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A B S T R A C T

Multimodal integration is an important issue in public transport systems due to its influence on both passenger 
experience and overall network efficiency. In most countries in the global South, achieving integration is 
particularly problematic because of the informal nature of most public transport. Decentralised service planning 
and demand responsiveness lead to often uncoordinated, highly variable service patterns, which are not opti-
mised from a passenger perspective. Efforts to promote integration are also hampered by a lack of planning data 
on routes, service frequencies, and transfer locations. This research asks whether GPS data supplied by pas-
sengers as they move through the network can be used to help form a better understanding of the extent and 
quality of the transfer experience. The data was collected in the City of Tshwane, South Africa, among informal 
minibus-taxi passengers. Post-processing involved the use of a machine learning algorithm to identify in-vehicle, 
wait and walk segments, which were used to identify transfers between one vehicle and another. The results 
showed that many transfers are spatially efficient with short walk and wait times, but that a minority of 
transferring passengers may experience very long transfers. Transfers encompass a diverse range of behaviours 
including pacing, shopping and browsing, and typically involve much more walking than waiting. Transfers also 
occur across a wide range of locations, but tend to be concentrated in certain nodes and along street segments. 
Strategies to improve transfer facilities as well as general walkability might be targeted at such locations. The 
study demonstrated that volunteered GPS data is a promising source of information to help planners understand 
the transfer experience in multimodal networks in data-poor environments.

1. Introduction

Multimodal integration is an important issue in public transport 
systems. Transport integration is the process of bringing the elements 
that comprise transport systems into closer and more efficient interac-
tion across modes and operators, to improve the overall state and quality 
of services (NEA et al., 2003). Many city and regional authorities have 
explicit goals and policies to pursue integration, recognising that it has 
benefits both to passengers (in terms of improved coverage and reduced 
travel disutility), and to operators (through improved network effi-
ciency) (Kash and Hidalgo, 2014, Aziz et al., 2018, Ceder, 2021).

In most countries in the global South, achieving integration is 
problematic because of the informal nature of most public transport. 
Informal services, also termed paratransit, artisanal, or popular trans-
portation (Behrens et al., 2015), are characterised by fragmented 
ownership, the use of small vehicles, high degrees of demand respon-
siveness, and operations largely falling outside the ambit of government 

planning and regulation (Kumar et al., 2021). Although these services 
take many forms, they collectively provide the majority of urban 
mobility services throughout Africa, Latin America, and most of devel-
oping Asia (Behrens et al., 2021). The decentralised service planning of 
informal services leads to often uncoordinated, highly variable service 
patterns. Routes are typically established by operators (individually or 
in groups) (Kerzhner, 2023), and service areas delineated to maximise 
profit and to manage competition amongst rival operators rather than to 
optimise passenger convenience or connectivity (Cervero and Golub, 
2007). Some evidence suggests that informal networks often impose 
fewer transfers but higher transfer penalties on passengers than formally 
planned bus and rail services (Tun et al., 2020). However, the extent and 
characteristics of transfers in informal networks have been under-
studied, hampering the ability of authorities to promote integration and 
improve passenger service quality.

A key limitation in this regard is the lack of planning data of all types, 
including on routes, service frequencies, and transfer locations. Informal 
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services suffer from this in particular; Klopp and Cavoli (2017) call them 
“invisible” within formal urban planning processes. Emerging data 
collection and data analytics techniques offer potentially promising 
ways to help fill the data gap. One example is Global Positioning System 
(GPS) technology, a location awareness system which relies on a 
network of satellites to determine the ground position of an object 
(Stopher, 2009a). The high level of location accuracy of GPS, coupled 
with its relatively easy deployment using smartphones, offers ways of 
collecting travel information with greater ease and at lower cost than 
what can be done through traditional survey and observational tech-
niques (Stopher, 2009a). GPS has proved useful to track paratransit 
vehicles in order to map routes and service patterns (Klopp and Cavoli, 
2017, Saddier and Johnson, 2018, Coetzee et al., 2018). Although 
transfer locations can be inferred from GPS data processed in the Gen-
eral Transit Feed Specification (GTFS) format, such data are less useful 
in studying network-wide integration, as tracking occurs at the vehicle 
and route level, and contains limited information on the actual locations 
where transfers happen as passengers are navigating through the 
network.

An alternative use of GPS technology has been to track passengers 
instead of vehicles. For instance, crowdsourcing, the process of collect-
ing and utilising the creative solutions of a distributed network of in-
dividuals (Goodchild, 2007, Howe, 2008), has been used to collect data 
on bus routes and generate the first bus map of Dhaka (Ching et al., 
2013). This is an example of Volunteered Geographic Information (VGI), 
a type of crowdsourced information which is linked to geolocation data 
or a map (Ferster et al., 2018). VGI has also been used to study aspects of 
the urban travel experience more generally (Howe, 2021).

This research asks whether tracking data that are supplied by pas-
sengers, as they move through an informal public transport network, can 
be used to help form a high-level understanding of the transfer experi-
ence. Key elements of this experience, that are often perceived nega-
tively by the public, are walking, and waiting, and transferring (Fang 
and Zimmerman, 2015). In order to identify and measure these ele-
ments, we develop and test a method to collect self-reported VGI data 
using a smartphone application. The resultant datasets are characterised 
by large volumes of complex data, requiring advanced computer-based 
processing methods for efficient management and analysis. To help 
identify data patterns associated with transferring, we use machine 
learning, a field of artificial intelligence which involves programming 
computers to optimise a performance criterion, based on past experience 
or a sample of training data (Alpaydin, 2020). The outcomes are 
potentially instructive as a method for researchers and city authorities to 
study the transfer experience in multimodal networks in data-poor 
environments.

The specific research questions are:
Is it feasible to use data collected through a smartphone-based GPS 

application, supplied by passengers in a crowdsourced setting, and a 
machine learning approach to data analysis, to identify the physical 
locations of transfers in informal transport networks; and Can the 
amount of walking time, waiting time, and walking distance be esti-
mated from the GPS data, as a way of quantifying the passenger 
disutility of transferring?

This research was conducted in the City of Tshwane, a sprawling 
metropolitan area in South Africa. Informal services are provided with 
16-seater minibus-taxis (MBT), a mode that transports about two-thirds 
of public transport trips (and referred to as taxis in the rest of the paper). 
Formal bus and rail services also operate, but fall outside the scope of 
this study. The rest of this paper is organised into the following sections: 
literature review, materials and methods, results, and conclusions.

2. Literature

This section reviews literature on informal public transport net-
works, the measurement of the quality of transport integration, the use 
of GPS-based data collection, and machine learning applications in 

transport research.

2.1. Informal public transport service patterns

Following the rising recognition that informal public transport ser-
vices in global South cities require better study (Cervero and Golub, 
2007, Behrens et al., 2015), research examining their service patterns, 
operating conditions, and passenger impacts is slowly expanding. Much 
of the research is grounded in qualitative case studies and small samples, 
but a few larger studies using GPS data have also appeared (Molloy et al., 
2023, Yazdizadeh et al., 2019, Costa et al., 2023, Fan et al., 2019, Du 
Preez et al., 2019, Mittal et al., 2024, Ndibatya and Booysen, 2021).

Within Sub-Saharan Africa (SSA), a common finding has been that 
informal networks tend to provide very good coverage of a metropolitan 
area. A comparative study of seven SSA cities found that in most cities 
nearly three-quarters of residents live within a 10-minute walk of 
mapped paratransit routes, making the mode very widely available to 
potential users (Falchetta et al., 2021).

However, this coverage is not universal. Service patterns are typi-
cally very variable, both across space and time, in response to variations 
in demand density, traffic conditions, and the presence of competitor 
modes (Ferro, 2015). Spatially, many informal routes tend to extend 
between outlying residential areas and central cities (Falchetta et al., 
2021), following major desire lines for radial movements. Two impli-
cations are that routes tend to become very dense in the city centre, 
contributing to major congestion in already crowded areas; and that 
passengers travelling between suburbs are often forced to make long 
journeys with inconvenient transfers. Du Preez et al. (2019) found that 
in Cape Town this is mitigated by the existence of two other types of 
paratransit services, which they labelled intermediate and feeder/ 
distributor services. These tend to serve medium and short trip lengths 
respectively, with the latter serving a collector role in the vicinity of 
transfer hubs where passengers can transfer to trunk services provided 
by both other taxis and formal bus and rail modes. In general routing 
efficiency tends to be high (Mittal et al., 2024), although some drivers 
are observed to engage in detours, random searching behaviour, and 
trips abandoned before the end of the route, which impose delays and 
uncertainty on passengers (Ferro, 2015, Ndibatya and Booysen, 2020, 
Ndibatya and Booysen, 2021). This is a consequence of the fact that 
routes and stops are typically selected by drivers under conditions of 
high uncertainty, and not optimised from a network operational 
perspective.

Temporal variations are driven chiefly by the profit motive, as many 
vehicles are rested during low-demand periods of the day. Long head-
ways are often coupled with ‘fill-and-go’ dispatch strategies, often 
leading to long waits for boarding passengers (McCormick et al., 2015). 
Many vehicles spend the majority of the day waiting or queuing at ranks 
or stations, leading to low overall utilisation (Saddier and Johnson, 
2018, Ndibatya and Booysen, 2020).

2.2. Assessing the quality of multimodal integration

Multimodal integration of public transport networks has been stud-
ied using a variety of approaches. A key aspect of most studies is their 
focus on transfers – points of intersection between public transport lines 
within the network, where users have to or choose to move from one 
vehicle to another (Garcia-Martinez et al., 2018).

Transfers are regarded negatively because they disrupt the travel 
experience, reduce the competitiveness of public transport compared to 
the door-to-door service provided by private transport, deter potential 
customers, and reduce the satisfaction of existing customers. On the 
other hand, transfers support hierarchical multimodal networks and 
increase the service areas of public transport systems (Guo and Wilson, 
2011).

Transfers have predominantly been studied using two methods: 
experience assessment, and supply assessment. Experience assessment 
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characterises the transfer experience into the walking and waiting un-
dertaken by commuters during transfers, and a subjective transfer 
penalty or disutility determined by the transfer environment (Garcia- 
Martinez et al., 2018, Schakenbos et al., 2016). The underlying aim is to 
understand transfer behaviour generally, how it is subjectively valued 
by users, and how it may be improved (Guo and Wilson, 2011). Stated 
choice techniques are commonly used for collecting data from users and 
modelling this behaviour. Supply assessment, on the other hand, regis-
ters and ranks all elements of transfer supply, including station design, 
social environment, and service management, based on input from a 
wide range of stakeholders.

A diverse set of indicators have been used by different researchers to 
evaluate multimodal integration, the most common being transfer time 
which typically includes transfer walking time and transfer waiting time 
(Guo and Wilson, 2011). Some studies have added to this in-vehicle 
time, smoothness of transfer, and availability of information 
(Chowdhury et al., 2014, Ceder, 2007, Ceder et al., 2009). The widely 
used Bus Rapid Transit (BRT) Planning Guide considers walking dis-
tance, number and size of transfer points, the need for exit and re-entry 
into the station, fare payment method, and presentation of information 
to assess the quality of integration of BRT with other public transport 
modes (Institute for Transportation and Development Policy (ITDP), 
2016). A further dimension in the evaluation of multimodal integration 
that has gained research attention is the complementarity of service 
spans between scheduled and unscheduled services. This includes 
exploring the interventions which can be implemented at transfer points 
to ensure a seamless and high-quality service for passengers (Plano et al., 
2020, Plano and Behrens, 2022).

Some studies have sought to combine these quantitative and quali-
tative indicators into a coherent framework to express the quality of 
integration using a single measure. An example is the framework 
developed by Chowdhury et al. (2014) to measure public transport 
network connectivity. Rodrigue (2024) defines transport network con-
nectivity as the extent to which passengers travel from one location to 
another, through a direct connection or through an indirect series of 
nodes within a transportation network. The level of inter-route and 
inter-modal connectivity is expressed as a weighted sum of measurable 
indicators across routes and paths in a network, that might include 
quantitative indicators such as ride time, walking time, and waiting 
time, and qualitative indicators such as smoothness of transfer and 
availability of information.

Moodley and Venter (2022) adopted a similar approach in Durban, 
South Africa, to develop a multimodal integration index based on in-
dividuals’ importance ratings for the various dimensions of transferring. 
The study showed that passengers perceive a range of dimensions, some 
of which are more easily measurable (such as transfer times and inte-
grated ticketing), and some of which are more subjective (such as per-
sonal security, universal access, and traffic safety). Elements relating to 
comfort and convenience such as shelter, seating, ablutions, over-
crowding, and short walking distances were the most important for 
participants at all the sites surveyed. Notably, this study also recom-
mended the development of a mobile application to automate the 
measurement of waiting times and walking distances rather than 
depending on the assessments of researchers during in-field audits.

2.3. Travel data collection

The emerging complexity of urban transportation systems has 
motivated the evolution of traditional transport data collection methods 
to suit dynamic transportation environments. In the initial stages of the 
field of urban transport planning, interviews were the principal method 
of obtaining information about people’s movement (Stopher, 2009b, 
Hayduk, 1997). However, these methods of self-reporting are limited by 
factors such as high costs, labour intensiveness, long data collection 
periods and cycles, transcription errors, low and declining response 
rates, and trip misreporting due to imperfect memory (Stopher, 2009b, 

Ehrlich et al., 2020).
Global Positioning System (GPS) technology has emerged as a major 

source of data able to address some of these limitations (Stopher, 
2009a). The high level of location accuracy of GPS, coupled with the 
emergence of smartphones with GPS sensors, has spurred much research 
into smartphone-based GPS applications for mobility data collection 
(Stopher, 2009a, Bricka et al., 2014). Some of the applications include 
the Route Choice Application (RAPP-UP) (Hayes and Venter, 2022), 
GoMetro (Coetzee et al., 2018, Ndibatya et al., 2017), Flocktracker 
(Ching et al., 2013, Palencia Arreola, 2019, Yun et al., 2019), Tran-
sitWand (Klopp et al., 2015), and Sparrows (Joseph et al., 2020).

Mobility data such as trip origin, destination, travel time, routes 
used, and number of trips, are captured relatively accurately by GPS 
technologies (Krygsman and Nel, 2009). Additionally, smartphone- 
based data collection methods are argued to reduce survey costs, in-
crease capability for larger sample sizes, extended data collection pe-
riods and shorter data collection cycles, while offering unprecedented 
detail of route choice and opportunities for gathering feedback from 
survey participants (Asakura et al., 2014, Ching et al., 2013). Owing to 
the multiple sensors contained in smartphones, these devices can 
generate significant amounts of data, leading to the need for more so-
phisticated big data analysis techniques (Coetzee et al., 2018, Goenaga 
et al., 2023).

Digital tools have also been used to systematically collect, analyse, 
and share Volunteered Geographical Information (VGI) through 
crowdsourcing. Some characteristics of VGI include high accessibility 
and shareability; collective data management; and collaborative data 
collection from contributors through implicit or explicit observations 
(Yan et al., 2020). These characteristics shape crowdsourcing as a 
valuable tool for responding easily to local needs and providing more 
spatial and temporal coverage in data collection compared to traditional 
approaches (Ferster et al., 2018). On the other hand, VGI is also char-
acterised by a general lack of data quality standards; privacy and secu-
rity concerns around its legal collection, use and dissemination (Yan 
et al., 2020); and incomplete representation due to sampling and 
response bias (Brown, 2017) which all constitute the main barriers to 
adoption for decision making (Ferster et al., 2018). Nevertheless, VGI 
seems useful for exploratory research applications.

The data volunteering method of data collection has been applied in 
some transport and spatial planning studies in South Africa (Howe, 
2021), and globally (Ching et al., 2013). Ching et al. (2013) experi-
mented with guided crowdsourcing, also known as flock sourcing, to 
produce the first bus map of Dhaka including mapping and directions 
data, travel time, wait time, speed, crowding, service disruptions, safety 
conditions, and user perception. Flock sourcing is a form of crowd-
sourcing where users are organised and motivated to set targets, 
participate, and be held accountable in collection of data for a specific 
use, instead of relying on a pool of online volunteers as in traditional 
crowdsourcing. The more systematic nature of flock sourcing can be 
used to overcome the limitations of traditional crowdsourcing data 
collection endeavours and was therefore adopted for this research.

2.4. Data post processing and machine learning in transport data analysis

GPS data post-processing typically involves mobile and network 
computing activities such as data cleaning, stay and move identification, 
and map matching.

2.4.1. Data cleaning
Data cleaning is the process of removing errors from GPS location 

positioning data to enable extraction of the trip sequence (Asakura et al., 
2014). Some causes of errors in GPS tracking include the urban canyon 
effect which causes loss of signal precision, poor positioning of the GPS 
logger, insufficient number of visible satellites at any given time during 
the tracking process, or complete signal loss due to obstructions such as 
tunnels and tall buildings (Auld and Mohammadian, 2014).
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2.4.2. Stay and move identification
Stay and move identification is a density-based, spatial clustering 

algorithm used in activity-based modelling to identify stop and move 
points from 3-dimensional GPS data based on a threshold value of the 
distance between consecutive points (Gong et al., 2015). The main 
application of this technique is to split a complete trip from origin to 
destination into segments whose ends are activities (stops). It has also 
been applied to evaluate the level of performance of transport systems, 
and determine attributes of travel behaviour such as origin, destination, 
and departure and arrival times (Asakura et al., 2003).

2.4.3. Map matching
Map matching is the assignment of the observed “move” points onto 

the most likely link of the transport network (Asakura et al., 2014). Map 
matching is necessary because of errors which occur in GPS measure-
ments due to road network complexities, inadequate GPS data collection 
procedures or a combination of these issues causing the locations 
observed to be located off the actual road centreline (Blazquez and 
Miranda, 2015).

2.4.4. Mode detection
Mode detection can also be done alongside activity detection (Feng 

and Timmermans, 2014). Mode detection is the process of segmenting a 
multi-modal trip into trip segments of a single mode (Kohla et al., 2014), 
and identifying the mode. The two-step procedure followed by the mode 
detection model used by Kohla et al. (2014) included identification of 
the trip sections travelled with predictable modes such as walking, and 
classification of the other segments as one of the seven modes specified 
by the model.

Many automatic mode detection approaches have been applied in 
travel behavior analysis, employing different machine learning algo-
rithms such as the random forest algorithms, support vector machine 
(SVM), deep or shallow neural networks, among others (Zheng et al., 
2010, Bolbol et al., 2012, Kohla et al., 2014, Dabiri and Heaslip, 2018, 
Fang et al., 2017).

2.4.5. Machine learning
Machine learning is a field of artificial intelligence which involves 

programming computers to optimise a performance criterion, based on 
past experience or a sample of training data. Machine learning can be 
broadly categorised into supervised learning and unsupervised learning 
(Alpaydin, 2020). Unsupervised machine learning is the process by 
which models aim to learn the underlying patterns of the input data, 
without prior access to any output values (Lison, 2015). Supervised 
machine learning is the process of predicting a target variable based on a 
model which has been trained and calibrated on a dataset containing 
both input variables and target variable labels (Janiesch et al., 2021, 
Lison, 2015). Supervised machine learning for classification purposes 
involves a finite set of classes which are predetermined before the 
learning process, and the classification algorithms are used to map the 
input space into the predefined classes (Nasteski, 2017).

In addition to the application of machine learning in automatic mode 
detection, conventional machine learning techniques such as the 
random forest method, support vector machine (SVM) and deep or 
shallow neural networks have been used widely in transport research 
such as traffic state prediction (traffic speed and flow), travel time 
prediction, bus arrival time prediction (Varghese et al., 2020), model-
ling energy consumption of electric buses (Basso et al., 2023), accident 
detection (Aiswarya et al., 2023), and image detection (recognition of 
traffic signals, vehicles or pedestrians in different applications) (Ciregan 
et al., 2012, Ouyang and Wang, 2013).

In this research, a supervised random forest classification model 
(Breiman, 2001) was used to predict the classes of the different segments 
of a trip as either walking, waiting, or in-vehicle movement. The random 
forest algorithm is a non-linear model that involves aggregating or 
averaging the predictions of a series of randomised decision trees, each 

created using a sub sample of the data (Biau and Scornet, 2016). The 
averaging nature of this model helps to improve the classification ac-
curacy by maximising outcomes from all trees for classification, rather 
than depending on the outcome from one decision tree. This classifica-
tion technique is versatile and accurate in large-scale and multi- 
dimensional feature applications, easily adapts to ad hoc learning 
tasks, returns information of predictor variable importance (Fernández- 
Delgado et al., 2014, Biau and Scornet, 2016), and it has a reduced 
likelihood of overfitting (Aiswarya et al., 2023). A more in-depth 
description of the machine learning algorithm and its application is 
outside the scope of this paper, but the interested reader can refer to 
Breiman (2001), Biau and Scornet (2016) and Parmar et al. (2018).

3. Materials and methods

3.1. Case study description

The City of Tshwane is the administrative capital of South Africa and 
part of the urban province Gauteng. The city has a population of 
approximately 3.65 million people, spread out across a sprawling 
metropolitan area of about 6300 km2 (Fig. 1) (City of Tshwane, 2023).

As a result of segregative apartheid spatial planning practices, land 
use in Tshwane is characterised by a spatial divide between the high- 
density, low-income residential areas located on the fringes of the city 
and the low-density, higher-income residential developments closer to 
the city centre. The low-income settlements include both formal and 
informal housing, and contain largely marginalised communities 
dependent on public transport to travel long distances to access job 
opportunities (City of Tshwane, 2015, McKay et al., 2017).

Historically, the city developed as a monocentric city but over time, 
with changing investment patterns, increasing car ownership, and 
development of several other satellite nodes, has evolved into a poly-
centric, multi-nodal urban form (City of Tshwane, 2013). Nevertheless, 
most jobs are located in or near the urban core. As a result, most public 
transport operates radially. The modal distribution of all trips is 33 % 
private car, 29 % walking, 22 % minibus-taxi, 11 % bus, and 3 % rail 
(City of Tshwane, 2015). Minibus taxis are considered an informal 
mode, with routes and schedules largely determined by drivers and their 
associations, and city authorities applying a “light-touch” regulation to 
control vehicle safety and route permits. Three main types of services are 
provided by minibuses: local feeder services within residential areas; 
line-haul services serving longer intra-urban trips between residential 
areas and the CBD; and inter-urban services connecting to nearby cities 
and towns. It is not known what proportion of taxi passengers have to 
transfer during their trip, but of those who transfer, the majority are 
taxi-taxi transfers, followed by a smaller share of taxi-train transfers as 
the train network also offers line-haul services to the CBD (Gotz et al., 
2015).

Integration between various public transport services is an explicit 
policy goal of the City of Tshwane (City of Tshwane, 2015). Efforts to 
promote integration include closer cooperation between the munici-
pality and the taxi industry, especially during the roll-out of the City’s 
nascent Bus Rapid Transit network (Mokoma and Venter, 2023). How-
ever Manana (2021) reports that there is currently no formal moni-
toring, evaluation and feedback process to improve modal integration in 
the City of Tshwane, partly due to the prohibitive cost of data collection 
(Department of Transport, 2016). The method described in this paper 
might help to fill this data gap.

3.2. GPS tracking app

As a first step, the proposed methodology of this research required 
identification of a method to collect GPS data using wearable devices. 
An off-the-shelf GPS tracking application called GeoTracker was tested 
in-house to determine whether quantitative indicators such as waiting 
time and walking time can be extracted from GPS data. The proof-of 
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concept study suggested that it was technically feasible to extract such 
data, but that the data collection process had to be improved in two 
ways. Firstly, the app had to provide better granularity and frequency of 
data outputs to enable efficient data processing; and secondly, the app 
needed to transmit data in real time to a remote database to mitigate 
against the risk of data loss due to loss of the host device, and to mini-
mise the respondent burden of manually uploading trip data to the 
database.

In order to overcome the limitations of the proof-of-concept study, a 
bespoke GPS tracking smartphone application named TraceMate was 
developed to incorporate the necessary features. The app ran only on 
Android smartphones (for now) and had a very simple interface that 
required a respondent only to press a record button at the start and end 
of every trip. The app had to be kept running during the entire trip.

3.3. Field work

The study involved collection of quantitative data in the form of GPS 
traces, and qualitative data (including users’ narrative descriptions of 
their trip sequences, and subjective ratings of different elements of the 
transfer experience) for each of the trips made through an online 
questionnaire. The data collection and analysis process is illustrated in 
Fig. 2.

3.4. Sampling and recruitment

As a feasibility assessment, this study did not aim to recruit a 

Fig. 1. Residential density of the City of Tshwane (City of Tshwane, 2023).

Fig. 2. Data collection and analysis process.
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statistically representative sample of commuters. A purposive sampling 
technique was used based on geographical location to ensure a variety of 
exemplar trips across the city were observed.

The initial sample included 21 volunteers (i.e., real commuters who 
recorded their usual trips to and from work or school), recruited via a 
community-based research organisation. The volunteers were incenti-
vised by reimbursing the costs of mobile data and transport fares used 
for all the trips recorded, with no extra remuneration. However, as was 
found in other studies (Howe, 2021), recruiting volunteers is a difficult 
and time-consuming process. It was therefore decided to supplement the 
sample with eight paid data collection staff (referred to as enumerators). 
They were given pre-specified destinations to travel to, as opposed to the 
random trips of volunteers. The specified destinations were selected 
after identifying the top ten origin–destination pairs amongst minibus- 
taxi users in Tshwane (from prior surveys), and selecting those which 
most likely involved taxi-taxi transfers. Care was also taken to recruit 
enumerators who were regular public transport users, with knowledge 
of how to use the systems.

The criteria for recruiting both volunteers and enumerators were: use 
of at least two modes or two vehicles of the same public transportation 
mode on their recorded trips; ownership of an Android smartphone; 
possession of a Google account or willingness to create a temporary 
account for this survey; informed consent given to have their trips 
tracked in accordance with ethics and privacy concerns; and basic En-
glish proficiency to complete the questionnaires.

3.5. Pilot and main survey

A pilot study was carried out before the main field data collection 
exercise, with the objectives to act as a pre-test of the newly developed 
TraceMate GPS tracking application, and to test the practicality of all the 
proposed steps of data collection. The sample for the pilot study con-
sisted of 12 people recruited from the main sample. Data collection for 
the pilot survey was done over one day, and debriefing offered the 
following general observations with regards to the survey tools and the 
proposed methodology:

Mobile phone battery drainage revealed the need for backup power 
supply to avoid tracking disruptions. This was critical for participants 
recording very long trips, several trip repetitions per day (enumerators) 
and even volunteers whose phone batteries may be drained by the end of 
the workday.

Information seeking by enumerators who were travelling unfamiliar 
routes increased their transfer time dramatically compared to ordinary 
commuters who were already familiar with the location of interchanges, 
stations, or the trip fares. This implies that the total transfer time esti-
mated from only smartphone data requires additional contextual in-
formation such as the route familiarity of the user.

Some participants also reported long traffic-related stops such as 
mechanical breakdown of vehicles, or interruptions by the traffic police, 
which can mistakenly be identified as transfers during data processing.

There was also a limitation of the app’s device compatibility, even 
among Android smartphones, for brands which no longer support 
Google services.

Based on these findings, enumerators were provided with power 
banks to provide a backup source of power.

Each participant tracked their trips over a period of four days 
including both weekdays and weekends outside of national holidays in 
order to reflect the typical traffic patterns. The volunteers recorded 2 
trips per day, whereas enumerators recorded 6 trips per day, in the 
morning, afternoon and evening peak periods. After every trip, partici-
pants were required to complete an online questionnaire to provide 
some qualitative insights about the transfers made during the just 
completed trip.

The GPS data collected was transferred from the users’ devices 
through real-time transmission from the app directly to a remote data-
base hosted on MongoDB.

3.6. Sample characteristics

The sample of 29 individuals consisted of more women (64 % of 
participants) than men, consistent with women’s higher use of minibus- 
taxis (Statistics South Africa, 2022). The largest proportion of the sample 
were aged between 18 and 30 years, followed by the age group from 31 
to 40 years. Whereas most respondents reported being unemployed, 
other participants were undertaking full-time employment, part-time 
employment, full-time study or part-time study as their main occupa-
tion. The sample is not meant to be statistically representative of taxi 
users but is consistent with the general characteristics of the taxi user 
population.

Since it was a requirement for participants to own a smartphone, the 
sample was likely skewed in favour of more advanced users of mobile 
phones. Since volunteered geographic data depends on smart phone 
ownership, it is a potential limitation of the research that it may fail to 
reach all segments of the travelling public. However some studies 
indicate that smartphone penetration in South Africa had exceeded 90 % 
by 2019 (ICASA, 2020). Our survey showed that respondents routinely 
use mobile data to access the internet, suggesting that the smartphone is 
the primary method for accessing the web (Fig. 3).

3.7. Data for training the classification algorithm

In supervised machine learning, the algorithm learns the patterns of 
the different classes based on a dataset where the classes are already 
labelled.

The data for this purpose was collected by the researcher ahead of 
the main data collection process. This was done by travelling and 
recording 8 multistage trips using public transport. The times during 
which transfers, waiting, and walking took place were recorded on a 
detailed travel diary, and used to label the corresponding records in the 
GPS file as either WALK, WAIT, or RIDE segments. The class WALK refers 
to the activity of walking between the drop-off point of the vehicle from 
which one is transferring, to the boarding location for the next vehicle. 
The class WAIT was collectively used to indicate (1) waiting for a vehicle 
at a bus station or taxi rank; (2) in-vehicle waiting for other passengers 
to board or during the scheduled dwell time for the case of scheduled 
services such as the train and buses; and (3) waiting which involves 
walking/pacing around stations or stops. The class RIDE refers to the 
time spent in a moving vehicle.

The sample size of the training dataset is relatively small. However it 
proved adequate for the purposes of developing a prototype model to 
test the feasibility of the proposed approach before committing re-
sources to collecting a larger dataset for model training, as the labelled 
datasets for training supervised machine learning models involve 

Fig. 3. Routine internet access pathways on mobile phones of sample (n = 29).
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manual human annotation which is time-consuming and error prone 
(Alzubaidi et al., 2023). The small training dataset was highly effective 
for two reasons: firstly, it was very accurate since it was collected by the 
researcher; secondly, the ensemble learning and averaging approach 
used by random forest models reduces sensitivity to noise in small 
datasets, and helps to maintain a good model quality even in cases where 
the individual trees are trained on small datasets (Pedregosa et al., 2011, 
Parmar et al., 2018, Han et al., 2021).

3.8. Data analysis

The data analysis process involved the identification of trips, feature 
engineering and extraction, training and testing of the model, and its 
application for prediction of trip segments on trip data supplied by 
volunteers.

3.9. Data retrieval and cleaning

The collected GPS data was downloaded from MongoDB in form of 
text files with the variables of object identifier, user identifier, latitude, 
longitude, instantaneous speed, and a datetime stamp. Initial data pro-
cessing and cleaning was done in Microsoft Excel, and the cleaned data 
was imported into R Studio for detailed analysis.

3.10. Trip identification

The first analysis step was to split the cleaned GPS data into distinct 
trips. We define a ‘trip’ here as a movement from origin to destination, 
which could include multiple trip segments with transfers between ve-
hicles. Automatic identification of trip ends was done using the dwell 
time method (Yang et al., 2022) which was implemented using the 
‘dplyr’ and ‘lubridate’ packages in R. The dwell time method uses the 
temporal characteristics of GPS trajectories to identify trip ends, with 
stop time thresholds serving as a key parameter. Various time thresholds 
were tested to identify trip ends, leading to a threshold of 600 s (10 min) 
being selected as the most suitable. This is longer than the 120 s 
thresholds used in previous studies (Venter et al., 2014, Jianchuan et al., 
2014) that was found too short to avoid misclassification of data loss 
incidents as trip ends where incidents lasted longer than 120 s. A major 
cause of such incidents was signal loss due to power outages at cellular 
towers, which was common in Tshwane at the time. In addition, since 
we mainly tracked the morning and evening commutes, there were 
significant time intervals between the observed trips, making a longer 
threshold acceptable.

The output of the trip identification process was validated by 
comparing the results for each user with their questionnaire responses, 
which included self-reported detail on all trip start and end times.

3.11. Data aggregation and feature engineering

As a result of several factors related to GPS satellite signals, GPS 
receivers, and the usage environment (Thin et al., 2016), GPS data 
inherently contains unavoidable scatter that may lead to inaccurate 
variations in speed and bearing calculated on a point-to-point basis. To 
reduce this inaccuracy, trip data was aggregated into segments of 5 s, 
using a sliding (or rolling) window with an overlap of 4 steps.

From the aggregated data, different features could be extracted. A 
feature is a property derived from the raw input data with the purpose of 
providing a suitable representation that is more meaningful to the ma-
chine learning process (Janiesch et al., 2021). The most common fea-
tures applied in mode detection models are speed-based attributes (e.g. 
average speed, maximum speed, 1st quartile of speed, and 3rd quartile 
of speed), acceleration-based attributes (e.g. average, minimum, and 
maximum acceleration), attributes based on the direction of travel (e.g. 
change of azimuth and the heading change rate), and spatial attributes 
such as the road or rail network for fixed-route modes (Jianchuan et al., 

2014, Ferrer and Ruiz, 2014). ANOVA testing for variable selection in 
automatic mode detection modelling by Bolbol et al. (2012) concluded 
that speed and acceleration are the most suitable parameters for 
differentiating modes, despite the high positive correlation between 
speed and acceleration that may introduce bias in a mode detection 
model.

For this analysis, a variety of features calculated within a rolling 5- 
second window were tested. The most effective were found to be the 
average, 3rd quartile, and variance of speed, followed by the distance 
covered within a time window (based on the speed and timestamps), and 
the change in direction between the start and end points of a time 
window.

3.12. Variable importance testing

Variable importance testing is necessary for identification of redun-
dant, noisy or unreliable variables which may impair the performance of 
the final prediction of the classification algorithm. This is important in 
justifying the cost of data gathering and storage, improving the under-
standability of the model, and optimisation of computational speed by 
using only the truly important variables (Han et al., 2016).

In decision trees, the variable importance can be estimated using the 
Gini Impurity or Gini Index. The Gini Index is a measure of the node 
impurity in a decision tree. It measures how well a node splits the 
dataset between the number of outcomes at each node, based on the 
given conditions. The higher the value of the mean decrease Gini (Gini 
importance) score, the higher the importance of the variable in the 
model (Martinez-Taboada and Redondo, 2020).

3.13. Model training and testing

In this analysis, the target variable of the model is the trip segment, a 
categorical variable with the classes of WALK, WAIT, and RIDE. The 
predictor variables are the features listed above.

A random forest classification model was trained using the labelled 
data collected by the researcher and split into ‘train’ and ‘test’ subsets in 
a ratio of 80:20. The ‘train’ subset was used by the algorithm to learn the 
patterns of the different categories of the target variable, and thereafter 
the ‘test’ subset, which had previously not been exposed to the model, 
was used to assess the performance of the trained model. A confusion 
matrix was used to assess the performance of the classification algo-
rithm. A confusion matrix provides a summary of the prediction done on 
the test dataset by indicating the true positives, false positives, true 
negatives, and false negatives.

The hyperparameters of the random forest model were tuned to 
improve the accuracy of prediction. The hyperparameters for a random 
forest classifier are the number of decision trees (ntree) and the number 
of predictor variables to randomly sample for consideration at each 
nodal split in each tree (mtry).

3.14. Model application and estimation of transfer metrics

The trained and tested random forest classifier algorithm was then 
used to classify the trips from the larger sample, which had been iden-
tified by the trip identification algorithm, into segments of walking, 
waiting, or in-vehicle travel. The trip segments predicted by the random 
forest classifier for each trip were then summarised by run length 
encoding, a form of lossless data compression which summarises se-
quences with the same value occurring many consecutive times into a 
single value of the count of the particular category (Techie Delight, 
2023).

Results of the run-length encoding process were exported from R into 
Microsoft Excel and used to estimate transfer waiting and walking 
characteristics. The geographic coordinates for trip origins, destinations, 
transfer locations, and additional information such as total trip time, 
could also be extracted for each unique trip.
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The data points which were classified as either walking or waiting 
were mapped in ArcGIS Pro to identify the locations where transfers are 
made, in addition to trip starts and ends.

4. Results and discussion

4.1. Feature extraction, model training and testing

A summary of the trips tracked for this research, based on the post- 
trip questionnaire responses received, is shown in Table 1. Out of the 
planned 240 trips, a total of 230 questionnaire responses covering 
205.48 h of travel time were collected.

On the other hand, the automatic trip identification process, which 
used a threshold of 10 min to identify trip ends, identified a total of 249 
trips and an overall total travel time of 155.95 h. The precision of the 
trip end identification algorithm, defined as the ratio of derived true trip 
ends to the number of actual trip ends (Reinau et al., 2014), was esti-
mated as 0.92. The shortfall in precision can be explained by instances 
where i) a single trip had GPS tracking gaps for durations longer than 10 
min, and was therefore identified as two separate trips; ii) enumerators 
ended one trip, and started recording another trip before 10 min had 
elapsed, causing the algorithm to identify the two trips as a single trip; or 
iii) respondents failed to self-report all trips on the questionnaire. The 
24 % discrepancy between the total travel time recorded by the GPS 
tracker and self-reported travel times is a concern and is most likely 
attributable to inaccuracies in the self-reported trip start and end times. 
Such errors are likely to lie in the extremes of the trip length distribu-
tion, as the average duration of reported trips of 53 min (Table 1) is close 
to the mean travel time of 50 min measured in other surveys in Tshwane 
(City of Tshwane, 2015).

The relative importance of each extracted feature in predicting the 
class of the trip segment, based on the Gini importance, is shown in 
Fig. 4.

From the results shown, the 3rd quartile of speed was the most 
important feature for predicting the class of the trip segment, followed 
by average speed, and variance of speed in each data segment. The 
change in bearing had the lowest Gini importance and was therefore the 
least influential predictor variable for the model. The random forest 
classifier model was trained on the training dataset. Using a random 
search, the model was tuned and the optimal values of ntree and mtry 
were found to be 250 and 2 respectively.

After training the model, it was then validated on the ‘test’ subset of 
the dataset, and an accuracy of 98.84 % was achieved (Table 2). This 
accuracy was considered satisfactory, and therefore the model was 
saved and applied for classification of the trip segments on the GPS data 
collected from commuters.

4.2. Model application

The trained random forest model was then applied to the unlabelled 
GPS data collected by the survey participants. The predictions from the 
model were then summarised into sequential WALK, WAIT, and RIDE 

segments and their respective object lengths (time in seconds) by run 
length encoding, exported to Microsoft Excel, and visualised using 
horizontally stacked bar graphs as illustrated in Fig. 5.

The details of transfer waiting and walking for each trip were then 
estimated from the trip visualisations as well as the run-length-encoded 
data. A few anomalies were picked up, in the form of multiple short 
segments identified as WALK segments of less than 1 min. When plotting 
the coordinates in GIS it was found that the algorithm tended to mis- 
identify low-speed vehicle movements such as at the approach to 
traffic signals, as walk trips. This was corrected by applying a threshold 
of 60 s as the minimum segment length for a walk or wait segment, in 
line with the 60-second minimum cycle length used for traffic signals in 
South Africa. The example in Fig. 5 (b) shows that a transfer occurred 
between cumulative object lengths 1700 and 2000, while the short 
WALK events outside of this window are ignored. Walking at the start 
and end of trips were also removed from the database, in order to focus 
on transfer events alone. It was also observed that some trips did not 
involve any recognisable transfers, as shown in Fig. 5 (a). These trips 
were omitted from the rest of the analysis.

The total walk and wait time associated with each transfer was 
calculated. The walking distance was estimated from the walking time, 
by assuming an average walking speed of 1 m/s as suggested by Hitge 
and Vanderschuren (2015). This approach was chosen over summing 
the straight-line distance across individual GPS datapoints because the 
latter had not been corrected for GPS measurement errors.

Fig. 6 shows the cumulative distribution of the observed walking 
times for all identified transfer events. The walking times ranged from 
1.0 to 26.2 min, with an average walk of 5.13 min, or 308 m. The dis-
tribution of walk times is clearly left-skewed, with 88 % of transfer walk 
times less than 10 min or 600 m. This suggests that transfers tend to be 
relatively efficient spatially, rarely requiring very long walks between 
vehicles. However, there is a small minority of transfers that impose 
much longer walking distances on passengers.

The waiting times observed by time of day are shown in Fig. 7. The 
waiting time of the sampled trips ranged from 0 to 5.1 min, with an 
average waiting time of 0.19 min. The figure shows that the majority of 
transfers had zero waiting time. This is interesting. Firstly, very short 
waiting times are consistent with the high frequencies of paratransit 
services, with up to 325 departures per hour on some routes within 
Tshwane (De Beer and Venter, 2024). It could also indicate that “pure” 
waiting, where passengers stay in one place waiting for a taxi, is rela-
tively rare for this mode, and that much of the transfer experience is 
actually made up of walking between egress and access points rather 
than waiting. This is consistent with the typical stopping pattern of taxis, 
as shown below. We also observe a negative correlation between 
walking and waiting, with the longest waiting times estimated for the 
trips with shortest walking distances. But it is also acknowledged that 
the distinction between waiting and walking is sensitive to the classifi-
cation approach adopted, which needs to be refined further in subse-
quent work.

To reflect the effect of taxis’ ‘fill-and-go’ operation mechanism on the 
quality of transfers, we plotted both waiting and total transfer time by 
time of day in Fig. 7. Consistent with the estimated walking and waiting 
time, 86 % of all trips had transfer times of less than 10 min. However, 
the majority of trips with transfer times exceeding 10 min occurred 
during off-peak periods (between 10:00 and 15:00, and after 18:00), 
with the maximum transfer time observed being 26 min. This suggests 
that lower frequencies and ‘fill-and-go’ operations do contribute to 
somewhat longer transfers for passengers.

4.3. Locations at which transfers are made

The locations at which modal transfers were made were identified as 
the sections classified as WALK, WAIT, or a combination of both. To 
investigate the spatial distribution of these transfer locations, we map-
ped these locations in ArcGIS Pro. The intention is not to provide a 

Table 1 
Summary of trips recorded during data collection.

Time of day Number of trip 
starts

Average trip 
duration

Range of trip 
duration

00:00–03:00 3 01:12:00 00:35:00
00:03–06:00 3 01:40:20 02:21:00
06:00–09:00 30 00:50:24 03:15:00
09:00–12:00 75 00:54:28 03:24:00
12:00–15:00 75 00:55:33 02:23:00
15:00–18:00 39 00:48:48 02:27:00
18:00–21:00 4 00:27:45 00:28:00
21:00–00:00 1 00:35:00 −

Total 230 trips 00:53:36 −
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representative picture of transfer activity across the city (the sample is 
too small for this), but to investigate whether useful outputs can be 
generated with the approach. The visualisation was done at two levels of 
detail: at a macro level, to identify common transfer locations across the 
city, and at a micro level, to investigate passengers’ transfer behaviour 
within specific precincts. Fig. 8 shows the citywide distribution of lo-
cations, using a heatmap plot that calculates the density of points on a 
raster layer to elevate areas with more transfer points in close proximity 
to each other. The figure also shows the network of taxi routes, mapped 
from a previous study (De Beer and Venter, 2024).

It is clear that transfers are not spread uniformly across the city but 

concentrated in a few areas:
Most transfers occur in the Pretoria Central Business District (CBD), 

which is consistent with the largely radial route pattern of minibus-taxi 
services. It is evident that many commuters travelling to and from areas 
outside the CBD are forced to transfer in the CBD.

The smaller community node of Garankuwa emerges as the second 
most common transfer location. Further investigation showed that this is 
at a local hospital, where a small formal taxi rank is provided to 
accommodate passengers visiting the hospital. It is interesting that this 
location has developed into a popular transfer location for the whole 
area. Spatially this location is at the edge of the Garankuwa township, at 
a natural connection point between local collector/distributor taxi ser-
vices and line-haul routes connecting the area to more distant destina-
tions like the CBD. The relative importance of this rank as a transfer 
location would not have been evident from any other data sources.

A number of other minor concentrations of transfers are spread 
across different areas in outlying residential areas in Garankuwa, 
Mamelodi, and Hammanskraal. Transfers are concentrated along main 
roads, at rail stations, and at junctions between taxis routes. Like in the 
previous case, many of these transfers likely occur between local routes, 
or between local and long-haul taxi services.

Fig. 4. Gini importance of extracted features in predicting the class of each trip segment.

Table 2 
Confusion matrix for model testing.

Prediction Reference

WALK WAIT RIDE

WALK 724 0 11
WAIT 4 483 0
RIDE 7 2 831

Fig. 5. Examples of trip segments for two trips as classified using the random forest classifier model: (a) trip with no transfer; (b) trip with transfer between 1700 and 
2000 s.
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Fig. 9 shows a microscale plot of all 18 identified walking segments 
within the Pretoria Central Business District, superimposed on a map of 
all formal and informal taxi facilities recorded by the municipality (City 
of Tshwane, 2015). Formal interchanges may include off-road under-
cover boarding areas and passenger amenities (Fig. 10 (a)), while 
informal facilities lack any infrastructure, and might be located in or 
next to the road reserve (Fig. 10 (b)). Informal facilities are established 
by operators and drivers without the intervention of authorities, usually 
in response to an undersupply of formal facilities in an area. From Fig. 9, 
a few points are salient. Firstly, passenger walks and waits occur across a 
wide stretch of the CBD. The flexibility of minibus-taxi operational 
patterns is such that passengers board and alight at many places near the 
route end points, and not just at designated facilities. Secondly, a 
considerable amount of walking subsequently takes place between taxis 
– some of the walk segments plotted are as long as 1.6 km. However, 
from visual observation it also appears that passengers engage in a va-
riety of activities while walking, including buying food at roadside stalls 
and socialising. It is thus likely that passengers derive some utility from 
the transfer trip itself, which would complicate attempts to eliminate it.

Thirdly, several of the walk trips seem to start and end randomly 
along the same streets, at places where taxis occupy the parking lane and 
even park on sidewalks and medians (Fig. 10 (c)). This leads to what we 
term here “ribbon transferring”, where entire street segments act as 
transfer locations. It is in most cases the result of inadequate transfer and 
storage facilities being provided for minibus taxis, and often associated 
with chaotic parking patterns, invasion of pedestrian spaces, and safety 

problems for pedestrians. Ribbon transferring therefore tends to take 
place under poor conditions for passengers and may lead to prolonged 
walk distances (compared to if transfers were contained within 
concentrated transfer facilities). We merely observe the phenomenon 
here and recognise that it needs further study.

5. Discussion

These observations suggest a number of implications for planning. 
Firstly, the evidence suggests that many transfers are concentrated in 
specific (fairly obvious) locations, such as in central areas where many 
radial routes converge. If the intention is to improve service quality for 
the passenger and multimodal integration of the public transport 
network, the evidence supports efforts by some authorities to invest in 
establishing and upgrading formal interchange facilities with adequate 
passenger amenities.

However, we also found that transferring in informal networks may 
encompass a diverse range of behaviours across a wide range of loca-
tions. These locations might include areas adjacent to (and between) 
formal ranks and stations, a myriad of minor transfer points within and 
between residential areas, and entire road sections where passengers 
engage in “ribbon” transferring between vehicles in the road reserve. 
Clearly, a better view is needed of this diversity, and the methods out-
lined in this study might help to identify these locations more clearly 
from actual passenger movement patterns. But the diffuse nature of this 
observed behaviour also raises the importance of general upgrading of 

Fig. 6. Cumulative distribution of estimated transfer walking time (minutes).

Fig. 7. Distribution of the waiting and total transfer time (minutes) by time of day.
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the walkability and safety of the street environment in these areas for 
pedestrians, as a strategy for improving the transfer experience. To put it 
differently, targeted interventions to improve pedestrian service quality 

are critical to support the development of well-functioning and inte-
grated multimodal networks, especially in informal networks whose 
connectivity is not optimised from a passenger perspective.

Fig. 8. Macroscale transfer walking and waiting segments, with taxi route network.

Fig. 9. Microscale plot of transfer walking segments and taxi facilities, Pretoria Central Business District. (Sources: Own data, and City of Tshwane, 2015).
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Secondly, the operating patterns of informal services are constantly 
evolving in response to changes in demand and industry conditions. An 
implication is that routes and transfer patterns will constantly change, 
leading to shifts in transfer locations. We documented the case above 
where a small community taxi rank evolved into a transfer node with 
regional importance, but without adequate capacity to handle the 
ensuing traffic volumes. Such shifts require authorities to adopt agile 
approaches to infrastructure provision, while striving to find the balance 
between pro-actively planning for and responding to evolving industry 
practice.

Lastly, transferring in informal networks seems to provide opportu-
nities for a variety of social and commercial activities. Some of these 
become entrenched through the development of informal entrepre-
neurial businesses, for instance in small-scale food production or per-
sonal services. Authorities should take note of these activities, since they 
form part of the ecosystem of transferring that will not simply disappear 
with any attempts at formalisation or regularisation of network facil-
ities. The intersection of transportation and bottom-up land use devel-
opment represents a form of bottom-up Transit Oriented Development 
(TOD), and we encourage further research to leverage such initiatives as 
time and emissions-saving strategies. Studies of passenger transfer 
needs, behaviour, and perceptions such as Hernandez and Monzon 
(2016) can be useful for policy makers to determine the infrastructural 
needs for upgrading informal transfer locations to formal facilities or 
improving existing facilities.

6. Conclusions and recommendations

The study demonstrated that volunteered GPS data is a feasible data 
source that can help planners understand the transfer experience in 
multimodal networks in data-poor environments. The quantity of data is 
such that machine learning is a suitable approach to cleaning and pro-
cessing it, leading to adequate models that can be useful in identifying 
transfer activities and studying their characteristics. The models repre-
sent a novel way of disaggregating transfer times into walking and 
waiting components.

Despite the positive outcomes of the proof-of-concept study, the 
research highlighted several ways in which the approach can be 
improved in future, potentially scaled up, studies. Further work is 
needed to refine the trip end identification algorithm, for instance by 
incorporating metrics other than stop duration. The random forest 
classifier used to distinguish between walking, waiting, and in-vehicle 
travel segments of a trip can be improved through collecting bigger 
datasets for training. The classification task is made more difficult by the 
diverse range of behaviours that are included in transferring, which 
includes information seeking, browsing, pacing, socialising, and shop-
ping. This makes the distinction between walking and waiting behav-
iours during transfers less than clear-cut from a phenomenological 
perspective and raises important questions of how to introduce nuance 
into what is considered wait time. In addition, some waiting occurs in-
side vehicles, when passengers wait for a taxi to fill up sufficiently before 
the driver starts the trip. Our approach which includes both low-speed 
and stationary components in the definition of transferring behaviour 
seems to be reasonable, but the issue needs further exploration and 
clarification.

Behaviourally, we found that transferring typically involves more 
walking than waiting. Walking times are generally short, with a mean of 
just over 5 minutes, suggesting that most transfers are spatially efficient 
and that taxi operators, despite being self-organising, do not impose 
unreasonably long walking distances. This is consistent with the findings 
of Mittal et al. (2024), and might mean that they are aware of proximity 
of stopping points for the sake of passengers, or that they are driven by 
competitive behaviour because overly long walks introduce more op-
portunities for competing drivers to intercept the market. Nevertheless, 
a minority of transferring passengers are observed to experience longer 
transfer trips; a follow-up analysis might drill more deeply into causes 
for this variation.

The granularity of the GPS data allows the identification of transfer 
locations both at a macro and a micro scale. We find evidence of a large 
number and variety of transfer locations in different contexts. Transfer 
locations vary from major nodes in the network like the city centre 
where most line-haul taxi routes converge, to a wide range of minor 

Fig. 10. Examples of (a) formal taxi transfer facility, (b) informal transfer locations without any formal infrastructure, and (b) linear or “ribbon” transfer outside a 
shopping mall. (Photos: O Mokoena; G Ankunda).
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locations serving transfers between local taxi routes or local and line- 
haul services. We identify for the first time a type of linear or “ribbon” 
transferring along stretches of roads where many taxis use the road 
reserve for passenger operations; these may be a source of longer 
walking distances. Most of these transfer locations have no passenger 
facilities, making it difficult for authorities to know how and where to 
provide better infrastructure. We suggest that the methods outlined in 
this study might help to identify these locations more clearly from actual 
passenger movement patterns, before more in-depth assessments of the 
physical and contextual conditions at these locations are undertaken 
(Park and Chowdhury, 2022, Park and Chowdhury, 2018).

This work can be extended in a few directions. The collection of 
volunteered GPS data from a larger sample of passengers needs explo-
ration, as this is needed to form a more representative picture of 
network-wide integration and transferring conditions. Our work and 
that of others (Yan et al., 2020, Howe, 2021) suggest that this might be 
challenging, but not impossible. The methods may also be extended to 
estimate network-wide metrics of multimodal integration and connec-
tivity, along the lines of the work by Chowdhury et al. (2014). Data of 
this nature can be further utilised by disaggregating the characteristics 
of the different categories of transfers throughout the course of the day, 
particularly in the peak and off-peak periods.
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