Other countries in Latin America have reported 
coccidioidomycosis cases, including Guatemala, Honduras, 
Colombia, Venezuela, Brazil, Paraguay, Bolivia, and Argentina 
(Laniado-Laborin et al. 2019). However, in some of these countries, 
like Brazil, coccidioidomycosis is a non-notifiable disease, which 
covers up the real incidence of this mycosis and makes it difficult to 
map the cases. Some host aspects and environmental factors are 
responsible for the increase in the number of coccidioidomycosis 
cases, such as ageing, immunosuppression conditions, the incursion 
into endemic areas (where Coccidioides sp. has already been 
detected in the environment), climate change and natural events 
(Cordeiro et al. 2021, Crum 2022).

Infection/transmission routes and pathogenesis

The infection process occurs by inhalation of airborne fungal 
arthroconidia, or rarely by trauma implantation with a skin 
infection and initial lesion on the inoculation site (Wilson et al. 
1953, Johnson et al. 2021). Another possible transmission route 
is by organ transplantation, mainly in infected lungs, liver, and 
kidneys (Wright et al. 2003, Martin-Davila et al. 2008, Nelson et al. 
2016), or neonatal transmission, mainly by aspiration of infectious 
vaginal secretions during birth (Charlton et al. 1999). In the lungs, 
arthroconidia germinate to spherules in the bronchiole, usually 
three weeks after arthroconidia inhalation. Small fungal loads, such 
as a single arthroconidium, can cause mycosis. The endospores 
multiply exponentially and cause disseminated disease. The initial 
cellular immune response to Coccidioides occurs by macrophages, 
neutrophils, and dendritic cells, that try to prevent the germination 
of arthroconidia (Crum 2022). Immune T-cell response provides 
asymptomatic or minimally symptomatic respiratory illness. The 
inflammatory response makes a sequelae lesion on the lungs or 
cavity process by fibrosis. The immune response may resolve 
the infection (T-helper cells – Th17) (Donovan et al. 2019) and 
the disease does not progress to severe manifestations. In 
coccidioidomycosis, the presence of antibodies is not protective 
but individuals with complement fixation antibodies, T-cell response 
(Th1 and Th17), and interferon-gamma production present a low 
risk of dissemination (Johnson et al. 2021, Crum 2022).
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Clinical manifestation

Coccidioidomycosis (CM) presents variable clinical forms. Serological 
skin tests estimate that in 60 % of cases, the infection is asymptomatic 
(Stockamp et al. 2016). As observed for other systemic mycoses, 
in CM the symptoms are clinically very similar to other infectious 
diseases, such as other fungal parasites (e.g., Leishmania sp.), 
or bacterial infections such as tuberculosis, presenting commonly 
cough, dyspnea, thoracic pain, fever, arthralgia, myalgia, and 
fatigue (Thompson 2011, Malo et al. 2014, Stockamp et al. 2016). In 
endemic regions, coccidioidal pneumonia may represent up to 29 % 
of community-acquired pneumonia (Valdivia et al. 2006, Twarog & 
Thompson 2015). Coccidioidomycosis presents four known forms, 
symptomatic or pulmonary infection, chronic, disseminated, and 
primary cutaneous. The pulmonary form shows on radiographic 
images, a lobar, segmental or multifocal tissue consolidation, and 
nodules. In these cases, spontaneous regression has been reported 
even without antifungal therapy (Jude et al. 2014, Galgiani et al. 
2016). Chronic disease is defined as when clinical symptoms last 
more than six weeks. Disseminated disease or extrapulmonary 
form occurs in 5 % of immunocompetent patients and may involve 
different sites, like skin, bone marrow, and meninges. The skin 
is the most reported dissemination focus. The most severe form 
of extrapulmonary form of CM consists of fungal dissemination 
to the central nervous system (Parish & Blair 2008, Ampel 2015), 
presenting meningitis as the most common clinical manifestation, 
with high mortality rates. Some studies reported dissemination 
to sites such as the musculoskeletal system, lymph nodes, and 
pericardium (Arsura et al. 2005, Brilhante et al. 2008). Studies, 
mainly in North America, report a major risk of a disseminated form of 
coccidioidomycosis in African-Americans, that have a twofold chance 
to evolve to extrapulmonary disease from initial pulmonary infection. 
Coccidioidomycosis, if not correctly diagnosed and treated, mainly in 
disseminated forms, shows high mortality rates (Galgiani et al. 2016, 
Odio et al. 2017). Clinical diagnosis is controversial, but laboratory 
approaches make the correct identification of fungal agents 
possible by demonstration of the fungus in biological samples (by 

direct visualisation or histopathological examination), culture (gold 
standard), serological detection (circulating antigens or skin tests) 
or molecular biology (PCR with use of generic primers or specific 
gene markers) (Saubolle 2007, Cordeiro et al. 2021, Johnson et al. 
2021, Crum 2022). Manipulation of Coccidioides sp. cultures in the 
laboratory is allowed only in levels 2 or 3 of the biosafety laboratory, 
due to the high pathogenic capacity of the mycelial phase of these 
fungi (production of a large number of conidia) (Sutton 2007). 

Research interests

There are 580 publications and 6 936 citations from 2011–2021 on the 
Web of Science (Fig. 116), with the top 10 most cited articles listed in 
Table 92. Most of the publications focused on disease management 
(antifungal treatment and resistance, clinical aspects of the disease, 
and diagnosis) and research on phylogenetic aspects for knowledge 
of the speciation process of Coccidioides species.

Taxonomy, phylogeny and biological aspects
Since the speciation studies that described the divergence between 
isolates of Coccidioides from central California (Co. immitis) and 
isolates from Central America and South America (Co. posadasii), 
a series of studies have reported the genetic variability among 
these pathogens, which is reflected in some biological aspects, 
like growth speed; it is faster in Co. posadasii than Co. immitis, at 
37 °C in vitro (Mead et al. 2020). However, these are considered 
morphologically cryptic species, so it is necessary to use molecular 
techniques to differentiate both. Since there are few studies on 
CM by Co. posadasii in endemic areas, it is not clear yet whether 
the genetic divergence between Co. immitis and Co. posadasii 
is reflected in different clinical manifestations, for example, host 
symptoms, fungal virulence, and treatment resistance. Studies 
have compared the genome of Co. immitis and Co. posadasii 
and reported differences between mycelia and spherule gene 
expression (Viriyakosol et al. 2013, Teixeira et al. 2021). The 
genetic variability in the genus Coccidioides indicates the need to 
use more precise diagnostic techniques, avoiding situations of false 

Fig. 116. Trends in research of Coccidioides in the period 2011–2021.
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negatives and positives. These techniques need to address genetic 
and phenotypic variations, such as antigenic variation between 
isolates from different geographic regions. The importance of 
this genetic variability for the development of diagnostic tools has 
already been evidenced for other pathogenic fungi, for which cryptic 
speciation was detected, such as in the genus Paracoccidioides, 
with important differences in the expression of immunodominant 
antigens in different species, demanding more accurate serological 
tests (Machado et al. 2013, Queiroz Junior et al. 2014).

Disease management and vaccine development
Coccidioidomycosis presents a diversity of clinical forms, which 
may be associated with several aspects, such as exposure factors, 
climatic changes, host immunity and fungal genetic divergence. 
The few available clinical studies have reported equal or very close 
clinical forms in CM caused by Co. immitis and Co. posadasii. For 
this reason, more studies should be conducted to evidence possible 
clinical differences, mainly in the drug response to coccidioidomycosis 
(Morais et al. 2020, Cordeiro et al. 2021, Crum 2022).

The treatment of CM is based on the use of drugs from the 
class of polyenes and azole derivatives, such as amphotericin B 
and ketoconazole. Drug administration depends on the form and 
severity of the disease, drug interactions in associated pathologies, 
responsiveness to treatment, and mainly monitored adverse 
effects. Some studies report the use of five currently available off-
label treatment azoles: fluconazole, itraconazole, posaconazole, 
voriconazole, and isavuconazole, with variable efficacy (Galgiani et 
al. 2016, Thompson et al. 2019, Crum 2022).

Vaccine strategies provided a reduction of disseminated form, 
mainly in association with severe forms of CM in mice models. 
Besides the reduction of the severity of coccidioidomycosis, a 
live-attenuated vaccine is in development and has shown high 
protection in a mice model, to prevent CM (Narra et al. 2016, 
Shubitz et al. 2018, Kollath et al. 2019).

Author: T.D. Arantes

87. Melampsora Castagne, Observ. Uréd. 2: 18. 1843.

Type species: Melampsora euphorbiae (Ficinus & C. Schub.) 
Castagne

Classification: Basidiomycota, Pucciniomycotina, Pucciniomycetes, 
Pucciniales, Melampsoraceae.

Background

Rust fungi are obligate parasites of vascular plants (ferns, 
gymnosperms, angiosperms) with several unique features and with 
almost 8 000 accepted species (Kirk et al. 2008). As specialised 
plant parasites, rust fungi cannot be grown or are difficult to grow 
in axenic culture, although Moricca et al. (2000) successfully 
cultivated Me. laricis-tremulae on specific agar cultures (for further 
literature see the review by Maclean 1982). Rust fungi have the 
largest genome in the kingdom of Fungi (Tavares et al. 2014). 
Species may be restricted to one host or one group of related hosts 
(autoecious species) or may be host-alternating (heteroecious) 
infecting two taxonomically non-related plant hosts (the aecial 
and the telial host) in different stages of their life cycle. They 
may produce up to five successive spore-producing structures 
called spermogonia, aecia, uredinia, telia, and basidia. Spores 
are morphologically characteristic and named with reference to 
these spore-producing structures, namely spermatia, aeciospores, 
urediniospores, teliospores, and basidiospores.

Melampsoraceae and the genus Melampsora have been 
monographed only by Sydow & Sydow (1915). We define the 
family Melampsoraceae in a traditional sense consisting of only 
one genus, Melampsora following, e.g., Cummins & Hiratsuka 
(2003) and Kirk et al. (2008), although most recently Aime & 
McTaggart (2021) suggested to include a species of another 
genus, Ceropsora weirii. The genus Melampsora was introduced 
by Castagne (1843) with the type species Me. euphorbiae (≡ 
Xyloma euphorbiae), an autoecious species on the herbaceous 
plant Euphorbia exigua (see Fig. 117 for Me. euphorbiae on 
Euphorbia carniolica). The nomenclatural databanks MycoBank 
and Index Fungorum (2022) list 320 and 283 species epithets, 
respectively. Kirk et al. (2008) accepted 90 species worldwide. 

Table 92. Top 10 cited articles related to Coccidioides published in the period 2011–2021.
Rank Article title No. of citations References

1 Independent expansion of zincin metalloproteinases in Onygenales fungi may be 
associated with their pathogenicity

378 Li & Zhang (2014)

2 Epidemiology of endemic systemic fungal infections in Latin America 213 Colombo et al. (2011b)
3 Vaccine-induced protection against 3 systemic mycoses endemic to North 

America requires Th17 cells in mice
169 Wuthrich et al. (2011)

4 Coccidioidomycosis: epidemiology 163 Brown et al. (2013)
5 Human pathogens utilize host extracellular matrix proteins laminin and collagen 

for adhesion and invasion of the host
160 Singh et al. (2012)

6 Recent advances in our understanding of the environmental, epidemiological, 
immunological, and clinical dimensions of coccidioidomycosis

152 Nguyen et al. (2013)

7 Signal transducer and activator of transcription 1 (STAT1) gain-of-function 
mutations and disseminated coccidioidomycosis and histoplasmosis

142 Sampaio et al. (2013)

8 Increase in reported coccidioidomycosis - United States, 1998-2011 140 Tsang et al. (2013)
9 Comparative and functional genomics provide insights into the pathogenicity of 

dermatophytic fungi
137 Burmester et al. (2011)

10 Valley Fever: finding new places for an old disease: Coccidioides immitis found in 
Washington state soil associated with recent human infection

105 Litvintseva et al. (2015)
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After 2008, however, several additional new species were 
described, e.g., by Damadi et al. (2010), Tome & Aime (2014), Ali 
et al. (2016), Wang et al. (2020c), and Zhao et al. (2014c, 2015f, 
2016a, 2017a, 2021b). Consequently, the number of known 
species is here estimated to be more than 100. But species 
numbers also depend on the species concept. Delimitation of 
species in Melampsora is problematic because of narrow biological 
(Klebahn 1894, 1896, 1897, 1899, 1900, 1902, 1903, 1904, 1905, 
1907, 1914, Gäumann 1959) as well as morphological concepts 
leading to a wide species concept (Hylander et al. 1953, Wilson 
& Henderson 1966, Boerema & Verhoeven 1972, Bagyanarayana 
2005, Pei 2005, Klenke & Scholler 2015) have been applied in 
this genus. This particularly concerns species of the Me. epitea 
(Me. laricis-epitea) complex (with Salix telial hosts) and the Me. 
populnea complex (with Populus telial hosts). Today several 
rust taxonomists prefer a combination of classical (host range, 
morphology) and molecular genetic (nuclear and mitochondrial 
loci) features (Feau et al. 2009, Vialle et al. 2013, Zhao et al. 
2015e, 2017a, Ji et al. 2020). Intense phylogenetic studies were 
carried out by Bennet et al. (2011) in North America and by Milne 
et al. (2012) in subarctic UK (Scotland and northern England) 
finding numerous “cryptic” taxa. Here, the question arises whether 
the species are morphologically indistinguishable (“cryptic”) and, 
if a careful future study confirms this, whether mere phylogenetic 
species concepts should be sufficient to describe new species. 
The species concepts for Melampsora on Populus were reviewed 
by Vialle et al. (2011).

In Melampsora, all morphological basic types of spores and sori 
are formed that we also know from other rust fungi. After Cummins 
& Hiratsuka (2003), spermogonia are subcuticular or subepidermal, 
aecia are “caeomoid”, viz., they have verrucose aeciospores formed 
in chains without peridia, subepidermal uredinia are characterised by 

having colourless, capitate paraphyses, and urediniospores formed 
singly on pedicels, with colourless echinulate walls with obscure 
germ pores (Fig. 117). Telia exhibit the most striking features of the 
genus. They are formed subepidermal or subcuticular with laterally 
adherent spores forming a crust. Teliospores are one-celled and 
sessile, wall brown or brownish, with one terminal germ pore (Fig. 
117). Basidia consist of externally formed phragmospores forming 
four colourless basidiospores on sterigmata. Hyphae are septate 
and hyaline. No clamp connections are known for the dikaryotic 
mycelium. Hyphae grow between host cells (intercellular), obtaining 
nutrients from the host cells by means of haustoria.

Melampsora species are distributed worldwide but with 
emphasis prominence in the northern hemisphere. This is 
because most Melampsora species infect Populus (poplars) and 
Salix (willows), both genera of the Salicaceae (tribe Salicae, 
see Chase et al. 2002) with roughly 22–45 (Populus) and 330–
500 (Salix) taxa worldwide (Dickmann & Kuzovkina 2014). The 
emphasis of distribution of both host genera is the temperate 
northern hemisphere (Dickmann & Kuzovkina 2014). The centre of 
abundance of Salix is in China, with 189 endemic species (Fang et 
al. 1999), followed by Russia and adjacent countries of the former 
Soviet Union with about 120 species (Skvortsov 1999).

Most Melampsora species are host-alternating (heteroecious) 
and most of them form uredinia, telia, and basidia with Salicaceae 
telial hosts, only a few others prefer other host taxa, e.g., 
Saxifraga (Saxifragaceae) and Ribes (Grossulariaceae). Aecial 
hosts are various herbaceous or woody dicot angiosperm genera, 
e.g., Allium, Arum, Euonymus, Galanthus (Fig. 117C), Ribes 
and Saxifraga or gymnosperms (Pinaceae), e.g., Abies, Larix 
and Pinus. Non-host-alternating (autoecious) species may form 
all spore states (e.g., Me. amygdalinae on Salix spp. and Me. 
euphorbiae on Euphorbia spp., Fig. 117E), only spermogonia, 

Fig. 117. A. Melampsora abietis-caprearum: orange uredinia on leaves of Salix caprea. B. Melampsora amydalinae: orange uredinia on leaves of Salix 
triandra. C. Melampsora galanthi-fragilis with central spermogonia surrounded by aecia on leaves of Galanthus nivalis. D. Melampsora magnusiana: 
hypophyllous orange uredinia causing characteristic yellow epiphyllous leaf spots on Populus alba. E. Melampsora euphorbiae: orange uredinia and black 
crusty telia on Euphorbia carniolica. F. Melampsora gelmii: uredinia with urediniospores and thick-walled paraphyses on leaves of Euphorbia dendroides. 
G. Melampsora gelmii: telium crust with fused teliospores on Euphorbia dendroides [pictures contributed by M. Scholler (Fig. 117A, B, D–G) and J. Kruse 
(Fig. C)].
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aecia, telia and basidia (Me. vernalis on Saxifraga), only 
uredinia, telia and basidia (e.g., Me. hypericorum on Hypericum, 
Melampsora × medusae-populina, Me. microspora both on 
Populus), or they are microcyclic, e.g., Me. farlowii, forming only 
telia and spermogonia on Tsuga canadensis.

As mentioned above, most Melampsora species are hosts 
alternating with Populus and Salix (Fig. 117A, B, D) telial hosts. 
The life cycle of Melampsora rusts on Populus telial hosts is nicely 
illustrated by Vialle et al. (2011). In the following, we describe 
the life cycle of Me. laricis-epitea described by Pei (2005). The 
species host alternates from Larix (larch) to Salix. Spermogonia 
are formed in spring on Larix needles. They produce light-brown 
honeydew which attracts insects which transport monokaryotic 
spermatia and facilitate fertilisation between spermogonia. Two 
to three days later, the formation of aecia and aeciospores starts. 
The dikaryotic aeciospores infect Salix leaves to produce dikaryotic 
urediniospores. These are mitotic repeating spores and will infect 
other susceptible willows. In the late season, telia with teliospores 
are formed. In the teliospores nuclei fuse (karyogamy) and the 
fungus usually overwinters as a teliospore. In spring, meiosis takes 
place in the teliospores. They germinate with a basidium which 
produces four monokaryotic basidiospores which finally infect the 
aecial host (Larix), producing spermogonia.

The overwintering of species is variable in host-alternating 
rust fungi. Scholler et al. (2019) assume that there are other 
additional strategies to overwinter, e.g., overwintering as aecio- or 
urediniospores or as mycelium in perennial plant tissue. Pei (2005) 
confirmed this for Melampsora on Salix. He listed eight host-
alternating species which overwinter on Salix in the uredinial state 
indicating that their existence “may not depend on the availability 
of the aecial hosts”. The autoecious species Me. amygdalinae 
(Fig. 117B) can also overwinter in buds and stem cancers of Salix 
triandra (Ogilvie 1932, Raabe 1939, Pei 2005).

Economic and ecological importance

The economic importance of Melampsora rusts is mostly related to 
their occurrence as pathogens on woody plants such as Populus 
spp. and Salix spp. An exception is the annual crop plant flax, 
although in practical cultivation the detrimental effects of the rust 
disease on flax are limited. Only the most important species are 
listed below.

Poplar rusts (on Populus spp.)

Melampsora laricis-populina and Me. allii-populina are Eurasian 
species that can be found on poplars of the section Aigeiros, 
namely Populus nigra, but also on hosts in the section Aigeiros 
originating from North America like P. deltoides and P. trichocarpa 
(Pei & Shang 2005). Larch species (Larix spp.) are aecial hosts 
for the first and Allium species for the latter Melampsora species 
(e.g., Gäumann 1959). According to Frey et al. (2005), Me. laricis-
populina is the more important pathogen in poplar cultivations. The 
economic importance of Me. laricis-populina is based on the fact 
that most clones used in commercial poplar cultivation for timber 
and pulp production in Europe originate from crossings of Populus 
deltoides and P. nigra (P. × euramericana) and P. deltoides and P. 
trichocarpa (P. × interamericana).

Melampsora medusae is a North American species separated 
into two host-specific formae speciales: Melampsora medusae 
f. sp. deltoidis with telial hosts in the section Aigeiros and Me. 
medusae f. sp. tremuloidae with telial hosts in the section 

Populus (Boutigny et al. 2013). Aecial hosts are members of the 
Pinaceae, namely Larix spp., Pinus spp. (especially young plants), 
and Pseudotsuga menziesii. The fungus may cause substantial 
damage to plantations of Populus deltoides and related hybrids in 
North America (Widin & Schipper 1981). The rust has also been 
introduced to Australia (Walker et al. 1974) and New Zealand 
(Spiers 1998) infecting introduced P. deltoides and related hybrids. 
In Europe, Me. medusae f. sp. deltoidis occurs occasionally on P. 
deltoides and hybrids without causing significant damage (Jeger et 
al. 2018). It is neither considered a quarantine pest nor a regulated 
non-quarantine pest but should be under further observation (Jeger 
et al. 2018). Melampsora medusae f. sp. tremuloidae is absent 
from Europe and is listed as a quarantine pest in annex IIA of 
implementing regulation (EU) 2019/2072 (European Commission 
2019).

Melampsora populnea s. lat. is a complex of Eurasian species, 
including Me. magnusiana (Fig. 117), Me. rostrupii, Me. laricis-
tremulae and Me. pinitorqua. Telial hosts are members of Populus 
sect. Populus, namely aspen (Populus tremula), white poplar 
(Populus alba) and their hybrids. The economic impact on the telial 
hosts is relatively low since P. tremula and P. alba (Fig. 117) are not 
widely used in plantations (Frey et al. 2005). The economic impact 
on the aecial host depends on the aecial host species. Melampsora 
magnusiana and Me. rostrupii infect only economically unimportant 
herbaceous plants, Chelidonium majus and Mercurialis perennis 
(Gäumann 1959). A harmful impact on the natural host population is 
not known. Economic impacts on larch trees (Larix spp.), the aecial 
host of Me. laricis-tremulae, are not known either. Pinus sylvestris, 
P. pinaster and other pine species infected by Me. pinitorqua 
(Desprez-Loustau & Wagner 1997), however, are strongly attacked. 
Spermogonia and aecia develop directly on young shoots of 
seedlings and induce bending of the infected shoot. This can reduce 
the height and quality of trees (Mattila 2005).

Willow rust (Salix spp.)

Melampsora laricis-epitea is a Eurasian species complex separated 
into several formae speciales (e.g., Pei 2005). On the aecial 
hosts (Larix spp.) no significant economic impacts are known. 
The telial hosts are willows. The economically most important 
forma specialis is Me. laricis-epitea f. sp. laricis-epitea on Salix, 
section Vetrix, namely S. aurita and S. cinerea and section Vimen, 
namely S. viminalis (Pei 2005). Salix viminalis is grown for basketry 
(Stott 1992) and as a bioenergy crop in short rotation coppices 
(McCracken & Dawson 1996). Because of the use of vegetatively 
propagated willow clones, short rotation coppices can be seriously 
affected by rust. Infections with the rust of the Me. laricis-epitea 
complex led to problems in the use of short rotation coppices in 
Great Britain in the early 1990s (McCracken & Dawson 1992).

Lin rust (on Linum usitatissimum)

Melampsora lini (syn. Me. liniperda) causes rust disease on Linum 
species (linum) including Linum usitatissimum (common flax) which 
is cultivated for oil or fibre production. The species is autoecious, 
i.e., all spore stages are formed on a single host species. Apart 
from the crop plant L. usitatissimum, Me. lini occurs on several 
other Linum species in Europe, North America, Australia and New 
Zealand (Lawrence et al. 2007). Nowadays, linum rust is not the 
major pathogen in linseed/flax cultivations in Western Europe, 
China, Russia and Canada. In reports on flax cultivation (Heller et 
al. 2015, Wang et al. 2018i, Stafecka et al. 2019) rust disease is 
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only listed after wilt (Fusarium oxysporium f. sp. lini), anthracnose 
(Colletotrichum linicola) and powdery mildew (Podosphaera lini, 
including Oidium lini, Braun et al. 2019). One reason for the low 
prevalence of rust disease in flax cultivation is the relative ease 
of selecting for rust resistance in classical breeding by crossing 
(Rashid & Kenaschuk 1994), resulting in at least temporarily 
resistant lineages. The importance of Me. lini is rather not 
expressed in terms of harm to crop plants but can be seen in its use 
as a model organism for plant pathology (see below). However, in 
New Zealand recent attempts to cultivate the seriously threatened 
Chatham Islands endemic Linum monogynum var. chathamicum 
has resulted in heavy rust infections and the death of plants in 
the nursery (De Lange 2019); the rust was first observed in the 
Chatham Islands on cultivated plants and was not observed in the 
wild until 2008.

Research interests

Importance as a model organism
There are 250 publications and 6 915 citations from 2011–2021 
in the Web of Science (Fig. 118). Research on Melampsora 
rusts has high importance in plant pathology, mainly because of 
crossing experiments on flax and its rust Me. lini that led to the 
articulation of the gene-for-gene hypothesis by Harold Henry Flor 
(Flor 1955, 1971). The experimental system made use of the 
presence of homozygous cultivars of the host and the possibility 
of Mendelian crossing analysis with the dikaryotic stages of the 
rust. The experiments were further facilitated by the autoecious life 
cycle of Me. lini. The hypothesis states that there is a gene-for-
gene relationship between the ability of the pathogen to infect the 
host and the ability of the host to resist the pathogen. It was the 
starting point for resistance breeding in other crop species (Dean 

Fig. 118. Trends in research of Melampsora in the period 2011–2021.

Table 93. Top 10 cited articles related to Melampsora published in the period 2011–2021.
Rank Article title No. of citations References
1 The top 10 fungal pathogens in molecular plant pathology 1769 Dean et al. (2012)
2 Obligate biotrophy features unravelled by the genomic analysis of rust fungi 415 Duplessis et al. (2011)
3 Structural and functional analysis of a plant resistance protein TIR domain reveals 

interfaces for self-association, signaling, and autoregulation
224 Bernoux et al. (2011)

4 Plant-parasite coevolution: bridging the gap between genetics and ecology 163 Brown & Tellier (2011)
5 Using hierarchical clustering of secreted protein families to classify and rank candidate 

effectors of rust fungi
162 Saunders et al. (2012)

6 Genetic improvement of willow for bioenergy and biofuels 141 Karp et al. (2011)
7 The role of effectors of biotrophic and hemibiotrophic fungi in infection 132 Koeck et al. (2011)
8 Rapid genetic change underpins antagonistic coevolution in a natural host-pathogen 

metapopulation
130 Thrall et al. (2012)

9 Spatial variation in disease resistance: from molecules to metapopulations 122 Laine et al. (2011)
10 A comprehensive analysis of genes encoding small secreted proteins identifies 

candidate effectors in Melampsora larici-populina (poplar leaf rust)
99 Hacquard et al. (2012)
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et al. 2012). Today Me. lini is still an important model system as 
can be seen from Table 93. Among the top 10 Melampsora papers, 
four treat the rust/flax system (Bernoux et al. 2011, Laine et al. 
2011, Dean et al. 2012, Thrall et al. 2012). The current research 
takes benefits from the availability of Agrobacterium-mediated 
transformation protocols (Lawrence et al. 2010) and the genome 
sequence of Me. lini (Nemri et al. 2014).

Resistance/disease management (control)
Interest in Melampsora rusts from 1990 to 2010 derived from the 
planting of short rotation coppices for the production of renewable 
energy. Short rotation means that trees are cut after three to 
twenty years, in opposition to the long rotation of 80 to 120 years 
in classical forestry. Two very suitable genera are Populus and 
Salix. They not only have the advantage of fast growth but can 
also regenerate from root stocks for several rotations (Faasch & 
Patenaude 2012). Because of the usage of clonally propagated 
plants (propagation by cuttings), damage can occur when rust 
susceptible clones are planted (Pei et al. 1999). Fungicides are 
not regularly applied in short rotation coppices; their use has only 
been restricted to experimental plantations (McCracken & Dawson 
1997). One strategy of risk reduction is the use of a mixture of 
clones. In a comparison of monoclonal and polyclonal willow 
stands it could be shown that the reduction of the disease impact 
was comparable between fungicide treatment and the use of a 
clonal mixture (McCracken & Dawson 1997).

In disease management, it is very important to consider the 
host range of Melampsora species. Sequencing of ITS barcodes 
is a relatively quick method and even formae speciales can be 
differentiated using this marker, although the difference can be as 
low as one SNP (Single Nucleotide Polymorphism) between Me. 
laricis-epitea f. sp. laricis-daphnoides and Me. laricis-epitea f. sp. 
laricis-epitea (Bubner et al. 2014). Molecular distinction of the two 
formae speciales Me. medusae f. sp. deltoidis and Me. medusae f. 
sp. tremuloidae can help to confirm that the latter is still absent from 
Europe (Boutigny et al. 2013).

The distinction of Melampsora species is also a necessary 
tool for breeding programs to provide rust-resistant plants (Karp 
et al. 2011). In classical breeding programs, crosses of poplar 
or willow clones are not only selected for biomass yield but also 
their rust resistance by scoring susceptibility to natural infection 
pressure (Bubner et al. 2018, Fey et al. 2018) or by artificial 
inoculations (Pei et al. 2008). Classical programs are supported 
by molecular methods such as mapping of quantitative trait loci for 
rust resistance (Samils et al. 2011, Jorge et al. 2005). Molecular 
markers will support rust resistance selection without the need for 
natural selection pressure or artificial inoculation (Wei et al. 2020).

Authors: M. Scholler, B. Bubner and U. Braun

88. Antrodia P. Karst., Meddeland. Soc. Fauna Fl. Fenn. 5: 
40. 1879.

Type species: Antrodia serpens (Fr.) P. Karst.

Classification: Basidiomycota, Agaricomycotina, Agaricomycetes, 
Polyporales, Fomitopsidaceae.

Background

Antrodia, one of the largest genera of polypores, was described by 
Peter Adolf Karsten (1879) with Antrodia serpens (syn. Polyporus 

serpens) as the type. The genus has more than 130 records 
listed in Index Fungorum, with about 50 well-recognised species. 
Members of the genus are mostly circumscribed by an annual 
to perennial growth habit; resupinate to effused-reflexed stature 
of the basidiocarps; the presence of dimitic hyphae; dextrinoid 
basidiospores shaped oblong-ellipsoid to cylindrical; and causing 
brown rot diseases of woods (Gilbertson & Ryvarden 1986, 
Bernicchia & Ryvarden 2001, Núñez & Ryvarden 2001, Dai & 
Niemelä 2002, Ryvarden & Melo 2014, Han et al. 2020). Members 
of the genus are cosmopolitan in distribution (Han et al. 2020). 
About 70 % of the brown rot fungi belong to the “Antrodia clade”, 
which is the clade with the largest number of brown rot fungal 
species (Garcia-Sandoval et al. 2011, Ortiz-Santana et al. 2013).

Antrodia within the “Antrodia clade” belong to the core genus 
comprising poroid species (Runnel et al. 2019). It is a polyphyletic 
genus, phylogenetically related to other fungal genera like Daedalea, 
Fomitopsis, Oligoporus, and Rhodofomes, all of which are known 
for causing brown rot disease of wood (Han et al. 2020). Antrodia 
in a broad sense was divided into Antrodia s. str., Amyloporia, and 
Fibroporia (Han et al. 2020). Based on the study of Spirin et al. (2013), 
it was found Antrodia s. str. consists of the Antrodia heteromorpha 
complex (An. favescens, An. serpens, An. heteromorpha s. str., 
and An. tanakae), together with other taxa like An. mappa, and An. 
macara based on the ITS rDNA, and tef1 sequence data. However, 
Ortiz-Santana et al. (2013) supported the segregation of the genus 
Antrodia s. lat. into Fibroporia and Antrodia due to a lack of evidence 
for the monophyly of Amyloporia. Spirin et al. (2015) delimitated four 
clades by investigating the phylogeny within the Antrodia crassa 
group, viz. the An. crassa, An. pinea, An. pini-cubensis and An. 
sitchensis clades based on morphological, geographical, ecological 
and three-marker gene region sequence data (ITS and LSU rDNA, 
and tef1). Spirin et al. (2016) revised the phylogeny and taxonomy 
of the An. malicola group based on the ITS rDNA, and tef1 datasets. 
Runnel et al. (2019) accepted the genus Antrodia in a stricter sense 
based on morphological and phylogenetic results and included An. 
griseoflavescens, An. multiformis, and An. tenerifensis under the 
genus. Han et al. (2020) used morphological features and molecular 
data and confirmed the polyphyly of Antrodia s. lat. together with 
other brown rot fungal genera, such as Daedalea, Fomitopsis and 
Rhodofomitopsis. Han et al. (2020) also stressed better research of 
this group based on a phylogenetic study with more samples and 
some better conserved gene markers.

Ecological and economic significance

Antrodia, the brown rot fungi, decompose cellulose and 
hemicellulose through enzymatic degradation (Baldrian & 
Valáŝková 2008, Floudas et al. 2012, Ortiz-Santana et al. 2013) 
and support the growth of seedlings, other fungi, and insects 
(Lonsdale et al. 2008, Rajala et al. 2012). They also play an 
important role in the sequestration of carbon (Fukami et al. 
2010). Some species of the Antrodia clade are also known for 
their economic importance as agents of indoor wood decay and 
source of biotechnological and pharmaceutical products (Bagley 
& Richter 2001, Vaidya & Singh 2012). Economic losses due to 
the species of Antrodia have been reported in structural woods 
of buildings and timber production in North America and Europe 
(Schmidt & Moreth 2003, Schmidt 2007). Antrodia camphorata is 
a parasite of the plant Cinnamomum kanehirae, which is endemic 
to Taiwan (Soković et al. 2018).

Members of the genus are well regarded for their importance 
in traditional medicine since ancient times (Tzeng & Geethangili 
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2011). Antrodia camphorata, is used in Taiwan to cure various 
health-related problems like colds, headaches, influenza, fever, 
muscle damage, etc. (Tzeng & Geethangili 2011). The sporocarps 
and mycelium extracts prepared from An. camphorata have been 
proven to possess antiproliferative effects on several cancer cell 
lines. Many studies on its extracts have shown that it can help 
in generating immune responses in leukaemia BALB/c mice by 
exhibiting anti-leukemic activity in a hepatoma cell model of humans 
by activating the immunomodulation of macrophages (Popović 
et al. 2013). A mycelium extract from An. camphorata works well 
against hepatitis B virus without showing any cytotoxic effects 
on normal cells. The extract also possesses good antioxidant 
activities and thereby prevents various damages to the liver. Tzeng 

& Geethangili (2011) used rats as a model and showed that the 
methanolic extracts of An. camphorata reduced hypertension. 
Wang et al. (2017c) reported An. camphorata sporocarps have 
anti-skin cancer, anti-melanogenic, and antioxidant properties. 
About 78 compounds have been isolated from An. camphorata 
most of which are triterpenoid, having an ergostan, and lanostane 
skeleton (Popović et al. 2013, Soković et al. 2018). Some other 
compounds such as benzoquinones, benzoids, fatty acids, lignans, 
and polysaccharides have also been found in An. camphorata 
(Soković et al. 2018). Ethanol extract from artificially cultured An. 
cinnamomea confirmed its anti-tumour properties without showing 
any side effects in an in vivo animal model. There are reports 
suggesting that breast cancer cells (T47D) treatment with ethanol 

Fig. 119. Trends in research of Antrodia in the period 2011–2021.

Table 94. Top 10 cited articles related to Antrodia published in the period 2011–2021.
Rank Article title No. of citations References
1 Recent developments in mushrooms as anti-cancer therapeutics: a review 216 Patel & Goyal (2011)
2 Review of pharmacological effects of Antrodia camphorata and its bioactive 

compounds
216 Tzeng & Geethangili (2011)

3 Phylogenetic and phylogenomic overview of the Polyporales 196 Binder et al. (2013)
4 Contents of lovastatin, γ-aminobutyric acid and ergothioneine in mushroom 

fruiting bodies and mycelia
120 Chen et al. (2012a)

5 Recent research and development of Antrodia cinnamomea 111 Lu et al. (2013)
6 Lanostanoids from fungi: a group of potential anticancer compounds 102 Ríos et al. (2012)
7 Lignin-degrading peroxidases in Polyporales: an evolutionary survey based on 

10 sequenced genomes
91 Ruiz-Dueñas et al. (2013)

8 Revisiting the taxonomy of Phanerochaete (Polyporales, Basidiomycota) 
using a four gene dataset and extensive ITS sampling

76 Floudas & Hibbett (2015)

9 Nutrient compositions of culinary-medicinal mushroom fruiting bodies and 
mycelia

76 Ulziijargal & Mau (2011)

10 Antroquinonol from ethanolic extract of mycelium of Antrodia cinnamomea 
protects hepatic cells from ethanol-induced oxidative stress through Nrf-2 
activation

71 Kumar et al. (2011)
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extracts of An. cinnamomea induce endoplasmic reticulum stress 
by expressing inositol-required enzyme 1α and CHOP anticancer 
protein (Chen et al. 2019d). Yue et al. (2013) made a detailed review 
and included various hepatoprotective activities of An. cinnamonea 
including anti-hepatocarcinoma, anti-hepatitis and anti-alcoholism. 
Wang et al. (2019a) summarized the pharmacological effects of 
An. camphorata in various cancer cell lines (such as liver, breast, 
bladder, cervical, prostate, ovarian, colorectal, lung and pancreatic).

Research interests

There are 678 publications and 6 910 citations from 2011–2021 in 
the Web of Science (Fig. 119), with the top 10 most cited articles 
included in Table 94. Most publications focused on pharmacology 
and therapeutics, and phylogeny and taxonomy.

Pharmacology and therapeutics
Antrodia cinnamomea, an endemic species from Taiwan, is known for 
its therapeutic and anticancer properties. This Taiwanese mushroom 
has been prized by tribals as folk medicine, and various classes of 
compounds have been isolated from the fungus for the treatment of 
hypertension, inflammatory disorders, hepatitis and cancer (Lu et 
al. 2013). Anticancer compounds such as lanostanoids (tetracyclic 
terpenoids derived from lansterol), isolated from An. camphorata, 
show cytotoxic effects through the induction of apoptosis (Rios et 
al. 2012). Kumar et al. (2011) studied the effect of antroquinonol, 
another potent compound isolated from the medicinal fungus An. 
cinnamomea, which has shown promising effects for the treatment of 
liver diseases. Methanol extracts of the mycelia of An. cinnamomea 
showed anti-inflammatory activity both in vivo and in vitro, also 
methanolic extracts of sporocarps of An. camphorata showed 
potent anti-inflammatory properties indicating it is a good candidate 
for hydrocolloid dressings (Wen et al. 2011, Tsai et al. 2015). The 
mycelia of An. salmonea contains high amounts of lovastatin, known 
for the reduction of the risk of heart disease (Chen et al. 2012a).

Phylogeny and taxonomy
The phylogenetic relationships within the mushrooms of the 
“Antrodia clade” were studied using LSU and ITS rDNA sequence 
data by Ortiz-Santana et al. (2013). Cui (2013) described a new 
species, An. tropica from Hainan, China, on the basis of both 
molecular (rDNA ITS sequences) and morphological data.

Authors: N. Roy and A.K. Dutta

89. Brettanomyces Kuff. & Van Laer ex Custers, Bull. Soc. 
Chim. Belgique 30: 276. 1921. .
Synonym: Dekkera Van der Walt, Antonie van Leeuwenhoek 30: 
274. 1964

Type species: Brettanomyces bruxellensis Kuff. & Van Laer (syn. 
Dekkera bruxellensis Van der Walt)

Classification: Ascomycota, Saccharomycotina, Pichiomycetes, 
Pichiales, Pichiaceae.

Background

The genus Brettanomyces was described to accommodate yeasts 
isolated from Belgium lambic beers (Kufferath & Van Laer 1921, 
Smith 2011), with Br. bruxellensis as the only species at that time. 
In the 5th edition of “The Yeasts, a Taxonomic Study” (TYTS), the 

genus contained five species (Smith 2011), namely Br. anomalus 
(Custers 1940), Br. bruxellensis, Br. custersianus (Van der Walt 
1964), Br. naardenensis (Kolfschoten & Yarrow 1970) and Br. 
nanus (Smith et al. 1981, Boekhout et al. 1994). Recently, Br. 
acidodurans was described for two strains obtained from olive 
oil and spoiled olive oil, respectively, using sequence analysis of 
the D1/D2 domains of large subunit ribosomal DNA (LSU), SSU, 
and tef1 that demonstrated that this species is an early diverging 
lineage of the genus (Péter et al. 2017a). Using sequence analysis 
of SSU it was found that Brettanomyces/Dekkera formed a well-
supported monophyletic clade with a sister relationship to Pichia 
membranifaciens and P. kudriavzevii (cited as Candida krusei) 
(Cai et al. 1996). Sequence relatedness varied from 94.8–95.4 % 
between a more basal lineage, Br. custersianus, and the other 
Brettanomyces species, but Dekkera naardenensis occurred as 
the most basal lineage. Smith and collaborators described Eeniella, 
a genus with one species, Eeniella nana (Smith et al. 1981) to 
accommodate isolates from a number of Swedish breweries 
that differed morphologically by the small size of the yeast cells 
that have an enteroblastic, bipolar mode of budding (Smith et al. 
1981). Using sequence analysis of the D1/D2 domains of the LSU 
it was found that Eeniella clustered within species of the genus 
Brettanomyces, with Br. custersianus as basal species (Boekhout 
et al. 1994). Yamada et al. (1995) studied sequence divergence 
between Eeniella and Brettanomyces/Dekkera species using both 
SSU and partial LSU sequences and concluded that Eeniella 
should be reinstated as a genus. In the 5th edition of TYTS, E. nana 
is, however, included as Br. nanus (Smith 2011). Three isolates 
obtained from sugar cane juice and sugar cane waste isolated in 
Thailand were considered to represent a new species in a new 
genus and were described as Allodekkera sacchari (Jutakanoke 
et al. 2017). Of note, in contrast to all other species of Dekkera/
Brettanomyces, this species is not able to ferment glucose and 
does not form acetic acid.

Van der Walt observed the formation of ascospores among 
strains of Brettanomyces bruxellensis and Br. intermedius, a current 
synonym of Dekkera bruxellensis (Van der Walt & Van Kerken 
1959), and proposed the genus Dekkera (Van der Walt 1964) to 
accommodate these sexually reproducing species. Presently, two 
species are recognised in the genus Dekkera, namely D. anomala 
(Smith & Van Grinsven 1984) and D. bruxellensis (Van der Walt 
1964). Thus, the generic names Brettanomyces and Dekkera were 
introduced to accommodate asexually and sexually reproducing 
yeasts, respectively, an essential nomenclatural requirement 
in the past era of dual fungal nomenclature. However, since the 
introduction of the “One Fungus = One Name” principle, only one 
name is allowed for a fungal species, and, hence, a choice has to 
be made between Brettanomyces and Dekkera. In our opinion, the 
name Brettanomyces may be preferred over Dekkera as it is the 
oldest name and, even more importantly, is most widely used in 
the brewing world where the term “Brett” refers to characteristics 
caused by these yeasts.

Ecological and economic significance 

Among the most striking features of Brettanomyces/Dekkera yeasts 
is their ability to ferment glucose under aerobic conditions, the so-
called Crabtree phenomenon, which is linked to the low activity of 
enzymes involved in the respiratory chain and tricarboxylic cycle 
(Middelhoven & Kurtzman 2003) and redox imbalances (Blomqvist 
& Passoth 2015). They also show the Custers effect (also referred 
to as the negative Pasteur effect), which is the inhibition of alcoholic 
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fermentation under strictly anaerobic conditions and its stimulation 
in the presence of oxygen (Wikén et al. 1961, Scheffers 1966, 
Carrascosa et al. 1981, Rozpedowska et al. 2011, Schifferdecker et al. 
2014). In addition, these yeasts tolerate high ethanol concentrations 
(14–15 % v/v), produce acetic acid, and tolerate cycloheximide 
(Scheffers & Misset 1974, Steensel & Verstrepen 2014, Steensels 
et al. 2015). Mechanistically, the Custers effect has been explained 
by a shortage of NAD+ due to the activity of redox systems when 
glucose is added under anaerobic conditions (Scheffers 1966, 
Scheffers & Misset 1974, Carrascosa et al. 1981). These conditions 
have resulted in the so-called “make, accumulate, consume” life 
strategy for ethanol and acetic acid (Rozpedowska et al. 2011). It 
has been proposed that this strategy developed due to the evolution 
of sugar-containing fruit-producing plants ca. 125 MYA (Friis et al. 
2006, Sun et al. 2011, Schifferdecker et al. 2014) that provided a 
new niche for these and other yeasts. This ecosystem engineering 
life strategy is thought to inhibit competing microorganisms when 
glucose is in excess and then respire the ethanol after its exhaustion 
(De Deken 1966, Dashko et al. 2014, Zhou 2015, Zhou et al. 2017). 
A comparative study between Saccharomyces and Brettanomyces 
yeasts that separated > 200 MYA found that promoter regions of 
both underwent massive loss of cis-regulatory elements of genes 
involved in respiration (Rozpedowska et al. 2011, Cheng et al. 
2017a) and suggested that parallel changes between Dekkera/
Brettanomyces and Saccharomyces yeasts are caused by changes 
in the nucleosome occupancy in the promoter regions of genes 
located in the mitochondria that result in suppression of mitochondrial 
function in the presence of glucose. Thus, this can be seen as a case 
of parallel evolution. The features listed above make Brettanomyces/
Dekkera yeasts useful for bioethanol production (Passoth et al. 
2007, Galafassi et al. 2011, De Barros Pita et al. 2019). The biofuel 
production in a Swedish alcohol production plant was found to be a 
complex process in which Br. bruxellensis together with Lactobacillus 
vini and other Lactobacillus spp. interact to produce high ethanol yields 
(Passoth et al. 2007; see also below for brewing). The Brettanomyces 
yeasts may outcompete Saccharomyces in bioethanol plants due 
to their tolerance to low pH and high concentrations of ethanol as 
well as osmolytes. Several strains and species ferment cellobiose, 
L-arabinose, and D-xylose and can utilise nitrate, all compounds 
present in lignocellulosic biomass that may further boost their use in 
industrial bioethanol production (Borneman et al. 2014, Steensels et 
al. 2014, Blomqvist & Passoth, 2015).

Brettanomyces/Dekkera yeasts are most well known for their 
presence in sour Belgian beers, such as Lambic and Gueuze beers, 
but they also pose a major risk during wine production due to the 
formation of off flavours that are referred to as “clove, spicy, mousy, 
barnyard, phenolic, plastic, or medicinal”, just to give a few names. 
In the common literature, this is also named “Brett” (Steensels et al. 
2014). As these yeasts also utilise short oligosaccharides, such as 
maltose, maltotriose and dextrins, they produce attenuated beers 
with high ethanol content and low residual sugars (Colomer et al. 
2019). Brewing of Lambic sour beers and similar beers, such as 
American Coolship ales, is a multi-kingdom interaction process in 
which not only Brettanomyces/Dekkera yeasts participate, but also 
Saccharomyces cerevisiae, and various bacteria, such as acetic acid 
bacteria (AAB), lactic acid bacteria (LAB) and Enterobacteriaceae 
in a complex process with four stages (Spitaels et al. 2014, Spitaels 
et al. 2015): (i) phase 1 with Enterobacteriaceae and wild yeasts 
with limited involvement of AAB; (ii) a main fermentation phase 
with S. cerevisiae/S. pastorianus, Enterobacteriaceae and AAB; 
(iii) an acidification phase with AAB; and (iv) a maturation phase 
with Brettanomyces/Dekkera yeasts and LAB, with the number of 

AAB going down (De Roos et al. 2019). It has been observed that 
co-culture with bacteria causes alterations in the genome of the 
yeasts (Zhou 2017), but whether this also happens during brewing 
or bioethanol production remains elusive. Dunham and colleagues 
recently described genomic rearrangements and chromosomal 
copy number variations occurring as a result of serial repitching in 
multiple breweries (Large et al. 2020). Although the use of these 
yeasts in brewing is considered safe due to the long use without 
causing any harm, it has been suggested that the production of 
biogenic amines might be a potential concern (Steensels et al. 
2014).

Brettanomyces/Dekkera yeasts are considered the main 
spoilage organism in the production of wines due to the production 
of off flavours (see above) (Renouf et al. 2006, Jolly et al. 2014, Di 
Toro et al. 2015, Capozzi et al. 2016, Pigao et al. 2021). Several 
volatiles, e.g., ethyl phenols that are produced by Br. bruxellensis 
attract insects, such as Drosophila melanogaster that may act 
as vectors and introduce the yeasts into breweries and wineries 
(Belda et al. 2017b, Becher et al. 2018). Moreover, the release of 
insect attracting volatiles is widespread across the yeast domain, 
and insect-yeast volatile communication likely predated the 
origin of dicot angiosperms (ca. 300–400 MYA vs 125 MYA). It 
has been suggested that this mechanism may also play a role in 
the pollination of plants by insects that are attracted by volatiles 
produced by yeasts present in flowers (Becher et al. 2018).

The above studies and applied aspects have sparked the 
analysis and understanding of Brettanomyces/Dekkera genomes. 
Several studies revealed that their genomes are highly dynamic 
ranging from haploid, diploid to triploid, with several showing hybrid 
signatures (Hellborg & Piškur 2009, Curtin et al. 2012, Borneman 
et al. 2014, Avramova et al. 2018, Varela et al. 2018, Colomer et al. 
2020, Roach & Borneman 2020).

A phylogenomics analysis based on a concatenated 
sequence of 3 482 single-copy orthologous genes, showed that 
Brettanomyces/Dekkera species are much more diverged than 
e.g., Saccharomyces spp. (Roach & Borneman 2020). In the genus, 
two clades are apparent, bruxellensis/anomalus/custersianus and 
naardenensis/nanus. The genomes of the species showed poor 
synteny and many translocations and expansion of some gene 
families. For instance, Br. bruxellensis and Br. nanus showed 
expansion of genes encoding β-glucosidases and β-galactosidases; 
Br. bruxellensis and Br. custersianus shared expansions of genes 
involved in amino acid metabolism; Br. bruxellensis and Br. 
anomalus had an expansion of formate dehydrogenases; and Br. 
anomalus contained multiple copies of the gene encoding formate 
dehydrogenases. Sucrose metabolism by Br. bruxellensis and Br. 
anomalus may have resulted from horizontal gene transfer of a 
bacterial gene (Roach & Borneman 2020). It has been postulated 
that Br. bruxellensis arose via hybridisation of two closely related 
species of which one was a diploid and the other haploid. Of interest 
is that several genes encode proteins involved in the utilisation of 
chitin, N-acetylglucosamine, galactose, mannose, and lactose 
(Curtin et al. 2012).

In a study of 84 strains from various sources, including wine, craft 
beers, tequila, wood and wild strains, signals of domestication were 
seen leading to a set of strains with high attenuation and high ester 
production (Colomer et al. 2020). Interestingly, a phenolic off-flavour 
(POF, Young et al. 2014) negative strain was found that lacked the 
associated genes, and that may be useful for the production of POF-
free wine and beers (Colomer et al. 2020). In line with the above, 
DNA fingerprinting also showed a correlation between the population 
structure and isolation source (Crauwels et al. 2014). For instance, 
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yeasts from beers, biofuel, and soft drinks clustered separately. 
Due to the importance of early detection of Brettanomyces/Dekkera 
yeasts in winemaking, several techniques have been explored, such 
as DNA fingerprinting, PCR, and Raman spectroscopy (Rodriguez et 
al. 2013, Crauwels et al. 2014, Hulin et al. 2014).

Early work on mitochondrial genomes (McArthur & Clark-Walker, 
1983, Hoeben et al. 1993) supported the phylogenomics-based 
phylogeny presented in Roach & Borneman (2020). Procházka et 
al. (2010) found that genes of the mitochondrial genomes showed 
only 77–93 % amino acid sequence identity, underlining the huge 
diversity between species of the genus Brettanomyces/Dekkera as 
it is presently recognised.

Research interests

There are 419 publications and 6 693 citations from 2011–2021 in 
the Web of Science (Fig. 120). The 10 papers containing information 
on Brettanomyces/Dekkera that were highly cited (Table 95) all 
relate to the use of the yeasts in brewing and winemaking, either 
as a beneficial or spoilage organism, as well as their potential role 
in the production of biofuels. Aspects included genome make-
up, domestication, improving quality and keeping standards, and 
the underlying “make-accumulate-consume” strategy that is a 
result of their remarkable physiology (see above). Functional and 
comparative genomics of these yeasts likely will result in further 
improvement of these processes. For instance, the identification 
of a POF-negative strain has the potential to be used in brewing 

Fig. 120. Trends in research of Brettanomyces in the period 2011–2021.

Table 95. Top 10 cited articles related to Brettanomyces published in the period 2011–2021.
Rank Article title No. of citations References
1 Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered 465 Jolly et al. (2014)
2 The microbial diversity of traditional spontaneously fermented lambic beer 137 Spitaels et al. (2014)

3 Taming wild yeast: potential of conventional and nonconventional yeasts in industrial 
fermentations 134 Steensels et al. (2014)

4 Brettanomyces yeasts - from spoilage organisms to valuable contributors to industrial 
fermentations 129 Steensels et al. (2015)

5 Microbial contribution to wine aroma and its intended use for wine quality 
improvement 125 Belda et al. (2017b)

6 Microbial terroir and food innovation: the case of yeast biodiversity in wine 112 Capozzi et al. (2016) 

7 Parallel evolution of the make-accumulate-consume strategy in Saccharomyces and 
Dekkera yeasts 112 Rozpedowska et al. (2011)

8 Brewhouse-resident microbiota are responsible for multi-stage fermentation of 
American coolship ale 110 Bokulich et al. (2012) 

9 Bacteria and yeast microbiota in milk kefir grains from different Italian regions 103 Garofalo et al. (2015)

10 De-novo assembly and analysis of the heterozygous triploid genome of the wine 
spoilage yeast Dekkera bruxellensis AWRI1499 97 Curtin et al. (2012)
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and winemaking without the risk of off-flavour production. Also, a 
better understanding of the ecology of these yeasts may contribute 
to further improvement of their uses and prevent their introduction, 
e.g., by insect vectors, in wineries. The unexpected dominance of 
Brettanomyces/Dekkera yeasts in a Swedish industrial biofuel plant 
already yielded many surprises. Further genetic or evolutionary 
engineering of isolates may improve yields, be it ethanol or acetic 
acid, sour beers or even some wines. Modern techniques, such 
as CRISPR-Cas9, may boost these developments given the high 
number of genomes available.

Authors: T. Boekhout and N. Zhou

90. Ascochyta Lib., Pl. Crypt. Arduenna, Fasc. (Liège) 
1(Praef.): 8. 1830.

Type species: Ascochyta pisi Lib.

Classification: Ascomycota, Pezizomycotina, Dothideomycetes, 
Pleosporales, Didymellaceae.

Background

The genus Ascochyta is one of three main genera in the family 
Didymellaceae and encompasses several phytopathogenic species, 
along with Didymella, Phoma, and other allied phoma-like genera 
also included in the Didymellaceae (De Gruyter et al. 2013, Chen 
et al. 2017c, Wijayawardene et al. 2017a, 2018, Hyde et al. 2020a). 
Ascochyta was introduced by Libert (1830) with Ascochyta pisi as 
the type species. The genus has more than 1 300 taxon names listed 
in MycoBank, with about 400 recognised species (Wijayawardene 
et al. 2017a). Chen et al. (2022) mentioned 20 recognised species 
supported by ex-type cultures or by DNA sequences. Many species 
were described, allocated or synonymised to Ascochyta based on 
advances in molecular techniques, such as analysis of multi-locus 
phylogeny using sequences of LSU, ITS, rpb2 and tub, associated 
with morphological characteristics (Chen et al. 2015c, 2017c).

The asexual genus Ascochyta was erected to include 
phytopathogenic species that are characterised by the production 
of uniseptate hyaline conidia and phialidic conidiogenous cells 
and recognised as a coelomycetous genus (Hyde et al. 2013, 
Wijayawardene et al. 2017a, Chen et al. 2022). Ascochyta species 
are important pathogens mainly in plants within Fabaceae and 
Poaceae, causing “Ascochyta blight” (AB), a particularly devasting 
disease on pea (Pisum sativum) and chickpea (Cicer arietinum) 
crops worldwide (Chilvers et al. 2009, Keirnan et al. 2021, Singh et 
al. 2021, Chen et al. 2017c, 2022). Some species are saprotrophic 
on dead plant debris (Hyde et al. 2020a). Most species of Ascochyta 
are known as asexual morphs; nonetheless, some taxa present both 
asexual and sexual morphs or, less commonly, only sexual morphs 
(Chen et al. 2022). Recently, new methods have been applied to 
the identification of pathogens such as DNA barcodes, multiplex 
PCR and qPCR assays, which greatly improved our knowledge of 
this genus (Tripathi et al. 2021, Valetti et al. 2021). This is relevant 
taking into account that Ascochyta is closely related to Phoma, even 
in its molecular sequences. Recent revisions on Dydimellaceae, 
Ascochyta, Phoma, and other phoma-like morphs have improved 
our understanding of the taxonomic status of both Ascochyta and 
its closely related taxa (De Gruyter et al. 2013, Chen et al. 2017c, 
Phukhamsakda et al. 2018a, Pem et al. 2021, Ahmadpour et al. 
2022). In the Global Biodiversity Information Facility (GBIF) database 
(https://www.gbif.org/pt/species/8334803/metrics), there are 5 722 
occurrences of 799 species registered, most of these records are 
from Germany (585), United Kingdom (509) and Australia (504), with 
an increase in occurrences between 2011 and 2017 of 536 (BASE 
2022, GBIF 2022). The most recent taxonomic revisions indicate 
about 400 species in Ascochyta (Wijayawardene et al. 2017a). Thus, 
Ascochyta and its allies need more taxonomic and phylogenetic 
studies/revisions, and care must be taken before naming other 
fungi causing symptoms similar to Ascochyta blight. Ascochyta taxa 
cannot be delimited just by morphological evaluation, but require 
phylogenetic study to avoid misidentification and dubious records of 
a genus with quarantine importance.

Fig. 121. Trends in research of Ascochyta in the period 2011–2021.
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Ecological and economic significance

Ascochyta species cause economically important plant diseases, 
of which, the most relevant in terms of severity and crop production 
losses is the “Ascochyta blight”, also referred to as AB disease. We 
detail AB disease below.

Ascochyta blight of chickpea (Cicer arietinum) caused by 
Ascochyta rabiei, and by some Ascochyta species in other pulse 
crops, is a necrotic disease affecting plant tissues and causing the 
death of leaves and other plant parts. This pathogenicity is very 
aggressive to chickpea, the second most important legume crop in the 
world, due to it being a rich protein food and its atmospheric nitrogen 
fixation (Nene 1982, Merga & Haji 2019, Singh et al. 2021, Chen et 
al. 2022). India is the leading country in chickpea global production 
(65 % of worldwide production; 9.075 million tons/year), followed by 
Australia (Merga & Haji 2019). Ascochyta blight symptoms start with 
elliptical to circular spots, firstly chlorotic, becoming brown to dark 
brown due to necrosis of tissue. Due to pycnidia formation, lesions 
with concentric rings appear in leaves, stems and pods affecting 
the plants’ fitness in seed formation, and causing losses that range 
between 10 to 100 % of the crop (Nene 1982, Atik et al. 2011, Pande 
et al. 2011, Singh et al. 2021). Other Ascochyta species, with host 
specificity, cause Ascochyta blight affecting other pulse crops, such 
as faba beans, lentils and field peas, causing major economic losses 
on a global scale (Merga & Haji 2019, Chen et al. 2022).

Research interests

There are 564 publications and 6 690 citations from 2011–2021 in 
the Web of Science (Fig. 121), with the top 10 most cited articles 
included in Table 96. Most publications focused on taxonomy, 
phylogeny and disease management (fungicide resistance, disease 
resistance, and pathogen detection).

Disease management
The absence of efficient pulses crop management, including crop 
rotation, removal of infected plants, use of resistant chickpea 
lineages, fungicide application or biocontrol techniques is the main 
reason for the extreme severity of AB and its economic losses (Nene 
1982, Owati et al. 2017, Gayacharan et al. 2020, Maya & Maphosa 

2020, Ahmad et al. 2021). High humidity can favour the disease 
severity, as demonstrated by Nalçaci et al. (2021). Advanced 
techniques have been applied to control AB in crops. Among 
these, we highlight the development of a spatiotemporal model, 
named ascotraceR, as a package to R language/environment 
that simulates the life story of As. rabiei and the spread of AB 
in the field (Khaliq et al. 2022), facilitating its control and action 
at specific points, mitigating the most aggressive effects of the 
disease, at an advanced stage, before it spreads. In biomolecular 
aspects, molecular pathotyping tools (Bar et al. 2021), pathogen 
monitoring in an early phase via PCR-based method (Valetti et al. 
2020), screening for new resistant chickpea cultivars (Newman et 
al. 2021), and fast and reliable methods of fungal detection during 
quarantine or crop development via DNA barcode, multiplex PCR 
and qPCR assay (Tripathi et al. 2021) are examples of recent tools 
for management and disease control.

Taxonomy and phylogeny
Since the introduction of the asexual genus Ascochyta (Libert 
1830), and over subsequent years, species in this genus were 
mainly characterised based on morphology and host specificity. As 
mentioned by Pem et al. (2021), the difficulty in using morphological 
characters for Ascochyta delimitation is the lack of morphological 
structures to allow species definition. Many names were 
synonymised or transferred to other taxa in Dothideomycetes and 
just morphological delimitation is not recommended for Ascochyta 
and its allied or phylogenetically closely related taxa, such as 
Phoma and phoma-like species. Thus, it is necessary to use 
molecular approaches for species identification using ITS, tub, tef1 
and LSU sequences for best species delimitation (Phukhamsakda 
et al. 2016b, 2017, Pem et al. 2021, Ahmadpour et al. 2022).

Environment and biotechnology
Apart from being the pathogen of important pulse crops, some 
species of Ascochyta, such as As. lentis, the agent causing 
AB in lentil plants, has been screened for fungal metabolites for 
biotechnological applications. Lentiquinones A, B, and C and 
lentisone, pachybasin, ω-hydroxypachybasin, and phomarin were 
isolated from As. lentis, and present antimicrobial activities (Masi et 
al. 2018, Barilli et al. 2021). Anthraquinones isolated from As. lentis 
by Barilli et al. (2021) seem favourable against fungal pathogens 

Table 96. Top 10 cited articles related to Ascochyta published in the period 2011–2021.
Rank Article title No. of citations References
1 Redisposition of phoma-like anamorphs in Pleosporales 221 De Gruyter et al. (2013)
2 Resolving the Phoma enigma 199 Chen et al. (2015c)
3 Achievements and prospects of genomics-assisted breeding in three legume 

crops of the semi-arid tropics
163 Varshney et al. (2013)

4 Synergisms between microbial pathogens in plant disease complexes: a 
growing trend

138 Lamichhane & Venturi (2015)

5 Soil fungal community structure along a soil health gradient in pea fields 
examined using deep amplicon sequencing

138 Xu et al. (2012a)

6 Marker-assisted backcrossing to introgress resistance to Fusarium wilt race 1 
and Ascochyta blight in C 214, an elite cultivar of chickpea

126 Varshney et al. (2014)

7 Didymellaceae revisited 116 Chen et al. (2017c)
8 Innovations in agronomy for food legumes. A review 109 Siddique et al. (2012)
9 Fungal phytotoxins with potential herbicidal activity: chemical and biological 

characterization
99 Cimmino et al. (2015)

10 A new approach to species delimitation in Septoria 81 Verkley et al. (2013)
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causing rust and powdery mildew of both pea (Pisum sativum) and 
oat (Avena sativa).

Authors: F.J.S. Calaça and J.C. Araújo

91. Epichloe (Fr.) Tul. & C. Tul., Select. Fung. Carpol. (Paris) 
3: 24. 1865.

Type species: Epichloe typhina (Pers.) Brockm.

Classification: Ascomycota, Pezizomycotina, Sordariomycetes, 
Hypocreales, Clavicipitaceae.

Background

Epichloe typhina, the type of the genus, was originally described 
as Sphaeria typhina and later transferred to Epichloe, a genus that 
was described by Tulasne & Tulasne (1865). Presently, 37 species 
are accepted in the genus with 15 species, three subspecies 
and five varieties being haploid, and 22 species and one variety 
representing hybrids (Leuchtmann et al. 2014). The common writing 
as Epichloë is considered an orthographic variant in MycoBank. 
Several taxa are only known in their asexual (anamorphic) forms 
and until recently these were classified in the genus Neotyphodium. 
However, due to the “One fungus = One Name” principle, all these 
anamorphic species were nomenclatural recombined in Epichloe 
(Leuchtmann et al. 2014). Sexually reproducing Epichloe species 
form yellow-orange stromata on leaf sheaths that surround the 
immature inflorescences of grasses. Many species occurring as 
endophytes in grasses are vertically transmissible via the host 
seeds and are of interest because of toxin production and plant 
protection aspects (Bacon et al. 1977, Omacini et al. 2001, Clay 
& Schardl 2002, see below). The endophytic symbioses between 
Epichloe species and grasses (Poaceae subfamily Pooideae) are 
dominated by codivergence and might have emerged during the 
early evolution of these grasses, and range from mutualism to 
antagonism (Schardl et al. 2008). Flies of the genus Botanophila 

play a role in the dispersal of Epichloe species. Using a multigene-
based phylogeny concordance between the phylogenetic and 
biological species concept was seen in one clade, whereas this 
was not the case in the Epichloe typhina species complex that contains 
mainly antagonistic and horizontally transmitted endophytic species 
(Craven et al. 2001). These authors suggested that the balance of 
vertical and horizontal transmission promotes host specialisation and 
speciation due to genetic isolation, whereas only horizontal transmission 
results in a broader host range with fewer genetically isolated species, 
with lineage sorting resulting in conflicts between phylogenetic and 
biological species (Craven et al. 2001).

Ecological and economic importance

Epichloe species may cause grass choke disease, which can 
cause up to 30 % losses in seed yield of Dactylis glomerata, in 
Oregon, USA (Merlet et al. 2022). Endophytic Epichloe species 
protect their hosts from herbivores, nematodes, and other stress 
(Clay & Schardl 2002). A novel model of intercalary growth and 
hyphal extension, and not apical growth, was proposed for these 
endophytes (Christensen et al. 2008). Hybridisation is a common 
feature of Epichloe species (Tsai et al. 1994, Moon et al. 2004) and 
may be linked to increased production of alkaloids (Schardl et al. 
2012). Four classes of biologically active alkaloids are produced by 
Epichloe: lolines, indole-diterpenes, ergot alkaloids, and peramine 
(Bush et al. 1997, Schardl et al. 2012, Chen et al. 2019b) and may 
protect the hosts from herbivores (Clay 1988), nematodes (Timper 
et al. 2005, Bacetty et al. 2009), drought stress (Malinowski 
& Belesky 2000), or may increase growth (Schardl et al. 2004). 
However, some are toxic to livestock (Bacon et al. 1977, Fletcher 
& Harvey 1981).

Research interests

There are 598 publications and 6 496 citations from 2011–2021 in 
the Web of Science (Fig. 122), with the top 10 most cited articles 
included in Table 97. The top cited papers on Epichloe cover 

Fig. 122. Trends in research of Epichloe between 2011–2021.
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all the above-mentioned aspects of Epichloe-related biological 
and agricultural research, including phylogeny and taxonomy 
(Leuchtmann et al. 2014), hybridisation and reproduction strategies 
(Charlton et al. 2014, Oberhofer et al. 2014), aspects of the 
endophyte lifestyle, including the role of reactive oxygen species 
(Hamilton et al. 2012), sustainable agriculture and horticulture 
production (Kauppinen et al. 2016, Lugtenberg et al. 2016), 
regulation and biosynthesis of bioactive compounds, and their role 
in biology and agriculture (Panaccione et al. 2013, Schardl et al. 
2013), switches between mutualistic and pathogenic stages (Eaton 
et al. 2011), biosafety aspects for husbandry (Young et al. 2013a, 
Klotz 2015), and morphogenesis (Takemoto et al. 2011). Mutualistic 
fungal endophytes reduced the impact of drought on Bromus 
laevipes and significantly broadened its geographic occurrence into 
drier habitats. Thus, suggesting that such mutualistic relationships 
are highly important to withstand the impact of climate change 
(Afkhami et al. 2014). Perennial ryegrass infected with Epichloe 
festucae caused major changes in the expression of host genes, 
resulting in reprogramming of the metabolism of the host favouring 
secondary metabolism, and changes in host development, such 
as trichome formation and cell wall biogenesis. This work also 
suggested that fungal endophyte relationships may increase 
tolerance to drought and infection by fungal pathogens (Dupont et 
al. 2015). Comparative genomics yielded some interesting results. 
Alkaloid profiles were compared with genome data of 10 Epichloe 
spp., three ergot fungi (Claviceps spp.), a morning-glory symbiont 
(Periglandula ipomoeae), and a bamboo pathogen (Aciculosporium 
take), and indicated that alkaloid loci have conserved cores that 
determine the skeleton structures and peripheral genes resulting 
in the various chemical variants. These peripheral genes occurred 
close to transposon-derived, AT-rich repeat blocks that may be 
involved in gene losses, duplications, and neofunctionalisation. 
The alkaloid loci were found to be unusual structures as they 
contained large, complex, and dynamic repeat blocks. The genome 
organisation and dynamics of the alkaloid loci and the abundance 
of repeat blocks suggest these fungi are under selection for alkaloid 
diversification, which may relate to their variable life histories, their 
protective roles as symbionts, and associations with the highly 
species-rich cool-season grasses (Schardl et al. 2013).

Another study identified a glutathione S-transferase encoded 
by the Fhb7 gene from the grass Thinopyrum elongatum that can 
detoxify trichothecene toxins. Homologs of Fhb7 homologs are 

absent in the plant kingdom, but, interestingly, approximately 97 % 
identity with Fhb7 was found in the genome of an Epichloe species 
suggesting horizontal gene transfer from the fungus to the genome 
of the wheatgrass. Eventually, the use of the Fhb7 gene might 
reduce the toxicity of Fusarium-infested crops and increase yields 
(Wang et al. 2020g).

Author: T. Boekhout

92. Pyrenophora Fr., Summa Veg. Scand., Sectio Post. 
(Stockholm): 397. 1849.

Type species: Pyrenophora phaeocomes (Rebent.) Fr.

Classification: Ascomycota, Pezizomycotina, Dothideomycetes, 
Pleosporales, Pleosporaceae.

Background

Pyrenophora comprises economically important plant pathogenic 
fungi that cause diseases on graminaceous hosts (Zhang & Berbee 
2001). The type species was originally described as Sphaeria 
phaeocomes (syn. Pyre. phaeocomes) (Rebentisch 1804) in 
Xylariaceae. Fries (1849) transferred this genus into Pleosporales. 
Wehmeyer (1961) assigned the genus within Pleosporaceae. 
This classification has been accepted by subsequent studies 
(Barr 1987b, Berbee 1996, Zhang et al. 2012c, Hyde et al. 2013, 
Ariyawansa et al. 2014). Species are characterised by immersed to 
semi-immersed ascomata, lack of pseudoparaphyses, clavate to 
saccate asci, with a large apical ring, muriform terete ascospores 
and brown to reddish brown setae present in the neck (Ariyawansa et 
al. 2014). The genus differs from the extant genera of Pleosporales 
in the lack of pseudoparaphyses and the large apical ring in the 
asci (Ariyawansa et al. 2014, Phukhamsakda et al. 2015, 2016a, 
Goonasekara et al. 2020, Bhunjun et al. 2021c, Su et al. 2022, Xu 
et al. 2022a, 2024, Madagammana et al. 2023). The asexual morph 
possesses morphological characteristics of brown and transversely 
septate conidia (Marin-Felix et al. 2019a).

Pyrenophora comprises 95 species (Wijayawardene et al. 2020), 
although 213 species epithets have been linked to this genus (Index 
Fungorum 2022). Pyrenophora was linked to the asexual genus 
Drechslera based on morphological studies and later confirmed by 

Table 97. Top 10 cited articles related to Epichloe published in the period 2011–2021.
Rank Article title No. of citations References
1 Nomenclatural realignment of Neotyphodium species with genus Epichloë 287 Leuchtmann et al. (2014)
2 Plant-symbiotic fungi as chemical engineers: multi-genome analysis of the 

Clavicipitaceae reveals dynamics of alkaloid loci
267 Schardl et al. (2013)

3 Mutualist-mediated effects on species’ range limits across large geographic 
scales

127 Afkhami et al. (2014)

4 Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight 
resistance in wheat

123 Wang et al. (2020a)

5 Fungal endophytes for sustainable crop production 121 Lugtenberg et al. (2016)
6 Fungal endophyte infection of ryegrass reprograms host metabolism and alters 

development
110 Dupont et al. (2015)

7 Chemotypic diversity of epichloae, fungal symbionts of grasses 110 Schardl et al. (2012)
8 Bioactive alkaloids in vertically transmitted fungal endophytes 109 Panaccione et al. (2013)
9 What triggers grass endophytes to switch from mutualism to pathogenism? 105 Eaton et al. (2011)
10 Polarity proteins Bem1 and Cdc24 are components of the filamentous fungal 

NADPH oxidase complex
97 Takemoto et al. (2011)
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molecular data (Zhang & Berbee 2001, Ariyawansa et al. 2014). 
Pyrenophora species have a worldwide distribution but are mainly 
recorded from Australia, Europe, New Zealand and North America 
and occur as endophytes, saprobes and pathogens (Zhang & Berbee 
2001). The pathogenic species mainly cause diseases on Poaceae 
hosts (Marin-Felix et al. 2019a). The delineation of Pyrenophora is 
challenging due to a lack of molecular data for the type species. 
Traditional classification has been based on morphological 
characteristics and was not precise due to shared morphological 
characteristics with Bipolaris and Curvularia. However, based on 
phylogenetic analysis based on ITS and gapdh gene markers, this 
genus is monophyletic within Pleosporaceae, whereas the asexual 
Drechslera clustered closely with Pyrenophora (Zhang & Berbee 
2001). Thus, combined multi-gene analysis including ITS, gapdh and 
rpb2 is recommended for better resolution (Marin-Felix et al. 2019a).

This genus needs critical revision due to a lack of molecular data, 
particularly relating to serious plant pathogens (Goonasekara et al. 
2020). Pathogenic species cause diseases such as leaf spots, leaf 
blight, leaf blotch, net blotch, light-brown lesions, melting out, head 
rot, foot rot, seed-borne diseases, and tan spots on economically 
important crops like barley, wheat and oats (Hyde et al. 2014, 
Marin-Felix et al. 2019a). The saprobic species are important in 
nutrient cycling, and several species are used as biocontrol agents 
and for the extraction of phytotoxic components (Aboukhaddour 
et al. 2013, Ariyawansa et al. 2014, Hyde et al. 2014). Some 
species such as Pyre. graminea, Pyre. japonica and Pyre. teres 
cause post- and preharvest disease on barley (Sivanesan 1987) on 
various plant parts such as leaves, leaf sheaths and kernels (Hyde 
et al. 2014); symptoms depend on the host genotype, pathogen 
virulence and environmental conditions (Liu et al. 2011). The 
taxonomy and systematics of Pyrenophora have changed after the 
application of phylogenetics (Zhang & Berbee 2001, Zhang et al. 
2012c, Ariyawansa et al. 2014).

Ecological and economic significance

Pyrenophora species cause numerous economically important 
plant diseases, four of which are detailed below.

Net blotch disease on Hordeum vulgare (barley) is caused by 
Pyrenophora teres (Liu et al. 2011). Pyrenophora teres exist in 
two forms, Pyrenophora teres f. teres and Pyre. teres f. maculata, 
responsible for net form net blotch (NFNB) and spot form net blotch 
(SFNB) diseases, respectively (Liu et al. 2011). Net blotch causes 
10–40 % yield losses by reduction of kernel size, plumpness and 
bulk density and negatively affects the malting and feed quality of 
barley, eventually resulting in the necrotic and chlorotic death of plant 
leaves (Smedegård-Petersen 1971, Afanasenko et al. 2009, Gupta 
et al. 2012b). The disease can lead to a 44 % grain yield loss when 
reaching a severe epidemic stage (Jayasena et al. 2002, 2007). Net 
blotch disease is classified as a stubble-borne disease due to the 
ascocarps produced on the stubble (Liu et al. 2011). The life cycle 
differences between the two forms of Pyre. teres are unclear and 
are thus described collectively (Liu et al. 2011). NFNB forms narrow, 
dark brown, longitudinal and transverse striations on infected leaves 
as net-like symptoms, while dark brown, circular to elliptical lesions 
surrounded by a chlorotic or necrotic halo of varying width are 
identified as SFNB symptoms (Liu et al. 2011). Spot form net blotch 
is a significant foliar disease in Australia and several barley-growing 
regions in the world (Gupta et al. 2012b). The disease has been 
increasing due to susceptible cultivars, environmental conditions and 
agricultural practices (Gupta et al. 2012b).

Tan spot on Triticum aestivum (wheat) caused by Pyrenophora 
tritici-repentis is one of the more serious diseases on wheat found 
worldwide (Lamari & Bernier 1989, Aboukhaddour et al. 2009, 
2013). This disease was recorded as a severe pathogen on wheat 
in North Dakota, USA in 1968 and 1969 (Friesen et al. 2005). At the 
severe epidemic stage, 50 % of yield losses have been reported via 
a reduction in kernel weight and a high degree of kernel shrivelling 
(Cheong et al. 2004, Gamba et al. 2012). The disease was reported 
as the fastest-spreading disease in the Southern Cone region of 
South America (Kohli et al. 1992) and also had a severe impact on 
crops in Argentina, Brazil, and Paraguay (Ciuffetti & Tuori 1999). 
This fungus is also recorded as a saprophyte, and the lifecycle of 
this pathogen includes both sexual and asexual morphs (Lamari & 
Bernier 1989). Pyrenophora tritici-repentis was initially described 
in 1823 and isolated in the 1930s (Aboukhaddour et al. 2009). 
The diseased host shows light-brown necrotic blotches that are 
surrounded by yellow halos or extensive chlorosis on leaf tissue, 
and these symptoms are mostly influenced by taxon sensitivity 
genes present in the putative host and the toxicity of the pathogenic 
isolate (Aboukhaddour et al. 2013). Cultivation of susceptible wheat 
cultivars and changes in agricultural practices such as reduced 
tillage practices, shorter crop rotation and continuous wheat 
cultivation led to the emergence of this disease (Aboukhaddour et 
al. 2013). However, pathogenicity depends on the production of its 
host-selective toxins, and so far, three toxins have been identified, 
including necrosis-inducing toxin Ptr ToxA and the chlorosis-
inducing toxins Ptr ToxB and Ptr ToxC on hosts (Lamari & Strelkov 
2010).

Drechslera leaf spot on Lolium multiflorum (Italian ryegrass) 
also referred to as brown leaf spot, is caused by several 
Pyrenophora species such as Pyre. biseptata, Pyre. dematioidea, 
Pyre. dictyoides, Pyre. nobleae, Pyre. lolii, and Pyre. teres, 
recorded from China, Florida, Germany, Mississippi, New Zealand 
and Virginia (Alfieri et al. 1984, Pennycook 1989, Roane 2004, 
2009, Pratt 2006b, Crous et al. 2011). Among these pathogens, 
Pyre. dictyoides was the most commonly recorded pathogen (Xue 
et al. 2020). Drechslera leaf spot caused by Pyre. dictyoides was 
considered one of the most important foliar diseases on ryegrass in 
New Zealand (Latch 1966).

Leaf stripe in barley on Hordeum vulgare (barley) is caused 
by Pyrenophora graminea. This disease is caused when the 
pathogenic fungus is transmitted through seed and no infections 
are reported by direct leaf infection (Taylor et al. 2001). The 
susceptibility of cultivated varieties, the kinds of long-term effective 
control measures and soil temperature lower than 12 °C can all 
influence the pathogenicity (Porta-Puglia et al. 1985). Seed health 
certification is an effective method to control this disease (Taylor et 
al. 2001).

Pyrenophora species have been also recorded as pathogens 
on Triticum, Agropyron, and brome grass (Hosford Jr 1971). Light 
brown lesions are also an important disease on wheat, caused 
by Pyrenophora trichostoma, and brown leaf spots of smooth 
bromegrass caused by Pyre. bromi are also important symptoms 
of its pathogenicity (Hosford Jr 1971, Andrie et al. 2008). Species 
of Pyrenophora such Pyre. semeniperda have been recorded 
as biocontrol agents for use against Bromus tectorum, as this 
fungus produces useful chemical compounds such as phytotoxic 
sesquiterpenoid penta-2,4-dienoic acid (pyrenophoric acid) (Meyer et 
al. 2007). Pyrenophora semeniperda produces several cytochalasins, 
such as cytochalasins Z1, Z2 and Z3, which are used as biocontrol 
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agents against grass weeds (Evidente et al. 2012).

Research interests

There are 604 publications and 6 439 citations from 2011–2021 in 
the Web of Science (Fig. 123), with the top 10 most cited articles 
included in Table 98. Most publications focused on pathogens 
(Pyrenophora teres, Pyre. tritici-repentis, resistance, identification, 
virulence, gene susceptibility).

Disease management
Application of fungicides, cultural practices such as rotation and 
innate host resistance can all be used to manage net blotch 
diseases in barley. Net blotch diseases caused by Pyrenophora 

teres f. teres and Pyre. teres f. maculata can genetically be 
isolated and need to be treated separately (Rau et al. 2007). The 
pathotype of Pyrenophora tritici-repentis is identified via qualitative 
assessment of symptoms, whereas pathogenic isolates are 
classified into races based on pathogenicity on the host (Lamari & 
Strelkov 2010). The random amplified polymorphic DNA technique 
has been used in the genetic determinants for virulence in Pyre. 
teres f. teres (Weiland et al. 1999). Purification of toxins, cloning 
of their respective genes and identification and characterisation 
of the site and mode of action of the toxins are also important in 
disease management (Ciuffetti & Tuori 1999). Genome assembly 
can characterise and isolate genes associated with virulence and 
avirulence via map-based cloning (Ellwood et al. 2010).

Fig. 123. Trends in research of Pyrenophora in the period 2011–2021.

Table 98. Top 10 cited articles related to Pyrenophora published in the period 2011–2021.
Rank Article title No. of citations References
1 One stop shop: backbones trees for important phytopathogenic genera: I (2014) 235 Hyde et al. (2014)

2 Effectors as tools in disease resistance breeding against biotrophic, hemibiotrophic, 
and necrotrophic plant pathogens 217 Vleeshouwers et al. (2014)

3 Pyrenophora teres: profile of an increasingly damaging barley pathogen 112 Liu et al. (2011)

4 Phytotoxic secondary metabolites and peptides produced by plant pathogenic 
Dothideomycete fungi 110 Stergiopoulos et al. (2013)

5 Horizontal gene and chromosome transfer in plant pathogenic fungi affecting host 
range 106 Mehrabi et al. (2011)

6
Comparative genomics of a plant-pathogenic fungus, Pyrenophora tritici-repentis, 
reveals transduplication and the impact of repeat elements on pathogenicity and 
population divergence

104 Manning et al. (2013)

7 Towards a natural classification and backbone tree for Pleosporaceae 95 Ariyawansa et al. (2015c)
8 Recommended names for pleomorphic genera in Dothideomycetes 81 Rossman et al. (2015)
9 Genetics of tan spot resistance in wheat 80 Faris et al. (2013)
10 The role of effectors and host immunity in plant-necrotrophic fungal interactions 72 Wang et al. (2014e)
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Resistance
Conidial morphology is important in the identification of Pyrenophora. 
However, identification is changing due to difficulties in producing 
conidia in axenic cultures, such as in Pyre. graminea, Pyre. 
dictyoides and Pyre. tritici-repentis (Lepoint et al. 2010). Thus, an 
effective method is needed to produce conidia in vitro to study the 
biological control agents (Xue et al. 2020). Tissue culture techniques 
in wheat may make the toxin of Pyre. tritici-repentis useful in the early 
selection of resistant cells (Lamari & Bernier 1989).

Toxins
Pyrenophora tritici-repentis (Ptr) produces both proteinaceous and 
non-proteinaceous host-specific toxins (Ciuffetti & Tuori 1999). The 
necrosis-inducing toxin PtrToxA and the chlorosis-inducing toxin 
ToxBand are proteins, while the low molecular weight non-protein 
HST, PtrToxC and uncharacterised toxin PtrToxD have also been 
identified (Ciuffetti & Tuori 1999, Horbach et al. 2011). Pyrenophora 
bromi also produces multiple copies of ToxB (Stergiopoulos et al. 
2013). Pyrenophora teres produces toxins A, B and C grown in a liquid 
medium. Toxin A was N-(2-amino-2-carboxyethyl) aspartic acid, toxin 
B was identical to anhydroaspergillomarasmine A (and probably an 
artefact) while toxin C is identical to aspergillomarasmine A (Bach et al. 
1978, Lamari & Bernier 1979). The sensitivity of the host to these toxins 
is conferred by a single gene for each toxin (Manning & Ciuffetti 2005).

Taxonomy and phylogeny
Different molecular markers are used in the identification of 
Pyrenophora species. The LSU gene markers are used at the 
generic level, while ITS, gapdh and rpb2 offer high-resolution 
species delineation of Pyrenophora (Hyde et al. 2014, Marin-Felix 
et al. 2019a, Hyde et al. 2020a).

Author: D.N. Wanasinghe

93. Hymenoscyphus Gray, Nat. Arr. Brit. Pl. (London) 1: 
673. 1821.

Type species: Hymenoscyphus fructigenus (Bull.) Gray

Classification: Ascomycota, Pezizomycotina, Leotiomycetes, 
Helotiales, Helotiaceae.

Background

Hymenoscyphus is one of the largest genera of inoperculate 
discomycetes. More than 550 names have been connected to this 
genus, and 269 species are currently accepted (Index Fungorum 
2022). Hymenoscyphus species occur worldwide, mainly in 
temperate regions, but also in the tropics (Dennis 1964, Lizoň 
1992, Gross & Han 2015, Zheng & Zhuang 2013, 2015a). Most 
of them are saprotrophs colonising leaf residues, small twigs, 
wood, herbaceous stems, fruits and seeds (Dennis 1964, Lizoň 
1992, Baral 2015, Zheng & Zhuang 2015b, Kowalski & Bilański 
2021). Those that produce extracellular enzymes may contribute 
to the degradation of plant cell wall components (Abdel-Raheem & 
Shearer 2002, Citron et al. 2014). A few species are aquatic fungi 
(Abdullah et al. 1981, Fisher & Webster 1983). Some species can 
occur in living symptomless plant organs as endophytes without 
causing disease symptoms (Baral & Bemmann 2014, Cleary et 
al. 2016, Inoue et al. 2019). Within Hymenoscyphus there are no 
species symbiotically associated with plant roots. The prominent 
fungus, Hy. ericae (asexual morph Scytalidium vaccini), known 

from mycorrhizal association with Ericaceae, was excluded from 
Hymenoscyphus and placed initially in Rhizoscyphus (Zhang & 
Zhuang 2004), then in Pezoloma (Baral & Krieglsteiner 2006), 
and finally in Hyaloscypha (Fehrer et al. 2019). Hymenoscyphus 
includes both species that exhibit a high degree of host specificity, 
as well as those found on a broad spectrum of host plants (Dennis 
1964, Lizoň 1992, Zheng & Zhuang 2013, Baral 2015, Kowalski 
& Bilański 2019). Hymenoscyphus species are culturable on 
agar media in vitro, and a few can produce apothecia under such 
conditions (Gross & Han 2015).

Some Hymenoscyphus species produce secondary 
metabolites. A broad spectrum of different specialised metabolites 
has been found especially in pathogenic species, Hy. fraxineus. 
They are important in the necrotrophic activity of the fungus in 
plant tissue and defence against competing fungi (Grad et al. 
2009, Andersson et al. 2012, Citron et al. 2014, Junker et al. 2014, 
Surup et al. 2018). Viridiol and volatile lactone are also produced 
by avirulent sister species, Hy. albidus (Citron et al. 2014, Junker 
et al. 2014). Hymenoscyphus epiphyllus can produce botrydial 
sesquiterpenoids and other secondary metabolites that exhibit 
antimicrobial and cytotoxic activities (Thines et al. 1997).

Hymenoscyphus was established by Gray in 1821 and initially, 
nine species were accommodated in the family Helotiaceae. Dennis 
(1964) specified Hy. fructigenus as the lectotype for this genus, and 
transferred to Hymenoscyphus more than 70 taxa, with 1–4-celled 
ascospores, previously placed in Helotium. The circumscription 
of the genus is not well defined (Zhang & Zhuang 2004). Various 
generic concepts of Hymenoscyphus have been proposed 
(Carpenter 1981, Baral & Krieglsteiner 1985, Eriksson & Hawksworth 
1993, Hengstmengel 1996). In a restricted sense, Hymenoscyphus 
comprises many taxa which often exhibit only slight differences in 
their micromorphological characters (Hengstmengel 1996, Baral 
et al. 2013). Members of the genus are generally characterised 
by producing white, yellow or orange coloured, stipitate to sessile 
discoid apothecia. The excipular hyphae are not embedded in 
a gelatinous matrix. An ectal excipulum is composed of textura 
prismatica to textura angularis, a medullary excipulum of textura 
intricata to textura porrecta. Asci are cylindrical or clavate, arising 
from simple hyphae or crozier, and contain eight spores. The genus 
in a narrower concept can be defined by a special type of apical ring 
(Baral & Krieglsteiner 1985, Verkley 1993). Ascospores are scutuloid, 
fusoid or ellipsoid, and may be provided at their ends with one or 
more hyaline setulae (Hengstmengel 1996, Baral 2015). Ascospores 
are generally hyaline, but in some species undergo pigmentation 
before germination (Kowalski & Holdenrieder 2009, Gross et al. 
2014, Gross & Han 2015, Kowalski & Bilański 2019), or may become 
pale brown in overmature spores (Baral 2015). The presence of 
vacuolar guttules in the living paraphyses and ascospores has a 
significant taxonomic reference value (Baral 2015). Most species 
of Hymenoscyphus produce apothecia directly on the colonised 
substrate, however, some develop a black pseudosclerotial plate and 
apothecia emerge only from this structure (Gross & Han 2015, Gross 
et al. 2015, Kowalski & Holdenrieder 2009, Baral & Bemmann 2014, 
Kowalski & Bilański 2019).

Asexual morphs have been found in about 20 species of 
Hymenoscyphus. They are characterised by a large morphological 
diversity. Most often, the asexual morph is represented by the 
genus Chalara (Baral & Bemmann 2014, Gross & Han 2015, Gross 
et al. 2015). The most well-known species is Chalara fraxinea, 
the asexual morph of Hy. fraxineus (Kowalski 2006, Kowalski & 
Holdenrieder 2009, Gross et al. 2014). Others belong to the genera 
Anguillospora, Articulospora, Dimorphospora, Geniculospora, 
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Helicodendron, Idriella, sporotrichum-like and Tricladium 
(Kimbrough & Atkinson 1972, Abdullah et al. 1981, Fisher & 
Webster 1983, Descals et al. 1984, Van Vooren & Hairaud 2009, 
Gross et al. 2015).

In recent years, the identification of Hymenoscyphus species 
has been supported by molecular methods. Molecular analysis also 
supports the separation of different groups within Hymenoscyphus s. 
lat. (Baral et al. 2013). The gene regions used for species delimitation 
mainly concern the ITS, LSU, cal, tub, act and tef1 (Zhang & Zhuang 
2004, 2015a, Baral et al. 2006, Queloz et al. 2011, Gross & Han 2015, 
Gross et al. 2015, Kowalski & Bilański 2019). The whole genome has 
been sequenced for 11 species of Hymenoscyphus. Currently, ITS 
data is available from GenBank for only 60 Hymenoscyphus species. 
Analysis shows that the genus is not monophyletic (Bilański unpubl. 
data). Morphological studies supported by phylogenetic analyses 
lead to the exclusion of some species from Hymenoscyphus (Zhang 
& Zhuang 2004, Baral et al. 2013).

Ecological and economic importance

Only two species of Hymenoscyphus are known to cause plant 
diseases. In China, Hy. repandus causes stem blight of mint and 
affects mint yield (Wang et al. 2004b, Zheng & Zhuang 2015b). In 
Europe, Hy. fraxineus causes an epidemic disease of ash trees of 
great ecological and economic importance known as “Ash dieback” 
(Kowalski 2006, McKinney et al. 2014, Enderle et al. 2019). 
Hymenoscyphus subcarneus can grow parasitically on liverworts 
and mosses causing necrotic lesions, however, this species 
currently belongs to Roseodiscus (Baral & Krieglsteiner 2006).

Ash dieback

Dieback symptoms, first observed in the early 1990s in Poland 
(Kowalski 2001, Przybył 2002) have spread over the native range 
of F. excelsior and reached an epidemic level in most European 
countries, including Great Britain (Pautasso et al. 2013, Gross et 
al. 2014, Enderle et al. 2019, Hill et al. 2019). The disease affects 
trees of all ages, especially in dense stands on moist sites, although 
disease progression is slower in older trees (McKinney et al. 2011, 
Kowalski 2012, Skovsgaard et al. 2017). Ultimately, the disease 
leads to the death of single trees and eventually whole stands. 
Mortality in ash plantations across Europe reaches up to 85 % 
(Coker et al. 2019). The decline of ash populations has far-reaching 
implications for silviculture, local economies, and ecosystems in 
Europe (Pautasso et al. 2013, Enderle et al. 2019). In the UK, the 
cost of ash dieback has been estimated at 15 billion British pounds 
(Hill et al. 2019).

Pathogen

Ash dieback is caused by Hymenoscyphus fraxineus (Kowalski 
2001, 2006, Kowalski & Holdenrieder 2009, Queloz et al. 2011, 
Baral et al. 2014). Hymenoscyphus fraxineus is native to Asia 
(Korea, northeastern China, far eastern Russia and Japan), 
where it occurs as an endophyte or a leaf pathogen of Fraxinus 
mandshurica and F. chinensis ssp. rhynchophylla (Zhao et al. 
2012b, Zheng & Zhuang 2014, Gross & Han 2015, Cleary et al. 
2016, Inoue et al. 2019). The ash dieback invasion of Europe 
was founded by two genetically divergent individuals (McMullan 
et al. 2018). Each year, mainly in summer, Hy. fraxineus forms 
a large number of apothecia, predominantly on the previous 
year’s leaf petioles in the litter (Kirisits & Woodward 2015, Gross 

& Holdenrieder 2013, Hietala et al. 2018). Wind-disseminated 
ascospores infect primarily ash leaves and petioles. The fungus 
spreads to woody tissues and causes dieback of branches and 
successive crown decline culminating in dieback of the entire 
tree (Gross et al. 2014, Hietala et al. 2018, Enderle et al. 2019). 
Hymenoscyphus fraxineus can also cause root collar necrosis 
(Marçais et al. 2016). Most isolates have optimum growth at 20 °C, 
less often at 15 °C or 25 °C (Kowalski 2012). High pathogenicity 
of Hy. fraxineus towards F. excelsior and F. angustifolia has been 
confirmed by wound inoculation (Kirisits et al. 2010, Husson et al. 
2011, Kowalski et al. 2015, 2017). Fungal isolates originating from 
Asia show greater virulence than the ones from Europe (Gross 
& Sieber 2016). Many endophytic and saprotrophic fungi show a 
strong antagonistic effect in vitro toward Hy. fraxineus (Schulz et 
al. 2015, Schlegel et al. 2018, Halecker et al. 2020, Kowalski & 
Bilański 2021, Bilański & Kowalski 2022).

Disease management

Silvicultural strategies aiming to reduce the economic impact of 
the disease have been proposed, depending on the severity of 
the damage, age, local climate, and stand type (Havrdová et al. 
2017, Skovsgaard et al. 2017). Resistance breeding of European 
ash and the introduction of non-native resistant ash species have 
also been considered (McKinney et al. 2014, Kowalski et al. 2015, 
Skovsgaard et al. 2017, Marzano et al. 2019). Some fungicides 
can be used as a preventative treatment in forest nurseries or for 
injections directly into F. excelsior trunk (Dal Maso et al. 2014, 
Hauptman et al. 2015, Hrabětová et al. 2017). For monitoring and 
phytosanitary control purposes, modern tools should be used that 
allow fast and efficient detection of Hy. fraxineus in planta (Ioos et 
al. 2009). Elimination of the pathogen in seeds and seedlings can 
be achieved via thermotherapy (Hauptman et al. 2013). Removal of 
leaf litter and appropriate composting allows for a reduction in the 
amount of infectious material (Noble et al. 2019). However, none of 
these strategies enables large scale prevention of new infections 
or the mitigation of serious damage caused by Hy. fraxineus in 
diseased stands (Havrdová et al. 2017).

Research interests

There are 346 publications and 6 420 citations from 2011–2021 in 
the Web of Science (Fig. 124) with the top 10 most cited articles 
listed in Table 99. Most of the publications after the outbreak of ash 
dieback epidemics focused on: (i) causal agent, its origin, life cycle, 
and virulence, (ii) susceptibility of host plants, and (iii) various 
aspects of epidemiology and disease management.

In addition to research into more effective methods of 
protecting Fraxinus spp. against Hy. fraxineus, it can be expected 
that further intensive work will be carried out on the occurrence 
of Hymenoscyphus species in various regions of the world, on 
improving the genus concept using modern molecular methods, as 
well as a comprehensive and updated monograph.

Authors: T. Kowalski and P. Bilański

94. Diplodia Fr., Ann. Sci. Nat., Bot. 1: 302. 1834.

Type species: Diplodia mutila (Fr.) Mont.

Classification: Ascomycota, Pezizomycotina, Dothideomycetes, 
Botryosphaeriales, Botryosphaeriaceae.
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Background

In recent years, Botryosphaeriaceae (Botryosphaeriales) has been 
subjected to comprehensive taxonomic revisions (Phillips et al. 
2013, 2019, Dissanayake et al. 2016, Yang et al. 2017a, Zhang et 
al. 2021e). Among these taxa, Diplodia is a genus with economic 
importance and with many species worldwide (Hyde et al. 2020a, 
Zhang et al. 2021e). Diplodia was established in Montagne (1834), 
ascribed to Fries, and based on Sphaeria mutila. Diplodia mutila 
was subsequently introduced by Fries (1849). Even though many 
Diplodia species are recorded across many climatic zones in both 
tropical and temperate regions (Zhang et al. 2021e), the majority 
are confined to temperate climates (Burgess et al. 2019). Similar to 

many botryosphaeriaceous taxa, Diplodia species exhibit diverse 
lifestyles, including pathogenic, endophytic and saprobic on a 
wide range of hosts. The genus includes economically important 
pathogens. For example, Di. sapinea causes crown wilt, dieback, 
cankers, shoot and tip blight, and root disease on pines (Jankovský 
& Palovčíková 2003, Müller et al. 2018), Di. mutila and Di. malorum 
cause black rot and canker of apples, Di. seriata causes frog-eye 
leaf spots, black rot and canker of apples (Úrbez-Torres et al. 2016, 
Crespo et al. 2018), Di. corticola causes canker and dieback of 
oaks (Alves et al. 2004, Aćimović et al. 2016) and grapevines 
(Epstein et al. 2008, Savocchia et al. 2007), Di. fraxini and Di. 
subglobosa cause dieback on ash trees (Linaldeddu et al. 2020). 
Furthermore, Di. sapinea has also been reported as an endophyte 

Fig. 124. Trends in research of Hymenoscyphus in the period 2011–2021.

Table 99. Top 10 cited articles related to Hymenoscyphus published in the period 2011–2021.
Rank Article title No. of citations References
1 Towards a unified paradigm for sequence-based identification of fungi 1 965 Kõljalg et al. (2013)
2 European ash (Fraxinus excelsior) dieback - A conservation biology challenge 234 Pautasso et al. (2013)
3 Hymenoscyphus pseudoalbidus, the causal agent of European ash dieback 224 Gross et al. (2014)
4 Cryptic speciation in Hymenoscyphus albidus 185 Queloz et al. (2011)
5 The ash dieback crisis: genetic variation in resistance can prove a long-term solution 134 McKinney et al. (2014)

6 Hymenoscyphus fraxineus, the correct scientific name for the fungus causing ash 
dieback in Europe

120 Baral et al. (2014)

7 Presence of natural genetic resistance in Fraxinus excelsior (Oleaceae) to Chalara 
fraxinea (Ascomycota): an emerging infectious disease

113 McKinney et al. (2011)

8 Hymenoscyphus pseudoalbidus, the correct name for Lambertella albida reported 
from Japan

113 Zhao et al. (2012b)

9 Evaluating the potential of WorldView-2 data to classify tree species and different 
levels of ash mortality

102 Waser et al. (2014)

10 Genome sequence and genetic diversity of European ash trees 95 Sollars et al. (2017)
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in pines (Bihon et al. 2011) and several angiosperms (Damm et al. 
2007, Lazzizera et al. 2008, Inderbitzin et al. 2010). In addition, 
Diplodia species produce a variety of secondary metabolites 
with diverse properties useful for applications in agriculture and 
medicine (Masi & Evidente 2021, Salvatore et al. 2022). The large 
number of species in this genus can be attributed to its wide host 
range and different lifestyles.

The concept of Diplodia has changed over the years and 
currently includes species with two distinct conidial morphologies 
(Lazzizera et al. 2008, Zhang et al. 2021e). Hence, Diplodia is 
considered a large genus with more than 1 000 species (Phillips et 
al. 2012). There are 1 260 epithets in Index Fungorum (2022) and 
719 epithets listed in Species Fungorum (2022). MycoBank lists 
1 012 legitimate names under Diplodia, excluding illegal names, 
invalid names, orthographic variants, varieties and entries without 
author or publication details. Cryptic speciation is another reason 
for the large number of species introduced in this genus. According 
to the most recent revision on Botryosphaeriales, 25 species are 
accepted with molecular data (Zhang et al. 2021e). Following this 
study, two novel species, Di. alanphillipsii (Boonmee et al. 2021) 
and Di. fici-septicae (Tennakoon et al. 2021) were introduced, 
thus increasing the accepted number of species to 27. Due to the 
simple generic definition composed around a few distinguishing 
morphological characters, for many years, a large number of Diplodia 
species were described based solely on their host association 
(Hyde et al. 2014). However, Slippers et al. (2004a) suggested that 
host preference should not be considered as a criterion for species 
differentiation in Botryosphaeriaceae. Furthermore, they proposed 
that many of the existing Diplodia species names are most likely 
to be synonyms. Several Diplodia species demonstrate a certain 
degree of host preference. For example, Di. sapinea (Bihon et al. 
2012, Smith et al. 2015) and Di. scrobiculata (Burgess et al. 2004, 
Alves et al. 2013) occur mostly on conifers, although there are 
some reports from angiosperms (Damm et al. 2007, Lazzizera et al. 
2008, Inderbitzin et al. 2010). Similarly, Di. rosulata has been found 
mainly on Prunus spp. (Perez et al. 2010, Linaldeddu et al. 2016), 
with very few reports on Pinus sp. (Gure et al. 2005); Di. cupressi 
prefers Cupressus and Juniperus hosts (Alves et al. 2006) while 
Di. corticola is found mainly on Quercus spp. (Alves et al. 2004, 
Urbez-Torres et al. 2016).

Lazzizera et al. (2008) pointed out the two well-supported 
phylogenetic clades in Diplodia that corresponded with two 
distinct conidial morphologies. This was confirmed in subsequent 
comprehensive studies on Botryosphaeriales (Phillips et al. 2013, 
2019, Zhang et al. 2021e). Thus, the genus is characterised by 
two distinct conidial morphologies. In one group, the conidia 
are hyaline and aseptate, becoming 1-septate and pale to dark 
brown at maturity. In the other group, the conidia are dark brown 
at an early stage of development, often before they are released 
from the conidiogenous cells and remain aseptate, although 
they occasionally become 1-septate with age. Within these two 
morphological groups, the species exhibit only small differences 
in their morphology, sometimes only in the mean value for conidial 
dimensions. Therefore, molecular characterisation is essential for 
species differentiation (Phillips et al. 2013).

In contrast to single marker phylogenetic analyses, a multi-
gene phylogeny provides better resolution for distinguishing 
Diplodia species and revealing species limits (Damm et al. 2007, 
Phillips et al. 2013, Alves et al. 2014, Taylor et al. 2020, Boonmee 
et al. 2021, Tennakoon et al. 2021, Senanayake et al. 2023). 
Furthermore, genealogical concordance phylogenetic species 
recognition has been applied to these multiple gene genealogies 

to determine species limits in various fungal taxa (Taylor et al. 
2000, Norphanphoun et al. 2020). For example, the ITS phylogeny 
resolved only five groups within the Diplodia clade (Alves et 
al. 2004). Phillips et al. (2013) demonstrated that the above-
mentioned two morphological groups are supported by two distinct 
phylogenetic lineages based on combined ITS and tef1 genes and 
accepted 17 species in Diplodia. However, some species, such 
as Di. pinea and Di. intermedia, showed low phylogenetic support 
while others could not be separated clearly, such as Di. alatafructa 
and Di. pseudoseriata. Later Yang et al. (2017a) tried to resolve the 
genus using a tef1, ITS and tub combined phylogeny and accepted 
20 species, with three taxonomic novelties (Di. pyri, Di. citricarpa 
and Di. gallae) and four other isolates most likely representing new 
species. Dissanayake et al. (2016) applied the same combination of 
loci as Phillips et al. (2013) and accepted 26 species. Jayawardena 
et al. (2019) updated the genus with 30 accepted Diplodia species 
based on combined ITS and tef1 phylogenetic analysis. In the 
most recent revision of Botryosphaeriales (Zhang et al. 2021e), 
with phylogenies based on ITS, tef1 and tub loci and increased 
taxon sampling revealing intra-species variation, 25 species were 
accepted with one taxonomic novelty, Di. afrocarpi, and several 
previously accepted species were synonymised under existing 
names. Thus, Di. pyri and Di. magnoliigena were synonymised 
with Di. mutila; Di. alatafructa, Di. pseudoplatani and Di. insularis 
with Di. pseudoseriata; Di. intermedia, Di. rosacearum and Di. 
italica with Di. sapinea; Di. guayanensis with Di. scrobiculata; and 
Di. huaxii with Di. seriata. The status of all the other names listed 
in Index Fungorum, Species Fungorum and MycoBank remain 
undetermined and will remain so until they are re-collected and 
epitypified. However, the possibility that this will ever be done is 
highly unlikely. Considering that most of the older species were 
introduced based on host association, a character that is now 
known to have little or no taxonomic value, and given the minor 
differences in morphology that separate individual species, it would 
be safe to assume that most of the older names are synonyms. 
Therefore, the number of 1 260 species names in Diplodia must be 
regarded as highly exaggerated, and the true number of species in 
this genus is likely to be in the order of magnitude of the number of 
species recognised by phylogenetic analyses. Although more new 
phylogenetic species will no doubt be recognised in the future, it 
is impossible to predict how many species remain to be identified. 
However, it would seem reasonable to assume that the actual 
number of species that exist would be somewhere between the 
current figure of 27 phylogenetic species and an absolute maximum 
of double this number.

Ecological and economic significance

Diplodia species cause numerous diseases on economically 
and ecologically important plants, such as apples, grapevines, 
oak, pines and ash trees. Among them, the major diseases are 
discussed below.

Dieback and canker diseases caused by Diplodia 
pathogens

Many Botryosphaeriaceae taxa have been reported to cause 
cankers and dieback disease in tropical and subtropical trees and 
economic crops (Damm et al. 2017, Linaldeddu et al. 2020, Diaz 
et al. 2022). Diplodia species were reported as one of the main 
pathogens of diebacks and cankers of woody trees. Diplodia fraxini 
and Di. subglobosa have been isolated as the main pathogens of 
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ash trees in many European countries. Furthermore, Di. mutila was 
also identified from ash trees (Linaldeddu et al. 2020). Diplodia 
mutila and Di. seriata were reported to cause canker and dieback 
in apple trees worldwide (Úrbez-Torres et al. 2016, Diaz et al. 
2022), Prunus sp. (Damm et al. 2017), olive trees in the European 
region and the USA (Úrbez-Torres et al. 2013a). In addition, Di. 
olivarum has been identified as a pathogen of dieback disease in 
several hosts (Lazzizera et al. 2008, Alves et al. 2014, Linaldeddu 
et al. 2016). Diplodia seriata has been identified as one of the 
most aggressive pathogens from dieback and canker symptomatic 
tissues in grapevine worldwide (Úrbez-Torres et al. 2018, Zhao et al. 
2021a). In addition, Di. africana, Di. corticola, Di. pseudoseriata, Di. 
quercivora and Di. scrobiculata have been identified as pathogens 
from many economically and ecologically important plants and 
crops, such as Fraxinus sp., oak, cypress, Prunus sp., Pinus sp. 
and many other woody hosts (Alves et al. 2004, 2014, Aćimović 
et al. 2016, Hlaiem et al. 2023). These Diplodia pathogens cause 
economic losses and environmental damages due to the decline of 
these trees and crops (Sosnowski et al. 2021).

Diplodia tip and shoot blights in conifers

Diplodia sapinea and Di. scrobiculata were identified as pathogens 
of tip and shoot blight on pines in Australia, China, Europe, northeast 
Asia and the USA (Hartman et al. 2009, Paez & Smith 2018, 
Brodde et al. 2019, Cheng et al. 2021b, Caballol et al. 2022). These 
pathogens can cause serious economic losses by killing new tips 
and shoots, disrupting the crown, and affecting the quality of stems. 
Management of these diseases is challenging as many synthetic 
foliar fungicides and other alternative fungicidal treatments proved 
ineffective (Hartman et al. 2009). Therefore, management strategies 
should focus on reducing the pathogen inoculum.

Research interests

There are 496 publications with 6 337 citations from 2011–2021 in 
the Web of Science (Fig. 125), with the top 10 most cited articles 

listed in Table 100. Most of the publications focused on taxonomy 
and phylogeny, identification and characterisation of Diplodia 
diseases (pathogen identification, pathogenicity factors), however, 
recently, much attention has been focused on secondary metabolite 
production and host-species interactions.

Taxonomy and phylogeny
The concept of Diplodia has changed over the years and has been 
subjected to several revisions based on morphological and multi-
locus phylogenetic approaches (Alves et al. 2014, Phillips et al. 
2013, 2019, Zhang et al. 2021e). Initially, ITS and tef1 were applied 
to resolve the species in this genus (Phillips et al. 2013, Dissanayake 
et al. 2016, Jayawardena et al. 2019) and later, more protein-coding 
genes were added to provide better resolutions (Yang et al. 2017a). 
In the most recent revision, 25 Diplodia species were accepted based 
on combined ITS, tef1 and tub phylogeny (Zhang et al. 2021e).

Identification and characterisation of Diplodia diseases
Most pathogenesis-related studies identify and characterise the 
Diplodia pathogens on economically and ecologically important 
hosts. Among these, many studies focused their attention on the 
dieback and canker disease caused by several Diplodia species 
(Jankovský et al. 2003, Epstein et al. 2008, Krueger et al. 2013, 
Aćimović et al. 2016, Linaldeddu et al. 2020, Ferreira et al. 2021, 
Sosnowski et al. 2021, Díaz et al. 2022, Hlaiem et al. 2023). In 
addition, several other diseases caused by Diplodia pathogens, 
such as tip and shoot blight, black rot and leaf spots, have 
been subjected to comprehensive studies (Hartman et al. 2009, 
Crespo et al. 2018, Brodde et al. 2019, Caballol et al. 2020, 
Cheng et al. 2021b). These studies discuss disease emergence, 
distribution, etiology and pathogenesis factors, specifically 
ecological parameters. Few studies also investigated the disease 
management strategies for Diplodia diseases (Epstein et al. 2008). 
As foliar fungicide applications have failed to control Diplodia 
diseases, they are managed mainly through cultural practices, 
such as planting less susceptible hybrids and the use of physical 

Fig. 125. Trends in research of Diplodia in the period 2011–2021.
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barriers like thiophanate methyl formulations, paints and pastes on 
wounds (Luna & Wise 2015, del Pilar Martínez-Diz et al. 2021b). 
Furthermore, cultural practices such as crop rotation and tillage 
have been applied to decrease Diplodia infections on corn, mainly 
Diplodia ear and stalk rot (Steckel 2003). However, very few 
studies have been conducted to understand the pathogenicity 
factors and infection biology of Diplodia pathogens (Fernandes et 
al. 2014). Further efforts are needed to demonstrate the molecular 
mechanisms underlying these host and pathogen interactions that 
can be employed in future studies to alter the balance of these 
interactions to decrease the virulence of Diplodia species.

Secondary metabolites
Pathogenic and endophytic Diplodia species are reported as rich 
sources of bioactive secondary metabolites, including several 
phytotoxins (Masi et al. 2021, Salvatore et al. 2022). Several 
metabolites, including diterpenoids, polyketides, afunanones, 
pyrones, chetoglobosins, lactones, phenols and organic acids, 
have been identified with various biological properties, such as 
phytotoxic, neurotoxic, antimicrobial, insecticidal, herbicidal, and 
anticancer activities from Di. sapinea, Di. cupressi, Di. corticola, 
Di. cupressi and a few other Diplodia species (Liu et al. 2019a, 
Masi et al. 2021, Salvatore et al. 2022). Among these metabolites, 
sphaeropsidin A is the most commonly isolated metabolite from 
Diplodia species with multiple biological properties, such as 
antimicrobial, insecticidal, herbicidal, and anticancer activities that 
can be applied in agriculture and medicine (Salvatore et al. 2022). 
Studies have revealed that foliar symptoms of dieback disease are 
usually associated with phytotoxins produced by Diplodia species 
(Reveglia et al. 2019). However, more investigations are needed 
to assess the role of phytotoxins in the symptom expressions of 
Diplodia pathogens. Also, further discoveries of new secondary 
metabolites from these Diplodia species are important for possible 
future applications in agriculture and medicine.

Authors: K.W.T. Chethana and A.J.L. Phillips

95. Inonotus P. Karst., Meddeland. Soc. Fauna Fl. Fenn. 5: 
39. 1879.

Type species: Inonotus cuticularis (Bull.) P. Karst.

Classification: Basidiomycota, Agaricomycotina, Agaricomycetes, 
Hymenochaetales, Hymenochaetaceae.

Background

Inonotus was erected by Karsten in 1879 to accommodate pileate 
polypores with coloured spores and was amended by Donk (1933) 
to include more species with the features of both coloured spores 
and a rusty brown fibrous context, with the type species I. cuticularis 
(Ryvarden 1991). There are 282 specific and infraspecific names of 
Inonotus in MycoBank and Index Fungorum (2022), but the actual 
number of species is currently 141 (Corner 1991, Ryvarden 1999, 
Cui et al. 2011, Gomes-Silva et al. 2013, Ryvarden 2020, Xavier de 
Lima et al. 2022).

Inonotus is a cosmopolitan genus characterised by its 
basidiocarps being annual to rarely perennial, resupinate, effused-
reflexed or pileate, sessile to rarely stipitate, solitary to imbricate, 
corky fleshy to woody hard and brittle on drying. The pileus is small 
to medium-sized, dimidiate, applanate to conchate; upper surface 
glabrous, tomentose to hispid, yellowish to dark reddish brown, 
usually without a crust, hymenophore poroid; pore surface brown, 
pores 2–10 per mm; context rusty to cinnamon brown, mycelial core 
absent; hyphal system monomitic, generative hyphae yellowish to 
brownish, simple septate; setal hyphae present or absent; hymenial 
or tramal setae present or absent; cystidia none; spores globose to 
ellipsoid, rarely cylindrical, smooth, hyaline to yellowish or brown; 
on dead and living hardwoods or coniferous woods, causing a 
white rot (Dai 2010, Sharma et al. 2013b).

Numerous characters from morphology, anatomy, sexuality, 
nuclear behaviour, pigmentation and ecology suggest that the genus 
Inonotus is heterogeneous (Fiasson 1982, Fiasson & Niemelä 1984, 
Dai 1995, 1999, Fischer 1996, Zhou et al. 2015b, Ryvarden 2020, 
Xavier de Lima et al. 2022). Wagner & Fischer (2002) subdivided 
Phellinus s. lat. and Inonotus s. lat. into the genera Inonotus s. str., 
Phellinus s. str., Aurificaria, Fomitiporella, Fomitiporia, Fulvifomes, 
Fuscoporia, Inocutis, Inonotopsis, Mensularia, Onnia, Phylloporia, 
Porodaedalea and Pseudoinonotus based on 28S rDNA-based 
phylogenetic analyses. However, Inonotus s. str. sensu Wagner and 

Table 100. Top 10 cited articles related to Diplodia published in the period 2011–2021.

Rank Article title No. of citations References
1 The Botryosphaeriaceae: genera and species known from culture 515 Phillips et al. (2013)

2 One stop shop: backbones trees for important phytopathogenic genera: I (2014) 235 Hyde et al. (2014)
3 Towards a natural classification of Botryosphaeriales 215 Liu et al. (2012a)

4 Grapevine trunk diseases: A review of fifteen years of trials for their control with 
chemicals and biocontrol agents

124 Mondello et al. (2018b)

5 Families, genera, and species of Botryosphaeriales 113 Yang et al. (2017a)

6 Characterization of fungal pathogens associated with grapevine trunk diseases in 
Arkansas and Missouri

106 Urbez-Torres et al. (2012)

7 Absolute configurations of fungal and plant metabolites by chiroptical methods. 
ORD, ECD, and VCD studies on phyllostin, scytolide, and oxysporone

104 Mazzeo et al. (2013)

8 Botryosphaeriaceae: Current status of genera and species 102 Dissanayake et al. (2016)

9 Light converts endosymbiotic fungus to pathogen, influencing seedling survival and 
niche-space filling of a common tropical tree, Iriartea deltoidea

100 Alvarez-Loayza et al. (2011)

10 Fungal trunk pathogens associated with wood decay of almond trees on Mallorca 
(Spain)

100 Gramaje et al. (2012)
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Fischer is still a broadly defined genus. Inonotus s. lat. has been well 
studied, particularly in Asia, Europe and North America (Gilbertson 
& Ryvarden 1986, Ryvarden & Gilbertson 1993, Dai 2010, Zhou et 
al. 2015b). Gottlieb et al. (2002) provided the morphology, cultural 
characters and molecular analyses of Inonotus s. lat. in Argentina, 
while Ryvarden (2005) published a monograph on Inonotus s. lat., 
which deals with 101 species including 10 new species and six new 
combinations. The genus is heterogeneous and polyphyletic based 
on molecular characters (Niemelä et al. 2001, Wagner & Fischer 
2001, 2002, Dai 2010, Zhou et al. 2015b, Xavier de Lima et al. 
2022).

In traditional taxonomy based on anatomical and morphological 
data, Inonotus s. lat. was characterised by annual basidiocarps 
with a fibrous to soft or fragile consistency and a monomitic hyphal 
system (Pilát 1936, Cunningham 1946, Ryvarden & Johansen 
1980, Gilbertson & Ryvarden 1986, Ryvarden & Gilbertson 1993, 
Núñez & Ryvarden 2000, Dai 2010). A combination of these 
characters makes it easy to distinguish it from another large 
genus in the Hymenochaetaceae, Phellinus s. lat. with woody and 
perennial basidiocarps as well as a dimitic hyphal system (Pilát 
1936, Ryvarden & Johansen 1980, Gilbertson & Ryvarden 1987, 
Ryvarden & Gilbertson 1994, Núñez & Ryvarden 2000). However, 
the delimitation between Inonotus s. lat. and Phellinus s. lat. was 
questioned, since there are some intermediate species sharing 
characters of the two genera (Domanski et al. 1973, Jahn 1981, 
Fiasson & Niemelä 1984, Corner 1991, Dai 1995, 1999, Hansen & 
Knudsen 1997, Zhou et al. 2015b).

Inonotus s. lat. and its relatives, Asterodon, Aurificaria, Coltricia, 
Coltriciella, Hydnochaete and Hymenochaete, have been studied in 
China by Dai & Niemelä (2006). Previously, 31 species of Inonotus s. 
str. have been recorded in China (Dai 2010, 2012a, b, Cui et al. 2011). 
Investigations into wood-decaying fungi in southern China led to 
several new polypores being described (Dai et al. 2003, 2004, 2011, 
Cui et al. 2009, Zhou & Jia 2010). However, many specimens were 
not identified at the species level. Based on morphological study and 
phylogenetic analysis, a new species Inonotus tenuicontextus was 
described by Zhou & Qin (2012), who also provided an identification 
key to I. tenuicontextus and phylogenetically closely related species. 
Zhou et al. (2015b) used morphological and phylogenetic data based 
on global samples and inferred from nLSU and ITS datasets that 
Inonotus is polyphyletic comprising at least three clades. Ten species 
were transferred to the new genus Sanghuangporus and seven to 
Tropicoporus. Tropicoporus excentrodendri and T. guanacastensis 
were described as new species and their distinctive characters were 
discussed. Keys were also provided for Inonotus s. str. and the two 
new genera (Zhou et al. 2015b).

Ecological and economic significance

Inonotus species play a key role as food, and as sources for 
enzymes and medicine, based on their important and potential 
applications in biomedical engineering and biodegradation (Dai et 
al. 2009, Levin et al. 2016, Bankole et al. 2020). As a white rot 
fungus, I. obliquus is valued as an edible and medicinal resource 
(Song et al. 2013).

In biomedical engineering, Inonotus obliquus has been widely 
used as a folk medicine in Russia, Poland and most of the 
Baltic countries (Mu et al. 2012). In Russia, it has been used 
as a traditional remedy to cure 49 diseases such as cancer, 
cerebrovascular diseases, diabetes, and 50 gastrointestinal 
diseases since the sixteenth century (Sun et al. 2008, Choi et al. 

2010, Ma et al. 2012). For centuries, I. obliquus (Chaga mushroom) 
has been used in Kiev to cure lip tumours, and it is a traditional 
medicine in Siberia (Szychowski et al. 2021). Inonotus obliquus 
was found to significantly inhibit transplanted tumours in animals in 
vivo (Gorzkowski 1955). Water extract of I. obliquus had potential 
anticancer activity against B16-F10 melanoma cells in vivo (Youn 
et al. 2009). Inonotus obliquus polysaccharide, made by water 
extraction and alcohol precipitation, with obvious inhibitory effects 
on sarcoma S180 in mice was also observed (Zhang et al. 2007). The 
most abundant triterpene compound, inotodiol, was investigated for 
its tumour-inhibitory effect in a two-stage carcinogenesis test on 
mouse skin and was found to have potent anti-tumour promoting 
activity in an in vivo carcinogenesis test (Nakata et al. 2007). Bao 
et al. (2017) reported on the morphology, habitat and geographical 
distribution of “Sanghuang” (Inonotus hispidus) in both ancient 
literature on herbal medicine and modern literature on medicinal 
fungi.

In biodegradation, the components of Inonotus obliquus mainly 
include lanolin alkane triterpenes isolated from, lignin, melanin, 
etc. (Kahlos et al. 1984, Kahlos & Hiltunen 1986, He & Feng 2001, 
Shin et al. 2000, 2001a, b, c, 2002, Nakata et al. 2007, Sayaka et 
al. 2007, Taji et al. 2008, Ham et al. 2009). Three new lanostane 
triterpenoids were isolated from petroleum ether extracts of 
Inonotus obliquus (Zhong et al. 2009). In addition, several species 
previously in Phellinus s. lat. were transferred to Inonotus, such 
as I. baumii and I. vaninii (Wagner & Fischer 2002). Both of these 
species yield polysaccharides, proteoglycans and polyphenols, 
and thus have medicinal functions, including antioxidation, anti-
tumour, and improving immunity (Dai et al. 2010a).

Research interests

There are 535 publications and 6 331 citations from 2011–2021 in 
the Web of Science (Fig. 126), with the top 10 most cited articles 
listed in Table 101. Most of the publications focused on chemistry, 
applications in medical sectors, taxonomy and phylogeny.

Chemistry and applications in medical sectors
In Russia, Inonotus obliquus has been used as a traditional remedy 
to cure various diseases such as cancer, cerebrovascular diseases, 
diabetes and gastrointestinal diseases since the sixteenth century 
(Sun et al. 2008, Choi et al. 2010). Triterpenes, polysaccharides, 
polyphenols and melanin were found in I. obliquus, which were 
responsible for the anticancer and anti-tumour activities (Song 
et al. 2008, Handa et al. 2012), anti-inflammatory ability (Van et 
al. 2009), antioxidant effect (Ma et al. 2012), hypoglycemic ability 
(Lu et al. 2010), immunomodulatory activity (Fan et al. 2012) and 
antimutagenic properties (Ham et al. 2009).

Submerged culture of medicinal fungi is believed to be a 
promising alternative for the efficient production of mycelia and 
metabolites and has received increasing attention worldwide. 
However, despite several decades of effort, the production 
of secondary metabolites by submerged culture of medicinal 
fungi including I. obliquus is still encountering many biological, 
physiological, and engineering limitations (Zheng et al. 2010).

Song et al. (2013) showed that I. obliquus produces a diverse 
range of secondary metabolites, including phenolic compounds, 
melanins, and lanostane-type triterpenoids. Among these are 
active components for antioxidant, anti-tumoural, and antiviral 
activities and for improving human immunity against infection of 
pathogenic microbes. Their anticancer activities have become a hot 
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topic recently but with relatively little knowledge of their modes of 
action. Polysaccharides from I. obliquus can indirectly be involved 
in anticancer processes mainly via stimulating the immune system. 
The antioxidative ability of I. obliquus extracts can also prevent the 
generation of cancer cells.

Taxonomy and phylogeny
According to the phylogenetic results of Li et al. (2016a), four 
narrowly defined genera, namely Inocutis, Inonotopsis, Mensularia, 
and Onnia, segregated from Inonotus s. lat., while some species with 
perennial basidiocarps and a dimitic hyphal system were transferred 
to Inonotus (Wagner & Fischer 2002, Dai 2010, Wu et al. 2012b, 
Vlasák et al. 2013). Zhou (2015a) introduced a monotypic genus 
Cylindrosporus for a species previously belonging to Inonotus, while 

Zhou et al. (2015b) segregated Sanghuangporus and Tropicoporus 
from Inonotus and proposed that the remaining species in Inonotus 
still have polyphyletic origins. It is, therefore, necessary to recollect 
and epitypify the described taxa and amplify all the necessary genes 
for accurate species delimitation (Zhou et al. 2015b).

Authors: C.L. Zhao, K.Y. Luo, D.Q. Wang and J.J. Li

96. Ophiostoma Syd. & P. Syd., Ann. Mycol. 17: 43. 1919.

Type species: Ophiostoma piliferum (Fr.) Syd. & P. Syd.

Classification: Ascomycota, Pezizomycotina, Sordariomycetes, 
Ophiostomatales, Ophiostomataceae.

Fig. 126. Trends in research of Inonotus in the period 2011–2021.

Table 101. Top 10 cited articles related to Inonotus published in the period 2011–2021.
Rank Article title No. of citations References
1 Current findings, future trends, and unsolved problems in studies of 

medicinal mushrooms
267 Wasser (2011)

2 Recent developments in mushrooms as anti-cancer therapeutics: a review 216 Patel & Goyal (2012)
3 Mushroom immunomodulators: unique molecules with unlimited 

applications
165 EI Enshasy & Hatti-Kaul (2013)

4 Anti-inflammatory and anticancer activities of extracts and compounds from 
the mushroom Inonotus obliquus

149 Ma et al. (2013a)

5 Medicinal plants of the Russian pharmacopoeia; their history and 
applications

141 Shikov et al. (2014)

6 Medicinal mushrooms in prevention and control of diabetes mellitus 132 De Silva et al. (2012)
7 Effect of different drying methods on physicochemical properties and 

antioxidant activities of polysaccharides extracted from mushroom Inonotus 
obliquus

123 Ma et al. (2013b)

8 Contents of lovastatin, γ-aminobutyric acid and ergothioneine in mushroom 
fruiting bodies and mycelia

120 Chen et al. (2012a)

9 Chemical modification and antioxidant activities of polysaccharide from 
mushroom Inonotus obliquus

116 Ma et al. (2012)

10 Antitumor and immunomodulatory activity of water-soluble polysaccharide 
from Inonotus obliquus

103 Fan et al. (2012)
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Background

The taxonomy of the Ophiostomatales has been challenging due to 
the limited number of morphological characters and the convergent 
evolution of features such as darkly pigmented ascocarps wherein 
short-lived asci are produced randomly at the base. These asci 
deliquesce upon maturation and the ascospores are extruded in a 
slimy droplet from the ostiole at the tip of the perithecial neck. The 
genus Ophiostoma was first proposed by Sydow & Sydow (1919) 
with Ophiostoma piliferum as the type species, but Baskshi (1951) 
and Hunt (1956) considered Ophiostoma to be a synonym of 
Ceratocystis. As most fungi assigned to Ophiostoma and Ceratocystis 
have adapted to be dispersed by insects they have converged and 
resemble each other morphologically. This has led to rather complex 
nomenclatural histories for these two genera; both at the ordinal level 
with proposals of these fungi being assigned to the Microascales 
or Ophiostomatales and at the generic level such as transferring 
members of Ophiostoma to the genus Ceratocystis s. lat. along with 
proposals for defining new genera to subdivide Ophiostoma and 
Ceratocystis (see Olchowecki & Reid 1974, Updadyay 1981, Zipfel 
et al. 2006, De Beer & Wingfield 2013, De Beer et al. 2014, 2016a, 
Holland et al. 2019, Marincowitz et al. 2020). De Beer et al. (2022) 
suggested that the order Ophiostomatales is comprised of 16 genera 
(but possibly up to 24 genera).

Ophiostoma (Ophiostomataceae) is one of the largest 
genera that includes tree-or wood-infecting fungi, with about 154 
recognised species (De Beer et al. 2013a, b, 2022, Table 103). 
One hundred and thirteen taxa reside in Ophiostoma s. str. as 
defined by De Beer & Wingfield (2013), and most can be arranged 
in phylogenetically six well-supported species complexes, O. 
clavatum, O. ips, O. minus, O. piceae, O. pluriannulatum, and O. 
ulmi, although some do not form part of a well-defined species 
complex such as the type species, O. piliferum (Linnakoski et al. 
2010, 2016, De Beer & Wingfield 2013, De Beer et al. 2022). Other 
species group in several unresolved smaller phylogenetic lineages 
or complexes within Ophiostoma s. lat. (De Beer & Wingfield 
2013). Recently, De Beer et al. (2022) defined three new genera 
Jamesreidia, Masuyamyces and Heinzbutinia based on lineages 
previously included within Ophiostoma. Due to a lack of type 
material or DNA sequences, some species have uncertain status in 
the genus Ophiostoma (De Beer & Wingfield 2013). The number of 
Ophiostoma species is increasing rapidly due to ongoing research 
efforts on the interactions between fungi and bark beetles in China 
(Chang et al. 2017, 2019, 2020, 2021, Wang et al. 2018b, 2019b, 
2020f) and Europe (Linnakoski et al. 2010, 2016, Aas et al. 2018, 
Jankowiak et al. 2019a, b, c).

Most members of Ophiostoma are commonly associated 
with forest trees, causing the economically important blue-stain 
in freshly exposed sapwood of softwood species (Seifert 1993, 
Uzunović & Byrne 2013, Roy et al. 2014, Gomdola et al. 2022). 
However, O. novo-ulmi is an example of a highly virulent tree 
pathogen responsible for Dutch elm disease (Brasier 1991). 
In addition, O. piceae was recorded to cause a disseminated 
infection involving the lung and the brain in a patient with 
lymphoblastic lymphoma (Bommer et al. 2009). Ophiostoma 
species are commonly associated with bark- and wood-dwelling 
beetles and their mites. They include bark- and ambrosia beetles, 
cerambycid beetles, nitidulid beetles and weevils (Juzwik et 
al. 1998, Kirisits 2004, Jankowiak & Kolařík 2010, Kamgan 
Nkuekam et al. 2012, Jankowiak & Bilański 2013a, b). The 
association between the pathogenic pine wood nematode (PWN) 
Bursaphelenchus xylophilus vectored by Monochamus spp. and 

Ophiostoma species has also been documented (Wingfield 1987, 
Wang et al. 2018b).

The genus Ophiostoma has a wide geographic distribution, 
including records for Africa, Asia, Europe, Oceania (including 
Australia), North and South America. They are abundant in the 
Northern Hemisphere, especially in conifer ecosystems in Asia, 
Europe, and North America (Table 103). Ophiostoma ips, O. 
piceae, O. piliferum and O. quercus are globally widespread, likely 
due to human activity and the movement of wood products around 
the globe (Taerum et al. 2018). Ophiostoma species can colonise 
a wide diversity of host tree species, including angiosperms 
and gymnosperms. Most of the formally described species of 
Ophiostoma are known only from conifers (96 species), including 
those in the genera Abies, Larix, Picea, Pinus, Pseudotsuga, and 
Tsuga. Only 38 Ophiostoma species are recorded from hardwoods, 
although these fungi can infect a wide diversity of hardwood hosts, 
especially Eucalyptus, Fagus, Nothofagus, Quercus and Ulmus 
trees (Table 103).

Ecological and economic significance

Ophiostoma species cause a serious wilt disease on elms plus 
many Ophiostoma species are economically important blue-stain 
agents of pines worldwide. Some bark beetle species are linked 
to many serious tree diseases and they are commonly associated 
with Ophiostoma species. These three aspects are detailed below.

Blue-stain is the discoloration of tree sapwood caused by the 
growth of blue-stain, typically from ophiostomatoid (as defined 
by Malloch & Blackwell 1993) genera such as Ceratocystis, 
Endoconidiophora, Grosmannia, Ophiostoma, Leptographium and 
also from non-ophiostomatoid genera, e.g., Sphaeropsis (Diplodia) 
and Lasiodiplodia (Seifert 1993, Uzunović & Byrne 2013). Blue-
stain is caused by pigmented fungal hyphae usually growing in the 
ray parenchyma cells, resin ducts and later in the tracheids (Seifert 
1993). Discoloration is due to melanin, a dark pigment existing 
inside the cell walls of the hyphae, and not due to staining of the 
sapwood tissues (Zink & Fengel 1989). Ophiostoma species, which 
are commonly carried by bark- and wood-dwelling beetles and 
mites, usually colonise freshly felled logs and freshly sawn lumber, 
causing a dark bluish discolouration in the sapwood that is difficult 
to remove or reduce in intensity (Kirisits 2004). Discoloration by 
blue-stain fungi reduces the value of wood and wood products, 
limiting export opportunities, and thus affecting the timber trade and 
markets. Blue-stain is considered a serious problem in softwoods in 
the Northern Hemisphere but hardwoods are also affected (Seifert 
1993, Butin 1996, Uzunović & Byrne 2013). Due to the large 
proportion of sapwood, Pinus wood is very highly susceptible to 
fungal staining (Seifert 1993). Ophiostoma ips, O. floccosum, O. 
piliferum, O. minus, O. peregrinum, O. piceae, O. pluriannulatum, 
and O. setosum are the most important Ophiostoma blue-stain 
agents of pines in Europe, New Zealand, North America, and 
Patagonia (Seifert 1993, Uzunović et al. 1999, Thwaites et al. 2005, 
De Errasti et al. 2018, Jankowiak et al. 2021).

Dutch elm disease (DED) caused by Ophiostoma himal-ulmi, 
O. ulmi, and O. novo-ulmi is one of the most destructive diseases 
of woody trees across Europe, North America, and Central Asia. 
The causal agents of DED are among the most devastating plant 
pathogens studied in the 20th century that have dramatically altered 
the urban and native forest composition in Europe and North 
America. Dutch elm disease was first noticed in 1919 by the Dutch 
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Phytopathological Service when it was spread over large areas of 
Benelux and part of Northern France. There were two large DED 
pandemics, which caused severe losses among native elms in 
Europe and North America. The first pandemic caused by O. ulmi 
first appeared in Europe in the 1910s and, 20 years later, in North 
America leading to a loss of between 10 and 40 % of elms in various 
European countries (Brasier 2000, Santini & Faccoli 2014). Around 
1940, the disease disappeared in Europe. A second wave followed 
in the 1960s, causing a more destructive outbreak of the disease 
in Europe, North America, and Central Asia. The second pandemic, 
which is still ongoing, was caused by the highly virulent O. novo-ulmi, 
which almost totally replaced O. ulmi, and has killed most mature 
elm trees on the three continents (Brasier 2000, Santini & Faccoli 
2014). Ophiostoma ulmi and O. novo-ulmi most likely originated 
from Asia (Brasier 2000), where native elm trees are more resistant 
to these fungi (Santini & Faccoli 2014). Two distinct subspecies 
within O. novo-ulmi populations are recognised: O. novo-ulmi ssp. 
novo-ulmi, previously known as the Euro-Asian race (EAN), and O. 
novo-ulmi ssp. americana, previously known as the North American 
race (NAN) (Brasier 1979, Brasier & Kirk 2001). A third species, O. 
himal-ulmi can infect Ulmus wallichiana and its distribution is limited 
to the Himalayas (Brasier & Mehrotra 1995). Dutch elm disease is 
mainly spread by the bark beetles Scolytus spp. and Hylurgopinus 
rufipes (Webber 1990, 2000, Jacobi et al. 2007, 2013, Jankowiak 
et al. 2019a, b, c), but the infection can also spread via root grafts 
(Webber & Brasier 1984). Initial symptoms of DED include wilting and 
discoloration of the leaves at the tip of shoots. Dieback continues and 
the wilt continues throughout the entire crown and the tree eventually 
dies. A diagnostic symptom of DED is the browning of the water-
conducting vessels (visible by peeling off the outer bark) of the whole 
outer growth ring due to the formation of tyloses and gels in the xylem 
of affected branches (Rioux et al. 1998, Ouellette et al. 2004, Kirisits 
2013). The DED fungi produce a unique, phytotoxic, low molecular 
weight protein known as ceratoulmin (Takai 1974, 1978). Ceratoulmin 
is produced by the DED pathogens in xylem vessels of stems and 
branches and is involved in the development of DED symptoms in 
elms infected with O. novo-ulmi (Del Sorbo et al. 2002).

Bark beetle-fungus symbioses are a classic model of symbiosis in 
nature. Insects have a widespread association with fungi, especially 
with members of Microascales and Ophiostomatales that cause blue 
staining of wood and serious tree diseases. Associations between 
insects and fungi are very diverse, ranging from farming-like 
nutritional ambrosia symbioses to looser associations of beetles with 
fungal hitchhikers (Six 2012, Hulcr & Stelinski 2017). Most species 
carry fungi, either in specialised structures of the integument called 
mycangia or phoretically on the exoskeleton (Six 2012). Ophiostoma 
species are mainly associated with phloem-feeding bark beetles 
(Coleoptera, Scolytinae) and, to a lesser extent, with ambrosia 
beetles (Coleoptera, Solytinae and Platypodinae) that cultivate and 
feed on fungal gardens along the walls of their galleries in sapwood. 
The precise role of Ophiostoma species within bark beetles-fungi 
systems and the specificity of these associations, are yet to be 
clearly defined (Wingfield et al. 2017b). Some Ophiostoma species 
are highly specific and maintain close relationships with one or a few 
beetle species on one host tree. A good example is the association of 
O. canum with Tomicus minor or O. pityokteinis with Pityokteines spp. 
Other fungi have non-specific associations with bark beetles and 
have larger ranges of insects and host trees, such as O. piceae or 
O. quercus (Kirisits 2004). Ophiostoma species are morphologically 
well-adapted for dispersal by beetles. Sexual structures of these fungi 
are mostly ascomata with elongated necks, exuding sticky spores at 
their apices and are often surrounded by ostiolar hyphae that attach 
easily to the bodies of passing insects. Asexual structures are in 
most cases erect conidiophores with sticky spores at their apices 
(Malloch & Blackwell 1993). Species of Ophiostoma have been 
noted on more than 100 species of arthropods including bark- and 
ambrosia beetles and their mites, weevils (Coleoptera, Molytinae) 
and cerambycid beetles (Coleoptera, Cerambycidae) (Table 103). 
Sap-feeding (nitidulid) beetles (Coleoptera, Nitidulidae) visiting fresh 
wounds on hardwood trees have been also recognised as vectors 
of Ophiostoma species (Juzwik et al. 1998, Kamgan Nkuekam et al. 
2012, Jankowiak et al. 2019a, b, c). Based on the available literature, 
Ips typographus vectored 24 species of Ophiostoma, followed by 
Ips subelongatus (15 species), and Pityogenes chalcographus (13 
species).

Fig. 127. Trends in research of Ophiostoma in the period 2011–2021.
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Mites have multiple effects on insect-fungus associations 
(Lombardero et al. 2000, Hofstetter & Moser 2014), using the beetles 
for dispersal and access to tree species and access to fungi as 
many mites are mycetophagous. Many mites transport Ophiostoma 
species (Chang et al. 2017, 2020), for example, Tarsonemus mites 
associated with the southern pine beetle, Dendroctonus frontalis 
carry the ascospores of O. minus (Moser 1985), whereas mites 
associated with conifer-infesting beetles in China vectored O. ips 
(Chang et al. 2017).

Research interests

There are 436 publications and 5 912 citations from 2011–2021 in 
the Web of Science (Fig. 127), with the top 10 most cited articles 
displayed in Table 102. Most of the publications focused on fungal/
insect relationships, blue-stain management (forestry) and research 
on double-stranded RNA viruses associated with DED-causing 
fungi (potential biocontrol agents). Double-stranded RNA viruses 
(non-encapsulated) that belong to the genus Mitovirus of the family 
Narnaviridae have been recovered from the mitochondria of many 
fungi including the DED pathogens, although technical difficulties 
in genetically manipulating the mitochondria of filamentous fungi so 
far have limited the potential exploitation of these RNA viruses as 
a means of introducing an engineered version into DED pathogen 
populations that could induce hypovirulence (Hillman & Cai 2013, 
Hintz et al. 2013, Koonin & Dolja 2014).

Bark beetle fungus interactions
Dendroctonus ponderosae (mountain pine beetle, MPB) has been 
reported to form multipartite symbiotic associations with several 
species of blue stain fungi and the fungal symbionts provide a 
source of nutrients, enhance conditions for brood development 
and possibly enhance the beetle’s capacity to invade trees (Six 
& Wingfield 2010, Six 2012, Ploetz et al. 2013, Vanderpool et al. 
2018). However, these fungi insect associations are quite complex, 
for example, the multiple fungal symbionts for MPB may provide 
plasticity with regards to which symbiont can provide adaptive 
benefits under certain environmental conditions, or the fungal 
symbionts can act in a complementary fashion to allow survival 

under adverse conditions or when the MPB invades new host 
species (Ojeda Alayon et al. 2017). In addition to fungi, there are also 
bacteria associated with MPB that can reduce the concentrations of 
various plant defense compounds (Boone et al. 2013). It has also 
been noted that in bark beetle-fungus symbiosis the fungal partner 
may not always promote phytopathogenicity, in some instances the 
fungal associate could be potentially antagonistic towards the beetle 
and in some instances, beetles carry bacteria that are antagonistic 
towards the fungal associates (reviewed in Six & Wingfield 2011). 
A rather complex picture emerges for bark beetle-fungus symbiosis 
that can involve bacterial symbionts, fungal associates/mutualists, 
and mites that can feed on some fungal associates and in turn 
the mites can parasitise the beetle (Six & Wingfield 2010). These 
complex interactions need to be assessed in the future to gain a 
better understanding of how beetles move into new geographic 
regions and invade new host species.

Diversity and systematics
Many members of the Ophiostomatales are fungal associates of 
ambrosia and bark beetles and these fungi can be agents of blue stain 
or tree diseases, therefore there is considerable interest in the fungi 
vectored by these insects. Major strides have been achieved with the 
aid of various molecular markers that have resulted in considerable 
taxonomic revisions for the order Ophiostomatales. This order 
includes two families, Kathistaceae and Ophiostomataceae (Hyde 
et al. 2020d). Within Ophiostomataceae, De Beer et al. (2022) 
recognized the following genera: Aureovirgo, Ceratocystiopsis, 
Dryadomyces, Esteya, Fragosphaeria, Graphilbum, Grosmannia, 
Harringtonia, Hawksworthiomyces, Heinzbutinia, Jamesreidia, 
Leptographium, Masuyamyces, Ophiostoma, Raffaelea, and 
Sporothrix. In addition, De Beer et al. (2022) were able to define 
24 possible lineages that could represent additional genera based 
on extensive sampling. Members of Ophiostoma can be identified 
based on morphological and molecular criteria. Typically, several 
molecular markers are applied for species identification or for 
designating new taxa; these markers are rDNA ITS, rDNA LSU, 
and segments of protein-coding genes such as tub, tef1 and cal 
(Zipfel et al. 2006, De Beer et al. 2013, 2016a, Yamaoka 2017, Yin 
et al. 2016). Table 103 demonstrates that species of Ophiostoma 

Table 102. Top 10 cited articles related to Ophiostoma published in the period 2011–2021.
Rank Article title No. of citations References
1 The role of phytopathogenicity in bark beetle-fungus symbiosis: A challenge to the 

classic paradigm
181 Six et al. (2011)

2 Redefining Ceratocystis and allied genera 162 De Beer et al. (2014)
3 Hydraulic limits preceding mortality in a pinon-juniper woodland under experimental 

drought
139 Plaut et al. (2012)

4 The family Narnaviridae: Simplest RNA viruses 137 Hillman & Cai (2013)
5 Virus world as an evolutionary network of viruses and capsidless selfish elements 130 Koonin et al. (2014)
6 Bacteria associated with a tree-killing insect reduce concentrations of plant defense 

compounds
117 Boone et al. (2013)

7 The divorce of Sporothrix and Ophiostoma: solution to a problematic relationship 113 De Beer et al. (2016a)
8 Increasing forest loss worldwide from invasive pests requires new trade regulations 107 Roy et al. (2014)
9 Isolations from the redbay ambrosia beetle, Xyleborus glabratus, confirm that the 

laurel wilt pathogen, Raffaelea lauricola, originated in Asia
71 Harrington et al. (2011)

10 The genome and transcriptome of the pine saprophyte Ophiostoma piceae, and a 
comparison with the bark beetle-associated pine pathogen Grosmannia clavigera

48 Haridas et al. (2013)
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Table 103. Distribution of Ophiostoma spp. worldwide. Species in bold belong to Ophiostoma s. str. based on ITS or LSU sequences (113 species); *North 
America (N.A.) = 54 species; South America (S.A.) = 13 species; Africa (Af.) = 11 species; Europe (E.) = 59 species; Asia (As.) = 67 species; Oceania (O.) 
= 17 species. Four species distributed worldwide: O. ips, O. piecae, O. piliferum and O. quercus.  on conifers = 109 species (96 only on conifers);  
on hardwoods = 53 species (only on hardwoods = 38 species).  on conifers and hardwood = 14 species;  species in association with insects = 114 
species;   typically wood-associated species = 16 species.
Species N. A.* S. A. Af. E. As. O.
Ophiostoma ainoae H. Solheim  
Ophiostoma acarorum R.Chang & Z.W.de Beer 
=Masuyamyces acarorum (R. Chang & Z.W. de Beer) M. Procter & Z.W. de Beer
Ophiostoma adjuncti (R.W. Davidson) Harrington  
Ophiostoma aggregatum H. Wang, Q. Lu & Z. Zhang 

Ophiostoma album Wang & Lu 
Ophiostoma allantosporum (Griffin) M. Villarreal 
Ophiostoma ambrosium (Bakshi) Hausner, J. Reid & Klassen 
=Masuyamyces ambrosius (B.K. Bakshi) M. Procter & Z.W. de Beer
Ophiostoma angusticollis (E.F. Wright & H.D. Griffin) M. Villarreal 
Ophiostoma araucariae (Butin) de Hoog & Scheffer 
Ophiostoma arborea (Olchow. & J. Reid) Yamaoka & M.J. Wingf. 
Ophiostoma arduennense F.-X. Carlier, Decock, K. Jacobs & Maraite 
Ophiostoma australiae (Kamgan, K. Jacobs & M.J. Wingf.) Z.W. de Beer & M.J. Wingf. 
Ophiostoma bacillisporum (Butin & G. Zimm.) de Hoog & Scheffer 
Ophiostoma bicolor R.W. Davidson & D.E. Wells 
Ophiostoma borealis Kamgan, H. Solheim & Z.W. de Beer 
Ophiostoma botuliforme Masuya 
=Masuyamyces botuliformis (Masuya) Z.W. de Beer & M. Procter
Ophiostoma brevipilosi R.Chang & Z.W.de Beer 
Ophiostoma breviusculum Chung, Yamaoka, Uzunovic & Kim 
Ophiostoma brunneociliatum Math.-Käärik 
Ophiostoma brunneolum Linnakoski, Z.W. de Beer & M.J. Wingf. 
Ophiostoma brunneum (R.W. Davidson) Hausner & J. Reid 
Ophiostoma californicum (DeVay, R.W. Davidson & Moller) Hausner, J. Reid & Klassen 
Ophiostoma canum (Münch) Syd. 
Ophiostoma carpenteri J. Reid & Hausner 
Ophiostoma castaneae (Vanin & Solovjev) Nannf. 
Ophiostoma catonianum (Goid.) Goid. 
Ophiostoma clavatum Math. 
Ophiostoma columnare (Olchow. & J. Reid) Seifert & G. Okada 
Ophiostoma conicola Marm. & Butin 
Ophiostoma coronatum (Olchow. & J. Reid) M. Villarreal 
=Jamesreidia coronata (Olchow. & J. Reid) M. Procter & Z.W. de Beer
Ophiostoma crenulatum (Olchow. & J. Reid) Hausner & J. Reid 
Ophiostoma cupulatum (McNew & Harrington) Z.W. de Beer & M.J. Wingf. 
Ophiostoma denticiliatum Linnakoski, Z.W. de Beer & M.J.Wingf. 
Ophiostoma denticulatum (R.W. Davidson) Z.W. de Beer &M.J. Wingf. 
Ophiostoma fasciatum (Olchow. & J. Reid) Hausner, J. Reid & Klassen 
Ophiostoma flexuosum H. Solheim 
Ophiostoma floccosum Math. 
Ophiostoma fuscum Linnakoski, Z.W. de Beer & M.J. Wingf. 
Ophiostoma genhense Z. Wang & Q. Lu 
Ophiostoma gilleteae Marinc., Z.W. de Beer, M.J. Wingf. 
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Table 103. (Continued).
Species N. A.* S. A. Af. E. As. O.
Ophiostoma gmelinii R.L. Chang, Z.W. de Beer & M.J. Wingf. 
Ophiostoma grande Samuels & E. Müll
Ophiostoma grandicarpum (Kowalski & Butin) Rulamort 
=Heinzbutinia grandicarpa (Kowalski & Butin) Z.W. de Beer & M. Procter
Ophiostoma himal-ulmi Brasier & M.D. Mehrotra 
Ophiostoma hongxingense Z. Wang & Q. Lu 
Ophiostoma huangnanense Z. Wang and Q. Lu 
Ophiostoma hyalothecium (R.W. Davidson) Hausner, J. Reid & Klassen 
Ophiostoma hylesinum T. Aas, H. Solheim & R. Jankowiak 
Ophiostoma introcitrinum (Olchow. & J. Reid) Hausner, J. Reid & Klassen 
Ophiostoma ips (Rumbold) Nannf. 
Ophiostoma japonicum Yamaoka & M.J. Wingf. 
Ophiostoma jiamusiensis R. Chang, Z.W. de Beer & M.J. Wingf. 
Ophiostoma jilinense R. Chang, Z.W. de Beer & M.J. Wingf. 
=Masuyamyces jilinensis (R. Chang et al.) M. Procter & Z.W. de Beer
Ophiostoma karelicum Linnakoski, Z.W. de Beer & M.J. Wingf. 
Ophiostoma kryptum K. Jacobs & Kirisits 
Ophiostoma kunlunense R.L. Chang & Z.W. de Beer 
Ophiostoma leucocarpum (R.W. Davidson) Z.W. de Beer & M.J. Wingf. 
Ophiostoma lignorum (Wollenw.) Goid. 
Ophiostoma longicollum Masuya 
Ophiostoma longiconidiatum Kamgan, K. Jacobs & Jol. Roux 
Ophiostoma longirostellatum (Bakshi) Arx & E. Müll. 
Ophiostoma lotiforme Z. Wang & Q. Lu 
=Masuyamyces lotiformis (Z. Wang & Q. Lu) M. Procter & Z.W. de Beer
Ophiostoma macroclavatum Linnakoski, Z.W. De Beer & M.J. Wingf. 
Ophiostoma macrosporum (Francke-Grosm.) Z.W. deBeer & M.J. Wingf. 
Ophiostoma maixiuense Z. Wang and Q. Lu
Ophiostoma manchongi R.L. Chang & Z.W. de Beer 
Ophiostoma massoniana Wang & Lu 
=Masuyamyces massonianae (Wang & Lu) M. Procter & Z.W. de Beer
Ophiostoma megalobrunneum (R.W. Davidson & Toole) de Hoog & Scheffer 
Ophiostoma micans M.L. Yin, Z.W. de Beer & M.J. Wingf. 
Ophiostoma microsporum Arx 
=Heinzbutinia microspora (Arx) Z.W. de Beer & M. Procter
Ophiostoma minus (Hedgc.) Syd. 
Ophiostoma montium (Rumbold) Arx 
Ophiostoma multiannulatum (Hedgc. & R.W. Davidson) Hendrix 
Ophiostoma multisynnematum Z. Wang & Q. Lu 
Ophiostoma nigricarpum (R.W. Davidson) de Hoog 
=Jamesreidia nigrocarpa (R.W. Davidson) M. Procter & Z.W. de Beer
Ophiostoma nikkoense Yamaoka & Masuya 
Ophiostoma nitidum M.L. Yin, Z.W. de Beer & M.J. Wingf. 
Ophiostoma noisomeae Musvuugwa, LL. Dreyer & F. Roets 
Ophiostoma novo-ulmi Brasier 
Ophiostoma novae-zelandiae (L.J. Hutchison & J. Reid) Rulamort
Ophiostoma olgensis Wang & Lu 
Ophiostoma pallidulum Linnakoski, Z.W. de Beer & M.J. Wingf. 
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Table 103. (Continued).
Species N. A.* S. A. Af. E. As. O.
=Masuyamyces pallidulus (Linnak. et al.) M. Procter & Z.W. de Beer
Ophiostoma palustre J.A Osorio, Z.W. de Beer & Jol. Roux 
Ophiostoma patagonicum de Errasti & Z.W. de Beer 
Ophiostoma pehueninum M. Zapata, M.A. Palma & E. Piontelli 
Ophiostoma peniculi Z. Wang & Q. Lu 
Ophiostoma peregrinum de Errasti & Rajchenb. 
Ophiostoma perfectum (R.W. Davidson) de Hoog 
Ophiostoma persicinum Govi & Di Caro 
Ophiostoma piceae (Münch) Syd. 
Ophiostoma piliferi H.M. Wang and Q. Lu 
Ophiostoma piliferum (Fr.: Fr.) Syd. 
Ophiostoma pityokteinis R. Jankowiak & P. Bilański 
Ophiostoma pluriannulatum (Hedgc.) Syd., In Sydow & Sydow 
Ophiostoma poligraphi M.L. Yin, Z.W. de Beer & M.J. Wingf. 
Ophiostoma ponderosae (T.E. Hinds & R.W. Davidson) Hausner 
Ophiostoma populicola (Olchow. & J. Reid) Z.W. de Beer 
Ophiostoma populinum (T.E. Hinds & R.W. Davidson) de Hoog & Scheffer 
Ophiostoma pseudobicolor Z. Wang & Q. Lu 
Ophiostoma pseudocatenulatum Jankowiak, R. Linnakoski & Z.W. De Beer 
Ophiostoma pseudokarelicum T. Aas, H. Solheim & R. Jankowiak 
Ophiostoma pseudominus (Olchow. & J. Reid) Hausner, J. Reid & Klassen 
Ophiostoma pseudonigrum (Olchow. & J. Reid) Hausner & J. Reid 
Ophiostoma pseudotsugae (Rumb.) von Arx 
Ophiostoma pulvinisporum X.D. Zhou & M.J. Wingf. 
Ophiostoma pusillum Masuya 
Ophiostoma qinghaiense M.L. Yin, Z.W. de Beer & M.J. Wingf. 
Ophiostoma quercus (Georgev.) Nannf. 
Ophiostoma rachisporum Linnakoski, Z.W. de Beer & M.J. Wingf. 
Ophiostoma retusi (R.W. Davidson & T.E. Hinds) Hausner, J. Reid & Klassen 
Ophiostoma roraimense Samuels & E. Müll
Ophiostoma rostrocoronatum (R.W. Davidson & Eslyn) de Hoog & Scheffer 
=Jamesreidia rostrocoronata (R.W. Davidson & Eslyn) M. Procter & Z.W. de Beer
Ophiostoma rufum R. Jankowiak & P. Bilański 
Ophiostoma sanum Z. Wang and Q. Lu 
Ophiostoma saponiodorum Linnakoski, Z.W. de Beer & M.J. Wingf. 
=Masuyamyces saponiodorus (Linnak. et al.) M. Procter & Z.W. de Beer
Ophiostoma sejunctum M. Villarreal, Arenal, V. Rubio & M. de Troya 
Ophiostoma setosum Uzunovic, Seifert, S.H. Kim & C. Breuil 
Ophiostoma shangrilae M.L. Yin, Z.W. de Beer & M.J. Wingf.
Ophiostoma shanziensis Marinc., Z.W. de Beer, M.J. Wingf. 
Ophiostoma shennongense T. Wang & Q. Lu 
Ophiostoma signatum T. Aas, H. Solheim & R. Jankowiak 
Ophiostoma simplex K. Jacobs & M.J. Wingf. 
Ophiostoma solheimii B. Strzałka & R. Jankowiak 
=Heinzbutinia solheimii (Strzałka & Jankowiak) Z.W. de Beer & M. Procter
Ophiostoma songshui R. Chang, Z.W. de Beer & M.J. Wingf. 
Ophiostoma sparsiannulatum Zanzot, Z.W. de Beer and M.J. Wingf. 
Ophiostoma spinosum P. Cannon



266

Bhunjun et al.

Table 103. (Continued).
Species N. A.* S. A. Af. E. As. O.
Ophiostoma ssiori Masuya, Kubono & Ichihara 
Ophiostoma subalpinum Ohtaka & Masuya 
Ophiostoma subannulatum Livingston & R.W. Davidson 
Ophiostoma subelongati Z. Wang & Q. Lu 
Ophiostoma sugadairense J. Li, Yamaoka & Masuya 
Ophiostoma taizhouense G. H. Zheng & Q. Lu 
Ophiostoma taphrorychi B. Strzałka & R. Jankowiak 
Ophiostoma tapionis Linnakoski, Z.W. de Beer & M.J. Wingf. 
Ophiostoma tasmaniense Kamgan-Nkuek, Jol.Roux & Z.W.de Beer 
Ophiostoma tenellum (R.W. Davidson) M. Villarreal 
=Jamesreidia tenella (R.W. Davidson) Z.W. de Beer & M. Procter
Ophiostoma tetropii Math. 
Ophiostoma tingens (Lagerb. & Melin) Z.W. de Beer & M.J. Wingf. 
Ophiostoma tonghuaense H.M. Wang and Q. Lu
Ophiostoma torticiliata (Olchow. & J. Reid) Seifert & G. Okada 
Ophiostoma torulosum (Butin & G. Zimm.) Georg Hausner, J. Reid & Klassen  
Ophiostoma tremulo-aureum (R.W. Davidson & T.E. Hinds) de Hoog & Scheffer 
Ophiostoma triangulosporum Butin 
Ophiostoma trinacriforme (A.K. Parker) T.C. Harr. 
Ophiostoma tsotsi Grobbelaar, Z.W. de Beer & M.J. Wingf. 
Ophiostoma typographi R. Chang, Z.W. de Beer & M.J. Wingf. 
Ophiostoma ulmi (Buism.) Nannf. 
Ophiostoma undulatum Kamgan-Nkuek, M.J.Wingf. & Jol.Roux
Ophiostoma valachicum Georgescu, Teodoru & Badea 
Ophiostoma valdivianum (Butin) Rulamort 
Ophiostoma villosum T. Aas, H. Solheim & R. Jankowiak 
Ophiostoma wuyingense R. Chang, Z.W. de Beer & M.J. Wingf. 
Ophiostoma xinganense Z. Wang & Q. Lu 
Ophiostoma yaluense H.M. Wang and Q. Lu 

have a worldwide distribution and can occur on a variety of host 
trees and in association with various insect vectors. Future efforts 
including surveying under-sampled tree/plant species and new 
geographical regions combined with new methodologies such 
as eDNA (environmental DNA) and metagenomic approaches 
(Hermans et al. 2017) may uncover new species and identify other 
organisms (such as insects and bacteria) that are associated with 
these fungi.

Genomics of the Ophiostomatales and Dutch Elm 
Disease
To infect and proliferate in their hosts, blue-stain fungi had to 
evolve strategies to combat host defence mechanisms along with 
biochemical pathways that provide efficient means for nutrient 
uptake and for pathogenic species, virulence factors towards the 
plant hosts (Six 2013, Lah et al. 2017). Genomics, transcriptomics, 
and proteomics are offering new tools to investigate saprophyte 
or pathogen-host interactions and fungal insect interactions among 
members of the Ophiostomatales (Khoshraftar et al. 2013, Forgetta 
et al. 2013, Haridas et al. 2013, Comeau et al. 2015, Nigg et al. 

2015, Perdiguero et al. 2015, Ojeda Alayon et al. 2017, Wingfield 
et al. 2017a, Ibarra Caballero et al. 2019). With regards to Dutch 
elm disease, comparative genomics has shown that hybridisation 
among O. ulmi, O. novo-ulmi subsp. novo-ulmi and O. novo-ulmi 
subsp. americana resulted in the introgression of adaptive genes 
that promoted the success of the invasive species that comprise 
the DED fungi (Hessenauer et al. 2020). Attention has also been 
placed on the biosynthetic gene clusters that produce secondary 
metabolites and among the DED pathogens, comparative genomics 
identified a unique fujikurin-like gene cluster (OpPKS8) (Sbaraini 
et al. 2017). In addition, various genes involved in plant toxin 
neutralisation such as terpenes have been noted in their genomes 
(Haridas et al. 2013, Lah et al. 2017, Ibarra Caballero et al. 2019). 
Although genomics has provided a wealth of information and 
identified candidate genes that could be involved in pathogenicity 
or maintaining fungus insect interactions, genetics tools such as 
RNAi and CRISPR/Cas9 need to be applied in future studies to 
validate these findings (Carneiro et al. 2010, Dort et al. 2020).

Auhors: G. Hausner and R. Jankowiak
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97. Neofusicoccum Crous et al., Stud. Mycol. 55: 247. 2006.

Type species: Neofusicoccum parvum (Pennycook & Samuels) 
Crous et al.

Classification: Ascomycota, Pezizomycotina, Dothideomycetes, 
Botryosphaeriales, Botryosphaeriaceae.

Background

Neofusicoccum includes 64 species listed in Index Fungorum 
(2022), the sequence data of all, except one species, Neofusicoccum 
sichuanense (Xu et al. 2022b), are available at NCBI’s GenBank 
nucleotide database. Species of Neofusicoccum are endophytes; 
however, similar to other members of Botryosphaeriales, they will 
cause disease when their hosts are under stress. The pathway of 
infection for Neofusicoccum varies from endophytic colonisation in 
plant tissues to infection via wounds caused naturally, mechanically 
or by insects (Slippers & Wingfield 2007). The spores can be 
dispersed by rain, wind and soil from the infected substrate such 
as pruned or fallen wood, twigs, fruit and leaf litter. The spores can 
persist in infected substrates for a few years and cause infection 
when weather conditions are suitable (Mehl et al. 2013).

The main disease symptoms caused by Neofusicoccum 
include canker, die-back, fruit rots, blossom blight and eventually 
tree death (Slippers & Wingfield, 2007). The species diversity of 
Neofusicoccum in association with canker on almond (Gramaje 
et al. 2012), avocado (McDonald & Eskalen 2011, Guarnaccia et 
al. 2016), citrus (Adesemoye et al. 2014), Eucalyptus (Chen et al. 
2011b), grapevine (Pitt et al. 2013, Linaldeddu et al. 2015), mango 
(Marques et al. 2013), oak (Linaldeddu et al. 2014), olives (Carlucci 
et al. 2013), pear (Cloete et al. 2011), pistachio panicle and shoot 
blight (Chen et al. 2014c) and walnut (Chen et al. 2014b) has been 
well studied.

Neofusicoccum species have broad host ranges with worldwide 
distribution (Abeywickrama et al. 2023). They have been reported 

from a wide range of climate conditions, although they occur more 
in areas with a temperate climate (Burgess et al. 2019, Batista 
et al. 2022, Jami et al. 2022). Some species are not favoured by 
particular climatic conditions perhaps due to the dominancy of a 
specific host cultivar or differences in the soil climate (Lazzizera 
et al. 2008). Although Neofusicoccum species cause disease on a 
broad host range (Slippers et al. 2017), they are mainly pathogenic 
on Anacardiaceae, Cupressaceae, Ebenaceae, Fagaceae, 
Juglandaceae, Lauraceae, Moraceae, Myrtaceae, Oleaceae, 
Pinaceae, Proteaceae, Rosaceae, Rutaceae, Vitaceae and 
Lamialesi families (Marin-Felix et al. 2017a).

Ecological and economic significance
Neofusicoccum species cause severe economically important 
diseases on mainly woody plants. For example, Neofusicoccum 
species are among the main causal agents of grapevine trunk 
disease (GTD). This is one the most destructive diseases on grapes 
worldwide with a high economic impact. It has been estimated to 
cause a loss of 1 billion euros in France, 260 million US dollars in 
California and 8.3 billion US dollars in Australia (Úrbez-Torres & 
Gubler 2011, Mondello et al. 2018a).

Neofusicoccum species are latent pathogens: they have 
endophytic life stages in their hosts (asymptomatic) but when their 
hosts are subjected to a stress condition such as hail, drought, frost 
or insect attack, they cause severe damage (Slippers & Wingfield 
2007). The movement of plants from their natural environment to a 
new environment is another source of stress (Burgess & Wingfield 
2017).

Neofusicoccum parvum is the most dominant and aggressive 
species (Amponsah et al. 2011). Various factors such as 
propagation materials, microclimate conditions and the emergence 
of alternative hosts influence N. parvum to be a dominant species 
(Linaldeddu et al. 2015). Plant material can appear healthy but 
moving such material around the world is repeatedly introducing 
N. parvum to new environments. One of the many examples is the 
movement of N. parvum with Eucalyptus and Vitis vinifera across 

Fig. 128. Trends in research of Neofusicoccum in the period 2011–2021.
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the world (Sakalidis et al. 2013). Neofusicoccum parvum was first 
identified from kiwifruits in New Zealand (Pennycook & Samuels 
1985), but since then it has been reported from 223 hosts in 50 
countries (Batista et al. 2022).

Research interests

There are 484 publications and 5 591 citations from 2011–2021 in 
the Web of Science (Fig. 128), with the top 10 most cited articles 
listed in Table 104. Most of the publications focused on the taxonomy 
of Neofusicoccum species as well as disease management.

Taxonomy and phylogeny
Neofusicoccum was introduced by Crous et al. (2006b) for 
Botryosphaeria species with Fusicoccum asexual morph, based 
on LSU sequences. It is difficult to distinguish Botryosphaeria 
and Neofusicoccum based on morphology. Although a Dichomera 
synasexual structure in Neofusicoccum can differentiate it from 
Botryosphaeria, not all Neofusicoccum spp. have this structure 
(Phillips et al. 2013). Paraphyses occur in Botryosphaeria but are 
not present in Neofusicoccum. However, it is difficult to distinguish 
them from sterile hyphae among conidiogenous cells (Phillips et 
al. 2013). Crous et al. (2006b) introduced 13 new combinations in 
Neofusicoccum. Later Phillips et al. (2013) recognised 22 species 
based on ITS and tef1 sequences. They created a key based on 
conidial morphology and dimensions, cultural characteristics, host 
association and geographic distribution that could separate all 
22 described Neofusicoccum species. Dissanayake et al. (2016) 
introduced 29 species based on ITS, tef1 and LSU sequences. 
Hyde et al. (2014) suggested the combination of tef1, ITS and tub 
is sufficient to distinguish Neofusicoccum species. Marin-Felix et al. 
(2017a) and Yang et al. (2017a) used a combination of ITS, tef1, 
tub and rpb2 sequence data to resolve 34 species. Interestingly, 
Jayawardena et al. (2019) resolved 43 species in Neofusicoccum 
by using the same combination. Wanasinghe et al. (2018) and 
Tibpromma et al. (2018b) listed 44 species based on Index 
Fungorum. There are 64 species known for Neofusicoccum. Of the 
64 species, there are a few species of which the species names 
need to be updated in the NCBI’s GenBank nucleotide database: 
Neofusicoccum versiforme is presented with its basionym 
(Dichomera versiformis) (Crous et al. 2019b), while five recently 

described species, N. hyperici, N. miyakoense, N. okinawaense 
(Hattori et al. 2021a), N. cruenta and N. hamamelidis (Zhang et al. 
2021e) are presented as Neofusicoccum sp.

Some species of Neofusicoccum are closely related such 
as N. parvum and N. ribis (Slippers et al. 2004c, Crous et al. 
2006b). Despite broadly using ITS for fungal barcoding, ITS does 
not distinguish cryptic species. In these cases, the application 
of genealogical concordance phylogenetic species recognition 
(GCPSR) was recommended to distinguish all species. Therefore, 
by 2011, five species, namely N. umdonicola, N. cordaticola, N. 
kwambonambiense, N. batangarum and N. occulatum (Pavlic et al. 
2009, Begoude et al. 2010, Sakalidis et al. 2011) were identified in 
the N. parvum/N. ribis complex. Currently 17 species belong to this 
species complex (Hattori et al. 2021b).

Disease management
Grapevine diseases caused by Neofusicoccum species are 
among the most cited papers. Mondello et al. (2018b) reviewed 
15 years of practices on disease management of grapevine trunk 
diseases including applying pruning wound protection, resistant 
cultivars (Travadon et al. 2013), chemical (Pitt et al. 2012) and 
biocontrol (Kotze et al. 2011). Resistant cultivars (Guan et al. 2016) 
and pruning wound treatments have been successful against 
Neofusicoccum die-back (Úrbez-Torres & Gubler 2011). The xylem 
morphology differs in each cultivar. Neofusicoccum is a vascular 
pathogen and studies have shown that there is a correlation 
between the xylem morphology and disease susceptibly (Pouzoulet 
et al. 2014). It is crucial to understand the mechanism of virulence 
to detect the most effective disease management. Morales-Cruz 
et al. (2015) studied grapevine trunk pathogens and showed 
distinct mechanisms of virulence such as specific cell wall oxidative 
functions and secondary metabolic pathways in N. parvum.

Neofusicoccum studies on crops such as grapevine (Cloete et 
al. 2011, Úrbez-Torres & Gubler 2011, White et al. 2011, Pitt et al. 
2012, 2013, Urbez-Torres et al. 2012, Yan et al. 2013, Linaldeddu 
et al. 2015, Wanasinghe et al. 2018), almond (Gramaje et al. 2012), 
olive (Úrbez-Torres et al. 2013a, Abdelfattah et al. 2015), walnut 
(Chen et al. 2014a, Xu et al. 2022b), avocado (McDonald & Eskalen 
2011, Guarnaccia et al. 2016) and eucalyptus (Chen et al. 2011b) 
are among the most cited studies. On grapevines, Neofusicoccum 
species are among the most virulent pathogens causing cankers 

Table 104. Top 10 cited articles related to Neofusicoccum published in the period 2011–2021.
Rank Article title No. of citations References
1 The Botryosphaeriaceae: genera and species known from culture 515 Phillips et al. (2013)
2 One stop shop: backbones trees for important phytopathogenic genera: I 

(2014)
235 Hyde et al. (2014)

3 Genera of phytopathogenic fungi: GOPHY 1 185 Marin-Felix et al. (2017a)
4 Grapevine trunk diseases: a review of fifteen years of trials for their control 

with chemicals and biocontrol agents
131 Mondello et al. (2018b)

5 Families, genera, and species of Botryosphaeriales 113 Yang et al. (2017)
6 Characterization of fungal pathogens associated with grapevine trunk 

diseases in Arkansas and Missouri
106 Urbez-Torres et al. (2012)

7 Botryosphaeriaceae: Current status of genera and species 102 Dissanayake et al. (2016)
8 Fungal trunk pathogens associated with wood decay of almond trees on 

Mallorca (Spain)
100 Gramaje et al. (2012)

9 Phylogeny, morphology, distribution, and pathogenicity of Botryosphaeriaceae 
and Diaporthaceae from English walnut in California

82 Chen et al. (2014b)

10 Species of Botryosphaeriaceae involved in grapevine dieback in China 75 Yan et al. (2013)
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(Urbez-Torres et al. 2012, 2013). In 2008, severe almond tree decline 
was observed in Spain with N. australe and N. parvum being among 
the destructive pathogens (Gramaje et al. 2012).

Antifungal and phytotoxin activities play important roles in 
causing disease. For example, Lambert et al. (2012) showed 
the level of some phenolic compounds in grapevine increases in 
response to the presence of fungi. Although some fungi have shown 
susceptibility to these compounds, Neofusicoccum species including 
N. parvum show less susceptibility (Lambert et al. 2012). This may 
be because N. parvum produces 13 metabolites belonging to four 
chemical families. Abou-Mansour et al. (2015) identified two of those 
toxins from grapevines with die-back symptoms and showed that 
these metabolites are phytotoxic and allow this fungus to adapt to 
any environmental conditions and cause disease such as die-back.

Author: F. Jami

98. Hericium Pers., Neues Mag. Bot. 1: 109. 1794.

Type species: Hericium coralloides (Scop.) Pers.

Classification: Basidiomycota, Agaricomycotina, Agaricomycetes, 
Russulales, Hericiaceae.

Background

Hericium is an edible and medicinal mushroom belonging to the 
family Hericiaceae, order Russulales, of the class Agaricomycetes. 
Hericium is a small genus with 34 species listed in Index Fungorum 
(2022). Species of Hericium are commonly associated with 
traditional food and folk medicines in China (Shao et al. 2019), are 
found in the wild in East Asia and India (Das et al. 2011) and are 
native to North America.

Hericium species are white and fleshy and grow on dead or 
dying wood. The sporocarp resembles a fragile icicle-like thorn. 
They do not have caps and consist of amyloid spores and fibres 
filled with oil mist. Spores are spherical to ellipsoidal, smooth, 

or covered with warts (Kuo 2014). Hericium originated in North 
America and is widely distributed in East Asia, India, and Europe 
(Das et al. 2011) being typically found in all temperate latitudes of 
the Northern Hemisphere (Grace & Mudge 2015). Sporulation of 
Hericium is from early summer to late autumn under temperatures 
between 18 °C and 24 °C. The Hericium sporocarp is called lion’s 
mane in English, hóutóugū in Chinese, and yamabushitake in 
Japanese (Sangtitanu et al. 2020). It is also known as monkey’s 
head, pom pom, bear’s head, hog’s head fungus, white beard, old 
man’s beard, and bearded tooth (Thongbai et al. 2015).

Hericium mushrooms have long been investigated for their 
therapeutic potential. Recently, several bioactive compounds 
with immune-stimulating properties have been extracted from 
this mushroom (Sheng et al. 2017). There have been many 
comments about its bioactive secondary compounds (Chen 
et al. 2017b). Hericium is a great source of novel therapeutic 
compounds that have effects on nerve and brain targets. Most of 
the neurotrophic compounds have effects on the human nerve cells 
and neurogenerative diseases such as Alzheimer’s disease and 
Parkinson’s disease (Zhang et al. 2016b, Ratto et al. 2019, Chong 
et al. 2020, Ryu et al. 2021).

Ecological and economic significance

In general, Hericium species occur in the highlands, sub-mountains, 
and mountains, but it is also found in many types of lowland forests 
(Kujawska et al. 2021). The genus Hericium includes white rot fungi 
that grow on the trunks, branches, and stumps of deciduous and 
coniferous trees (Larsson & Larsson 2003). Hericium species on 
old trees and dead wood are usually reported as signs of forests 
that are expanding naturally.

Hericium is an important source of nutrients and is used 
medicinally, thus making this mushroom significant and 
economically valuable (Rahi & Malik 2016). Hericium mushrooms 
can greatly enhance the effects of medications to relieve symptoms 
(Li et al. 2018a). Also, the cultivation of these mushrooms generates 
additional revenue for farmers (Park et al. 2004).

Fig. 129. Trends in research of Hericium in the period 2011–2021.
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Research interests

There are 539 publications and 5 458 citations from 2011–2021 in the 
Web of Science (Fig. 129), with the top 10 most cited articles listed 
in Table 105. Most publications focused on chemical composition, 
bioactive compounds, medicinal properties, mushroom cultivation, 
as well as taxonomy and phylogeny.

Chemical composition research
Most fresh basidiomes and mycelium of Hericium species 
are rich in protein and dietary fibre, while some are also rich in 
polysaccharides and crude fibre (Friedman 2015). Rodrigues et 
al. (2015) reported that He. erinaceus is a good source of protein, 
sugar, and fat contents. It also contains copper, iron, and zinc, 
suggesting mushrooms as a potential source of multiple macro- 
and micronutrients.

Bioactive compounds research
Bioactive compounds have been found in both mushrooms 
and mycelium, with mycelium reported to have more bioactive 
compounds than the sporocarp (Sullivan et al. 2006, Sokoł et al. 
2016, Chen et al. 2017b, Wang et al. 2019). Hericium mushrooms 
are rich sources of polysaccharides and polyketides (Thongbai et al. 
2015), as well as phenolic acid and generally bioactive secondary 
compounds from Hericium incorporate alkaloids and pyrone 
such as erinapyron A-C, hericene A-D, herierin III (Corana et al. 
2019); terpenoid such as cyatha-3,12-diene, erinacines A-E; sterol 
compounds; volatile aromatic compounds such as erinaceolactone 
A, C; and nonribosomal peptides such as fumitremorgin C and 
methylthiogliotoxin (Chen et al. 2017b). Medicinal properties/
therapeutic effects include antioxidant (Gupta et al. 2018, Jiang et 
al. 2019), anticancer (Lee et al. 2014, AM 2017), antidiabetic (Wu & 
Xu 2015, Gupta et al. 2018), antihyperglycemic (Liang et al. 2013, 
Yao et al. 2021), hypolipidemic properties (Liang et al. 2013), anti-
inflammatory (Shao et al. 2019, Hetland et al. 2020), antimicrobial 
(Shen et al. 2017, Vamanu & Voica 2017), antiviral (Liu et al. 

2019d), antifungal (Gargano et al. 2017, Song et al. 2020), and 
hepatoprotective (Zhang et al. 2012, Wang et al. 2019).

Antioxidant activities of Hericium
A mushroom-derived preparation from Hericium protects against 
oxidative damage to cellular DNA (Chang & Miles 2004). Kim et al. 
(2013a) found that He. erinaceus water extracts possess significant 
antioxidant activities. Park et al. (2018) reported that the wild type 
of Hericium was useful for breeding genetic sources or processed 
food materials with high antioxidant activity. Jiang et al. (2019) 
reported that the effects of Hericium extraction on antioxidant 
activities are varied, possibly because the different components 
obtained under different extraction states have various antioxidant 
mechanisms.

Hepatoprotective activities of Hericium
Endo-polysaccharides from He. erinaceus fractions grown on 
tofu whey protected mice from liver damage in vivo caused by 
carbon tetrachloride. The strong hepatoprotective effect and potent 
hepatoprotective effect in vivo may be due to its potent antioxidant 
capacity (Zhang et al. 2012). Cui et al. (2016a) reported that 
extracellular polysaccharides and intracellular polysaccharides of 
He. erinaceus were protective against liver injury.

Anticancer activities of Hericium
Cancer is the world’s leading cause of death and Hericium has 
many medicinal properties such as anticancer activity. Younis (2017) 
evaluated different polar and non-polar extracts of He. erinaceus 
for anticancer activity against different human cancer cells and 
suggested that He. erinaceus can be a good source of natural 
anticancer compounds. Hericium extracts (HTJ5 and HTJ5A) are 
active against liver cancer, colon cancer, and gastric cancer in vitro 
and tumour xenografts bearing in mice in vivo. The compounds 
have the potential to be developed as anticancer agents for the 
treatment of gastrointestinal cancer used alone or in combination 
with chemotherapeutic drugs that are used clinically (Li et al. 2014c).

Table 105. Top 10 cited articles related to Hericium published in the period 2011–2021.
Rank Article title No. of citations References
1 Chemistry, nutrition, and health-promoting properties of Hericium erinaceus (Lion’s 

Mane) mushroom fruiting bodies and mycelia and their bioactive compounds
115 Friedman (2015)

2 Assessment of heavy metals in some wild edible mushrooms collected from Yunnan 
Province, China

105 Zhu et al. (2011a)

3 Optimization of enzyme-assisted extraction and characterization of polysaccharides 
from Hericium erinaceus

99 Zhu et al. (2014)

4 Structures, biological activities, and industrial applications of the polysaccharides 
from Hericium erinaceus (Lion’s Mane) mushroom: A review

98 He et al. (2017b)

5 Chemical composition and nutritional and medicinal value of fruit bodies and 
submerged cultured mycelia of culinary-medicinal higher basidiomycetes 
mushrooms

97 Cohen et al. (2014)

6 Medicinal mushrooms: Valuable biological resources of high exploitation potential 87 Gargano et al. (2017)
7 Evaluation of selected culinary-medicinal mushrooms for antioxidant and ACE 

inhibitory activities
84 Abdullah et al. (2012)

8 Antioxidant and hepatoprotective potential of endo-polysaccharides from Hericium 
erinaceus grown on tofu whey

83 Zhang et al. (2012e)

9 Polysaccharide of Hericium erinaceus attenuates colitis in C57BL/6 mice via 
regulation of oxidative stress, inflammation-related signaling pathways and 
modulating the composition of the gut microbiota

79 Ren et al. (2018a)

10 Composition and mechanism of antitumor effects of Hericium erinaceus mushroom 
extracts in tumor-bearing mice

74 Kim et al. (2011)
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Antidiabetic, antihyperglycemic, and hypolipidemic 
properties
Liang et al. (2013) reported that the water extract of He. erinaceus 
(AEHE) in streptozotocin (STZ) resulted in a decrease in blood 
glucose and an increase in blood insulin levels in diabetic rats; AEHE 
treatment reduces lipid disorders. AEHE dispensation increased 
the activities of catalase, glutathione peroxidase and glutathione 
levels, and decreased malondialdehyde level in the liver tissue. 
Moreover, He. erinaceus has antidiabetic effects, that may be used 
as therapeutics against diabetes (Wu & Xu 2015, Gupta et al. 2018).

Anti-inflammatory activities of Hericium
According to Hetland et al. (2020), the anti-inflammatory mechanisms 
cause a reduction of cytokines that cause inflammation, oxidative 
stress, alteration of the gut microorganisms, and the anti-allergic 
mechanism to rebalance the helper T cells. Anti-inflammatory 
mechanisms induced by Hericium were reduced pro-inflammatory 
cytokines, and increased nerve growth to protect against neuron 
death in cerebrovascular disease (Lee et al. 2014). Diling et al. 
(2017) reported the growth of beneficial gut microorganisms that 
prevent mucosal inflammation caused by inflammatory bowel 
disease and improve host immunity (Ren et al. 2018a).

Cultivation of Hericium species
Hericium mushrooms are widely cultivated for medicinal properties, 
also for culinary reasons and are common in Japan and North 
America, but are rarely found in Europe (Boddy et al. 2011, Atila 
2019). Han et al. (2005) reported that the artificial cultivation of He. 
americanum and He. coralloides is possible. Hericium cirrhatum, 
He. coralloide, and He. erinaceus are rarely recorded in Europe, but 
He. erinaceus is easily cultivated for mushroom products (Boddy et 
al. 2011). Most sporocarps of Hericium mushrooms are collected in 
the wild (Song et al. 2020). In general, the mycelium of Hericium 
grows best at 25 °C and produces sporocarps between 16 °C and 
28 °C (Han et al. 2005, Bunroj et al. 2017). Indoor production of 
Hericium mushrooms is energy and resource-intensive, involving 
processed substrates such as sawdust and climate-controlled 
growing facilities. However, outdoor (forest farming) cultivation on 
totem logs has been reported (Grace & Mudge 2015).

Taxonomy and phylogeny
The morphology of Hericium species has been thoroughly 
investigated (Venturella et al. 2016, Ouali et al. 2020). Hallenberg 
et al. (2013) reported the evolutionary analysis of Hericium based 
on ITS sequences. Most phylogenetic studies of Hericium species 
use SSU, LSU, and ITS sequence data. Due to high interspecific 
sequence gene divergence within Hericium, additional support 
from morphological and ecological characters is required (Das et 
al. 2013, Jumbam et al. 2019, Singh & Das 2019, Khan et al. 2021).

Author: D. Gonkhom

99. Phakopsora Dietel, Ber. Deutsch. Bot. Ges. 13: 333. 
1895.

Type species: Phakopsora punctiformis (Barclay & Dietel) Dietel

Classification: Basidiomycota, Pucciniomycotina, Pucciniomycetes, 
Pucciniales, Phakopsoraceae.

Background

Phakopsora is a large genus of fungi that causes rust diseases in 
plants, especially in humid tropical and subtropical regions (Berndt 
et al. 2007). Over 150 epithets are listed in Index Fungorum and 
112 species are recognised (Bánki et al. 2023). Their host plants 
encompass a wide range of phylogenetically distantly related 
families (Ono et al. 1992), and at least 31 plant families are hosts 
of Phakopsora species (Farr & Rossman 2022). All rust fungi share 
an obligate biotrophic lifestyle which means they can only feed, 
grow and reproduce in association with living host plants (Primiano 
et al. 2017). Rust fungi attack mostly leaves and stems and rust 
infections usually appear as numerous rusty, orange, yellow, or 
even white-coloured spots that rupture the epidermis (Agrios 
2005). The pathogen reduces carbon sequestration by reducing 
the photosynthetic potential of its hosts and by diverting and 
metabolising photosynthetic products for their benefit (Helfer 2014).

Rust fungi have complex and variable life cycles that may 
include up to five spore stages produced in different types of 
fruiting structures (spermogonia, aecia, uredinia, telia and basidia) 
and in some cases, two unrelated hosts may be required for the 
production of different spore stages and completion of their life 
cycle (Aime et al. 2017). However, many species have reduced life 
cycles that lack one or more of these spore stages. This happens 
in most Phakopsora species where the spermogonial and aecial 
stages are not known (Buriticá 1999, Berndt et al. 2007, Ono 2015). 
The life cycle of Phakopsora pachyrhizi appears to be microcyclic, 
producing only uredinia and telia and is completed on one host, 
soybean or other legumes. Uredinia produce urediniospores that 
are spread by wind and can cause infection, while the telia produce 
teliospores, which, for Phak. pachyrhizi has never been shown to 
germinate in the field (Agrios 2005).

Phakopsora pachyrhizi causes one of the most destructive 
soybean diseases with severe losses in yield. Unlike most rust 
fungi that have a restricted host range, range, Phak. pachyrhizi has 
a wide host range, mainly in the family Fabaceae (Ono et al. 1992, 
Farr & Rossman 2022). In soybean, the infection process starts 
when an asexual urediniospore germinates on the host surface to 
form a single germ tube that results in an appressorium and infects 
by direct, cuticular penetration. Haustoria are formed in mesophyll 
and epidermal cells. Then, intense colonisation of the mesophyll 
tissue occurs, and the intercellular spaces of the leaves become 
filled with fungal mycelium. A domed-shaped eruption occurs in 
the host epidermis to form uredinia producing urediniospores that 
are spread by wind (Koch et al. 1983). Temperatures between 18 
to 26.5 ºC and a minimum of 6–7 hr of continuous leaf wetness 
are favourable conditions for the development of rust lesions in 
soybean (Melching et al. 1989).

Phakopsora was introduced by Dietel (1895) with telia 
subepidermal in origin, usually remaining covered with host epidermis 
but sometimes becoming erumpent, crustose, hemispherical or 
lenticular, often dark chestnut-brown to blackish brown. Teliospores 
are one-celled, and arranged irregularly or in vertical rows, in several 
compact spore strata. The teliospores are equally thin to moderately 
thick-walled, slightly to conspicuously thickened apically in uppermost 
cells, almost colourless to cinnamon-brown or chestnut-brown, 
usually darker above and paler below. Evaluation of their taxonomic 
characters based on all spore stages has not been possible for many 
Phakopsora species due to a lack of knowledge concerning their full 
life cycles. The taxonomic acceptance or distinctness of most species 
named under Phakopsora has been done by a first approximation 
(Ono et al. 1992).
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Familial classification of rust fungi is now largely done using 
DNA sequences in phylogenetic studies. The LSU and SSU 
of the nuclear ribosomal RNA sequences are most often used 
in phylogenetic studies at the infrageneric and infrafamilial 
levels in rust fungi. Single-copy nuclear genes are used less for 
phylogenetic studies of rust fungi than in Ascomycota because of 
the limiting amounts of DNA and the high frequency of amplification 
of other fungi with nonspecific primers. However, tef1, tub, rpb2 
and cytochrome c oxidase subunit 3 (CO3) have been successfully 
applied at the species level for discerning relationships within 
specific genera of rust fungi (Aime et al. 2017).

Ecological and economic significance

Phakopsora species cause rust diseases on important crops and 
two are detailed below.

Rust of soybean (Glycine max) caused by either Phakopsora 
pachyrhizi and/or Phak. meibomiae is the most severe soybean 
disease and is one of the most economically important plant 
diseases in South America (Amorim et al. 2016). Rust disease 
caused by Phak. pachyrhizi is known as Asian soybean rust and 
is more severe than American rust caused by Phak. meibomiae. 
Phakopsora pachyrhizi is among the main fungal plant pathogens 
(Sconyers et al. 2006, Dean et al. 2012) and can infect all aerial 
parts (stems, leaves, pods and petioles) of soybean (Chander 
et al. 2019). The most common symptoms are small tan to dark 
brown or reddish brown lesions on leaves, leaf chlorosis, necrosis 
and reduction of photosynthetic area. High infection levels lead 
to premature defoliation and early maturity, resulting in high yield 
losses (Hartman et al. 2015). The symptoms can vary according to 
the interaction between the host genotype and the fungal isolate. 
Asian soybean rust causes severe losses in humid tropical and 
subtropical regions. Yield losses ranging from 80 to 90 % are 
reported in the absence of control measures (Hartman et al. 2015, 
Amorim et al. 2016). In Brazil, Phak. pachyrhizi causes over 2.80 
billion US dollars in losses per year, since the first outbreak of Asian 

soybean rust in 2001, the losses are estimated at 40 billion US 
dollars based on the costs of control measures and reductions in 
crop yield (Consórcio Antiferrugem 2022). A critical factor for the 
management of soybean rust is the many hosts that Phak. pachyrhizi 
and Phak. meibomiae have in addition to soybean (Agrios 2005, 
Amorim et al. 2016). Control measures for soybean rust include the 
elimination of soybean plants in the off-season, avoiding planting 
of soybeans in climatic conditions favourable to the disease, the 
use of resistant or early cycle soybean varieties, and the use of 
appropriate fungicides preferably multisite fungicides, due to the 
risk of Phak. pachyrhizi isolates developing multiple resistance to 
the modes of action utilised (Amorim et al. 2016, Müller et al. 2021).

Asian grapevine leaf rust (on Vitis spp.) caused by Phakopsora 
euvitis is a major foliar disease of grapevine in Asia and is 
considered the main threat to viticulture in North America (Chatasiri 
& Ono 2008). The rust causes tiny yellow spots on the adaxial side 
of mature leaves, a spot corresponds to a pustule on the abaxial 
side of the leaf tissue, as the disease progresses, the pustules 
coalesce, and the spots become necrotic lesions that vary in 
shape and size (Primiano et al. 2017). The high severity of the 
disease leads to premature defoliation, thus reducing the storage 
of assimilated carbon in the rootstock and affecting the yield in 
subsequent years (Nogueira Júnior et al, 2017). Disease control 
is based on the use of fungicides in a preventive way after fruit 
harvest (Amorim et al. 2016, Primiano et al. 2017).

Other Phakopsora species cause rust disease on economically 
important plants. For example, Phak. cherimoliae causes rust 
on fruit trees of Annona species (Farr & Rossman 2022); Phak. 
gossypi causes tropical rust of leaves on cotton (Amorim et al. 
2016), Phak. crotonis causes rust on species of ornamental plants 
of Croton (Farr & Rossman 2022).

Research interests

There are 438 publications and 5 143 citations from 2011–2021 
in the Web of Science (Fig. 130), with the top 10 most cited 

Fig. 130. Trends in research of Phakopsora between 2011–2021.
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articles listed in Table 106. The publications focused mainly on the 
economic and social impact, control and epidemiology of Asian 
soybean rust.

Economic and social impact
Soybean is a major oilseed crop produced and consumed 
worldwide and one of the most important agricultural commodities 
for international trade. Brazil and the USA are the main soybean 
producers and together they export over 50 billion US dollars 
per year (FAO 2022, USDA 2022). Asian soybean rust causes 
significant losses in soybean yield. In addition to economic losses, 
Phakopsora infection in soybeans may have implications for food 
security because of world dependence on the soybean crop, 
directly and indirectly for food products (Hartman et al. 2011). 
The emergence of more aggressive Phakopsora populations 
or fungicide resistance may favour the emergence of epidemics 
negatively impacting soybean production and increase the pesticide 
burden on disease control.

 
Disease management
Strategies for the management of rust caused by Phakopsora are 
mostly aimed at genetic resistance and chemical control. Genetic 
resistance has mainly looked for sources/genes of resistance and 
mechanisms associated with resistance against Phak. pachyrhizi. 
In soybean, the eight major resistance loci that confer resistance 
to Asian soybean rust are Rpp1, Rpp2, Rpp3, Rpp4, Rpp5, Rpp6, 
Rpp1b and Rpp (Hyuuga) (Hyten et al. 2007, Monteros et al. 2007, 
Garcia et al. 2008, Silva et al. 2008, Meyer et al. 2009, Hyten et 
al. 2009, Li et al. 2012b, Kim et al. 2012, Yu et al. 2015b). Legume 
species related to soybean are possible sources of resistance 
to Asian soybean rust, the loci CcRpp1 in Cajanus cajan confer 
full resistance to Phak. pachyrhizi in soybean (Kawashima et al. 
2016). In grape breeding programmes genotypes of Vitis with high 
resistance against Phak. euvitis has been identified; however, 
there is still little information about the nature of genetic resistance 
(Patil et al. 1999, Hennessy et al. 2007, Angelotti et al. 2008). Site-
specific demethylation inhibitors (DMI), quinone outside inhibitors 
(QoI) and succinate dehydrogenase inhibitors (SDHIs) are the 
most frequent group of fungicides utilised to control Asian soybean 
rust (Amorim et al. 2016, Müller et al. 2021). The efficacy of DMI, 

QoI and SDHIs has decreased over time (Godoy et al. 2014, 2017). 
Studies report point DNA mutations in Phak. pachyrhizi isolates that 
result in a reduction of sensitivity to DMI (Schmitz et al. 2014), QoI 
(Klosowski et al. 2016), SDHIs (Simões et al. 2018). Knowledge 
about pathogen biology, genetic resistance, efficacy and sensitivity 
to fungicides are important and will support the development of 
efficient strategies for the management of diseases caused by 
Phakopsora species.

Epidemiology
Knowledge of favourable and predisposing conditions for 
the development of a disease is essential to adopt effective 
management strategies. Rust diseases caused by Phakopsora 
species are more common in humid and hot regions (Berndt et al. 
2007) and temperature is one of the key factors affecting rust spore 
viability. Phakopsora pachyrhizi appears to maintain the ability to 
cause infection even following extended winter conditions (Park et 
al. 2008). However, Patil et al. (1997) reported that urediniospores 
of Phak. pachyrhizi lost their viability when they were kept at 4 to 
5 °C or below for 5 d. The introduction of Phakopsora species into 
new areas usually happens through spores spread by the wind 
(Agrios 2005). Unlike many other rust fungi, Phak. pachyrhizi has 
a wide host range (Farr & Rossman 2022) that can be an inoculum 
source for infections in soybeans. Young et al. (2011b) studied Phak. 
pachyrhizi rust epidemics in Florida, and observed that precipitation 
was the principal factor affecting disease progress, where disease 
increased rapidly after rain events and was suppressed during 
dry periods. Studies on the biology and life cycle of Phakopsora 
species have helped to understand disease progression in the field 
and the development of management strategies.

Authors: A.A.M. Gomes and F.A. Custódio

100. Leptosphaeria Ces. & De Not., Comment. Soc. Crittog. 
Ital. 1(fasc. 4): 234. 1863.

Type species: Leptosphaeria doliolum (Pers.) Ces. & De Not.

Classification: Ascomycota, Pezizomycotina, Dothideomycetes, 
Pleosporales, Leptosphaeriaceae.

Table 106. Top 10 cited articles related to Phakopsora published in the period 2011–2021.
Rank Article title No. of citations References
1 Crops that feed the World 2. Soybean-worldwide production, use, and constraints 

caused by pathogens and pests
238 Hartman et al. (2011)

2 Identification of novel soybean microRNAs involved in abiotic and biotic stresses 222 Kulcheski et al. (2011)
3 Asian soybean rust in Brazil: past, present, and future 121 Godoy et al. (2016)
4 Identification of a new soybean rust resistance gene in PI 567102B 77 Li et al. (2012b)
5 Loss of abaxial leaf epicuticular wax in Medicago truncatula irg1/palm1 mutants 

results in reduced spore differentiation of anthracnose and nonhost rust 
pathogens

73 Uppalapati et al. (2012)

6 Plant pathogenic fungi 70 Doehlemann et al. (2017)
7 The ins and outs of rust haustoria 62 Garnica et al. (2014)
8 A pigeonpea gene confers resistance to Asian soybean rust in soybean 60 Kawashima et al. (2016)
9 Sensitivity of Phakopsora pachyrhizi towards quinone-outside-inhibitors and 

demethylation-inhibitors, and corresponding resistance mechanisms
57 Schmitz et al. (2014)

10 Dissecting the economic impact of soybean diseases in the United States over 
two decades

43 Bandara et al. (2020)
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Background

Leptosphaeria was introduced by Cesati & De Notaris (1863) 
with 26 species and Lep. doliolum was chosen as the lectotype 
for the genus (Shearer et al. 1990). Species of Leptosphaeria are 
characterised by papillate, immersed or erumpent, perithecial 
ascomata, with somewhat thick peridia, bitunicate cylindrical asci 
and hyaline to brown, transversely septate ascospores (Hyde et 
al. 2013). The asexual morphs of Leptosphaeria are coniothyrium- 
and phoma-like, and comprise depressed, globose conidiomata, 
with a flattened base and cylindrical necks (Zhang et al. 2012, 
Alves et al. 2013, De Gruyter et al. 2013, Hyde et al. 2013). The 
conidiomata wall comprises scleroplectenchymatous cells and 
conidia are ellipsoidal to subcylindrical (Hyde et al. 2011). Crane & 
Shearer (1991) described Leptosphaeria as comprising hyaline to 
dark brown, ellipsoid or fusoid ascospores with one to many septa. 
Leptosphaeria doliolum previously known as Sphaeria doliolum 
was lectotypified by Persoon (1800), based on the collection of 12 
specimens of S. doliolum. Höhnel (1909) separated Leptosphaeria 
based on centrum features into three genera, namely Leptosphaeria, 
Nodulosphaeria and Scleropleella (Zhang et al. 2012c). Müller (1950) 
further subdivided Leptosphaeria into four sections and this treatment 
was revised by Munk (1957) who termed these sections as section 
I (Eu-Leptosphaeria), section II (ParaLeptosphaeria), section III 
(Scleropleella) and section IV (Nodulosphaeria). Leptosphaeria was 
previously placed in Phaeosphaeriaceae by Eriksson & Hawksworth 
(1986) and later accommodated in Leptosphaeriaceae (Barr 1987, 
Eriksson & Hawksworth 1991). Recent studies have reported that the 
taxonomy of Leptosphaeria is complex with various subspecies and 
varieties (Câmara et al. 2002, Eriksson & Hawksworth 2003, Wunsch 
& Bergstrom 2011, De Gruyter et al. 2013). Leptosphaeria resembles 
other genera such as Amarenomyces, Bricookea, Diapleella, 
Entodesmium, Melanomma, Nodulosphaeria, Paraphaeosphaeria, 
Passeriniella, Phaeosphaeria and Trematosphaeria but differs in 
forming ascomata on dicotyledonous hosts, in having cylindrical asci 
with short pedicels and smooth-walled, ellipsoid or fusoid, septate 
ascospores. Leptosphaeria has a widespread distribution and is 
particularly predominant in temperate regions. Leptosphaeria species 
are either saprobic or grow as necrotrophs on the stems or leaves of 
herbaceous or woody plants in terrestrial habitats (Hyde et al. 2013). 
The dark brown, 3-septate ascospores were previously considered 
as a primitive character, as compared to more newly evolved species 
characterised by paler, longer and narrower ascospores with more 
than three septa (Wehmeyer 1946). De Gruyter et al. (2013) reported 
that the subspecies of Lep. doliolum are closely related based on LSU 
and ITS phylogenetic evidence and postulated that Lep. doliolum 
represents a species complex. De Gruyter et al. (2013) provided a 
detailed multi-gene phylogenetic tree based on ITS, act, tub and chs 
genes, and showed that the subspecies of Lep. doliolum represent 
two subclades in the Lep. doliolum species complex. In recent studies 
based on multi-gene analyses, Leptosphaeria formed a paraphyletic 
clade sister to Neophaeosphaeria with moderate bootstrap support 
in Leptosphaeriaceae (Schoch et al. 2009, Zhang et al. 2012c, Hyde 
et al. 2013). Ariyawansa et al. (2015b) provided a backbone tree for 
Leptosphaeria and allied genera based on 18S nrDNA, 28S nrDNA, 
ITS, rpb2, tef1 and act multigene phylogenetic analyses. Currently, 
Leptosphaeria comprises 605 species (Hongsanan et al. 2020).

Ecological and economic significance

Leptosphaeria species cause several economically important plant 
diseases and five are detailed below.

Leptosphaeria leaf spot of maize caused by Leptosphaeria 
maydis has been commonly reported in the United States (Illinois) 
(Stout 1930, Farr et al. 1989). This disease is also of economic 
significance in Nepal (De Leon 1984) but there are no reports of it 
being seed-borne. Symptoms include tiny lesions that become big 
and concentric, covering major areas of the leaves. It is most visible 
on the lower part of leaves during the blossoming period (Stout 
1930, De Leon 1978). Leptosphaeria maydis is often associated 
with Septoria zeae which suggests that these two species may be 
different morphs of the same fungus (Stout 1930). Leptosphaeria 
maydis is also in the quarantined pest list of Sudan (IPPC 2016). 
Based on recent statistics, the total maize production in the United 
States and Canada (Ontario), from 2016 to 2019 was 1.5 billion 
metric tons, which is equal to 210.7 billion US dollars (USDA-NASS 
2020). The mean economic loss caused by maize disease in the 
United States and Canada (Ontario) from 2016 to 2019 was 55.90 
US dollars per acre (138.13 US dollars per hectare) (Mueller et al. 
2020). Grain damage caused by maize diseases results in declined 
availability of food, feed, and fuel. The most economical way to 
control maize disease is the use of resistant or tolerant cultivars but 
in practice, resistance might not usually occur in a single cultivar for 
all diseases. Hence, chemical control is the most feasible method 
to ensure productivity (Chaube & Singh 1991). There are many 
other Leptosphaeria species which cause leaf spots on maize but 
in the past years, there have been several intergeneric transfers of 
Leptosphaeria species by dividing them into new groups such as 
Paraphaeosphaeria or existing genera for instance Entodesmium 
and Phaeosphaeria (Zhao et al. 2021b). Also, one of the most 
challenging aspects is the huge diversity of asexual morphs 
attributed to this genus, therefore a thorough revision is needed to 
ensure which species belong to Leptosphaeria.

Diseases of hemp (Cannabis sativa) caused by Leptosphaeria 
cannabina were first found in irregularly-shaped leaf spots of wilted 
Cannabis sativa near Alba, Italy by Ferraria & Massa (1912). Leaf 
spots were broadly whitish in the center with an ochreous margin 
measuring about 3–5 mm diam. The fungus also infects Russian hemp 
(Gitman & Boytchenko 1934, Dobrozrakova et al. 1956). Ferraris & 
Massa (1912) suggested Lep. cannabina as a possible sexual morph 
of Septoria cannabis but this was not confirmed in culture. Cannabis 
sativa is a high value crop, and is used in construction (hemp fibre), 
food and feed (hemp seeds), cosmetics (oils, creams, shampoos, 
etc.), energy production (biofuels), paper production (hemp fibre) 
and textile industry (hemp fibre) (Visković et al. 2023). As stated by 
industry reports in the United States, the hemp market is rising at a 
yearly rate of 34 %, from 4.6 billion US dollars in 2019 to 26.6 billion 
US dollars in 2025 (Zhu et al. 2020b). The average world import 
of hemp products is about 42 million US dollars in 2020 (UNCTAD 
2022). During hemp production, diseases may cause farmers to 
lose their profits up to 11 % of hemp production value (Zhu et al. 
2020a). According to Brightfield Group (2021) estimates, 115 000 
hectares (ha) of industrial hemp were planted in the United States 
in 2020, with 300 000 ha projected to be planted in 2021 and 930 
000 ha by 2023. Basic approaches for hemp disease management 
comprise the elimination of the pathogen, control of the environment 
and host resistance (Punja 2021). Currently, using disease-resistant 
cultivars is one of the most efficient methods to manage diseases of 
hemp (Hansen et al. 2020). Presently no conventional fungicides are 
available for hemp disease.

Nettle rash is caused by Leptosphaeria acuta, a plant pathogen 
prevalent on the stems of common nettle (Urtica dioica). 
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Leptosphaeria acuta is characterised by black, smooth ascomata 
with shiny cones which are at first immersed in its host and later 
break through to the surface, usually in large numbers (Nature 
Spot, Koukol et al. 2020). The ascomata mature in late winter and 
spring (Nature Spot 2020). They have protruding central ostioles 
through which ascospores are released and form part of the group 
of unresolved species in Leptosphaeriaceae with six and more 
transverse septa and fusoid ascospores measuring up to 50 μm 
long, lacking an appendage and gelatinous sheath (Müller 1950). 
Urtica dioica (Urticaceae) is a herbaceous flowering plant native to 
Asia, Europe, North Africa and Northern America (Viotti et al. 2022). 
Leaves of U. dioica are commonly used as a form of medicinal tea 
or as diuretic and antidiabetic treatments in Libya (Zovko Končić & 
Bljajić 2019). In Europe, nettles have been widely cultivated during 
the 19th century as a fibre plant (Vogl & Hartl 2003). As stated by 
Bredemann (1959), a nettle crop can produce efficient yields for 
4 years and, based on recent data, fibre yield was 1 696 kg/ha in 
Tuscany (Italy) (Bacci et al. 2009). There are no statistics regarding 
yield loss due to nettle rash.

Apart from being pathogens of economically important plants, 
some Leptosphaeria species have biological control properties 
such as Lep. faullii on certain Hypodermataceae (Darker 1964) or 
produce antifungal polyketides such as leptosphaerins that may 
have biocontrol properties (Lin et al. 2017).

Research interests

There are 257 publications and 5 133 citations from 2011–2021 
in the Web of Science (Fig. 131), with the top 10 most cited 
articles listed in Table 107. Most of the publications focused on 
disease management (fungicide resistance, disease resistance), 
and research on pathogenic Leptosphaeria species as well as 
taxonomy.

Disease management
Disease management for Leptosphaeria includes mostly chemical, 
cultivation and cultural control. These are explained below.

Chemical control involves a fungicide program which is important 
in reducing the effect of Leptosphaeria in cropping systems 
(Richard et al. 2002). Currently, there are more than 200 fungicides 
registered for use in food processing (Yoon et al. 2013). The 
frequent use of fungicides to control Leptosphaeria may cause 
resistance therefore it should be used in a timely manner (Walters 
2012). The discovery and development of new fungicides is 
predicted to take about 10 years and might cost nearly 260 million 
US dollars, hence it is important to reduce fungicide resistance 
(Van de Wouw et al. 2017). Fungicides work as protectants so it 
needs to be applied at the first sign of disease (McGrath 2004). 
Studies carried out by OSU and WSU have revealed Coronet and 
Mertect as very effective treatments for seed-borne Leptosphaeria 
and other fungi (Ocamb 2023).

Cultivation techniques are also important in controlling 
Leptosphaeria diseases. Residues from previous crops in the 
surroundings of where new plants are being established must 
be buried to reduce the risk of spores spreading to the current 
cropping area (Fu et al. 2021).

Cultural control for Leptosphaeria disease involves modifying 
the growing environment to decrease the prevalence of the fungus 
(Walters 2009). For example, plant seeds must be certified free of 
Leptosphaeria, susceptible weeds must be managed and plants 
rotated for at least three years, infested seed should be treated in 
water at 50 °C and germination rate should be evaluated to check 
their viability, residues must be buried after harvest or plant debris 
eliminated to reduce the population of Leptosphaeria spp. and 
seedbeds and seed fields must be checked regularly for presence 
of the disease (Ocamb 2003). Seed treatment must also be 

Fig. 131. Trends in research of Leptosphaeria in the period 2011–2021.
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considered and seeds of crops should be treated for Leptosphaeria 
after testing (Sharma et al. 2015a).

Toxins
Studies related to toxins production are mostly from Leptosphaeria 
maculans which is no longer in the genus Leptosphaeria s. 
str. Leptosphaeria maculans was previously named Sphaeria 
lingam (Henderson 1918) and then renamed Phoma lingam by 
Desmazières (1849). Tulasne & Tulasne (1863) suggested that 
the sexual morph of P. lingam is Leptosphaeria maculans (Desm.) 
Ces. & De Not. Several strains of Leptosphaeria maculans 
(sexual morph of P. lingam) grouped in a distinct clade and were 
renamed Plenodomus lingam (De Gruyter et al. 2009, 2013). Two 
compounds have been reported from endophytic Leptosphaeria 
species. Takahashi et al. (1994) reported leptosins A, B, C, D, E 
and F from the mycelium of a strain of Leptosphaeria sp. attached 
to the marine alga Sargassum tortile. Lin et al. (2010) discovered 
leptosphaerins A–G from solid cultures of Leptosphaeria sp. Lin et 
al. (2017) found antifungal polyketides leptosphaerins A–G from a 
strain of Leptosphaeria sp. isolated from the soil sample on the 
surface of the sporocarp of C. sinensis in China. Luo et al. (2017) 
reported isobenzofuranones and isochromenones from a culture 
of a deep-sea sediment derived Leptosphaeria sp. SCSIO 41005. 
However, whether these compounds exhibit any significant toxicity 
is not known and warrants further research.

Taxonomy and phylogeny
Sequences of the entire ITS region separated Phaeosphaeria from 
Leptosphaeria s. str. The taxonomy of Leptosphaeria has been 
problematic due to inadequate morphological characters used to 
distinguish taxa and a lack of reference strains (Ariyawansa et 
al. 2015c, Doilom et al. 2021). Câmara et al. (2002) reported that 
peridial wall morphology, characters of the asexual morph, and to 
a lesser extent hosts, are phylogenetically significant at the generic 
level while ascospore and conidial morphology are taxonomically 
significant at the species level. Sequences of the entire ITS region 
separated Phaeosphaeria from Leptosphaeria s. str. and seems 
to be a strong candidate for species delimitation in Leptosphaeria 

(Câmara et al. 2002). Ariyawansa et al. (2015b) sequenced the SSU, 
LSU, ITS, rpb2, tef1 and act gene regions and provided a multi-locus 
phylogeny of Leptosphaeria. Hence, ITS provides better resolution 
for species delimitation in Leptosphaeria when supplemented with 
other protein genes such as rpb2, tef1 and act. There are currently 
605 morphological species but only 15 species have molecular 
data (Hongsanan et al. 2020). In recent years, several species of 
Leptosphaeria have been transferred to other genera hence, its 
taxonomy is unstable. Leptosphaeria s. str. comprises several 
possibly host-specific, pathogenic species and DNA sequence data 
are essential for accurate species delimitation. Recollection and 
epitypification of the described taxa and sequence data from several 
gene regions are needed to ensure a stable taxonomy.

Author: D. Pem

DISCUSSION AND CONCLUSIONS

In this study, we have reviewed the general background of the 
100 most cited genera. Some of these genera have been studied 
for decades for their economic and ecological importance. 
Saccharomyces and Botrytis, for example, are highly cited as 
the species are important model organisms. The high number of 
citations could also be attributed to the large number of species. 
Among the top 10 most cited genera, several genera have over 
100 species. For example, Candida has about 300 species, 
Trichoderma has over 450 species, Penicillium and Alternaria with 
over 500 species. However, despite having only eight species, 
Saccharomyces is the most cited genus while Phakopsora with 
over 100 species is the least cited of the 100 most cited genera. 
This highlights the importance of Saccharomyces as a model 
organism and an agent of fermentation.

The majority of the highly cited genera include important 
pathogens. Candida ranks number two in the list of most cited 
genera mainly due to the large number of opportunistic infections 
(Brown et al. 2012). Pichia is the fifth most common cause of 
candidemia (Cooper 2011) and ranks number eight on the list. 

Table 107. Top 10 cited articles related to Leptosphaeria published in the period 2011–2021.
Rank Article title No. of citations References
1 Redisposition of phoma-like anamorphs in Pleosporales 332 De Gruyter et al. (2013)
2 Revision of the Massarineae (Pleosporales, Dothideomycetes) 312 Tanaka et al. (2015)
3 Phylogenic diversity of fungal endophytes in Spanish stands of Pinus 

halepensis
134 Botella & Diez (2011)

4 Refined families of Dothideomycetes: Dothideomycetidae and 
Pleosporomycetidae

131 Hongsanan et al. (2020a)

5 Evolution and genome architecture in fungal plant pathogens 121 Möller & Stukenbrock (2017)
6 Diversity and antimicrobial activities of the fungal endophyte community 

associated with the traditional Brazilian medicinal plant Solanum cernuum Vell. 
(Solanaceae)

96 Vieira et al. (2012)

7 Revision of agents of black-grain eumycetoma in the order Pleosporales 79 Ahmed et al. (2014)
8 Dark septate endophytes isolated from a xerophyte plant promote the growth 

of Ammopiptanthus mongolicus under drought condition
71 Li et al. (2018c)

9 Potential of endophytic fungi isolated from cotton roots for biological control 
against verticillium wilt disease

71 Yuan et al. (2017)

10 Phylogenetic insights resolve Dacampiaceae (Pleosporales) as polyphyletic: 
Didymocyrtis (Pleosporales, Phaeosphaeriaceae) with Phoma-like anamorphs 
resurrected and segregated from Polycoccum (Trypetheliales, Polycoccaceae 
fam. nov.)

61 Ertz et al. (2015)
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Five of the world’s most feared fungi are also listed as the most 
cited genera with Candida (2nd), Aspergillus (3rd), Malassezia (41st), 
Talaromyces (48th) and Amanita (80th) (Hyde et al. 2018a). Several 
most cited genera are also listed as the top 10 fungal pathogens in 
molecular plant pathology (Dean et al. 2012), such as Botrytis (7th), 
Colletotrichum (14th), Fusarium (4th), Melampsora (87th), Puccinia 
(29th) and Ustilago (35th).

The most commonly used keywords for the 100 most cited 
genera include “arbuscular mycorrhizal fungi”, “biocontrol”, “gene”, 
“growth”, “identification” and “resistance” (Fig. 132). These are also 
some of the main aspects of the research associated with these 
genera which demonstrates that numerous studies focused not 
only on the identification of fungi but also on their application. This 
trend is likely to continue for fungal research considering fungi can 
be further exploited as potential new sources of food and novel 
metabolites with biotechnological, industrial and pharmaceutical 
applications.

Research citation bias

This paper provides valuable insights into the importance of the 
most cited genera. To minimise the potential effect of citation bias, 

the Web of Science database was used and self-citations were 
excluded. When compiling the list of the top 10 cited articles, we 
discarded papers that correspond to taxonomic compilations of 
a large number (usually 100) of various new fungal taxa as the 
number of citations does not account for only one genus. These 
include for example the exclusion of Crous et al. (2015) for 
Ophiostoma; Ariyawansa et al. (2015a), Li et al. (2016a) and Liu et 
al. (2015b) for Agaricus; Crous et al. (2014a, b), Liu et al. (2015b) 
and Hyde et al. (2016) for Diaporthe; Ariyawansa et al. (2015a), 
Li et al. (2016a), Tibpromma et al. (2017), Crous et al. (2018) 
and Hyde et al. (2020b) for Amanita. However, citation bias still 
influences this study. If we take the genus Pichia for example, most 
citations in Fig. 17 refer to species that are no longer members of 
that genus. The number of citations referring to obsolete names 
of yeasts, for example, names of presently non-Pichia species, is 
large because the genus was reclassified more than a decade ago 
(Kurtzman et al. 2008, Kurtzman 2011a).

Conclusions

The list of the 100 most cited genera started from information 
compiled from the PubMed database. The highly researched 

Fig. 132. Network visualisation of keywords of the publications related to all the 100 most cited genera. The larger the text and the circle the more often the 
subject has been cited.
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phyla are Ascomycota (63 genera), Basidiomycota (27 
genera), Mucoromycota (5 genera), Oomycota (3 genera) and 
Glomeromycota (2 genera). Ascomycota is highly researched 
possibly due to the extent of the biodiversity of the group. Among 
Ascomycota, 51 genera belong to the subphylum Pezizomycotina 
and 12 genera are classified in the Saccharomycotina. 
Pezizomycotina has received significant research interest as some 
species serve as model organisms. Pezizomycotina also includes 
edible fungi that are highly prized in culinary traditions worldwide. 
Pezizomycotina can form mycorrhizal associations with plants 
but are also important plant pathogens. They are also used in 
biotechnological processes, including the production of enzymes, 
biofuels, and biodegradable plastics. Saccharomycotina includes 
species with ecological importance and also includes opportunistic 
pathogens. As Saccharomycotina exhibits considerable genomic 
diversity, their study provides valuable information for evolutionary 
and functional contexts. Twenty-one of the basidiomycete genera 
are classified in Agaricomycotina, four in Pucciniomycotina 
and two in Ustilaginomycotina. Agaricomycotina is one of the 
largest and most diverse fungal groups. Agaricomycotina is 
economically significant as a food source globally as it includes 
button mushrooms, shiitake, and portobello. Pucciniomycotina 
includes rust fungi which are important in terms of their impact on 
agriculture and our understanding of host-pathogen interactions. 
Four of the Mucoromycota genera are classified in Mucoromycotina 
and one in Mortierellomycotina. Mucoromycotina serve as 
model organisms and are important for several biotechnological 
processes. Mortierellomycotina species are extremophiles which 
can enhance our understanding of adaptability and survival 
strategies in extreme conditions. Both Glomeromycota genera 
are classified in Glomeromycotina. Glomeromycotina includes 
arbuscular mycorrhizal fungi which have significant implications 
for agriculture and environmental resilience. In terms of classes, 
the Agaricomycetes (19 genera) and Sordariomycetes (18 genera) 
were the best represented in the highly cited list, closely followed 
by Dothideomycetes (16 genera) and then Eurotiomycetes (11 
genera). Interestingly, most genera belong to Pleosporales 
(eight genera; Dothideomycetes) and Hypocreales (seven 
genera; Sordariomycetes), followed with six genera each by 
Agaricales, Eurotiales and Saccharomycetales (Agaricomycetes, 
Eurotiomycetes and Saccharomycetes, respectively). Although 
Botryosphaeriaceae (Botryosphaeriales, Dothideomycetes) is 
the family represented by the largest number of genera (five 
genera) in the list, the order is not in the top three orders with 
the most represented genera. Pleosporaceae (Pleosporales, 
Dothideomycetes) and Saccharomycetaceae (Saccharomycetales, 
Saccharomycetes) both represent the next highest number of four 
genera included in the list, followed by Aspergillaceae (Eurotiales, 
Eurotiomycetes) and Sclerotiniaceae (Helotiales, Leotiomycetes) 
with three genera each included in the list. Ninety-one out of the 
100 most cited genera have genome data available in the FungiDB 
and MycoCosm databases (Grigoriev et al. 2014, Amos et al. 2022). 
The top 33 genera have genome data available, which is likely an 
important factor in their high research interest as genome data 
contributes significantly to our understanding of biology, ecology, 
evolution, and applications. Therefore, these data suggest that the 
ranking of the 100 most cited genera is based on several factors 
including their importance as a model organism, their economic 
importance and their importance in industrial applications. This 
indicates that genera with molecular and genome data as well as 
data on their application are likely to warrant significant research 
interest.
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Ripková S, Hughes K, Adamčík S, et al. (2010). The delimitation of 
Flammulina fennae. Mycological Progress 9: 469–484.

Ritala A, Häkkinen ST, Toivari M, et al. (2017). Single cell protein – state-
of-the-art, industrial landscape and patents 2001–2016. Frontiers in 
Microbiology 8: 2009.

Rivera Y, Zeller K, Srivastava S, et al. (2018). Draft genome resources 
for the phytopathogenic fungi Monilinia fructicola, M. fructigena, 
M. polystroma, and M. laxa, the causal agents of brown rot. 
Phytopathology 108: 1141–1142.

Rivero-Menendez O, Cuenca-Estrella M, Alastruey-Izquierdo A (2020). 
In vitro activity of olorofim against clinical isolates of Scedosporium 
species and Lomentospora prolificans using EUCAST and CLSI 
methodologies. Journal of Antimicrobial Chemotherapy 75: 3582–
3585.

Rivière T, Diédhiou AG, Diabaté M, et al. (2007). Genetic diversity of 
ectomycorrhizal Basidiomycetes from African and Indian tropical rain 
forests. Mycorrhiza 17: 415–428.

Rixford E, Gilchrist TC (1896). Two cases of protozoan (coccidioidal) 
infection of the skin and other organs. Johns Hopkins Hospital Report 
10: 209–371.

Rizet G (1952). Les phénomènes de barrage chez Podospora anserina. I. 
Analyse de barrage entre les souches s et S. Revue de Cytologie et 
de Biologie Végétales 13: 51–92.

Rizet G (1953). Sur l’impossibilite d’obtenir la multiplication vegetative 
ininterrompue illimite de l’ascomycete Podospora anserina. Comptes 
rendus de l’Académie des Sciences Paris 237: 838–855.

Rizzo DM, Garbelotto M (2003). Sudden oak death: endangering 
California and Oregon forest ecosystems. Frontiers in Ecology and 
the Environment 1: 197–204.

Rizzo DM, Garbelotto M, Davidson JM, et al. (2002). Phytophthora 
ramorum as the cause of extensive mortality of Quercus spp. and 
Lithocarpus densiflorus in California. Plant Disease 86: 205–214.

Roach MJ, Borneman AR (2020). New genome assemblies reveal patterns 
of domestication and adaptation across Brettanomyces (Dekkera) 
species. BMC Genomics 21: 194.

Roane CW (2004). Graminicolous Fungi of Virginia: Fungi in collections 
1995–2003. Virginia Journal of Science 55: 139–157.

Roane CW (2009). Graminicolous fungi of Virginia: Fungi in collections 
2004–2007. Virginia Journal of Science 60: 13–50.

Robbertse B, Reeves JB, Schoch CL, et al. (2006). A phylogenomic 
analysis of the Ascomycota. Fungal Genetics and Biology 43: 715–
725.

Robbertse B, Strope PK, Chaverri P, et al. (2017). Improving taxonomic 
accuracy for fungi in public sequence databases: applying ‘one name 
one species’ in well-defined genera with Trichoderma/Hypocrea as a 
test case. Database 2017: bax072.

Roberts FA, Sivasithamparam K (1986). Identity and pathogenicity of 
Rhizoctonia spp. associated with bare patch disease of cereals at a 
field site in Western Australia. Netherland Journal of Plant Pathology 
92: 185–195

Robideau GP, de Cock AWAM, Coffey MD, et al. (2011). DNA barcoding 
of oomycetes with cytochrome c oxidase subunit I and internal 
transcribed spacer. Molecular Ecology Resources 11: 1002–1011.

Robin C (1853). Histoire naturelle des végétaux parasites qui croissant sur 
l’homme et sur les animaux vivants. Chez JB Baillière, Paris, France.

Robledo G, Popoff O, Amarilla L, et al. (2014). Schizophyllum leprieurii and 
the Schizophyllum umbrinum lineage (Agaricales, Basidiomycota) in 
Argentina. Lilloa 51: 87–96.

Robles-Yerena L, Ayala-Escobar V, Leyva-Mir SG, et al. (2019). First 
report of Cladosporium cladosporioides causing leaf spot on tomato 
in Mexico. Journal of Plant Pathology 101: 759.

Rocha ICB, Terra PPD, Cardoso de Oliveira R, et al. (2020). Molecular-
based assessment of diversity and population structure of Sporothrix 
spp. clinical isolates from Espirito Santo-Brazil. Mycoses 64: 420–427.

Rocha WRV, Nunes LE, Neves MLR, et al. (2021). Candida genus 
– Virulence factores, epidemiology, candidiasis and resistance 
mechanisms. Research, Society and Development 10: e43910414283.

Rochi L, Diéguez MJ, Burguener G, et al. (2018). Characterization and 
comparative analysis of the genome of Puccinia sorghi Schwein, the 
causal agent of maize common rust. Fungal Genetics and Biology 
112: 31–39.

Rocke TE, Kingstad-Bakke B, Wüthrich M, et al. (2019). Virally-vectored 
vaccine candidates against white-nose syndrome induce anti-fungal 
immune response in little brown bats (Myotis lucifugus). Scientific 
Reports 9: 6788.

Rodrigues AM, Bagagli E, de Camargo ZP, et al. (2014a). Sporothrix 
schenckii sensu stricto isolated from soil in an armadillo’s burrow. 
Mycopathologia 177: 199–206.

Rodrigues AM, Cruz Choappa R, Fernandes GF, et al. (2016). Sporothrix 
chilensis sp. nov. (Ascomycota: Ophiostomatales), a soil-borne agent 
of human sporotrichosis with mild-pathogenic potential to mammals. 
Fungal Biology 120: 246–264.

Rodrigues AM, de Hoog GS, de Camargo ZP (2015a). Molecular diagnosis 
of pathogenic Sporothrix species. PLoS Neglected Tropical Diseases 
9: e0004190.

Rodrigues AM, de Hoog GS, de Camargo ZP (2018). Feline Sporotrichosis. 
In: Emerging and Epizootic Fungal Infections in Animals (Seyedmousavi 
S, de Hoog GS, Guillot J, et al., eds). Springer International Publishing, 
Cham: 199–231.

Rodrigues AM, de Hoog GS, de Cassia Pires D, et al. (2014b). Genetic 
diversity and antifungal susceptibility profiles in causative agents of 
sporotrichosis. BMC Infectious Diseases 14: 219.

Rodrigues AM, de Hoog GS, Zhang Y, et al. (2014c). Emerging 
sporotrichosis is driven by clonal and recombinant Sporothrix species. 
Emerging Microbes & Infections 3: e32.

Rodrigues AM, de Hoog S, de Camargo ZP (2013a). Emergence of 
pathogenicity in the Sporothrix schenckii complex. Medical Mycology 
51: 405–412.

Rodrigues AM, de Melo Teixeira M, de Hoog GS, et al. (2013b). Phylogenetic 
analysis reveals a high prevalence of Sporothrix brasiliensis in feline 
sporotrichosis outbreaks. PLoS Neglected Tropical Diseases 7: e2281.



374

Bhunjun et al.

Rodrigues AM, Della Terra PP, Gremiao ID, et al. (2020). The threat 
of emerging and re-emerging pathogenic Sporothrix species. 
Mycopathologia 185: 813–842.

Rodrigues AM, Fernandes GF, Araujo LM, et al. (2015b). Proteomics-based 
characterization of the humoral immune response in sporotrichosis: 
Toward discovery of potential diagnostic and vaccine antigens. PLoS 
Neglected Tropical Diseases 9: e0004016.

Rodrigues AM, Fernandes GF, de Camargo ZP (2017). Sporotrichosis. In: 
Emerging and re-emerging infectious diseases of livestock (Bayry J, 
ed.). Springer: 391–421.

Rodrigues DMF, Freitas AC, Rocha TAP, et al. (2015c). Chemical 
composition and nutritive value of Pleurotus citrinopileatus var. 
cornucopiae, P. eryngii, P. salmoneo stramineus, Pholiota nameko 
and Hericium erinaceus. Journal of Food Science and Technology 52: 
6927–6939.

Rodrigues KM, Rodrigues BF (2015). Endomycorrhizal association of 
Funneliformis mosseae with transformed roots of Linum usitatissimum: 
germination, colonization, and sporulation studies. Mycology 6: 42–49.

Rodrigues RC, Fernandez-Lafuente R (2010). Lipase from Rhizomucor 
miehei as a biocatalyst in fats and oils modification. Journal of 
Molecular Catalysis B: Enzymatic 66: 15–32.

Rodríguez Couto S, Moldes D, Liebanas A, et al. (2003). Investigation of 
several bioreactor configurations for laccase production by Trametes 
versicolor operating in solid-state conditions. Biochemical Engineering 
Journal 15: 21–26.

Rodríguez Couto S, Sanromán MÁ, Hofer D, et al. (2004). Production of 
laccase by Trametes hirsuta grown in an immersion bioreactor and 
its application in the decolorization of dyes from a leather factory. 
Engineering in Life Sciences 4: 233–238.

Rodriguez DN, Martinez-Macias O, Dominguez-Marquez V, et al. (2014). 
Severe corneal infection by Colletotrichum gloeosporioides in a 
farmer. Medicina Clinica 142: 138.

Rodriguez MDH, Evans HC, de Abreu LM, et al. (2021). New species and 
records of Trichoderma isolated as mycoparasites and endophytes 
from cultivated and wild coffee in Africa. Scientific Reports 11: 5671.

Rodriguez R, Redman R (2008). More than 400 million years of evolution 
and some plants still can’t make it on their own: plant stress tolerance 
via fungal symbiosis. Journal of Experimental Botany 59: 1109–1114.

Rodriguez SB, Thornton MA, Thornton RJ (2013). Raman spectroscopy 
and chemometrics for identification and strain discrimination of the 
wine spoilage yeasts Saccharomyces cerevisiae, Zygosaccharomyces 
bailii, and Brettanomyces bruxellensis. Applied and Environmental 
Microbiology 79: 6264–6270.

Rodríguez-Cerdeira C, Martínez-Herrera E, Szepietowski JC, et al. (2021). 
A systematic review of worldwide data on tinea capitis: analysis of the 
last 20 years. Journal of the European Academy of Dermatology and 
Venereology 35: 844–883.

Rodríguez-Lobato E, Ramírez-Hobak L, Aquino-Matus JE, et al. (2017). 
Primary cutaneous mucormycosis caused by Rhizopus oryzae: A case 
report and review of literature. Mycopathologia 182: 387–392.

Rodríguez-Pires S, Melgarejo P, De Cal A, et al. (2020). Pectin as carbon 
source for Monilinia laxa exoproteome and expression profiles of 
related genes. Molecular Plant-Microbe Interactions 33: 1116–1128.

Roget DK, Venn NR Rovira AD (1987). Reduction of Rhizoctonia root rot of 
direct- drilled wheat by short term chemical fallow. Australian Journal 
Experimental Agriculture 27: 425–430.

Rohlfs M, Churchill ACL (2011). Fungal secondary metabolites as 
modulators of interactions with insects and other arthropods. Fungal 
Genetics and Biology 48: 23–34.

Rojas JA, Jacobs JL, Napieralski S, et al. (2017a). Oomycete species 
associated with soybean seedlings in North America – Part I: 
Identification and pathogenicity characterization. Phytopathology 107: 
280–292.

Rojas JA, Miles TD, Coffey MD, et al. (2017b). Development and 
application of qPCR and RPA genus and species-specific detection 
of Phytophthora sojae and P. sansomeana root rot pathogens of 
soybean. Plant Disease 101: 1171–1181.

Rojas JA, Witte A, Noel ZA, et al. (2019). Diversity and characterization of 
oomycetes associated with corn seedlings in Michigan. Phytobiomes 

Journal 3: 224–234.
Rojas V, Gil JV, Piñaga F, et al. (2003). Acetate ester formation in wine 

by mixed cultures in laboratory fermentations. International Journal of 
Food Microbiology 86: 181–188.

Rojo MC, Palazzolo CT, Cuello R, et al. (2017). Incidence of osmophilic 
yeasts and Zygosaccharomyces rouxii during the production of 
concentrate grape juices. Food Microbiology 64: 7–14.

Rolando CA, Dick MA, Gardner JF, et al. (2017). Chemical control of two 
Phytophthora species infecting the canopy of Monterey pine (Pinus 
radiata). Forest Pathology 47: e12327.

Romagnesi H (1967). Les Russules d’Europe et d’Afrique du Nord. Bordas, 
Paris.

Romanazzi G, Lichter A, Gabler FM, et al. (2012). Recent advances on 
the use of natural and safe alternatives to conventional methods to 
control postharvest gray mold of table grapes. Postharvest Biology 
and Technology 63: 141–147.

Romanazzi G, Nigro F, Ippolito A (2003). Short hypobaric treatments 
potentiate the effect of chitosan in reducing storage decay of sweet 
cherries. Postharvest Biology and Technology 29: 73–80.

Romanazzi G, Sanzani SM, Bi Y, et al. (2016). Induced resistance to 
control postharvest decay of fruit and vegetables. Postharvest Biology 
and Technology 122: 82–94.

Romani L (2011). Immunity to fungal infections. Nature Reviews 
Immunology 11: 275–288.

Rombach MC, Humber RA, Roberts DW (1986). Metarhizium flavoviride 
var. minus, var. nov., a pathogen of plant and leafhoppers on rice in 
Philippines and Solomon Islands. Mycotaxon 27: 87–92.

Romeo O, Scordino F, Criseo G (2011). New insight into molecular 
phylogeny and epidemiology of Sporothrix schenckii species complex 
based on calmodulin-encoding gene analysis of Italian isolates. 
Mycopathologia 172: 179–186.

Romon P, de Beer ZW, Zhou X, et al. (2014). Multigene phylogenies of 
Ophiostomataceae associated with Monterey pine bark beetles in 
Spain reveal three new fungal species. Mycologia 106: 119–132.

Rooney SN, Gubler WD (2001). Effect of hot water treatments on eradication 
of Phaeomoniella chlamydospora and Phaeoacremonium inflatipes 
from dormant grapevine wood. Phytopathologia Mediterranea 40S: 
467–472.

Roostita R, Fleet GH (1996). The occurrence and growth of yeasts in 
Camembert and blue-veined cheese. International Journal of Food 
Microbiology 28: 393–404.

Rosado AWC, Custódio FA, Pinho DB, et al. (2019). Cladosporium species 
associated with disease symptoms on Passiflora edulis and other 
crops in Brazil, with descriptions of two new species. Phytotaxa 409: 
239–260.

Rosales E, Rodríguez Couto S, Sanromán MÁ (2005). Reutilisation 
of food processing wastes for production of relevant metabolites: 
application to laccase production by Trametes hirsuta. Journal of Food 
Engineering 66: 419–423.

Rosenzweig N, Hanson LE, Mambetova S, et al. (2020). Temporal 
population monitoring of fungicide sensitivity in Cercospora beticola 
from sugarbeet (Beta vulgaris) in the Upper Great Lakes. Canadian 
Journal of Plant Pathology 42: 469–479. 

Rosow L, Jiang JX, Deuel T, et al. (2011). Cerebral phaeohyphomycosis 
caused by Bipolaris spicifera after heart transplantation. Transplant 
Infectious Disease 13: 419–423.

Rossi V, Caffi T, Legler SE (2010). Dynamics of ascospore maturation and 
discharge in Erysiphe necator, the causal agent of grape powdery 
mildew. Phytopathology 100: 1321–1329.

Rosskopf EN, Charudattan R, Shabana YM, et al. (2000). Phomopsis 
amaranthicola, a new species from Amaranthus sp. Mycologia 92: 
114–122.

Rossman AY, Allen WC, Braun U, et al. (2016). Overlooked competing 
asexual and sexually typified generic names of Ascomycota with 
recommendations for their use or protection. IMA Fungus 7: 289–308.

Rossman AY, Crous PW, Hyde KD, et al. (2015). Recommended names 
for pleomorphic genera in Dothideomycetes. IMA Fungus 6: 507–523.

Rossman AY, Manamgoda DS, Hyde KD (2013). Proposal to conserve 
the name Bipolaris against Cochliobolus (Ascomycota: Pleosporales: 



375www.studiesinmycology.org

What are the 100 most cited fungal genera?

Pleosporaceae). Taxon 62: 1331–1332.
Rossman AY, Samuels GJ, Rogerson CT, et al. (1999). Genera of 

Bionectriaceae, Hypocreaceae, and Nectriaceae (Hypocreales, 
Ascomycetes). Studies in Mycology 42: 1–248.

Rothrock CS, Winters SA, Kinney PM, et al. (1993). Occurrence of 
Rhizoctonia solani (Thanatephorus cucumeris) AG–7 in Arkansas. 
Plant Disease 77: 1262.

Rott P, Comstock JC, Gilbert RA, et al. (2014). Sugarcane Eyespot 
Disease. SSAGR203. Gainesville: University of Florida Institute of 
Food and Agricultural Sciences.

Rougeron A, Giraud S, Alastruey-Izquierdo A, et al. (2018). Ecology of 
Scedosporium species: Present knowledge and future research. 
Mycopathologia 183: 185–200.

Rougeron A, Schuliar G, Leto J, et al. (2015). Human-impacted areas of 
France are environmental reservoirs of the Pseudallescheria boydii/
Scedosporium apiospermum species complex. Environmental 
Microbiology 17: 1039–1048.

Rouphael Y, Franken P, Schneider C, et al. (2015). Arbuscular mycorrhizal 
fungi act as biostimulants in horticultural crops. Scientia Horticulturae 
196: 91–108.

Rouxel T, Grandaubert J, Hane J, et al. (2011). Effector diversification 
within compartments of the Leptosphaeria maculans genome affected 
by repeat-induced point mutations. Nature Communications 2: 202.

Rouzaud C, Hay R, Chosidow O, et al. (2015). Severe dermatophytosis 
and acquired or innate immunodeficiency: a review. Journal of Fungi 
2: 4.

Rovenich H, Boshoven JC, Thomma BP (2014). Filamentous pathogen 
effector functions: of pathogens, hosts and microbiomes. Current 
Opinion in Plant Biology 20: 96–103.

Rowan DD (1993). Lolitrems, peramine and paxilline: mycotoxins of 
the ryegrass/endophyte interaction. Agriculture, Ecosystems & 
Environment 44: 103–122.

Roy A (1982). Studies on Indian polypores. V. Morphological and cultural 
characters of Trametes cubensis. Canadian Journal of Botany 60: 
1012–1015.

Royse DJ (2014). A global perspective on the high five: Agaricus, 
Pleurotus, Lentinula, Auricularia & Flammulina. In: Proceedings of 
the 8th International Conference on Mushroom Biology and Mushroom 
Products (ICMBMP8) 1: 1–6.

Royse DJ, Baars J, Tan Q (2017). Current overview of mushroom 
production in the world. Edible and medicinal mushrooms: Technology 
and Applications 2: 5–13.

Roze ME (1876). Essai d’une nouvelle classification des agaricinées. 
Bulletin de la Société botanique de France 23: 45–54.

Rozpędowska E, Hellborg L, Ishchuk OP, et al. (2011). Parallel evolution 
of the make-accumulate-consume strategy in Saccharomyces and 
Dekkera yeasts. Nature Communications 2: 302.

Ruan-Soto F (2018a). Recolección de hongos comestibles silvestres 
y estrategias para el reconocimento de species tóxicas entre los 
tsotsiles de Chamula, Chiapas, Mexico. Scientia Fungorum 48: 1–13.

Ruan-Soto F (2018b). Sociodemographic differences in the cultural 
significance of edible and toxic mushrooms among Tsotsil towns 
in the Highlands of Chiapas, Mexico. Journal of Ethnobiology and 
Ethnomedicine 14: 32.

Rubini MR, Silva-Ribeiro RT, Pomella AW, et al. (2005). Diversity of 
endophytic fungal community of cacao (Theobroma cacao L.) and 
biological control of Crinipellis perniciosa, causal agent of Witches’ 
Broom Disease. International Journal of Biological Sciences 1: 24–33.

Rudd JJ, Kanyuka K, Hassani-Pak K, et al. (2015). Transcriptome and 
metabolite profiling of the infection cycle of Zymoseptoria tritici on 
wheat reveals a biphasic interaction with plant immunity involving 
differential pathogen chromosomal contributions and a variation on the 
hemibiotrophic lifestyle definition. Plant Physiology 167: 1158–1185.

Rude MA, Baron TS, Brubaker S, et al. (2011). Terminal olefin (1-alkene) 
biosynthesis by a novel p450 fatty acid decarboxylase from 
Jeotgalicoccus species. Applied and Environmental Microbiology 77: 
1718–1727.

Rudolph BA (1931). Verticillium hadromycosis. Hilgardia 5: 197–361.
Rueda N, dos Santos JC, Torres R, et al. (2015). Improved performance of 

lipases immobilized on heterofunctional octyl-glyoxyl agarose beads. 
RSC Advances 5: 11212–11222.

Rügner A, Rumbolz J, Huber B, et al. (2002). Formation of overwintering 
structures of Uncinula necator and colonization of grapevine under 
field conditions. Plant Pathology 51: 322–330.

Ruiz Gaitán AC, Moret A, López Hontangas JL, et al. (2017). Nosocomial 
fungemia by Candida auris: First four reported cases in continental 
Europe. Revista Iberoamericana de Micología 34: 23–27.

Ruiz-Dueñas F, Lundell T, Floudas D, et al. (2013). Lignin-degrading 
peroxidases in Polyporales: an evolutionary survey based on 10 
sequenced genomes. Mycologia 105: 1428–1444.

Ruiz-Dueñas FJ, Martinez MJ (1996). Enzymatic activities of Trametes 
versicolor and Pleurotus eryngii implicated in biocontrol of Fusarium 
oxysporum f. sp. lycopersici. Current Microbiology 32: 151–155.

Ruiz-Lozano JM, Porcel R, Azcón C, et al. (2012). Regulation by arbuscular 
mycorrhizae of the integrated physiological response to salinity in 
plants: new challenges in physiological and molecular studies. Journal 
of Experimental Botany 63: 4033–4044.

Ruiz-Moyano S, Hernández A, Galvan AI, et al. (2020). Selection and 
application of antifungal VOCs-producing yeasts as biocontrol agents 
of grey mould in fruits. Food Microbiology 92: 103556.

Ruiz-Romero P, Valdez-Salas B, González-Mendoza D, et al. (2018). 
Antifungal effects of silver phytonanoparticles from Yucca shilerifera 
against strawberry soil-borne pathogens: Fusarium solani and 
Macrophomina phaseolina. Mycobiology 46: 47–51.

Runnel K, Spirin V, Miettinen O, et al. (2019). Morphological plasticity in 
brown-rot fungi: Antrodia is redefined to encompass both poroid and 
corticioid species. Mycologia 111: 871–883.

Rusche LN, Kirchmaier AL, Rine J (2003). The establishment, inheritance, 
and function of silenced chromatin in Saccharomyces cerevisiae. 
Annual Review of Biochemistry 72: 481–516.

Russo P, Fares C, Longo A (2017). Lactobacillus plantarum with broad 
antifungal activity as a protective starter culture for bread production. 
Foods 6: 110.

Ryan CC, Egan BT (1989). Rust. In: Diseases of Sugarcane (Ricaud 
C, Egan BT, Gillaspie AG Jr, et al., eds). Elsevier, Amsterdam, 
Netherlands: 189–210.

Ryu H, Park H, Suh DS, et al. (2014). Biological control of Colletotrichum 
panacicola on Panax ginseng by Bacillus subtilis HK-CSM-1. Journal 
of Gingseng Research 38: 215–219.

Ryu SH, Hong SM, Khan Z, et al. (2021). Neurotrophic isoindolinones from 
the fruiting bodies of Hericium erinaceus. Bioorganic and Medicinal 
Chemistry Letters 31: 127714.

Ryvarden L (1991). Genera of polypores: nomenclature and taxonomy. 
Synopsis Fungorum 5: 1–363.

Ryvarden L (1999). The genus Inonotus in Africa. Kew Bulletin 54: 801–
805.

Ryvarden L (2000). Studies in neotropical polypores 2: a preliminary key 
to neotropical species of Ganoderma with a laccate pileus. Mycologia 
92: 180–191.

Ryvarden L (2004). Neotropical polypores Part 1. Synopsis Fungorum. 
Fungiflora, Oslo: 1–227.

Ryvarden L (2005). The genus Inonotus, a synopsis. Synopsis Fungorum 
21: 1–149.

Ryvarden L (2020). Inonotus millmanii nova sp. Synopsis Fungorum 41: 
7–8.

Ryvarden L, Gilbertson RL (1993). European polypores 1. Synopsis 
Fungorum 6: 1–387.

Ryvarden L, Gilbertson RL (1994). European polypores 2. Synopsis 
Fungorum 7: 388–743.

Ryvarden L, Johansen I (1980). A preliminary polypore flora of East Africa. 
Fungiflora, Oslo.

Ryvarden L, Melo I (2014). Poroid fungi of Europe. Synopsis Fungorum 
31: 1–455.

Saar M (1991). Ethnomycological data from Siberia and North-East Asia 
on the effect of Amanita muscaria. Journal of Ethnopharmacology 31: 
157–173.

Sabouraud RJA (1910). Les Teignes. Paris: Masson et Cie.
Saccardo PA (1877). Fungi Veneti novi vel critici. Michelia 1: 1–72.



376

Bhunjun et al.

Saccardo PA (1880). Fungi Gallici ser. II. Michelia. 2: 39–135.
Saccardo PA (1882). Sylloge Fungorum 1: 1–768.
Saccardo PA (1884). Sylloge Sphaeropsidearum et Melanconiearum 

omnium hucusque cognitorum. Sylloge Fungorum 3. Patavii. 860.
Saccardo PA (1911). Notae mycologicae. Series XIII. Annales Mycologici 

9: 249–257.
Sacheli R, Cuypers L, Seidel L, et al. (2021). Epidemiology of dermatophytes 

in Belgium: A 5 years’ survey. Mycopathologia 186: 399–409.
Sacheli R, Harag S, Dehavay F, et al. (2020). Belgian national survey 

on tinea capitis: epidemiological considerations and highlight of 
terbinafine-resistant T. mentagrophytes with a mutation on SQLE 
Gene. Journal of Fungi 6: 195.

Sacristán N, Mayo B, Fernández E, et al. (2013). Molecular study of 
Geotrichum strains isolated from Armada cheese. Food Microbiology 
36: 481–487.

Sadoudi M, Tourdot-Maréchal R, Rousseaux S, et al. (2012). Yeast-yeast 
interactions revealed by aromatic profile analysis of sauvignon blanc 
wine fermented by single or coculture of non-Saccharomyces and 
Saccharomyces yeasts. Food Microbiology 32: 243–253.

Saenge C, Cheirsilp B, Suksaroge TT, et al. (2011). Potential use of 
oleaginous red yeast Rhodotorula glutinis for the bioconversion of 
crude glycerol from biodiesel plant to lipids and carotenoids. Process 
Biochemistry 46: 210−218.

Saenz GS, Taylor JW (1999). Phylogeny of the Erysiphales (powdery 
mildews) inferred from internal transcribed spacer (ITS) ribosomal 
DNA sequences. Canadian Journal of Botany 77: 150–169.

Sáenz V, Alvarez-Moreno C, Pape PL, et al. (2020). A one health 
perspective to recognize Fusarium as important in clinical practice. 
Journal of Fungi 6: 235.

Safaiefarahani B, Mostowfizadeh-Ghalamfarsa R, Hardy GES, et al. 
(2015). Re-evaluation of the Phytophthora cryptogea species complex 
and the description of a new species, Phytophthora pseudocryptogea 
sp. nov. Mycological Progress 14: 108.

Safi A, Mehrabi-Koushki M, Farokhinejad R (2020). Amesia khuzestanica 
and Curvularia iranica spp. nov. from Iran. Mycological Progress 19: 
935–945.

Sagar A, Chauhan V, Prakash V (2017). Studies on endophytes and 
antibacterial activity of Saussurea costus (Falc.) Lipsch. Journal of 
Drug Delivery and Therapeutics 7: 5–10.

Sagar A, Thakur K (2013). Study on ultrastructure and antibacterial 
activity of Lactarius sanguifluus (Paulet) Fr. Journal of Pure Applied 
Microbiology 7: 2873–2877.

Sahab AF (2012). Antimicrobial efficacy of secondary metabolites of 
Beauveria bassiana against selected bacteria and phytopathogenic 
fungi. Journal of Applied Sciences Research 8: 1441–1444.

Saharan GS, Mehta N, Meena PD (2016). Alternaria Diseases of Crucifers: 
Biology, Ecology and Disease Management. Springer Singapore.

Saharan V, Mehrotra A, Khatik R, et al. (2013). Synthesis of chitosan based 
nanoparticles and their in vitro evaluation against phytopathogenic 
fungi. International Journal of Biological Macromolecules 62: 677–683.

Sahodaran NK, Arun AK, Ray JG (2019). Native arbuscular mycorrhizal 
fungal isolates (Funneliformis mosseae and Glomus microcarpum) 
improve plant height and nutritional status of banana plants. 
Experimental Agriculture 55: 924–933.

Saini JK, Saini R, Tewari L (2015). Lignocellulosic agriculture wastes as 
biomass feedstocks for second-generation bioethanol production: 
concepts and recent developments. 3 Biotech 5: 337–353.

Saintenac C, Lee WS, Cambon F, et al. (2018). Wheat receptor-kinase-
like protein Stb6 controls gene-for-gene resistance to fungal pathogen 
Zymoseptoria tritici. Nature Genetics 50: 368–374.

Saito I (1997). Sclerotinia nivalis, sp. nov., the pathogen of snow mold of 
herbaceous dicots in northern Japan. Mycoscience 38: 227–236.

Saito S, Michailides TJ, Xiao CL (2016). Mucor rot – An emerging 
postharvest disease of mandarin fruit caused by Mucor piriformis and 
other Mucor spp. in California. Plant Disease 100: 1054–1063.

Sakai A, Tanaka H, Konishi Y, et al. (2005). Mycological examination 
of domestic unpolished rice and mycotoxin production by isolated 
Penicillium islandicum. Journal of the Food Hygienic Society of Japan 
46: 205–212.

Sakalidis M, Slippers B, Wingfield BD, et al. (2013). The challenge of 
understanding the origin, pathways and extent of fungal invasions: 
global populations of the Neofusicoccum parvum – N. ribis species 
complex. Diversity and Distributions 19: 873–83.

Sakalidis ML, Hardy GESJ, Burgess TI (2011). Use of the Genealogical 
Sorting Index (GSI) to delineate species boundaries in the 
Neofusicoccum parvum–Neofusicoccum ribis species complex. 
Molecular Phylogenetics and Evolution 60: 333–44.

Sakamoto Y, Ando A, Tamai Y, et al. (2007). Pileus differentiation and 
pileus-specific protein expression in Flammulina velutipes. Fungal 
Genetics and Biology 44: 14–24.

Sakamoto Y, Nakade K, Sato S, et al. (2017). Lentinula edodes genome 
survey and postharvest transcriptome analysis. Applied and 
Environmental Microbiology 83: e02990–16.

Sakamoto Y, Tamai Y, Yajima T (2004). Influence of light on the 
morphological changes that take place during the development of the 
Flammulina velutipes fruit body. Mycoscience 45: 333–339.

Saksinchai S, Suzuki M, Chantawannakul P, et al. (2012). A novel 
ascosporogenous yeast species, Zygosaccharomyces siamensis, 
and the sugar tolerant yeasts associated with raw honey collected in 
Thailand. Fungal Diversity 52: 123–139.

Salas B, Stack RW, Secor GA, et al. (2000). The effect of wounding, 
temperature, and inoculum on the development of pink rot of potatoes 
caused by Phytophthora erythroseptica. Plant Disease 84: 1327–1333.

Saleh D, Milazzo J, Adreit H, et al. (2014). South-East Asia is the center of 
origin, diversity and dispersion of the rice blast fungus, Magnaporthe 
oryzae. New Phytologist 201: 1440–1456.

Salgado-Salazar C, Beirn LA, Ismaiel A, et al. (2018). Clarireedia: A new 
fungal genus comprising four pathogenic species responsible for 
dollar spot disease of turfgrass. Fungal Biology 122: 761–773. 

Salgado-Salazar C, Romberg MK, Hudelson B (2023). Plasmopara 
echinaceae, a new species of downy mildew affecting cone flowers 
(Echinacea purpurea) in the United States. Fungal Systematics and 
Evolution 12: 203–217.

Salmon E (1900). A monograph of the Erysiphaceae. Memoirs of the 
Torrey Botanical Club 9: 1–292.

Saluja P, Yelchuri RK, Sohal SK, et al. (2012). Torulaspora indica a novel 
yeast species isolated from coal mine soils. Antonie van Leeuwenhoek 
101: 733–742.

Salvatore MM, Andolfi A, Nicoletti, R (2021). The genus Cladosporium: A 
rich source of diverse and bioactive natural compounds. Molecules 
26: 3959.

Salvatore MM, Di Lelio I, DellaGreca M, et al. (2022). Secondary 
metabolites, including a new 5, 6-Dihydropyran-2-One, produced by 
the fungus Diplodia corticola. Aphicidal activity of the main metabolite, 
Sphaeropsidin A. Molecules 27: 2327.

Samanthi KAU, Wickramarachchi S, Wijeratne EMK, et al. (2015). Two 
new bioactive polyketides from Curvularia trifolii, an endolichenic 
fungus isolated from Usnea sp., in Sri Lanka. Journal of the National 
Science Foundation of Sri Lanka 43: 217–224.

Samaradiwakara NP, de Farias AR, Tennakoon DS, et al. (2023). 
Appendage-bearing Sordariomycetes from Dipterocarpus alatus leaf 
litter in Thailand. Journal of Fungi 9: 625.

Samelis J, Sofos JN (2003). Yeasts in meat and meat products. In: Yeasts 
in food. Beneficial and Detrimental Aspects (Boekhout T, Robert V, 
eds). Behr’s Verlag, Germany: 239–265.

Samils B, Ronnberg-Wastljung AC, Stenlid J (2011). QTL mapping of 
resistance to leaf rust in Salix. Tree Genetics and Genomes 7: 1219–
1235.

Sampaio JP (2011). Rhodotorula Harrison (1928). In: The Yeasts, A 
Taxonomic Study (Kurtzman CP, Fell JW, Boekhout T, eds). 5th edition. 
Elsevier, The Netherlands: 1873–1927.

Sampaio JP, Goncalves P (2008). Natural populations of Saccharomyces 
kudriavzevii in Portugal are associated with oak bark and are sympatric 
with S. cerevisiae and S. paradoxus. Applied and Environmental 
Microbiology 74: 2144–2152.

Samson RA (1969). Revision of the genus Cunninghamella (Fungi, 
Mucorales). Proceedings, Koninklijke Nederlandse Akademie van 
Wetenschappen 72: 322–335.



377www.studiesinmycology.org

What are the 100 most cited fungal genera?

Samson RA (1972). Notes on Pseudogymnoascus, Gymnoascus and 
related genera. Acta Botanica Neerlandica 21: 517–527.

Samson RA (1974). Paecilomyces and some allied hyphomycetes. Studies 
in Mycology 6: 1–119.

Samson RA, Houbraken J, Thrane U, et al. (2010). Food and Indoor Fungi. 
CBS Laboratory Manual. CBS Fungal Biodiversity Centre, Utrecht.

Samson RA, Houbraken J, Thrane U, et al. (2019). Food and Indoor Fungi. 
Second Edition. Westerdijk Laboratory Manual Series 2: 1−481.

Samson RA, Houbraken J, Varga J, et al. (2009). Polyphasic taxonomy 
of the heat resistant ascomycete genus Byssochlamys and its 
Paecilomyces anamorphs. Persoonia 22: 14–27.

Samson RA, Houbraken JAMP, Kuijpers AFA, et al. (2004). New ochratoxin 
or sclerotium producing species in Aspergillus section Nigri. Studies in 
Mycology 50: 45–61.

Samson RA, Hubka V, Varga J, et al. (2017). Response to Pitt & Taylor 
2016: Conservation of Aspergillus with A. niger as the conserved type 
is unnecessary and potentially disruptive. Taxon 66: 1439–1446.

Samson RA, Visagie CM, Houbraken J, et al. (2014). Phylogeny, 
identification and nomenclature of the genus Aspergillus. Studies in 
Mycology 78: 141–173.

Samson RA, Yilmaz N, Houbraken J, et al. (2011). Phylogeny and 
nomenclature of the genus Talaromyces and taxa accommodated in 
Penicillium subgenus Biverticillium. Studies in Mycology 70: 159–184.

Samsudin NIP, Abdullah N (2019). Edible mushrooms from Malaysia; 
a literature review on their nutritional and medicinal properties. 
International Food Research Journal 26: 11–31.

Samuels GJ (1973). The myxomyceticolous species of Nectria. Mycologia 
65: 401–420.

Samuels GJ (1976a). A revision of the fungi formerly classified as Nectria 
subgenus Hyphonectria. Memoirs of the New York Botanical Garden 
26: 1–126.

Samuels GJ (1976b). Perfect states of Acremonium: The genera Nectria, 
Actiniopsis, Ijuhya, Neohenningsia, Ophiodictyon, and Peristomialis. 
New Zealand Journal of Botany 14: 231–260.

Samuels GJ (1988). Fungicolous, lichenicolous, and myxomyceticolous 
species of Hypocreopsis, Nectriopsis, Nectria, Peristomialis, and 
Trichonectria. Memoirs of the New York Botanical Garden 48: 1–78.

Samuels GJ (1996). Trichoderma: a review of biology and systematics of 
the genus. Mycological Research 100: 923–935.

Samuels GJ (2006). Trichoderma: Systematics, the sexual state, and 
ecology. Phytopathology 96: 195–206.

Samuels GJ, Dodd SL, Gams W, et al. (2002). Trichoderma species 
associated with the green mold epidemic of commercially grown 
Agaricus bisporus. Mycologia 94: 146–168.

Samuels GJ, Hebbar PK (2015). Trichoderma: Identification and 
agricultural applications. APS Press, St. Paul, MN.

Samuels GJ, Ismaiel A, Mulaw TB, et al. (2012). The Longibrachiatum 
clade of Trichoderma: a revision with new species. Fungal Diversity 
55: 77–108.

Samuels GJ, Petrini O, Kuhls K, et al. (1998). The Hypocrea schweinitzii 
complex and Trichoderma sect. Longibrachiatum. Studies in Mycology 
41: 1–54.

Samuels GJ, Suarez C, Solis K, et al. (2006). Trichoderma theobromicola 
and T. paucisporum: two new species isolated from cacao in South 
America. Mycological Research 110: 381–392.

Sánchez C (2010). Cultivation of Pleurotus ostreatus and other edible 
mushrooms. Applied Microbiology and Biotechnology 85: 1321–1337.

Sánchez C (2017). Reactive oxygen species and antioxidant properties 
from mushrooms. Synthetic and Systems Biotechnology 2: 13–22.

Sánchez-Mora FD, Saifert L, Zanghelini J, et al. (2017). Behavior of 
grape breeding lines with distinct resistance alleles to downy mildew 
(Plasmopara viticola). Crop Breeding and Applied Biotechnology 17: 
141–149.

Sánchez-Vallet A, Mcdonald MC, Solomon PS, et al. (2015). Is 
Zymoseptoria tritici a hemibiotroph? Fungal Genetics and Biology 79: 
29–32.

Sanchotene KO, Madrid IM, Klafke GB, et al. (2015). Sporothrix brasiliensis 
outbreaks and the rapid emergence of feline sporotrichosis. Mycoses 
58: 652–658.

Sandoval C, Terreros V, Schiappacasse F (2009). Control of Cladosporium 
echinulatum in carnation using bicarbonates and Trichoderma. Ciencia 
e Investigacion Agraria 36: 487–498.

Sandoval-Denis M, Gené J, Sutton DA, et al. (2016). New species 
of Cladosporium associated with human and animal infections. 
Persoonia 36: 281–298.

Sandoval-Denis M, Guarnaccia V, Polizzi G, et al. (2018). Symptomatic 
Citrus trees reveal a new pathogenic lineage in Fusarium and two new 
Neocosmospora species. Persoonia 40: 1–25.

Sandoval-Denis M, Lombard L, Crous PW (2019). Back to the roots: a 
reappraisal of Neocosmospora. Persoonia 43: 90–185.

Sandoval-Denis M, Sutton DA, Martin-Vicente A, et al. (2015). 
Cladosporium species recovered from clinical samples in the United 
States. Journal of Clinical Microbiology 53: 2990–3000.

Sanfelice F (1894). Contributo alla morfologia e biologia dei blastomiceti 
che si sviluppano nei succhi di alcuni frutti. Annali dell’Istituto d’Igiene 
della R. Università da Roma 4: 463–495.

Sang-aroon W, Saekow S, Amornkitbamrung V. (2012). Density 
functional theory study on the electronic structure of Monascus 
dyes as photosensitizer for dye-sensitized solar cells. Journal of 
Photochemistry and Photobiology A: Chemistry 236: 35–40. 

Sangchote S, Farungsang U, Farungsang N (1998). Pre and postharvest 
infection of rambutan by pathogens and effect on postharvest 
treatments. In: Disease control and storage life extension in fruits 
(Coates LM, Hofman PJ, Johnson GI, eds). ACIAR Proceedings 81: 
87–91.

Sangtitanu T, Sangtanoo P, Srimongkol P, et al. (2020). Peptides obtained 
from edible mushrooms: Hericium erinaceus offers the ability to 
scavenge free radicals and induce apoptosis in lung cancer cells in 
humans. Food and Function 11: 4927–4939.

Saniewski M, Zalewska T, Krasińska G, et al. (2016). 90Sr in King Bolete 
Boletus edulis and certain other mushrooms consumed in Europe and 
China. Science of The Total Environment 543: 287–294.

Sannino C, Mezzasoma A, Buzzini P, et al. (2019). Non-conventional yeasts 
for producing alternative beers. In: Non-conventional Yeasts: from 
Basic Research to Application (Sibirny A, ed.). Springer International 
Publishing, Switzerland: 361–388.

Santi L, Maggioli C, Mastroroberto M, et al. (2012). Acute liver failure 
caused by Amanita phalloides poisoning. International Journal of 
Hepatology 2012: 487–480.

Santini A, Faccoli M (2014). Dutch elm disease and elm bark beetles: a 
century of association. iForest 8: 126–134.

Santini A, Ghelardini L, Pace CD, et al. (2013). Biogeographical patterns 
and determinants of invasion by forest pathogens in Europe. New 
Phytologist 197: 238–250.

Santoro K, Maghenzani M, Chiabrando V, et al. (2018). Thyme and savory 
essential oil vapor treatments control brown rot and improve the 
storage quality of peaches and nectarines, but could favor gray mold. 
Foods 7: 7.

Santos JM, Vrandečić K, Ćosić J, et al. (2011). Resolving the Diaporthe 
species occurring on soybean in Croatia. Persoonia 27: 9–19.

Santos L, Alves A, Alves R (2017). Evaluating multi-locus phylogenies for 
species boundaries determination in the genus Diaporthe. PeerJ 5: 
e3120.

Santos LA, Grisolia JC, Burger E, et al. (2020). Virulence factors of 
Paracoccidioides brasiliensis as therapeutic targets: a review. Antonie 
van Leeuwenhoek 113: 593–604.

Santos Rezende J, Zivanovic M, Costa de Novaes MI, et al. (2020). The 
AVR4 effector is involved in cercosporin biosynthesis and likely affects 
the virulence of Cercospora cf. flagellaris on soybean. Molecular Plant 
Pathology 21: 53–65. 

Santoyo S, Ramirez-Anguiano AC, Aldars-Garcia L, et al. (2012). Antiviral 
activities of Boletus edulis, Pleurotus ostreatus and Lentinus edodes 
extracts and polysaccharide fractions against Herpes simplex virus 
type 1. Journal of Food and Nutrition Research 51: 225–235.

Saori A, Keller NP (2011). Aspergillus flavus. Annual Review of 
Phytopathology 49: 107–133.

Saraf M, Pandya U, Thakkar A. (2014). Role of allelochemicals in plant 
growth promoting rhizobacteria for biocontrol of phytopathogens. 



378

Bhunjun et al.

Microbiological Research 169: 18–29.
Saraya R, Krikken AM, Kiel JA, et al. (2012). Novel genetic tools for 

Hansenula polymorpha. FEMS Yeast Research 12: 271–278.
Sardella D, Muscat A, Brincat JP, et al. (2016). A comprehensive review 

of the pear fungal diseases. International Journal of Fruit Science 16: 
351–377.

Sardi JCO, Scorzoni L, Bernardi T, et al. (2013). Candida species: current 
epidemiology, pathogenicity, biofilm formation, natural antifungal 
products and new therapeutic options. Jounal of Medical Microbiology 
62: 10–24.

Sargolzaei M, Maddalena G, Bitsadze N, et al. (2020). Rpv29, Rpv30 
and Rpv31: three novel genomic loci associated with resistance to 
Plasmopara viticola in Vitis vinifera. Frontiers in Plant Science 11: 
562432.

Sarkar N, Ghosh SK, Bannerjee S, et al. (2012). Bioethanol production 
from agricultural wastes: An overview. Renewable Energy 37: 19–27.

Sarnari M (1998). Monographia illustrate del genere Russula in Europa. 
Associazioni Micologica Bresadola, Trento, Italy. Tomo primo.

Sarnari M (2005). Monographia illustrate des genere Russula in Europa. 
Associazioni Micologica Bresadola, Trento, Italy. Tomo secondo.

Sarr MP, Ndiaye M, Groenewald JZ, et al. (2014). Genetic diversity 
in, Macrophomina phaseolina, the causal agent of charcoal rot. 
Phytopathologia Mediterranea 53: 250–268.

Sasaki AA, Fernandes GF, Rodrigues AM, et al. (2014). Chromosomal 
polymorphism in the Sporothrix schenckii complex. PLoS ONE 9: 
e86819.

Sasan PK, Bidochka MJ (2012). The insect-pathogenic fungus Metarhizium 
robertsii (Clavicipitaceae) is also an endophyte that stimulates plant 
root development. American Journal of Botany 99: 101–107.

Sasan RK, Bidochka MJ (2013). Antagonism of the endophytic insect 
pathogenic fungus Metarhizium robertsii against the bean plant 
pathogen Fusarium solani f. sp. phaseoli. Canadian Journal of Plant 
Pathology 35: 288–293.

Satoh K, Makimura K, Hasumi Y, et al. (2009). Candida auris sp. nov., a 
novel ascomycetous yeast isolated from the external ear canal of an 
inpatient in a Japanese hospital. Microbiology and Immunology 53: 
41–44.

Satora L, Pach D, Butryn B, et al. (2005). Fly agaric (Amanita muscaria) 
poisoning, case report and review. Toxicon 45: 941–943.

Satyanarayana T, Kunze G (2009). Yeast Biotechnology: Diversity and 
Applications. Springer, Berlin: 746.

Saubin M, Devillers H, Proust L, et al. (2020). Investigation of genetic 
relationships between Hanseniaspora species found in grape musts 
revealed interspecific hybrids with dynamic genome structures. 
Frontiers in Microbiology 10: 2960.

Saubolle MA (2007). Laboratory aspects in the diagnosis of 
coccidioidomycosis. Annals of the New York Academy of Sciences 
1111: 301–314.

Saunders DGO, Win J, Cano LM, et al. (2012). Using hierarchical clustering 
of secreted protein families to classify and rank candidate effectors of 
rust fungi. PLoS ONE 7: e29847.

Saunte D, Gaitanis G, Hay RJ (2020). Malassezia-associated skin 
diseases, the use of diagnostics and treatment. Frontiers in Cellular 
and Infection Microbiology 10: 112.

Saupe S, Turcq B, Begueret J (1995). A gene responsible for vegetative 
incompatibility in the fungus Podospora anserina encodes a protein 
with a GTP-binding motif and G beta homologous domain. Gene 162: 
135–139.

Saupe SJ (2020). Amyloid signaling in filamentous fungi and bacteria. 
Annual Review of Microbiology 74: 673–91.

Savary S, Willocquet L, Elazegui FA, et al. (2000). Rice pest constraints in 
tropical Asia: characterization of injury profiles in relation to production 
situations. Plant Disease 84: 341–356.

Savary S, Willocquet L, Pethybridge SJ, et al. (2019). The global burden 
of pathogens and pests on major food crops. Nature Ecology and 
Evolution 3: 430–439.

Saviuc P, Danel V (2006). New syndromes in mushroom poisoning. 
Toxicological Reviews 25: 199–209.

Savocchia S, Steel CC, Stodart BJ, et al. (2007). Pathogenicity of 

Botryosphaeria species isolated from declining grapevines in sub 
tropical regions of Eastern Australia. Vitis-geilweilerhof 46: 27–32.

Sawant SD, Ghule MR, Sawant IS (2017). Occurrence of CAA fungicide 
resistance and detection of G1105S mutation in Plasmopara viticola 
isolates from vineyards in Sangli, Maharashtra, India. Plant Disease 
101: 259–259.

Saxena A, Raghuwanshi R, Gupta VK, et al. (2016). Chilli anthracnose: 
The epidemiology and management. Frontiers in Microbiology 7: 
15–27.

Sayaka T, Takeshi Y, Yasuko I, et al. (2007). Three new lanostane 
triterpenoids from Inonotus obliquus. Helvetica Chimica Acta 90: 
2047–2057.

Sbaraini N, Andreis FC, Thompson CE, et al. (2017). Genome-wide 
analysis of secondary metabolite gene clusters in Ophiostoma ulmi 
and Ophiostoma novo-ulmi reveals a Fujikurin-like gene cluster with a 
putative role in infection. Frontiers Microbiology 13: 1063.

Scanu B, Linaldeddu BT, Deidda A, et al. (2015). Diversity of Phytophthora 
species from declining Mediterranean Maquis vegetation, including 
two new species, Phytophthora crassamura and P. ornamentata sp. 
nov. PLoS ONE 10: e0143234.

Scaramuzza N, Berni E (2014). Heat-resistance of Hamigera avellanea 
and Thermoascus crustaceus isolated from pasteurized acid products. 
International Journal Food Microbiology 168: 63–68.

Scaramuzza N, Diaferia C, Berni E (2015). Monitoring the mycobiota of 
three plants manufacturing Culatello (a typical Italian meat product). 
International Journal of Food Microbiology 203: 78–85.

Schaffrath R, Breunig KD (2000). Genetics and molecular physiology of 
the yeast Kluyveromyces lactis. Fungal Genetics and Biology 30: 
173–190.

Schardl CL, Craven KD, Speakman S, et al. (2008). A novel test for host-
symbiont codivergence indicates ancient origin of fungal endophytes 
in grasses. Systematic Biology 57: 483–498.

Schardl CL, Leuchtmann A, Spiering MJ (2004). Symbioses of grasses 
with seedborne fungal endophytes. Annual Review of Plant Biology 
55: 315–340.

Schardl CL, Young CA, Faulkner JR, et al. (2012). Chemotypic diversity of 
epichloae, fungal symbionts of grasses. Fungal Ecology 5: 331–44.

Schardl CL, Young CA, Hesse U, et al. (2013). Plant-symbiotic fungi as 
chemical engineers: multi-genome analysis of the Clavicipitaceae 
reveals dynamics of alkaloid loci. PLoS Genetics 9: e1003323.

Schausberger P, Peneder S, Jürschik S, et al. (2012). Mycorrhiza changes 
plant volatiles to attract spider mite enemies. Functional Ecology 26: 
441–449.

Scheckhuber CQ, Erjavec N, Tinazli A, et al. (2007). Reducing mitochondrial 
fission results in increased life span and fitness of two fungal ageing 
models. Nature Cell Biology 9: 99–105.

Scheckhuber CQ, Osiewacz HD (2008). Podospora anserina: a model 
organism to study mechanisms of healthy ageing. Molecular Genetics 
and Genomics 280: 365–374.

Scheffer R (1997). The Nature of Disease in Plants. Cambridge University 
Press, UK.

Scheffers WA (1966). Stimulation of fermentation in yeasts by acetoin and 
oxygen. Nature 210: 533–534.

Scheffers WA, Misset O (1974). The custers effect in Brettanomyces 
intermedius. Proceedings of the Fourth International Symposium on 
Yeasts, Vienna, Austria, Part I: 39–40.

Scheidler NH, Liu C, Hamby KA, et al. (2015). Volatile codes: correlation 
of olfactory signals and reception in Drosophila-yeast chemical 
communication. Scientific Reports 5: 14059.

Schenck BR (1898). On refractory subcutaneous abscesses caused by 
a fungus possibly related to the Sporotricha. Bulletin of the Johns 
Hopkins Hospital 9: 286–290.

Schenk AJ (1858). Algologische Mittheilungen. V. Pythium Pringsh. 
Verhandlungen der Physikalisch-Medizinische Gesellschaft 
(Würzburg) 9: 12–31.

Scheuerell SJ, Sullivan DM, Mahaffee WF (2005). Suppression of 
seedling damping-off caused by Pythium ultimum, P. irregulare, and 
Rhizoctonia solani in container media amended with adiverse range 
of Pacific Northwest compost sources. Phytopathology 95: 306–315.



379www.studiesinmycology.org

What are the 100 most cited fungal genera?

Schifferdecker AJ, Dashko S, Ishchuk OP, et al. (2014). The wine and beer 
yeast Dekkera bruxellensis. Yeast (Chichester, England) 31: 323–332.

Schillaci D, Arizza V, Gargano ML, et al. (2013). Antibacterial activity of 
Mediterranean oyster mushrooms, species of genus Pleurotus (Higher 
Basidiomycetes). International Journal of Medicinal Mushrooms 15: 
591–594.

Schipper MAA (1984). A revision of the genus Rhizopus. I. The Rhizopus 
stolonifer-group and Rhizopus oryzae. Studies in Mycology 25: 1–19.

Schirmer-Michel AC, Flores SH, Hertz PF, et al. (2008). Production of 
ethanol from soybean hull hydrolysate by osmotolerant Candida 
guilliermondii NRRL Y-2075. Bioresource Technology 99: 2898–2904.

Schlegel M, Queloz V, Sieber TN (2018). The endophytic mycobiome of 
European ash and sycamore maple leaves – geographic patterns, 
host specificity and influence of ash dieback. Frontiers in Microbiology 
9: 2345.

Schlösser E (1962). Uber eine biologisch aktive Substanz aus Cercospora 
beticola. Journal of Phytopathology 44: 295–312. 

Schmalreck AF, Lackner M, Becker K, et al. (2014). Phylogenetic 
relationships matter: antifungal susceptibility among clinically relevant 
yeasts. Antimicrobial Agents Chemotherapy 58: 1575–1585.

Schmidt O (2006). Wood and Tree Fungi: Biology, Damage, Protection, 
and Use. Springer, Berlin, Heidelberg.

Schmidt O (2007). Indoor wood-decay basidiomycetes: damage, causal 
fungi, physiology, identification and characteristics, prevention and 
control. Mycological Progress 6: 261–279.

Schmidt O, Gaiser O, Dujesiefken D (2011). Molekulare Identifizierung der 
Fäulepilze im Holz von Stadtbäumen. Jahrbuch der Baumpflege 2011: 
98–108.

Schmidt O, Gaiser O, Dujesiefken D (2012). Molecular identification of 
decay fungi in the wood of urban trees. European Journal of Forest 
Research 131: 885–891.

Schmidt O, Moreth U (2003). Molecular identity of species and isolates 
of internal pore fungi Antrodia spp. and Oligoporus placenta. 
Holzforschung 57: 120–126.

Schmitz HK, Medeiros CA, Craig IR, et al. (2014). Sensitivity of 
Phakopsora pachyrhizi towards quinone-outside-inhibitors and 
demethylation-inhibitors, and corresponding resistance mechanisms. 
Pest Management Science 70: 378–88.

Schnabel G, Bryson PK, Bridges WC, et al. (2004). Reduced sensitivity in 
Monilinia fructicola to propiconazole in Georgia and implications for 
disease management. Plant Disease 88: 1000–1004.

Schnabel G, Hopkins J (2022). Preharvest fungicide programs for control 
of preharvest and postharvest brown rot in peach, 2021. Plant Disease 
Management Reports 16: PF034.

Schneider CL, Whitney ED (1986). Rhizoctonia root and crown rot. In: 
Compendium of Beet Diseases and Insects (Whitney ED, Duffus JE, 
eds). APS Press, The American Phytopathological Society, St. Paul, 
MN, USA: 33–35.

Schneider JHM, Schilder MT, Dijst G (1997). Characterization of 
Rhizoctonia solani AG 2 isolates causing bare patch in field grown 
tulips in the Netherlands. European Journal of Plant Pathology 103: 
265–79.

Schoch CL, Crous PW, Groenewald JZ, et al. (2009). A class-wide 
phylogenetic assessment of Dothideomycetes. Studies in Mycology 
64: 1–15.

Scholler M, Herbaria A, Herbaria K, et al. (2001). First occurrence of 
Puccinia lagenophorae causing rust disease on common groundsel in 
North America. Plant Disease 85: 335.

Scholler M, Lutz M, Aime MC (2019). Repeated formation of correlated 
species in Tranzschelia (Pucciniales). Mycological Progress 18: 295–
303.

Scholler M, Lutz M, Wood AR, et al. (2011). Taxonomy and phylogeny 
of Puccinia lagenophorae: a study using rDNA sequence data, 
morphological and host range features. Mycological Progress 10: 
175–187.

Schröder S, Telle S, Nick P, et al. (2011). Cryptic diversity of Plasmopara 
viticola (Oomycota, Peronosporaceae) in North America. Organisms 
Diversity & Evolution 11: 3–7.

Schroeder KL, Martin FN, de Cock AWAM, et al. (2013). Molecular 

detection and quantification of Pythium species: Evolving taxonomy, 
new tools, and challenges. Plant Disease 97: 4–20.

Schroeder KL, Paulitz TC (2006). Root diseases of wheat and barley 
during the transition from conventional tillage to direct seeding. Plant 
Disease 90: 1247–1253.

Schröter J (1886). Fam. Peronosporacei. In: Kryptogamen-Flora von 
Schlesien (Cohn F, ed.). J.U. Kern, Breslau: 228–252.

Schröter J (1877). Peronospora obducens n. sp. Hedwigia 9: 129–135.
Schubert K (2005). Taxonomic revision of foliicolous Cladosporium species 

(Hyphomycetes). Ph.D. dissertation. Martin-Luther-University Halle-
Wittemberg, Germany.

Schubert K, Groenewald JZ, Braun U, et al. (2007). Biodiversity in the 
Cladosporium herbarum complex (Davidiellaceae, Capnodiales), 
with standardisation of methods for Cladosporium taxonomy and 
diagnostics. Studies in Mycology 58: 105−156.

Schuermans W, Hoet K, Stessens L, et al. (2017). Molecular identification 
of cutaneous alternariosis in a renal transplant patient. Mycopathologia 
182: 873–77.

Schultzhaus Z, Romsdahl J, Chen A, et al. (2020). The response of the 
melanized yeast Exophiala dermatitidis to gamma radiation exposure. 
Environmental Microbiology 22: 1310–1326.

Schulz B, Haas S, Junker C, et al. (2015). Fungal endophytes are involved 
in multiple balanced antagonisms. Current Science 109: 39–45.

Schüßler A, Walker C (2010). The Glomeromycota. A species list with new 
families and new genera. Gloucester, England.

Schuster A, Schmoll M (2010). Biology and biotechnology of Trichoderma. 
Applied Microbiology and Biotechnology 87: 787–799.

Schuster M, Martin-Urdiroz M, Higuchi Y, et al. (2016a). Co-delivery of cell-
wall-forming enzymes in the same vesicle for coordinated fungal cell 
wall formation. Nature Microbiology 26: 16149.

Schuster M, Schweizer G, Reissmann S, et al. (2016b). Genome editing 
in Ustilago maydis using the CRISPR-Cas system. Fungal Genetics 
and Biology 89: 3–9.

Schwanck AA, Savary S, Debaeke P, et al. (2016). Effects of plant 
morphological traits on phoma black stem in sunflower. European 
Journal of Plant Pathology 145: 345–361.

Schwander F, Eibach R, Fechter I, et al. (2012). Rpv10: a new locus from 
the Asian Vitis gene pool for pyramiding downy mildew resistance loci 
in grapevine. Theoretical and Applied Genetics 124: 163–176.

Schwartz HF, Steadman JR (1978). Factors affecting sclerotium 
populations of, and apothecium production by Sclerotinia sclerotiorum. 
Phytopathology 68: 383–388.

Schwartz S, Agarwala SD, Mumbach MR, et al. (2013). High-resolution 
mapping reveals a conserved, widespread, dynamic mRNA 
methylation program in yeast meiosis. Cell 155: 1409–1421.

Schwarzott D, Walker C, Schüßler A (2001). Glomus, the largest genus 
of the arbuscular mycorrhizal fungi (Glomales), is nonmonophyletic. 
Molecular Phylogenetics and Evolution 21: 190–197.

Schwessinger B, Sperschneider J, Cuddy WS, et al. (2018). A near-
complete haplotype-phased genome of the dikaryotic wheat stripe 
rust fungus Puccinia striiformis f. sp. tritici reveals high interhaplotype 
diversity. mBio 9: e02275.

Sconyers LE, Kemerait RC, Brock J, et al. (2006). Asian Soybean Rust 
Development in 2005: A Perspective from the Southeastern United 
States. APSnet Features.

Scott K, Eyre M, McDuffee D, et al. (2020). The efficacy of ethaboxam as 
a soybean seed treatment toward Phytophthora, Phytopythium, and 
Pythium in Ohio. Plant Disease 104: 1421–1432.

Scott P, Williams N (2014). Phytophthora diseases in New Zealand forests. 
New Zealand Journal of Forestry 59: 14–21.

Scott PM, Burgess TI, Barber PA, et al. (2009). Phytophthora multivora sp. 
nov., a new species recovered from declining Eucalyptus, Banksia, 
Agonis and other plant species in Western Australia. Persoonia 22: 
1–13.

Scruggs AC, Quesada-Ocampo LM (2016). Cultural, chemical, and 
alternative control strategies for Rhizopus soft rot of sweet potato. 
Plant Disease 100: 1532–1540.

Secor GS, Rivera VV, Khan MFR, et al. (2010). Monitoring fungicide 
sensitivity of Cercospora beticola of sugar beet for disease 



380

Bhunjun et al.

management decisions. Plant Disease 94: 1272–1282. 
Seehann G (1979). Wood-destroying fungi on roadside and park trees in 

Hamburg. Mitteilungen der Deutschen Dendrologischen Gesellschaft 
71: 193–221.

Seelan JSS (2015). Systematic study of Lentinoid and Pleurotoid 
mushrooms (Basidiomycota) of South East Asia. Clark University.

Seenivasan A, Subhagar S, Aravindan R, et al. (2008). Microbial 
production and biomedical applications of lovastatin. Indian Journal of 
Pharmacology Science 70: 701–709.

Segers FJJ, Meijer M, Houbraken J, et al. (2015). Xerotolerant 
Cladosporium sphaerospermum are predominant on indoor surfaces 
compared to other Cladosporium species. PLoS ONE 10: e0145-415.

Seifert KA (1993). Sapstain of commercial lumber by species of 
Ophiostoma and Ceratocystis. In: Ceratocystis and Ophiostoma: 
taxonomy, ecology and pathology (Wingfield MJ, Seifert KA, Webber 
JF, eds). APS Press, St. Paul: 141–151.

Seifert KA, Morgan-Jones G, Gams W, et al. (2011). The genera of 
hyphomycetes. CBS-KNAW Fungal Biodiversity Centre.

Seifert KA, Nickerson NL, Corlett M, et al. (2004). Devriesia, a new 
hyphomycete genus to accommodate heat-resistant, cladosporium-
like fungi. Canadian Journal of Botany 82: 914–926.

Seifi A, Gao D, Zheng Z, et al. (2014). Genetics and molecular mechanisms 
of resistance to powdery mildews in tomato (Solanum lycopersicum) 
and its wild relatives. European Journal of Plant Pathology 138: 641–
665.

Seiler GJ, Qi LL, Marek LF (2017). Utilization of sunflower crop wild 
relatives for cultivated sunflower improvement. Crop Science 57: 
1083–1101.

Seiler H (1991). Some additional physiological characteristics for the 
identification of food-born yeasts. Netherlands Milk and Dairy Journal 
45: 253–258.

Sekita S, Yoshihira K, Natori S, et al. (1973). Structures of chaetoglobosin 
A and B, cytotoxic metabolites of Chaetomium globosum. Tetrahedron 
Letters 14: 2109–2112.

Seko Y, Bolay A, Kiss L, et al. (2008). Molecular evidence in support of 
recent migration of a powdery mildew fungus on Syringa spp. into 
Europe from East Asia. Plant Pathology 57: 243–250.

Seko Y, Heluta V, Grigaliunaite B, et al. (2011). Morphological and molecular 
characterization of two ITS groups of Erysiphe (Erysiphales) occurring 
on Syringa and Ligustrum (Oleaceae). Mycoscience 52: 174–182.

Selim KA, El-Beih AA, Abdel-Rahman TM, et al. (2014). Biological 
evaluation of endophytic fungus, Chaetomium globosum JN711454, 
as potential candidate for improving drug discovery. Cell Biochemistry 
and Biophysics 68: 67–82.

Sell I (2008). Taxonomy of the species of the Phellinus igniarius group. 
Mycotaxon 104: 337–347.

Sellem CH, Lecellier G, Belcour L (1993). Transposition of a group II intron. 
Nature 366: 176–178.

Selvin SS, Korah SM, Michael JS, et al. (2014). Series of five cases of 
Papulaspora equi Keratomycosis. Cornea 33: 640–643.

Sempere F, Santamarina MP (2007). In vitro biocontrol analysis of 
Alternaria alternata (Fr.) Keissler under different environmental 
conditions. Mycopathologia 163: 183–190.

Senanayake IC, Crous PW, Groenewald JZ, et al. (2017). Families of 
Diaporthales based on morphological and phylogenetic evidence. 
Studies in Mycology 86: 217–296.

Senanayake IC, Rossi W, Leonardi M, et al. (2023). Fungal diversity notes 
1611–1716: taxonomic and phylogenetic contributions on fungal 
genera and species emphasis in south China. Fungal Diversity 122: 
161–403.

Senthilkumar S, Perumalsamy M, Ahmed Basha C, et al. (2012). 
Biodecolorization of a persistent organic dye from model wastewater 
using Curvularia spp. Desalination and Water Treatment 46: 272–277.

Senwanna C, Mapook A, Samarakoon MC, et al. (2012). Ascomycetes on 
Para rubber (Hevea brasiliensis). Mycosphere 12: 1334–1512.

Serra Colomer M, Funch B, Forster J (2019). The raise of Brettanomyces 
yeast species for beer production. Current Opinion in Biotechnology 
56: 30–35.

Seth HK (1970). A monograph of the genus Chaetomium. Beihefte zur 

Nova Hedwigia 37: 1–133.
Seuring C, Greenwald J, Wasmer C, et al. (2012). The mechanism of 

toxicity in HET-S/HET-s prion incompatibility. PLoS Biology 10: 
e1001451.
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