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SUMMARY 

In many fields of application, such as biology, psychology, agriculture, geology, botany, 

engineering and medicine, experiments are conducted in which a number of responses 

are repeatedly measured on each of a number of experimental units under differing 

experimental conditions. Longitudinal data which consists of observations that are 

ordered by time or position in space, for example the height of a child measured 

annually or monthly over a period of time, is considered. 

The study of growth in height is an excellent model for the investigation of other forms 

of growth and is considered in the practical applications of this thesis. Any progress 

made in measuring and modelling physical growth will serve as a good basis when 

attempts are made in future on the more difficult task of describing cognitive, affective 

or social development. The Richards growth function, a generalisation of nonlinear 

functions with a flexible point of inflection, often used to describe and compare growth 

curves, is considered. 

The generalised least squares, the maximum likelihood and the asymptotic distribution 

free frequentist estimation procedures for linear and nonlinear random parameter 

models are discussed. Two algorithms namely the Fisher scoring algorithm and the 

Expected Maximization (EM) algorithm are discussed. The Gauss quadrature numerical 

integration technique, which usually provide reliable approximations when closed form 

solutions for integrals are not available, is considered. 

The Bayes and Maximum Aposteriori (MAP) estimators are discussed, for linear and 

nonlinear models. An empirical Bayes method for the estimation of unknown model 

parameters is applied to an incomparable collection of longitudinal human growth 

records begun at the Fels institute in 1929, as well as to the Berkeley human growth 

records ( see Tuddenham and Snyder, 1954). 

The nonlinear fixed and random parameter Richards models with time series deviations 

(ARMA(l,l)), for non-consecutive data, are considered and applied to different 

datasets. Most of the theory discussed has been implemented in computer programs. 
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OPSOMMING 

In verskeie toepassingsvelde soos byvoorbeeld biologie, sielkunde, landbou, geologie, 

plantkunde, ingenieurswese en medies word eksperimente uitgevoer wat gebaseer is op 

metings wat onder verkillende omstandighede waargeneem is vir eksperimentele 

eenhede. Data wat hoofsaaklik oorweeg is, bestaan uit waarnemings wat georden is in 

tyd soos byvoorbeeld die lengte van 'n kind wat maandeliks of jaarliks waargeneem is. 

Die studie van groei is 'n uitstekende model vir die ondersoek na ander vorme van groei 

en word hier ondersoek. Enige vooruitgang wat gemaak word in die meting en 

modellering van fisiese groei kan as 'n goeie basis <lien wanneer daar in die toekoms 

gepoog word om kognitiewe, effektiewe of sosiale ontwikkeling te ontleed. Die Richards 

groeikrommes, wat 'n veralgemening van nie-lineere funksies met 'n buigbare punt van 

infleksie is, is gebruik om groei te beskryf en te vergelyk. 

Die algemene kleinste kwadrate, maksimum aanneemlikheid en verdelingsvrye 

prosedures vir die beraming van die onbekende parameters vir lineere en nie-linieere 

modelle word bespreek. Die Fisher en "Expected Maximization" (EM) algoritmes word 

ook beskou. Die "Gauss quadrature" numeriese integrasie tegniek, wat goeie 

benaderings verskaf indien integrale nie 'n geslote oplossing besit nie, word bespreek en 

toegepas. 

Die Bayes and "Maximum Aposteriori" MAP beramers word bespreek, vir lineere en 

nie-lineere modelle en toegepas vir verskeie datastelle. 'n Empiriese Bayes metode vir 

die beraming van onbekende model parameters, word toegepas op die versameling 

metings op menslike groei data wat in 1929 by die Fels instituut begin is, sowel as op 

die Berkeley data (sien Tuddenham and Snyder, 1954). 

Die nie-lineere vaste en stogastiese parameter Richards modelle met tydafwykings 

(ARMA(l,1)) vir nie-opeenvolgende data word beskou en toegepas. Meeste van die 

teorie bespreek in hierdie studie is geimplementeer in rekenaar programme. 
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Notation 

The following notation shall be adopted: 

7r 

e 

exp(x) 

lnx 

5 .. 
ZJ 

A:(pxq) 

a:(pxl) 

a 

A' 
a' 

a•• or [A]•• ZJ ZJ 
ai or [a]il 
A-l 

aij 

IAI 
trA 

Da 

vec[A] 

vecs[A] 

0 

J .. 
ZJ 

A0B 

: constant, 1r = 3.14159 • • • 

: Euler's constant, e = 2. 71828 • • • 

: ex,-oo<x<oo 

: natural logarithm of the real number x,x ~ 0 

: Kronecker's delta ( =l if i= j and =0 if i -1- j) 
: matrix of order pxq 

: column vector of order p x 1 

: scalar 

: transpose of A 

: transpose of a( a row vector) 

: the element in the i-th row and j-th column of A 

: the i-th element of a 

: the in verse of A 

: [A-lLj 

: determinant of A 

: trace of A 

: diagonal matrix with diagonal elements all ,a22, · · · 

: (pqxl) vector formed from the q columns of the pxq matrix A 

: (p(p + 1) /2 x 1) vector formed from the nonduplicate 

elements of the (pxp) symmetric matrix A 

: null matrix, [O]ij 

: matrix with all elements equal to zero with the exception 

of the element in the i-th row and j-th column which is 

equal to unity 

: column vector with all elements equal to zero with the 

exception of the i-th elements which is equal to unity 

: The right direct product or "Kronecker product" of matrices 

A and B defined by: 
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CHAPTER 1 INTRODUCTION. 

Longitudinal data, namely observations that are ordered by time or position in space, 

can be found in many fields of application, such as biology, psychology, agriculture, 

botany, engineering and medicine. One such an example, used frequently in this 

dissertation, is the height of a child measured annually or monthly over a period of 

time. 

Repeated measurements generated by linear or polynomial "growth" curve models enjoy 

a wide range of applications (e.g., Laird and Ware, 1982; Stiratelli, Laird, and Ware, 

1984; Laing and Zeger, 1986; and Zeger, Liang and Albert, 1988). Lindley and Smith 

(1972) proposed and analyzed a general Bayesian linear model and their theory was 

applied to the estimation problem for growth curves by Fearn (1975). Instead of 

considering only the overall growth curve, Fearn assumed that there is a separate 

growth curve for each individual and that the observations on an individual are 

independently and normally distributed about the curve for that individual. Rosenberg 

(1973) considered models similar to Fearn (1975) in a more general context, using 

maximum likelihood and empirical Bayes techniques. 

By fitting polynomial "growth" curves to repeated measurements using any number of 

multivariate analysis techniques two goals can be achieved (Vonesh & Carter 1992) : (i) 

changes in an individual's response as time or conditions vary can be described; (ii) 

mean responses over time among several groups of individuals can be compared. For 

balanced and complete data, a generalised multivariate analysis of variance model can 

be used to fit and compare "growth" curves without assuming any special covariance 

structure on the repeated measurements (Potthoff and Roy, 1964; Grizzle and Allen, 

1969). For unbalanced data, random-effects models are often used in conjunction with 

iterative (Laird and Ware, 1982; Jennrich and Schluchter, 1986) or noniterative (Vonesh 

and Carter, 1987) techniques to estimate and compare population "growth" curves. 

These method and others, including those which entail an autoregressive error structure, 

are discussed by Ware (1985) in an overview of linear models for repeated measures. 
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In both balanced and unbalanced repeated measures data, nonlinear random-effects 

models have been utilized in growth studies to describe the mean response function as 

well as within- and between-subject variability (Scheiner and Beal, 1980; Berkey, 1982; 

Racine-Poon, 1985; Steimer, Mallet, and Mentr~ , 1985). These models are similar to 

random coefficient growth curve models m that: (i) a nonlinear regression model is 

assumed for each individual; and, (ii) a stochastic structure is imposed on the 

parameters of the individual nonlinear response functions. Various procedures have 

been proposed for estimating the population parameters; chief among them are the 

NONMEM method of Sheiner and Beal (1979), the GTS (global two-stage) and ITS 

(iterated two-stage) methods of Steimer, et al. (1984), and the Bayesian-based EM 

algorithm method of Racine-Poon (1985). 

The purpose of this thesis is to investigate various models for the statistical modelling of 

growth. Since the thesis is meant to be self contained, Sections 2.2, 2.3, 3.2 to 3.6, and 

4.2 to 4.4 are primarily reviews of relevant existing results. The study of growth in 

height is an excellent model for the investigation of other forms of growth and is 

considered in the practical applications of this thesis. The goals in the analysis of 

height data are varied (Ramsay, Altman and Bock (1992)): (i) to offer a satisfactory 

model for individual growth curves; (ii) to describe particular features of growth curves, 

such as the onset and duration of the pubertal growth spurt; (iii) to define the normal 

range of variation in growth curves; and, (iv) to identify unusual growth patterns. Any 

progress made in measuring and modelling physical growth will serve as a good basis 

when attempts are made in future on the more difficult task of describing cognitive, 

affective or social development. 

In Chapter 2 the Richards growth function, a generalization of nonlinear functions with 

a flexible point of inflection, often used to describe and compare growth curves, is 

considered. The change in growth over time can often be described more accurately if a 

linear combination of two or more Richards functions is used. The properties of multi

component Richards functions are also discussed in this chapter. 

There is a continuous controversy between the Frequentist and Bayesian schools of 

thought about the foundations of statistical inference. Ideas from both sides are useful 
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in thinking about practical problems. 

Frequentist estimation procedures such as Maximum likelihood (ML), Marginal 

Maximum Likelihood (MML) and asymptotic distribution free (ADF) procedures are 

discussed in Chapter 3 for models with linear or nonlinear response functions. The 

Fisher scoring procedure, often used when estimating the unknown parameters with 

maximum likelihood or ADF procedures, is also given. The EM algorithm consisting of 

an E (expectation) and an M (maximization) step when estimating unknown 

parameters is also discussed in this chapter. The Gauss quadrature technique often used 

when integrals cannot be solved in closed form is introduced and an example is given. 

The random parameter model is extended to incorporate so-called second-stage 

covariates and examples using data from real life, are given in the Application Section. 

In Chapter 4 the procedures for calculating the Bayes and MAP estimators are given. 

References to the statistical properties of the Bayes estimator may be found in, for 

example, Lindley, 1971; Lindley and Smith, 1972; Novickand Jackson, 1974 and 

DeGroot, 1975. Chapter 4 concludes with a practical application section. 

In the modelling of human growth it was found that height from birth to maturity can 

be adequately described by a triple logistic growth function. Multi-component models of 

which the triple logistic is a special case, is discussed in Chapter 5. Approximate 

expressions for the first and second order moments of a triple component random 

parameter Richards model is also given. The exact likelihood function for this model as 

well as the derivatives of the log-likelihood function is derived. An Empirical Bayes 

method for the estimation of the unknown parameters using the MML estimation 

procedure, is also given. 

In the Application Section of Chapter 5, use was made of a collection of longitudinal 

growth records begun at the Fels institute in 1929. This superb collection of data was 

obtained from Professor Bock at Chicago university, who obtained access to the data 

through Dr. Alex Roche (see Bock 1989). The Fels data include 158 males and 132 

female records from birth to maturity. These records include the child's sex, height of 

first-degree relatives, especially parents and estimates of the skeletal age of the child 
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based on hand-wrist of knee radiographs. A similar analysis was also done by fitting the 

triple-logistic model of Bock and Thissen (1976) to male and female data from the 

Berkeley Guidance study (Tuddenham and Snyder, 1984). 

In Chapter 6 the nonlinear fixed and random parameter Richards models with 

ARMA(l,l) (Auto regressive moving average) deviations, for non-consecutive data is 

considered followed by a number of applications. 

Most of the theory discussed in this study has been implemented m FORTRAN 

computer programs. Raw datasets are given in Appendix A. 
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CHAPTER 2 FLEXIBLE GROWTH FUNCTIONS 

2.1 INTRODUCTION 

The term growth curve is usually applied to the situation in which we have data on the 

change, over a period of time, of some measurement on each member of a group, or 

groups, of individuals. Typically a mathematical function is chosen to describe as closely 

as possible the trajectory of growth over time. 

There are many possible growth curves to select from, examples being the polynomial, 

exponential, hyperbolic, and logistic functions (see e.g., Gallant 1987). The Richards 

function (Richards, 1959), a generalization of nonlinear functions with a flexible point of 

inflection, is often used to describe and compare growth curves (Koops 1987). In this 

chapter the discussion is limited to a general growth function which consists of a 

combination of so-called Richards growth functions (see e.g. Richards 1959; Du Toit 

1979). 

The general Richards response function is defined by Du Toit (1979) as follows: 

i=l,2, · · · ,n; (2.1.1) 

where 

s=l, -1. (2.1.2) 

The parameter a is a fixed parameter that may be estimated or set to a predetermined 

value, and a is a vector of fixed or random parameters. 

The single component Richards function is discussea in Section 2.2. Three well known 

Richards functions, the monomolecular curve ( a=l in (2.1.1) ), the logistic curve ( a= -1 

in (2.1.1)) and the Gompertz curve (lal-oo in (2.1.1)) are discussed in Section 2.3. 

In the analysis of the random parameter model with response function (2.1.1 ), it 1s 
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difficult to give distributional assumptions for the parameter set a ( cf. 2.1.2), apart from 

the fact that the ranges of the random variables are restricted. Box, Davies and Swann 

(1969, p42) pointed out that before considering the constrained optimization problem in 

its most general form, the problem of constraints on parameters can be most effectively 

handled by a transformation of each of the parameters [a]il, i=l,2,3; to a new set of 

unbounded parameters. If we allow for the transformed parameter set to be random, the 

usual assumption of multivariate normality becomes more realistic. 

Reparameterization of the original parameters is discussed in Section 2.3. One possible 

set of transformations is the following: 

a= Xl, 

b(l) = expx2 , 

and 
C - 1 

- 1 +expx3 · 

In this case, the reparameterized Richards growth curve may be written as 

i=l,2, · .. ,n. 

(2.1.6) 

All of the functions described in Section 2.2 represent but a single curve whose only 

change in form may be realized by different values of a. Many growth curves fail to 

conform satisfactorily with any one of tpe functions and it is subsequently necessary to 

combine perhaps 2 to 3 functions, and enlarge the number of parameters to be 

estimated. Illustrative examples of combinations of two or more component Richards 

functions are given in Section 2.4. 

2.2 THE RICHARDS FAMILY OF GROWTH CURVES 

A flexible response function, which is similar to the Richards (1959) family of growth 

curves as well as to the general function given by Gregg, Hassel and Richardson (1964), 

is defined in (2.1.1) and (2.1.2). 

If the response function increases monotonically in ti, then s= - 1 for a 2:: 0 and s= + 1 
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for CY < 0 . Opposite signs are allocated when the reponse function decreases 

monotonically in ti. The parameter CY is a fixed parameter that is usually pre-assigned 

while the elements of the vector a are fixed or random parameters that has to be 

estimated. 

The following linear inequality constraints are imposed upon the elements of a : 

(2.2.1) 

Note that the constraint : 0:::; b(-l):::; 1 is imposed ~o avoid the occurence of complex 

roots for the case s= -1 in the expression (1- b(-l )ct•)°'. 

Since the parameters in (2.1.1) have definite physical meanmgs, a curve from this 

family is preferred to a polynomial curve, which may often be fitted to a set of 

responses with the same degree of accuracy. The parameter a represents the time 

asymptotic value of the characteristic which has been measured, the parameter b 

represents the potential increase ( or decrease) in the value of the function f( a,CY,ti) 

during the course of time t1 to tp, and the parameter c characterizes the rate of growth. 

Apart from the degree of compression, the differing shapes of the curves are due solely 

to differences in the parameter CY. Examples of curves for various values of CY are given 

in Figures 2.2.1 to 2.2.4. 

Three well-known growth functions may be obtained as special cases of (2.1.1 ), these 

being the monomolecular or simple modified exponential, the logistic or autocatalytic 

and the Gompertz. A brief discussion of each case will be given and the reader is 

referred to Richards ( 1959) for a more detailed discussion. 

Monomolecular curve: a=l 

(2.2.2) 

This function has no point of inflection, and its growth rate declines linearly with 

increasing function values. This function is sometimes used to present later portions in 

life history. Examples of monomolecular curves are given in Figures 2.2.1 and 2.2.2. 
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Figure 2.4.1 Graph of triple logistic growth functions: 
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(t) -f(t) 

Two component Richards -function 

Figure 2.4.2 Figure 2.4.3 

f(x,a,ti)=50(1 - e-o.5 + 0.45)-1 + 50(1 + e5 + 0.45)-1 

'(t) -f(t) 

Two component Richards -function 

Figure 2.4.4 Figure 2.4.5 

f(x,a,ti)=60(1 + e4.0 + 0.6)-1 - 60(1 + e4.5 + 0.5)-1 
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-f(t) 

Two component Richards function 

12.7 ,,.s ,e..... ,a.2 20.0 

Figure 2.4.6 Figure 2.4. 7 

f(x,a,ti)=30(1 + e5·5 + 0-6)-1 + 70(1 + e-0.8 + 0.2)-1 

2.8 SUMMARY 

A multiphasic Richards function, discussed in this chapter, used to describe growth 

curves provides great insight, for understanding the biology of growth, especially in 

humans. It is shown that when using reparameterisation it is no longer necessary to 

impose inequality constraints on the parameters. The assumption of normality for the 

random parameter set x ( cf. (2.4.1) ), is more realistic than the same assumption for the 

set a (cf. (2.1.2)). 
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CHAPTER 3 FREQUENTIST ESTIMATION 

3.1 INTRODUCTION 

For some time there has been a continuing controversy among statisticians about the 

foundations of statistical inference, between the Frequentist and Bayesian schools of 

statistical thought (see Kotz and Johnson (1988)). The mutual criticism of Frequentists 

and Bayesians has given rise to a lively ( and sometimes acrimonious) debate, which has 

helped to clarify a number of basic statistical issues. One of the central concerns is that 

of subjective versus objective data evaluation in scientific inference and reporting. 

Fisher, Neyman and Pearson developed their frequentist theories in a deliberate effort 

to free statistics from the Bayesian dependence on a prior distribution, and this aspect 

has continued as the central frequentist objection. Probabilities must rely on frequency

based interpretation (see Porkess (1991)). 

The Bayesians pointed out that frequentist analysis involves similar types of 

specification. There is a choice of model and loss function, both of which must be chosen 

in the light of previous experience and involve judgements that are likely to vary from 

one person to another. Bayesians also pointed out that there is the problem of selecting 

a frame of reference that form the basis of the frequency calculations. For Bayesians the 

probabilities will always refer to the particular human being, animal, plant insect or 

object under observation. Ideas from both Frequentist and Bayesian sides are useful in 

thinking about practical problems, and in this chapter the Frequentist approach is 

discussed while the Bayesian approach is considered in the next chapter. 

The gulf between the two approaches is considerably narrowed in the combination of 

two facts (see Smith (1984)) which is excellently summed up by Kotz and Johnson 

(1988): "The first is a basic result of Wald's (frequentist) decision theory to the effect 

that every admissible procedure is a Bayes solution or a limit of Bayes solutions. 

Secondly, frequentist tends not to believe in a unique correct approach and may 

therefore try a number of different solutions corresponding to different optimality 

principles robustness properties and so on. If this leads to similar conclusions, any one of 
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them can be adopted. Otherwise, a careful examination of the differences may clarify 

the reason for the discrepancies and point to one as the most appropriate. Lacking such 

a resolution, one may instead prefer to report a number of different procedures". 

To demonstrate the existence of growth phases or cycles in growth curves, it is 

necessary to have a number of repeated measurements, say n, taken over time on each 

of N experimental units. In this framework, the repeated measurements, on the ith 

experimental unit, i=l,2, • • -N, are referred to as the dependent variables, Yit, 

t=l,2, • • • ,n. The time points as well as additional variables that may be included in a 

model to predict the variation in the y t, are referred to as the independent variables. 

The following basic repeated measurements model will be considered in this chapter. 

Suppose the vector variate Yi (nxl) represents a set of n measurements, made on an 

individual, i, and that the individual's responses can be described by the model 

i = 1,2, · · · ,N (3.1.1) 

Assume xi, i = 1,2, • • • ,N are a random sample of an r-dimensional vector x of stochastic 

paremeters where x has a N( 9,cJ,) distribution. It is further assumed that the error 

vectors Ei, i = 1,2, • • • ,N are independently distributed as N(O,A) variates, uncorrelated 

with the xi. • 

The majority of work on methods for repeated measures data has focussed on data that 

can be modelled by an expectation function that is linear in its parameters ( e.g. Laird 

and Ware, 1982; Stiratelli, Laird, and Ware, 1984; Liang and Zeger, 1986; and Zeger, 

Liang, and Albert, 1988). 

A model is said to be linear if a typical element f(xi,t) of the nx 1 component vector 

f(xi,t) in (3.1.1) can be expressed as a linear combination of the independent variables, 

that is 

i = 1,2, · · · ,N. (3.1.2) 
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An example of a linear model is 

where 

(3.1.3) 

More recently considerable attention has been given to research on repeated measures 

data with nonlinear expectation functions (e.g. Berkley 1982; Bates and Watts 1988; 

Lindstrom and Bates 1990; Bock 1990; Davidian and Gallant 1991 ). Both the linear 

and nonlinear models are considered in this chapter. 

Model (3.1.1) is referred to as a nonlinear model if the parameters in f(xi,t) can not be 

expressed as a linear combination. An example of a nonlinear model is 

(3.1.4) 

It often happens that measurements on N experimental units are not made at the same 

timepoints and the number of responses, ni, per individual, i, may differ. For example 

height measurements of a specific human being may have been obtained at ages 2, 4, 17, 

22 and 35 months respectively while for another individual they may have been 

obtained only at 2, 6, 18 and 32 months respectively. For data with an unequal number 

of measurements per individual, model (3.1.1) may be adapted as follows: 

i=l,2,•••,N (3.1.5) 

where Yi, f(xi,ti), Ei are nix 1 component vectors with typical elements Yir, f(xi,tir) and 

Eir respectively with r=l,2, · · · ni . 

In Section 3.2 the maximum likelihood method of estimating unknown parameters is 

discussed. The marginal maximum likelihood estimation procedure (MML) which has 
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been dealt with, directly or indirectly, in a number of papers recently (see e.g., 

Dempster, Rubin & Tsutakawa, 1981; Laird and Ware, 1982; Longford, 1987; Bock, 

1989; Bock 1990; Strenio, Weisberg & Bryk, 1983) is discussed in Section 3.3. 

The asymptotically distribution free (ADF) procedure for the analysis of covariance 

structures, is given in Sections 3.4. The Fisher scoring algorithm sometimes used for the 

frequentist estimation procedure is given Section 3.5. 

The iterative computation of unknown parameter estimates consisting of an expectation 

step (E-step) followed by a maximization step (M-step) is called the EM (Expected 

Maximization) algorithm and is discussed in Section 3.6. The EM algorithm was 

explicitly introduced by Hartley (1958) as a procedure for calculating maximum 

likelihood estimates, given a random sample of size N, from a discrete population. 

Carter and Myers (1973) proposed the EM algorithm for maximum likelihood 

estimation from linear combinations of discrete probability functions, using linear 

combinations of Poisson random variables as an example. The algorithm was suggested 

a year later by Brown (1974) for computing the maximum-likelihood estimates of 

expected cell frequencies under an independence model in a two-way table with some 

missing cells. Chen and Fienberg (1976) suggested the EM algorithm for computing the 

maximum-likelihood estimates for the special case of cross-classified data with some 

observations only partially classified. The EM algorithm is a rapid, robust method for 

obtaining close approximations to the MML esimates and it has a wide range of 

applications which fall under its umbrella (see Dempster, Laird and Rubin 1977). 

For some models, especiallly nonlinear models, it is often not possible to find a closed 

form solution for the integrals that have to be solved when using the estimation 

procedures discussed in this chapter. These integrals may be evaluated to a high degree 

of accuracy by means of the Gauss quadrature numerical integration technique 

described in Section 3. 7. An illustration of the Gauss-quadrature integration involving 

the Richards growth curve model (see Section 2.6) is also given. 

In Section 3.8 applications of the estimation procedures discussed m this chapter are 

given. 
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3.2. PARAMETER ESTIMATION USING MAXIMUM LIKELIHOOD. 

Linear model 

A generalisation of model (3.1.1 ), in compact matrix notation, for a linear function ( cf. 

(3.1.2)), with unequal number of measurements per individual (cf. (3.1.5)) is 

Y. = B-x• + t:· 
1, 1, 1, 1,' i = 1,2,· · -,N, (3.2.1) 

where Yi and t:i are nix 1 component vectors with typical elements Yit and Eit 

respectively where t=l,2,3, • • • ,ni. The nixr matrix, Bi, is the design matrix. 

Under the assumption that xi -- N( fJ, cl>) and since Yi is a linear combination of xi and t:i, 

it follows that Yi"'N(li,~i), where 

(3.2.2) 

and 

(3.2.3) 

The likelihood function of y 1, y2, · · · ,YN is 

where 

(3.2.4) 

Therefore 

L (3.2.5) 
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with 

Thus 

lnL = _l f: n-ln(21r)-l f: Zn I E-1 - 1 f: Q· 
2i=l z 2i=l z 2i=l z 

(3.2.6) 

with Gi defined as follows: 

(3.2.7) 

Elements of the kx 1 vector of unknown parameters 1 are the (rx 1) vector 0, the 

½r(r+l) nonduplicated elements of~ and them unknown parameters of Ei=Ei(r) or 

Ei=E/ri) . 

Nate that for 

(3.2.8) 

T could be a k x 1 vector of unknown parameters common to each covariance matrix 

Ei, i=l,2, • • • ,N. For example, suppose that Eit, j=l,2, • • • ,ni is generated by an AR(2) 

process, so that 

i=l,2, · · · ,N 

where uit is a row of uncorrelated random variables with E(uit)=O and var(uit)=o-~. In 

this case Ei= E/r), where r=(o-~,a1,a2)', 
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(3.2.9) 

where ri is a (ki x 1) vector of unknown parameters, (ki + r) < ni. Suppose for example 

that the errors for each experimental unit follows a different AR(2) process and that a 

polynomial of degree 2 is to be fitted to the data. In this case r=3, ki=3, 

ri=(a-~i,ali,a2i), i=l,2, • • • ,N. If a common set of parameters {30, {31, {32 is to be fitted 

to the responses of each experimental unit, the total number of unknown parameters is 
N 

3(N + 1) which must be less in number than E ni to ensure the estimability of the 
i=l 

unknown parameters. 

Assume that Ei = Ei r), where r is a parameter vector common to E1, E2, • • • ,EN, for 

example Ei = a-21( ) , then r = a-2 and therefore 
nix ni 

(3.2.10) 

The maximum likelihood estimate 1 of , is found by solving the equations 8
8
lnL = 0, ,· 

i= 1,2, · · · ,k with Ii a typical element of the kxl vector 1 . z 

From the results of Browne and Du Toit (1992) it follows that 

(3.2.11) 

where the symmetric matrix Pi and the general matrix Ri are defined by: 

p. = E--1(G · - E-)E--1 
z z z 1, 1, ' 

(3.2.12) 

R- = (y• - t ·)'E.-1 
1, 1, ~1, 1, • (3.2.13) 

Solving (3.2.11) for different values fo 1 (cf. (3.2.10)) (see Bock 1990) it follows that 

(3.2.14) 
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veci 

(3.2.15) 

and 

8- = 0: n-t E (y--B-6)'(y--B-6)-tr (B-'B-~) . 2 N 1( N " " ,.. ) 
i=l z i=l z z z z z z 

(3.2.16) 

Equations (3.2.14) to (3.2.16) can be solved iteratively. 

Nonlinear model 

In nonlinear models the parameters appear not as separate coefficients of additive 

terms, but as products, quotients or exponents. Thus the estimators are nonlinear in the 

observations and in many cases expressable only as an infinite recursion (Bock & 

Thissen 1980). 

Examples of possible nonlinear models for the function m (3.1.1), when xi 1s not a 

random but a fixed parameter (} are: 

i) (3.2.17) 

ii) (3.2.18) 

Graphical illustrations of examples of these nonlinear functions are given in Figures 

3.2.1 and 3.2.2. 
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Figure 3.2.1 

Figure 3.2.2 
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The set of regression equations (cf. (3.1.1)) for the nonlinear fixed parameter model 

with equal number of observations is 

i=l,2,•·•,N. (3.2.19) 

where (J is an rx 1 vector of fixed but unknown parameters, and the error vectors 

€1,€2, • • • ,€N are independently normally distributed, E( €i)=O and Cov( cicD=A. 

Denote the expected value f( O,t) of Yi by f,, then the p.d.f. f(yi) of Yi under the 

distributional assumptions given above is 

The likelihood function of y 1 ,y2, • • • ,YN ( cf. (3.2.5)) is as follows: 

so that 

where 

with 

and 

L - Nn/2 N -1/2 ( 1 -1 ) = (21r) IT I A I exp --tr A (y--f,,)(y--f,,)' , . 1 2 z z z= 

1 N 
y =NE Yi' 

i=l 

Page 3.10 

(3.2.20) 

(3.2.21) 

(3.2.22) 

(3.2.23) 

(3.2.24) 

 
 
 



 Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2022

s (3.2.25) 

Let 

_1_ f (y•- y)(y--y)'. 
N -1 i=l z z 

F* -2lnL 

N(nln(21r)+lnlAI +tr(A-1G)). 

Minimization of F* with respect to the unknown parameters is equivalent to the 

minimization of the discrepancy function F in which the constant term n ln 271" is 

omitted, therefore 

(3.2.26) 

The minimum iF = 0 in (3.2.26) yields the normal maximum likelihood estimator 7 of 

the vector of unknown parameters 1 where ,'=(8',T'). The iterative Fischer scoring 

algorithm ( discussed in Section 3.5) can be used if the model does not yield estimates in 

closed form. The gradient vector of the discrepancy function and the information matrix 

required in the optimization algorithm are given by (3.2.27) and (3.2.28) respectively: 

with 

P= A- 1(G-A)A-1, 

R = (y - ~)' A- 1 . 

An approximation to the Hessian (Browne and Du Toit 1992) is as follows: 

Extension to a q-group model. 

(3.2.27) 

It is frequently possible to divide the population from which the sampling units are 

drawn into q mutually exclusive subpopulations or groups. For example, the human 

population can be divided into the q=2 groups according to sex or for example into q=3 

subgroups 18 to 25 years, 26 to 45 years, and older than 45 years according to the 
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variable age. 

Suppose that 

are q independent random samples, each drawn from a N(f(Bg),A) population, 

g=l,2,•. -,N, and N=N1 +N2 + · · · +Nq. 

Note that a common covariance structure across groups is assumed but the means are 

allowed to vary. Denote the likelihood function for group g by Lg and let (.g=f(Og), then 

The likelihood function of y1,y2, · · · ,YN, denoted by L, is 

Hence 

where 

with 

q 
L = TI Lg. 

g=l 
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and 

- 1 l 
y g= -N . E Yi . 

gi=m 

The extension to a q-group model can be further generalised if it is assumed that ng 

repeated measurements are made on the experimental units from group g, g=l,2, ... ,q. 

To calculate lnL, n and A are replaced in {3.2.29) by ng and Ag respectively. As before, 

it is assumed that ngxng covariance Ag is a function of mx 1 parameters, that 1s, 

Ag=Ag(r). 

Expressions for the first order derivatives of F= - 2 ln L with respect to the unknown 

parameters are 

where 

Let 

8F 
8[9g]s 

8F 
8T8 

, 

An approximation to the Hessian is given by 

[H( ,)]r,s = E N tr _':._g A-l_':._g + l A-l_g A-1 _g) . q ( a cl a C a A a A ) 
g= 1 g a, r g a, s 2 g a, r g a, s 

{3.2.31) 

{3.2.32) 

{3.2.33) 

{3.2.34) 

An example of a fixed parameter two group model will be given in Chapter 6, Example 

6.4.2. 
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For a nonlinear random parameter model m (3.1.1), based on an equal number of 

observations (n) per sampling unit ( i), let 

(3.2.35) 

(3.2.36) 

and 

i = 1,2, · ·. ,N 

Let ~s '<Prs and a rs denote typical elements of the mean vector !, the covariance matrix 

'11 and the covariance matrix :E respectively. 

The moments can be calculated as follows: 

(3.2.38) 

(3.2.39) 

(3.2.40) 

where g(xi) denotes the probability density function (pdf) of the rx 1 vector of stochastic 

parameters xi. 

For the nonlinear reponse function f(xi,ts) a closed form solution of the integrals 

(3.2.37) and (3.2.38) usually do not exist. These integrals may be evaluated, to a high 

degree of accuracy, by means of the Gauss quadrature numerical integration technique 

described in Section 3. 7 of this chapter. 

Remarks 

1) An iterative procedure 1s required to obtain ML estimates for 8, cl> and T. Du 
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Toit(1991) wrote a modified version of the computer program AUFIT (See du Toit & 

Browne, 1992) to obtain the maximum likelihood (ML) estimates using (3.2.11) and 

similar expressions to evaluate the information matrix. 

2) It should be noted, however, that the estimation procedure described above, involves 

the inversion of nxn matrices. For large values of ni, the iterative procedure may 

become very time consuming. 

3) Bock (1990) suggested an alternative method for obtaining maximum likelihood 

estimates which we will refer to as MML (marginal maximum likelihood method). This 

method will be discussed in detail in the next section. 

3.3 PARAMETER ESTIMATION USING MARGINAL MAXIMUM LIKELIBOOD. 

Consider the random parameter model defined in (3.1.1 ). It is assumed that xi,..., N( 0,4>), 

thus the pdf of xi is as follows: 

(21r)-r/2 I cI> 1-1/2 exp-½ p (3.3.1) 

with 

The unknown parameters in the density function g(xi) defined in (3.3.1) are the rx 1 

vector 0, as well as the ½r( r + 1) nonduplicate elements of c.l>. 

fJ' = (O',(vecsc.l>)'). (3.3.2) 

It further follows from the distributional assumptions given above that the pd£ of Yi 

(3.3.3) 

The vector T denotes the unknown parameters of the pd£, f(yi I xi), ( cf. (3.3.3) ), where 

it is assumed that ( cf. (3.2.8)) 
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(3.3.4) 

From standard results of conditional distributions ( e.g. Morrison, 1991) it follows that 

th us the likelihood function L would be writ ten as follows 

(3.3.5) 

Proposition 3.3.1 

For (3k E /3 (cf. (3.3.2)) an unknown parameter of the function g(xi) (cf. (3.3.1)) it 

follows that for the likelihood function, L defined in (3.3.5) 

(3.3.6) 

Similarily for Tk ET ( cf. (3.2.8) and (3.2.9) ), an unknown parameter of the function 

f(Yilxi) ( cf. (3.3.3) ), the corresponding equation is: 

(3.3.7) 

Proof 

For the likelihood function, L, defined in (3.3.5) and 'k an element of the vector of 

unknown parameters 
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Subsitution of the following result into (3.3.9) 

gives 

8 lng(xi) _ 1 8 g(xi) 
8 (3 k - g (xi)" 8 (3 k ' 

8lnL 
8 (3k 

Using the definition of the conditional density function 

f(yi I xi) g( xi) 
h(yi) 

the result in (3.3.5) follows. Similarily the result in (3.3.6) is obtained. 

From (3.3.1) 

Hence 

Therefore (cf. (3.3.9)) 
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and hence 

8lnL 
80 

Similarily (see Bock 1990) it follows that 

which can be alternatively written as 

From (3.3.3) it follows that 

(yi-f( xi, ti)) (yi-f( xi,ti) )' 

and for 

Using (3.3.10) it follows that 

thus 

8lnL 
aa-2 

,;.2 = ( ~ n ) - 1 ~ E tr a" 
V -~ i -~ X·IY· Y· z= 1 z= 1 z z z 
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Remark: 

Using the identity (D+E-1)-1 = E-ED(E-1 +D)-1 (for D and E any two matrices) 

it can be shown that for the linear model E(xilYi) ( cf. (3.3.16)) is equivalent to the 

Bayes estimator 

(3.3.21) 

given in ( 4.3.15) of Section 4.3 in Chapter 4. 

Nonlinear model 

To obtain E(xilYi) and Cov(xilYi) for the nonlinear model the following integral has to 

be solved (cf. (3.3.9)) 

J x,}xr/ f(yi I xi) g(xi)dxi 

J f(yi I xi) g(xi)dxi 
k,1=0,l,2, · · · 

a,,B=l,2, • • • ,r . (3.3.20) 

For some nonlinear functions it may not be possible to obtain a closed form solution to 

the integral in (3.3.20), in which case use is made of the Gauss-quadrature numerical 

integration technique discussed in Section 3. 7. 

3.4 ASYMPTOTICALLY DISTRJBUTION FREE PROCEDURES. 

Browne ( 197 4) considered generalised least squares estimators in the analysis of 

covariance structures for a case, implied by multivariate normality, where the variances 

and covariances of the sample covariance matrix are functions of their expected values. 

Subsequently this condition was discarded (Browne and Greenacre, 1976) and an 
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asymptotically distribution free ( ADF) method for the analysis of covariance structures 

was obtained. 

Suppose that y 1, y2, · • • ,YN are independently and identically distributed vector variates 

and that 

and (3.4.1) 

It is assumed that the n elements of{={(,) and the ½n(n + 1) nonduplicated elements of 

E=:E( -y) are functions of k (k ~ n + ½( n + 1) ) parameters which are to be estimated. In 

the general framework the parameters are represented by the (kx 1) vector ,. 

Let y and S respectively denote the sample mean vector and sample covariance matrix 

of the Yi, i=l ,2, · · · ,N, that is 

1 N 
Y = N 1: Yi, 

i=l 

N 
S = - 1

- 1: (y• -YHY· -Y)' · 
N-1 i=l i i 

(3.4.2) 

Let 

n*=½n(n+3) (3.4.3) 

and define the (n*xl) vectors u and v (Du Toit, 1979) as 

(3.4.4) 

and 

v=E(u)=[ { ]· 
vecs(:E) 

(3.4.5) 

It 1s known (e.g. Cramer, 1946, p 365) that the limiting distribution of vfN(u-v) 1s 
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multivariate normal with mean vector 0. Suppose that the covariance matrix of u exists 

and is nonsingular. Consider the structural model v = v( 'Y) and assume that v and the 

first and second order partial derivatives of v, with respect to the elements of 'Y, are 

continuous. It is further assumed that the (n*xk) matrix 

is of full column rank and that 'Y is identified, that is 

Let 

and 

!l: (n*xn*) = Cov(u,u') 

fi: (n* xn*) = Cov( vfNu, vfNu') 

= N!l 

(3.4.6) 

(3.4. 7) 

(3.4.8) 

(3.4.9) 

Now let 7 be a generalised least square (GLS) estimator of 'Y obtained by minimizing 

F GLsb) = ( u- v('Y) )'fie -l( u- v('Y) ), 
where fie is any consistent estimator of fi, that is 

(3.4.10) 

(3.4.11) 

Then (cf. Browne, 1974), the limiting distribution of vfN(7-7) is multivariate normal 

with mean vector O and covariance matrix (~'(fie)-1 ~)-1. 

If v = v('Y) is true, then the limiting distribution of 

F*( 7) = N F GLs( 'Y) (3.4.12) 
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is chi-square with n* - k degrees of freedom. 

General expressions for the first and second order derivatives are 

8F* Q 

a,s 

a2F* 
Q 

(3.4.13) 

(3.4.14) 

An approximation to the Hessian matrix is obtained by taking expected values m 

(3.4.14). Therefore 

[ ] 2
8[v( ,)]' 0 -1 av(,) 

H r s '.:::'. a He a ' ' tr ts 
(3.4.15) 

hence 

H (3.4.16) 

Using express10ns (3.4.13) and (3.4.16) to calculate the gradient vector and the 

approximation to the Hessian matrix, the GLS estimator 1'GLS of 1 may be obtained by 

using, for example, the optimization procedure described in Section 3.5. 

In the case where y 1,y2, · · · ,YN are not normally distributed, Du Tait (1979) gave 

general expressions for the calculation of the elements of the weight matrix fie ( cf. 

(3.4.10)). These expressions involve the evaluation of moments of random variables of 

up to fourth order. Du Tait has shown that the number of 4-th order nonduplicate 

moments of an n-dimensional stochastic variable is (n +dd- l), where(~)= '( n~ )' . 
r. n r . 

For example, if n=lO, the elements of n will consist of 715 nonduplicated 4-th order 

moments. Computation of n for large values of n can become very tedious and time 

consummg. 
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Under the assumption that y1,y2, · · · ,yN are identically and independently distributed 

as N(!,:E) variates, it can be shown (e.g. Browne (1974), Du Toit (1993)) that 

0 

n-1 (3.4.17) 

0 

where (see e.g. Browne (1974) or McGullogh (1982)) K is an unique n2x½n(n + 1) matrix 

such that 

vecA = KvecsA, (3.4.18) 

with A a symmetric nxn matrix. 

Let !=!('y) and :E=:E(,) where 1 1s a kxl vector of unknown parameters to be 

estimated. Suppose that V is a consistent estimator of :E, that is 

n_lim V = :E 
N--+oo 

(3.4.19) 

It follows that ( cf. (3.4.9)) 

-1 
y-1 0 

(3.4.20) 

0 ½K'(v-1
0 v-1

) 

is a consistent estimator of fi . (3.4.21) 

Using the result ( see e.g. Browne ( 197 4)) 
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x'(V ® W)y = tr[X V Y'W'] , (3.4.22) 

where x=vecX and y=vecY it follows that 

(3.4.23) 

The first order derivatives of F GLsh') with respect to the elements of the parameter 

vector 1 are 

The discrepancy function F under the assumption of multivariate normality (Browne 

and Du Toit, 1992) is given by 

(3.4.25) 

where 

S*= NN1s 

and (cf. (3.2.23)) 

G = S* + (y-!(1))(y-!(1))' (3.4.26) 

Anderson and Rubin (1956, pp. 145-146) have shown, that in the case of non-normality, 

a consistent estimate, 1', of the unknown parameter vector 1 is obtained as the solution 

to the equations 

where 

8F _ a,s - 0' s = 1,2, ... ,k, 
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(3.4.27) 

Remarks 

(1) Du Toit (1979) used a GLS method to obtain the correct standard errors and x2-test 

statistic in the analysis of nonlinear random parameter models. His approach is 

essentially a two stage procedure. In the first stage the normal maximum likelihood 

discrepancy function ( cf. (3.4.27)) is minimized to obtain a consistent estimator of the 

unknown parameters. These values are used to calculate a consistent estimate of the 

weight matrix which involves the calculation of fourth order moments. As the number 

of parameters r of the nonlinear response function and the n um her of repeated 

measurements n increase, the computational labour and storage requirements for the 

calculation of fie increase. 

(2) Since the evaluation of fourth order moments of nonlinear random parameter models 

involves the solution of multi dimensional integrals ( which usually have to be evaluated 

numerically), the calculation of the weight matrix can be time consuming. For this 

reason, in the estimation procedures discussed in Chapter 5 the weight matrix fie -l ( cf. 

(3.4.10)) under the assumption of multivariate normality is used since this matrix 

depends only on second order central moments. 

(3) In Gauss-Newton type algorithms ( cf. Section 3.5) practical experience (Browne and 

Du Toit, 1992) has shown that the convergence of the algorithm does not appear to be 

sensitive to whether exact derivatives are used or not. 

The approximation used for evaluating 
8
8E is 

'Y j 
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where ij is a column vector with zero elements except for the j - th element that 1s 

equal to unity and 

where E is a small positive scalar ( e.g. E = 10-5) . 

Choice of E may affect the estimation of standard errors. The sensitivity to the choice of 

E will be greatest when the model is highly nonlinear in which case the asymptotic 

approximations for standard errors will tend to be inaccurate even if exact derivatives 

are used. 

3.5 THE FISHER SCORING ALGORITHM 

Consider a twice differentiable continuous discrepancy function F(,), where 1 is a kx 1 

vector of unknown parameters to be estimated. An estimate 7 of 1 is obtained as the 

solution of the equations 

s=l,2, · .. ,k. (3.5.1) 

A necessary condition for F( 7) to attain a minimum value is that the Hessian matrix 

with typical element (cf. (4.3.28)) :
2

F~-y) , r,s=l,2, • • • ,k be positive definite at the 
'Yr 'Ys 

point ,=7. 

In Sections 3.2 and 3.4 two types of discrepancy functions were considered namely 

F= - 2 ln L ( cf. (3.2.26), where L denotes the likelihood function of a set of random 

variables, and FGLs= (u-E(u))'n-1(u-E(u)) (cf. (3.4.10)) where n denotes the 

covariance matrix of the vector variate u. 

Many approaches to the solution of the minimizing equations (3.5.1) have been used 

including the method of steepest descent ( e.g., Everett 1987), the Newton-Raphson 

method ( e.g. Burden and Faires, 1985), the Davidson-Fletcher-Powell approach 

(Davidson, 1959; Fletcher and Powell 1963) and the Gauss-Newton method ( e.g., Lee 
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and Jennrich, 1979; Cudeck Klebe and Henly, 1991). The Gauss-Newton method is 

robust to poor starting values, usually converges rapidly, and produces consistent 

standard errors of the estimated parameters. 

The optimization method described in this section is given by Browne and Du Toit 

(1992) and is based on the so-called Fisher scoring algorithm. Fisher scoring algorithms 

require the gradient vector of the discrepancy function and use E( 0 
82f ) as 
fr rs 

approximations to the elements of the Hessian matrix. Denote the gradient vector by 

g(,), and the approximate Hessian matrix by H(,). 

Suppose that 'Yk is the k-th approximation to the '1 which minimizes F( ,). Let 

(3.5.2) 

The next approximation is obtained from 

(3.5.3) 

where 

(3.5.4) 

and ak is a step size parameter (initially 1 ), required to give the minimum. If F k + 1 > 

Fk then repeat (3.5.4) with ak=ak/2, until Fk+l ::; Fk, or until q step halvings has 

been executed. 

Agresti (1990) pointed out that the Fisher scormg method resembles the Newton

Raphson method, the distinction being that Fisher scoring uses the expected value of 

the second order derivative matrix. In the case of structured means and covariances, the 

Fisher scoring algorithm may be regarded as a sequence of Gauss-Newton steps with 

quantities to be fitted as well as the weight matrix changing at each step. 

A convenient feature of the Fisher scoring algorithm is that an estimate, { H( ,t)}-1 of 
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the asymptotic covariance matrix of estimators I is available on convergence as a by

product of the calculations. 

Although constrained estimation is not used in this dissertation it may sometimes be 

necessary to minimize F( ,) subject to r nonlinear constraints of the form 

c( ,) = 0 , (3.5.5) 

where c( ,) is a continuously differentiable rx l vector valued function of,. 

Let ck = c( 'Yk) and Lk = L( 'Yk). Then the linear Taylor approximation for the constraint 

function is 

(3.5.6) 

where Ii = ,-'Yk is a kxl vector. A typical element of the rxk Jacobian matrix Lk is 

given by 

(3.5.7) 

where ck = [c( ,)]i. Consequently the nonlinear constraints (3.5.5) may be approximated 

by the linear constraints 

(3.5.8) 

The increment vector /jk is obtained (Browne and Du Toit, 1992) as the solution of 

L' k 

0 
(3.5.9) 

where Ak is a r x 1 vector of Lagrange multipliers and Dk is an arbitrary nonnegative 

definite matrix. The scaling matrix Dk does not affect the solution and is often chosen 
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to be the null matrix (Gill, Murray and Wright, 1981, Section 5.4). The next 

approximation 'Yk + 1 for 7 is obtained from 

where ak is chosen initially as 1 and is halved successively until 

(3.5.10) , 

where for a specific model 

(3.5.11) 

and 

(3.5.12) 

If no constraints are imposed, all terms involving ck and Lk are omitted. 

It can happen that the matrix to be inverted in (3.5.9) is singular or near singular. An 

adaptation of the Jennrich and Sampson (1968) stepwise regression procedure may be 

used to obtain an appropriate conditional inverse. Their procedure for imposing bounds 

on the estimates may also be employed. 

3.6 THE EM ALGORJTHM. 

The EM algorithm is directed at finding a value of the unknown parameters which 

maximizes the function given the observed values. It does so by making essential use of 

the associated family. Each iteration of the EM algorithm involves two steps which is 

known (Dempster Laird & Rubin, 1977) as the expectation step (E-step) and the 

maximization step (M-step ). 

The EM iterations based on repeated substitutions provide a rapid, robust method for 
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obtaining close approximations to the marginal maximum likelihood estimates discussed 

in Section 3.3 of this chapter. 

Linear model 

For the linear model initial estimates of E(xilYi) ( cf. (3.3.17)) and Cov(xilYi) ( cf. 

(3.3.18)) may be otained by setting a-2=1, 8=0 and cp=O. These values are then used to 

solve for iJ (cf. (3.3.13)), 4> (cf. (3.3.14)) and 8-2 (cf. (3.3.16)). At iteration 2, the 

estimates iJ and 4> and a-2 replace the initial estimates. The iterative procedure is then 

repeated until convergence is attained. 

Nonlinear model 

Consider the nonlinear model 

i=l,2, ... ,N (3.6.1) 

where x1, • • • ,xN are assumed to be independent and identically normally distributed 

with mean 8 and covariance matrix, cJ,. Initial estimates may be obtained by 

approximating the model using a first order Taylor series expansion. 

A first order Taylor series expansion of f(xi,ti) about the mean yields: 

i=l,2, · · · ,N (3.6.2) 

where the nixr matrix Ji has typical element 

[J-]. k = z J, 
(3.6.3) 

and f(xi,tij) denotes a typical element of the nix 1 vector f(xi,ti) of nonlinear response 

functions. 

From (3.6.1) and (3.6.2) it follows that 
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* Yi Jixf + fi, i=l,2, · · · ,N (3.6.4) 

where 

yf Yi -f( 8,ti) (3.6.5) 

and 

* X· z = x--8 
z ' 

i=l,2, · · · ,N . (3.6.6) 

Denote the mean of xf by 8*, then from (3.6.6) and the distributional assumptions 

given for xi, it follows that 8*=0. After each iteration of the EM-algorithm yf and the 

"design" matrix Ji ( cf. (3.6.3)) are updated using the new estimate Ok+ 1 of 8, where 

k=0,1,2, · · ·. 

Prior to the iterative procedure, iJ* and (> are set to O and J respectively. The number 

of iterations required for convergence may be drastically reduced if the elements of 60 

are set to reasonable values, for example the ordinary least squares estimators of the 

unknown parameters of the fixed parameter model f( 8,tJ 

Note that the use of a first order Taylor series expansion to linearise (3.6.2) differs from 

the way in which it was used by Browne and Du Toit (1991). In their approach, an 

equal number of measurements were assumed for each experimental unit, furthermore, 

these measurements were made on the same occasions, say t1,t2, • • • ,tn. 

It should also be pointed out that the linearisation process described above may be 

incorporated in a Gauss-Newton optimization procedure. 

The theoretical principles given in this section are implemented in the Fortran program 

EMLIN, and an illustration involving weight measurements on female and male mice is 

given in Section 3.8. 
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Remarks 

1) It is a good strategy to continue with an optimization procedure which utilizes second 

order derivative information after, say 50 to 100 EM iterations, as convergence of this 

process is very slow (Longford 1987) when approaching the solution point. An example 

of such an optimization procedure is the Fisher-scoring method (see Section 3.5). To use 

the Fisher-scoring method or any Newton algorithm an estimate of the information 

matrix for the elements of 8, cI> and a 2 is required. In the addendum to this chapter ( cf. 

Section 3.9) the expressions for the information matrix (see Bock, 1990) for the 

elements of 8, cI> and a 2 is given. 

2) Bock (1990) has extended the random regress10ns model to incorporate so-called 

second stage covariates. The extended model is given by ( cf. (3.2.1)) Yi =Bixi + f.i, 
however, it is now assumed that 

where r is an rxq matrix of second-stage regression coefficients and zi is a qx 1 vector of 

covariates. Illustrations of the extended model is given in Examples 3.8.4 and 3.8.5 

respectively. This model will be discussed in more detail in Section 4.3 of Chapter 4. 

3.7 GAUSS-QUADRATURE INTEGRATION TECHNIQUE 

When closed form solutions for integrals such as (3.2.37) and (3.2.38) do not exist, they 

may be evaluated to a high degree of accuracy by means of the Gauss quadrature 

numerical integration procedure ( e.g. Du Toit 1977, and Press, Flannery, Teukolsky & 

Vetterling 1989). 

Consider the integral 

b 
f w(x)f(x)dx, 
a 

(3.7.1) 

where w(x) is called the weight function and [a,b] is any finite or infinite segment of the 
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real line. When other methods for calculating (3.7.1) fail, the integral may be evaluated 

approximately by means of a linear combination of the values of f(x), so that 

b 

f w(x)f(x)dx (3.7.2) 
a 

where the wi are called coefficients ( or weights) and the xi the points ( or nodes) of the 

function. Formulae of the form (3. 7.2) are called quadrature formulae. 

For fixed q, the formula (3.7.2) contains 2q parameters wi and xi, i=l,2, · · · ,q. It is 

possible to find q points and coefficients which will make (3.7.2) exact whenever f(x) is 

a polynomial of degree not greater than 2q -1 provided that: 

(i) w(x) is nonnegative in [a,b] 

(ii) w(x) is a function for which all moments 

b 

Cr = I w(x)xr dx , 
a 

are defined and are finite. 

(iii) CO > 0. 

r=0,1,2, · · · (3.7.3) 

Such formulae are usually called Gaussian quadrature formulae. A systematic 

introduction to the theory of Gaussian quadrature is given by Krylov (1962) and by 

Stroud and Secrest (1966). 

Suppose that the weight function w(x) is given by 

2 
w(x) = e-x 

and that [a,b] is the real line, then (3.7.2) may be written as 
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+oo 2 q 
J e - x f( x )dx "' il=l w;f(x;) . 

-oo 

(3.7.5) 

Tables are available for the different values of wi and xi for i = 2,3, • • •, 60 (See Stroud 

and Secrest, 1966). 

A formula of the type (3. 7.2) is said to have degree of exactness m if it is exact 

whenever f(x) is a polynomial of degree not greater than m. Stroud (1971) considers the 

following formula 

I••• Jw(x1, • • • ,xk)f(x1, • • • ,xk)dx1 • • -dxk ::: £: B/(vi 1, ···,vi k) , 
i=l ' ' 

Rk 

(3. 7.6) 

where w(x1, • · · ,xk) is a given weight function, the (vi 1, ·••,vi k) are points which lie in 
' ' the k - dimensional Euclidean space, Ek, Rk c Ek, and the Bi are called the weights or 

coefficients of the formula. Tabulations of the abscissas and weights can also be found in 

standard references such as Abramovitz and Stegun (1965) and Ralston and Rabinowitz 

(1978). Formula (3. 7.5) is said to have degree of exactness d if it is exact for any linear 

combination of monomials 

(3.7.7) 

where the ai are nonnegative integers, 

and there is at least one linear combination of monomials of degree d + 1 for which 

(3. 7.6) is not exact. 

Consider the integral 

00 00 2 2 f f e - xl - x2 f(x1 ,x2)dx1 dx2 . (3.7.8) 
-00-00 
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It is possible to construct a product-type Gaussian quadrature formula from (3. 7.5) for 

the above integral as follows: 

Since 

(3. 7.9) 

it follows that 

(3.7.10) 

where 

N* = n2 
' 

Bm = wj"wi, 

(vm1,vm2)= (xi,xj), m=n(i-l)+j (3.7.11) 

The weights Bm and points (vm1,vm2), m=l, • • • ,N can therefore be constructed from 

the tabulated w i and xi. 

Example 3.7.1 

For q=4 it follows from the tables in Stroud and Secrest (1966) that 

'l W· z X· z 

1 0,081313 1,6506801 

2 0,804914 0,5246476 

3 0.804914 -0,5246476 

4 0,081313 -1,6506801 
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Let x f"J N( 0,a-2) and suppose that 0=100 and a-=15 then 

E(x2) = a-2 + 02 = (15) 2 + (100) 2 = 10225 . 

But 

+oo 
E(x2

) = ~ f x2 exp[-½ (x;:;: 8)2] dx. 
21ra- -00 

(3.7.12) 

Let u = x. ~ , hence x = .,/2CTU + 0, and ie=./20- . It is thus possible to write (3. 7.6) 

as follows: 

+oo 
E(x2

) = ~.v'2a- f exp-½u2 
•( v'2a-u+0)2 du 

21ra- -00 

~ } .t wi ( v1'2a-xi + 0)2 

z=l 

= i[0,081313( y2 X 15 X 1,6506801 + 100 )2 + 0,804914( y2 X 15 X 0,5246476 + 100 )2 + 

0,804914( y2 X 15 X -0,5246476 + 100 )2 + 0,081313( y2 X 15 X -1,6506801 + 100 )2 

= 10225 . 

3.8 PRACTICAL APPLICATIONS 

Example 3.8.1 

A data set comprising the weights of 42 male mice and 40 female mice were obtained 

from the Department of Zoology, University of Pretoria, South Africa (see Du Toit, 

1979). Over a period of two years a number of female and male striped mice were 

released in a 36.34m2 outdoor enclosure with 8 nest boxes and sufficient food and water, 

where they were allowed to multiply freely. Occurrence of birth was recorded daily and 

the mice were weighed weekly from the end of the 2nd week until physical maturity was 

reached. For the male and female mice data 9 and 8 repeated weight measurements 

were recorded respectively. 
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The following nonlinear regression model ( cf. (2.2.3)) was used to describe change in 

weight over time: 

i = 1,2,• • •,n. (3.8.1) 

with parameter transformations as follows: 

a= Xl, 

b = expx2 , 

C = 1 
1 +expx3 ' 

(3.8.2) 

Estimates of the unknown parameters 8 and ~ are 

_ [ 48.26378] 
8 - 1.72658 , 

-0.31320 

[ 

131.85846 

4> = 2.61150 0.15389 

-2.29458 0.01357 0.15974 l 
A researcher may prefer to report his results in terms of the original parameter set 

a=(a,b,c)'. Estimates of the moments E(akblcm) , k,l,m =0,1,2- • • may be obtained 

from iJ and 4>. These estimates are then used to find estimates of E( a) and Cov( a,a'). 

From (3.8.2) it follows that 

i = 1,2, • • • ,n. (3.8.3) 
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Note that E is a permutation of the rows and columns of <I>. Likewise, µ 1, is the third 

row of 8, µ2 the second and µ 3 the first. 

The estimates µ and t of µ and E are to be employed to obtain estimates for E( a) and 

Cov(a,a') respectively. The moments of the parameter set a = (a, b(s)'c) can be 

determined by calculating the triple integral 

(3.8.4) 

Let 

k=l,2,• · ·, (3.8.5) 

where 

l ,m = 1,2, · · ·, (3.8.6) 

1s a continuous function which cannot be integrated by any of the usual analytical 

methods. It is shown that the expected value of h(u) can be expressed as a two 

dimensional integral which can be evaluated by means of a product-type Gaussian 

quadrature formulae. From (3.8.5) it follows that 

Proposition 3.8.1 

Using Gauss quadrature the expected value of h(u) fork= 1 may be approximated by 

with tij i,j=l,2,3 elements of the matrix T where E=TT'. 
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Proof 

Consider the transformation 

then 

u =0,Tz+µ 

and the Jacobian 1g;1 of the transformation is (2) 3
/

21El 1/
2

. 

It further follows that 

(3.8.9) 

Using the transformations in (3.8.9) the integral in (3.8.7) may be expressed as 

E[ h(u)] =( .-r3/2 ff f e -Z12 - zi- z3\ g3(z) Y(( eg2(z)) I (1 + egl (z)) - m )adz1dz2dz3 . 

(3.8.10) 

From (3.8.9) 

=[a+ t33z3]k 

k n · k · 
=E ( .) (t33z3)la -J 
j=l J 
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For k=l integrating over g3(z) results in the following double integral, which can be 

solved using Gauss quadrature numerical integration, discussed above. 

with 

(3.8.12) 

□ 
For the parameterization described in (3.8.2), with xi,..., N( 8,~), the moments to 

determine E(a) and Cov(a,a') for model (3.8.1) were calculated for the 42 male mice 

with the estimates iJ and 4> of 8 and ~ given above. The following is a summary of 

values for E( a) and Cov( a,a') for 4, 6, 8, 10, 16 and 20 Gauss quadrature points, 

respectively. 

No. of points 

4 

6 

8 

10 

16 

20 

No. of points 

4 

6 

8 

10 

16 

20 

48.26378 6.07101 

48.26378 6.07101 

48.26378 6.07101 

48.26378 6.07101 

48.26378 6.07101 

48.26378 6.07101 

(T2 
a a-ab 

131.85846 15.85417 

131.85846 15.85445 

131.85846 15.85445 

131.85846 15.85445 

131.85846 15.85445 

131.85846 15.85445 

0.57485 

0.57485 

0.57485 

0.57485 

0.57485 

0.57485 

6.12865 

6.13165 

6.13165 

6.13165 

6.13165 

6.13165 
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0.54044 

0.54041 

0.54041 

0.54041 

0.54041 

0.54041 

a-be 
(T2 

C 

-0.01942 0.00888 

-0.01942 0.00888 

-0.01942 0.00888 

-0.01942 0.00888 

-0.01942 0.00888 

-0.01942 0.00888 
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Example 3.8.2 

The dental measurement dataset (see Appendix A) was first considered by Potthoff and 

Roy (1964) and later analyzed by Lee and Geissser (1975), Fearn (1975), Rao (1987), 

Lee (1988 & 1991). Dental measurements were made on 11 girls and 16 boys at ages 8, 

10, 12 and 14 years. Each measurement is the distance, in millimeters, from the center 

of the pituitary to the pterygomaxillary fissure. In Figures 3.8.1 and 3.8.2 the ordinary 

least squares curves 

are plotted for each boy and girl. 

Let 

1 8 

1 10 

1 12 

1 14 

The model fitted to the combined dental data of the boys and girls is: 

Y. = Bx•+E· 
1, 1, 1, ' 

i= 1,2, · · · ,27, (3.8.13) 

where it is assumed that the uncorrelated vectors x 1,x2, · • • ,x27 are distributed as: 

i= 1,2, · · · ,11 

i= 12, 13, · · · ,27 

It is further assumed that the Ei, i = 1,2, • • • ,N are independent and identically 

distributed as N(O,a2 J) independent of x1, · · · ,x27 . 
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Measurement 

(mm) 

27 

26 

25 

24 

23 

22 

21 

20 

19 

18 

17 

15 

7.5 8.1 8.8 9.4 10.0 10.7 11.3 12.0 12.6 13.2 13.9 14.5 

Years 

Figure 3.8.1 OLS Regression lines of distance (mm) on years for girls 

Measurement 

(mm) 

32 

30 

29 

27 

26 

25 

23 

22 

21 

20 

19 

18 

7.5 8.1 8.8 9.4 10.0 10.7 11.3 12.0 12.6 13.2 13.9 14.5 

Years 

Figure 3.8.2 OLS Regression lines of distance(mm) on years for boys 
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Estimates of the unknown parameters are as follows: 

Estimate : 16.34063 0. 78437 17.37273 0.47955 4.55690 -0.19825 0.02376 1. 71621 

Std. error: 0.98008 0.08275 1.18202 0.09980 4.67188 0.37906 0.03409 0.33028 

In Figure 3.8.3 a graphical representation of the fitted model (3.8.13) is given where the 

solid line and dotted lines indicate the estimated mean curves for the 16 boys and 11 

girls respectively. The filled triangles indicate the sample means of the boys and the 

unfilled triangles indicate the sample means of the girls at the ages 8, 10, 12 and 14 

years respectively. The sample means are as follows: 

Age 

8 

12 

Yboys 

22.875 

25.719 

f(t) 

28.0 

27.4 

26.8 

26.2 

25.7 

25.1 

24.5 

23.9 

23.3 

22.7 

22.2 

21.6 

21.0 

Y girls 

21.182 

23.091 

Age 

10 

14 

Yboys 

23.813 

27.469 

Dentel dote for boys end girls 

Y girls 

22.227 

24.091 

7.5 8.1 8.8 9.4 10.0 10.7 11.3 12.0 12.6 13.2 13.9 14.5 

Figure 3.8.3 Fitted models for boys (solid line} and girls (dotted line), as well as sample means for the 

boys (unfilled triangle) and girls (filled triangle) . 
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An alternative formulation ( cf. remark in Section 3.6) for model (3.8.3) is: 

x- = O+vz-+u-z 'l 'l' 

where it is assumed that u1, · · · ,u27 are independent and indentically distributed 

N(O,<I>) deviates and where the covariate z represents sex (z= -1 denotes a girl and z=l 

denotes a boy) therefore, 

Z·= -1. 
z ' 

i= 1,2, · · · ,11 or Z·= 1· 
z ' 

i = 12,13, · · · ,27 . 

Estimates of the unknown parameters are as follows: 

01 02 Vl V2 ¢11 <P21 <P22 
CT2 

Estimate: 16.85668 0.63196 -0.51605 0.15241 4.55690 -0.19825 0.02376 1. 71621 

Std. error: 0. 76775 0.06482 0.76775 0.06482 4.67188 0.37906 0.03409 0.33028 

For the random parameter model (3.8.1) the Chi-square likelihood ratio test statistic 

yielded x2 = 11.30, with 10 degrees of freedom, and exceedence probability p = 0.335. 

The fit of the fixed parameter model 

Y. = BO.+ t:· 
z J z ' j = 1, i = 1,2, · · · ,11 

j = 2, i = 12,13, · · · ,27 (3.8.14) 

resulted in a Chi-square value of, x2 = 61. 73, with 13 degrees of freedom. 

Denote the x2-values for the fitted and random parameter models by X;IX and X~AN 

respectively. From the information given above it follows that 

x;1x- X~AN = 50.43, with 3 degrees of freedom and p = 0.000. 
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The highly significant results indicates a random parameter regress10n model, 

contradicting the conclusion that may be ,drawn from the reported standard errors of 

the estimated </>-values. Note that the expressions for the standard errors of maximum 

likelihood estimators are based on asymptotic theory. Hence, when dealing with the 

small sample case, the standard errors will often be inaccurate. 

Example 3.8.3 

The following model was fitted to the 40 female mice data discussed in Example 3.8.1, 

i=l,2, · · · ,40 (3.8.15) 

where it is assumed that x 1, x2, • · · ,xN are a random sample of an r-dimensional vector 

x which has a N(0,4>) distribution, furthermore the error vectors E1,E2, •••,EN are 

assumed to be independent and identically distributed as N(O,o-2 I) variates, 

uncorrelated with the xi. 

A typical element of f(xi,ti) is 

j=l,2, · · · ,8; 

i=l,2, · · · ,40. (3.8.16) 

Using the modified EM-algorithm discussed in Section 3.3 convergence was reached in 

36 iterations and the estimates of the unknown parameters are as follows: 

41.365 

8 = 1.427 

-0.520 

59.428 

4> = 1.287 0.107 

-0.389 0.024 0.086 

and a-2 = 2.558 . 

The same model was fitted to the male mice data set of 42 observations discussed in 
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Example 3.8.1 with 9 equally spaced measurements per observation. Convergence was 

reached in 21 iterations and the estimates of the unknown parameters are as follows: 

46.043 

0 = 1.585 

-0.391 

Example 3.8.4 

95.884 

cl> = 2.242 0.172 and a-2 = 2.933 . 

-1.485 0.039 0.154 

The following model, with sex as covariate, was fitted for the male and female mice 

data ( cf. Example 3.8.3): 

Y. = f(x• t-) + E· z z' z z ' i=l,2, · · · ,82 (3.8.17) 

where it is assumed that 

i=l,2, · · · ,82 (3.8.18) 

with zi=l for males, zi= -1 for females. 

It is further assumed that u 1, · · · ,uN are independent and identically distributed as 

N(O,cI>) variates, independent of the uncorrelated error vectors E1,E2, • • • ,EN with 

Ei ~ N(O,a-2 In.). 
z 

A typical element of f(xi,ti) is 

j=l,2, · · · ,8; i=l,2, ... ,42 

j=l,2, · · · ,9; i=43, ... ,82. 

(3.8.19) 

The EM algorithm using the first order Taylor series expansion method described in 

Section 3.3 converged in 22 iterations yielding the following estimates of the unknown 

parameters: 
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43.674 

fJ = 1.509 

Example 3.8.5 

iJ 

2.355 

0.080 

0.064 

81.218 

4> = 1.859 0.146 and &2 = 2.754. 

-1.116 0.031 0.132 

The data used in this example is described by Kanfer and Ackerman (1989). The raw 

data was obtained directly from Professors Kanfer and Ackerman and is used here with 

their permission. The data description (see Browne and Du Toit (1992)) is as follows: 

Each of the 141 subjects was a U.S. Air Force enlisted personnel who carried out a 

computerized air traffic controller task developed by Kanfer and Ackerman (1989, pp 

666-669). They were instructed to accept planes into their hold pattern and land them 

safely and efficiently on one of four runways (varying in length and compass direction) 

according to rules governing plane movements and landing requirements. For each 

subject the success of a series of six IO-minute trials was recorded. The measurement 

employed was the number of correct landings per trial, yielding six scores. The Armed 

Services Vocational Aptitude Battery (ASVB) see Wilfgong, 1980 was also administered 

to each subject. A global measure of cognitive ability, obtained from the sum of scores 

on the 10 subscales, was used as a covariate in the analysis. 

The following model was fitted to the data: 

i=l,2, · · · ,141 (3.8.20) 

where it is assumed that the vector of random parameters, xi, i=l,2, • • • ,141 is as 

follows 
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X· = fJ+v Z·+U· z z z ' i=l,2, · · · ,141, (3.8.21) 

the covariate, zi, being a measure of cognitive ability. It is further assumed that 

u 1, • • · ,uN are independent and identically distributed as N(0,4>) variates, independent 

of the uncorrelated error vectors E1,E2, •••,EN with Ei,..., N(O,a-2In.). The vectors x 1, 
z 

x2, • • • ,xN are therefore assumed to be random samples of an r-dimensional vector x 

which has a N(fJ+vz, 4>) distribution. 

f(t) (Number of correct landings) 

Effect of the ASVAB covariate 

40.0 

• 
.37.1 • 

.34.2 • 

.31.2 

• □ 
28 . .3 

□ 
* 0 

25.4 0 

□ 
22.5 

• 
0 

19.6 

16.7 □ 

0 
1.3.B 

10.B 

7.9 □ 

0 
5.0 I 

0 0 2 .3 .3 4 5 

t (Trial number) 

5 

• 

* 

□ 

0 

I 

6 7 

Figure 3.8.4 The effect of the covariate ability Key to figure: o : z = - 200 D : z = - 100 

/),.: z = 100 

• : z = 200 
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A typical element of f(x,ti) is assumed to be a Gompertz function, 

j=l,2, · · · ,6; (3.8.22) 

The function (3.8.22) employs the same parameterization as that used by Browne and 

Du Toit (1992). 

Using the estimated parameter values reported by Browne and Du Toit as initial values 

the EM-algorithm described in Section 3.6 converged in 17 iterations yielding the 

following estimates of the unknown parameters: 

34.2922 

(J = 1.0713 

0.7756 

iJ 

0.0258 

-0.0025 

-0.0002 

84.9402 

~ = 0.5978 0.2006 and a-2 = 8.1023 . 

-0.4503 0.0003 0.0955 

In Figure 3.8.4 the effect of the covariate is illustrated for values of z equal to - 200, 

-100, 0, 100 and 200, respectively. 

ADDENDUM 

3.9 THE INFORMATION MATRJX 

The unknown parameters in the density function g(x) defined in (3.3.2) are the rx 1 

vector 8, as well as the ½r ( r + 1) nonduplicate elements of «I>, thus 

e' = (fJ',(vecs«l>)') . (3.9.1) 

The vector T denotes the unknown parameters of f(yilx) and it is assumed that 

(3.9.2) 
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From Section 3.3, Chapter 3 it follows that 

niz 1 IA 1 A-la = - - n 21r - - • I - - tr • y 2 2 z 2 z i' 

with 

Let 

It has been shown in Chapter 3 that 

and 

with 

olnL 
8a2 

olnL 
ae 

N -1 " - .I:~ Exly•(x-0)=O, 
i=l z 

Gx. = (x-0)(x-0)' 
1, 
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When using any from of a Newton algorithm an estimate of the information matrix for 

the elements of 8, <I> and 0"2 is required. The expressions for the information matrix are 

as follows: 

From (3.9. 7) 

E(8lnL)2 
80"2 

with Gyi given in (3.9.5), thus 

From (3.9.9) 

(3.9.10) 

(3.9.11) 

where G is a r2xr(r + 1)/2 matrix with the property that vecA=GvecsA (see for 

example McCullogh, 1982), where A is a symmetric matrix. 

Hence 

where 

8lnL 
8vecs<I> 
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and 

(3.9.12) 

Therefore 

olnL = l G'f vec(~-1[-~+Cov(x•IY·) +w-w-']~-1). 
f) vecs~ 2 i=l i i i z 

(3.9.13) 

Using the well known result 

(3.9.14) 

it follows that 

j(~) _ E( olnL ) 
- - 8vecs~8vecs'~ 

E( olnL olnL ) 
ovecs~. ovecs'~ 

Let 

s. = W·W·
1 

z z z (3.9.16) 

and 

(3.9.17) 

then using (3.9.15) 

j(~) = ¼G'_f E (vec(~-1(Si-!li)~-1)·(vec'~-l(Si-!li)~-l)G). 
z-l (3.9.18) 
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Using the result that 

vecCAC'=(C0C)vecA, 

it follows that 

j( c)) = ¼G'(.f q,-l@ q,-lE(vec (Si- !li)vec' c)- 1(Si - !li))c)-1 ® c)- 1)G 
z 

1 
(3.9.19 

where (see e.g. Magnus and Neudecker(1979)) 

where Kr r is the commutation matrix of Magnus and Neudeker (1979) with amongst 
' 

others, the properties vecA=K r r vecA' , Kr r ·Kr r=l r 2 and Kr rG=G . 
' ' ' ' 

Note that the maginal expectations ( cf. (3.9.12)) 

(3.9.20) 

and ( see Bock 1990) 

Cov(xlyi) + E( wiw/) = c). 

(3.9.21) 

Thus 

(3.9.22) 

and for Si defined in (3.9.16), 

(3.9.23) 

From (3.9.8) and (3.9.14) it follows that for wi defined in (3.9.12) , 
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1(0 )=E( 8lnL. 8lnL) 
80 80' 

N 
= E (J?i c1>- 1Exlyi(x-0)(x-0)')c1>-1

) 

= E ( £: c1>- 1w-w-'cI>- 1) 
i=l z z 

From (3.9.14) using (3.9.8) and (3.9.13) 

1 ( cl> 0 ) = E ( 8 l n L . 8 l n L) 
' 8 vecscl> 8 0' 

- ½ cJ
1 
~ vecs[<T>-1

( - cJ> + Cov(xlY;) + w;w;')<T>-1
] • w/cJ>-1

) , 

l G' f E(vecs(cI>-1( S- - !!-)cI>-1) . w-'cI>- 1) 
2 i=l z z z 

= 0' 

Si and ni is defined in (3.9.16) and (3.9.17) respectively. 

j(cr2 0 ) =E( 8lnL. 8lnL) 
' 8cr2 80' 

N 
=EE (-

2
1 E I (tr cr-4 (y--B-x)(y--B-x)'-8-2In.)·w-'cI>-1

) i=l X Yi z z z z z z 

= 0. 

j(cr2 cl>) =E( 8lnL. 8lnL ) 
' 8 0"2 8 vecscl> 
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= £: E (1 E I (tr a--4 (y--B-x)(y--B-x)' - a-2 In.). i=l 2 x Yi z z z z z 

½ G' vecs(q,-l ( - <I>+ Cov( xlY;) + w;w;') q,-l)) 

= -2
1G'a--4 £: E (tr(y--B-x)(y--B-x)' - a-2 In.)· i=l z z z z z 

vecs( q,-l( - <I>+ Cov(xlY;) + w;w/)q,-l)) 

= ½G'a--4 £: tr (a-2 In. - BiCov(xilYi)B/) · 
z=l z 

E( vecs( q,-l( - <I>+ Cov( xly;) + w;w/)<1>-1)) 

= ½G'a-4 if?( o-
2 vecs( q,-l( -4> + Cov(xly;) + w;w;')<I>-1

)-

3.10 SUMMARY 

- B;' B;Cov(:ic;IY;) · vecs( q,-l( - <I>+ Cov(xly;) + w;w/)<1>-1)) . 

(3.9.27) 

In this chapter frequentist estimation procedures for linear as well as nonlinear 

parameter models were discussed. The procedures include maximum likelihood, 

marginal maximum likelihood and asymptotically distribution free procedures. To 

obtain these parameter estimates use often has to be made of an iterative procedure. 

Two algorithms are discussed in this chapter namely the Fisher scoring and EM 

algorithm. The Fisher scoring algorithm is often used when using the ML or ADF 

estimation procedures. In the MML estimation procedure use is often made of the EM 

algorithm to obtain initial estimates of the unknown parameters. Since Bayes estimators 

can be obtained as a by-product of the MML procedure, this procedure may be regarded 

as empirical Bayes. 

A Gauss quadrature numerical integration technique which usually provides reliable 

approximations for integrals with no closed form solution is discussed and an example is 

given ( cf. example 3.8.1) using a Richards model discussed in Chapter 2. 
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CHAPTER4 BAYES ESTIMATION. 

4.1 INTRODUCTION 

In this chapter Maximum aposteriori (MAP), and empirical Bayes estimation 

procedures for linear and nonlinear random parameter models are considered. 

The term Bayesian approach (see Melnyk (1974)) has its origin in the work on 

probability theory done during the mid-eighteenth century by the Reverend Thomas 

Bayes, an English clergyman. It was he who first suggested and proved the result known 

as Bayes' theorem, a cornerstone of this whole approach to the revision of probability 

through evidence. The essential difference between the approach to inference discussed 

in Chapter 3 and the alternate Bayesian approach is that in the latter approach there is 

one further ingredient in a general mathematical model, namely the Bayes theorem on 

conditional probability where observational data is combined with personalistic or 

subjective believes. 

The Bayes theorem essential to the Bayesian approach, also known as the principle of 

inverse probability, states that 

( I ) 
_ g(x)-f(ylx) 

p X y - h(y) ' (4.1.1) 

where g(x), f(ylx) and h(y) respectively denote the probability density functions of x, 

ylx and y. All of the information about x, that is available in y, is conveyed by the 

posterior probability density p(xly). From a strict Bayesian point of view only the 

posterior distribution and the posterior expected loss are relevant while frequentists 

measure the performance of a procedure by its risk function. The principles of Bayesian 

analysis will be briefly discussed in Section 4.2. 

Suppose that x is a vector of unknown parameters to be estimated given the vector of 

observations y. The Bayes estimator x is defined as E( xly) , where 

E(xly) = f x p(xly) dx (4.1.2) 
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and p(xly) is the pdf of xly. An attractive property of the Bayes estimator derived in 

Section 4.3 (see e.g. Bock 1989) is that for any amount or quality of data it will always 

give a plausible estimate of the parameters, provided that realistic prior information is 

available. In practice, the parameters of the prior distribution is usually unknown and 

have to be estimated using the available data. In such instances the Bayes estimators 

are called empirical Bayes estimators, see e.g. (Maritz and Lwin 1989). 

The statistical properties of the Bayes estimator have been studied intensively ( see, for 

example, Lindley, 1971; Lindley & Smith, 1972; Novick & Jackson, 1974; DeGroot, 

1975). It is optimal among all estimators in having the minimum mean-square error 

when integrated over the distribution of x. In a sense it is on average closer to the true 

value of x than any other estimator. However, for any particular xi it is in general a 

biased estimator of the population distribution of x but ijyi is nevertheless the best 

estimator of x for predicting future responses for a sampling unit or individual i. 

It is well known (see e.g. Anderson 1986) that if (y,x) has a joint multivariate normal 

distribution, then the conditional distribution of xly is also multivariate normal. It will 

be shown in Section 4.3, that in the case of a random parameter linear model the Bayes 

estimator of the vector of unknown parameters, x, is the mean of a conditional normal 

distribution, given in equation (3.3.17) of Section 3.3, Chapter 3. 

In Section 4.4 the MAP estimator, which is the mode of the posterior distribution of x 

given y, is discussed. An advantage of the MAP method of predicting, for instance a 

childs growth, is that it can utilize the information contained, not just in the current 

measurement of a child's height but in measures taken over previous months and years, 

as is typical in clinical applications. In addition this method predicts ( or postdicts) 

growth, that is: it predicts height at any age not just height at maturity. 

In Section 4.5 an algorithm used to obtain the MAP estimator is given. Applications of 

the theory discussed in this chapter are given in Section 4.6. 
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4.2 PRINCIPLES OF BAYESIAN ANALYSIS 

Let f(y,x) denote the joint probability density function (pdf) for a random observation 

vector y and a random parameter vector x. According to the usual operations with 

pdf's, 

f(y,x) = f(y I x)g(x) (4.2.1) 

= p(x I y) h(y), (4.2.2) 

where h(y) is the marginal distribution of y and g(x) is the probability density function 

of X. 

From ( 4.2.1) and ( 4.2.2) it follows that 

( I ) 
g(x)f(y Ix) 

p X y = h(y) ' (4.2.3) 

where from standard results of conditional distributions ( e.g. Morrison, 1991) it follows 

that 

h(y) = f g(x)f(y Ix) dx. ( 4.2.4) 

Equation ( 4.2.3) can be written as follows: 

p(x I y) ex g(x)f(y Ix) ( 4.2.5) 

ex prior pdf times likelihood function , 

where ex denotes proportionality, p(x I y) is the posterior pdf and is employed in the 

Bayesian approach to make inferences about parameters. The density function g(x) is 

known as the prior pdf for the parameter vector x. The likelihood function f (y I x) is a 

function of x. Equation ( 4.2.5) is a mathematical result in the theory of probability and 

the basis of the Bayes theorem. It is important to note that p(x I y), the posterior pdf, 

contains the sample information (in the likelihood function f(y Ix)), as well as prior 

information (in the prior pdf g(x) ). 
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4.3 THE BAYES ESTIMATOR 

The assumption of an unequal number of measurements (ni) for each experimental ( i) 

unit is incorporated in the random parameter regressions model by allowing for different 

design matrices for different individuals. The repeated measurements nonlinear random 

parameter model is defined as follows: 

Y. = f(x• t-) + f· 
'l z' z 'l' 

i=l,2, .. · ,N (4.3.1) 

where Yi, f( xi,ti), ti and fi are nix 1 component vectors. Assume that x1, • • • ,xN are a 

random sample from an (rxl) vector x of stochastic parameters where x has a N(8,4>) 

distribution. It is further assumed that fi ,-v N(O,Ai) and Cov(xi,t:/)=0. 

The Bayes estimator of xii Yi ( cf. ( 4.2.3) and ( 4.2.4)) is 

J xi f ( y i I xi) g (xi) d xi 

J f(yi I xi) g(xi) d xi 
(4.3.2) 

The density function of xi, known as the prior distribution of xi ( cf (3.3.1)) is denoted 

as g(xi), with 

(4.3.3) 

with 

( 4.3.4) 

The pdf for the elements of Yi given the parameter vector xi ( cf. (3.3.3)) 1s: 

(4.3.5) 

with 

(4.3.6) 
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The product ( cf. ( 4.3.3) and ( 4.3.5)) is given by 

ni+r 
f(yilxi)·g(xi) = (271")--2 - 1Ail-l/21~1-l/2 exp-½(Qi+P), 

with P and Qi defined in ( 4.3.4) and ( 4.3.5) respectively. 

Linear model 

For f(xi,ti) linear in the parameters it is possible to write ( 4.3.1) as follows: 

Y'l. = B-x• + €· 
'l 'l z' i=l,2, · · · ,N 

(4.3.7) 

(4.3.8) 

where Bi is a ni xr design matrix. From the assumptions for model ( 4.3.1) it follows 

that 

:E- = B-~B-'+A-
i 'l 'l 'l ' 

(4.3.9) 

( 4.3.10) 

From the above assumptions, 

It is possible to write equation (4.3.7) as follows (see Bock 1989) : 

I 
_ ni _l _l _l _lK l(A-1b')(A-1b')' 

f ( y i I xi) g (xi) d xi = ( 2 71") 2 I Ai I 2 I A I 2 I ~ I 2 e 2 . e 2 . 

( 4.3.11) 

where 

A ( 4.3.12) 

b' ( 4.3.13) 
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and 

( 4.3.14) 

For the linear regression model it follows from ( 4.3.11) that the posterior distribution 

function, p(xilYi) is normally distributed with Bayes estimator 

(4.3.15) 

and 

( 4.3.16) 

As mentioned in the remark of Section 3.3 in Chapter 3 it is also possible to write xilYi 

as follows: 

[B.'A-:1B. + q,-l)-1B.'A-:1[y•-B-8-] + (J z z z z z z zz . ( 4.3.17) 

Remark 

The random parameter regression model may be extended (see e.g. Bock 1990, and Du 

Toit 1992) to incorporate so-called second stage covariates as mentioned in Chapter 3 

and shown in examples 3.8.4 and 3.8.5 respectively. 

The extended model with second-stage covariates is defined as follows ( cf. ( 4.3.8) ): 

Y. = B-x•+E· z z z z' i=l,2, · · · ,N, ( 4.3.18) 

with 

i=l,2, · · · ,N, (4.3.19) 

where (J is an (rxl) vector (the intecept term x0 being included), Ta (rxq) matrix of 

fixed but unknown coefficients, and, ui a (rxl) random vector with mean O and 

covariance matrix 4>, and Cov( Ei,u/)=0. 
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Use of ( 4.3.18) and ( 4.3.19) gives 

with 

and assuming that Ai=a2 In. 
z 

i=l,2, · · · ,N, 

i=l,2, · · · ,N . 

( 4.3.20) 

( 4.3.21) 

( 4.3.22) 

On the assumption that xi and t:i, i=l,2, • • • ,N are independent random samples from 

multivariate normal populations, Bock (1990) showed that 

( 4.3.23) 

and 

( 4.3.24) 

2 - 1 N 
Consider the case Ai=a In. and let 8 = N E E(xilYi), it follows that ( cf. (3.3.13) to 

z i=l 
(3.3.16) ). 

8 6 - Tz , ( 4.3.25) 

t d: z.z.'-Nzz 't1(f E(x•IY•)z•'-NO z '), (4.3.26) 
i=l z z i=l z z i 

J/ £ E(x•IY·)E(x•IY·')- NOB' - ( £ E(x•IY·) z.' - NO z ')T' -N\ i=l i i z i i=l z z i 

and 
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N N 
a 2 = ( E n-)-1 E ((Y· - B-E(x•IY·)) '(y• - B-E(x•IY·)) + tr B · 'B-Cov(x•IY·)) . 

·-1 i ·-1 i i i i i i i i i i i i 

1,- 1,- ( 4.3.28) 

Nonlinear model. 

For some nonlinear models a closed form solution for ( 4.3.2) cannot be obtained. The 

Gauss-quadrature numerical integration technique discussed in Section 3. 7 of Chapter 3 

can then be used. 

Example 4.3.1 

Suppose that the response pattern over time may be adequately described by a 

Gompertz function: 

i=l,2,. · · ,N, j=l,2, · · · ,ni. ( 4.3.29) 

Assume further that €i --v N(O,a-2 In.), that is, Ai=a-2 In.• 
z 'l 

Then (cf. (4.2.4) 

h(y•) = kJ J J exp(--1- i (Y· • -f(x-,t- •))2)exp _l(x• - 8)'c)-1(x• - 8)dx1dx2dx3, 
Z 2 2 . l ZJ Z ZJ 2 Z 'l 

(T J= 
( 4.3.30) 

where 

Consider the following transformation 

( 4.3.31) 

where 

TT' =c). ( 4.3.32) 

Page 4.8 

 
 
 



 Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2022

It follows that 

xi =v'2,Tu+8=g(u), ( 4.3.33) 

and the Jacobian of the transformation is given by jv'2,Tj. 

From ( 4.3.30) to ( 4.3.33) it follows that 

( 4.3.34) 

where 

There is no closed form solution for the integral in ( 4.3.34) and it may be approximated 

using the Gauss quadrature procedure ( cf. Section 3. 7). 

* q q q 
~ k E E E w(l)w(m)w(n) · Q(l,m,n) , ( 4.3.35) 

l=lm=ln=l 

where 

n• t 
1 z ( ij)2 Q(l,m,n) = exp --2 .E Yij-gll • exp -g2m. g3n ' 

2a J=l 

and where 

and 

( 4.3.36) 

From ( 4.3.35) it follows that, for this example, the Bayes estimator may be 
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From ( 4.3.35) it follows that, for this example, the Bayes estimator may be 

approximated by 
q q q 
L L L w(l)w(m)w(n) Xa Q(l,m,n) 

l=l m=l n=l 
q q q 
L L L w(l)w(m)w(n) Q(l,m,n) 

l=lm=l n=l 

a= 1,2, • • • r ( 4.3.37) 

The evaluation of ( 4.3.37) involves triple summations. Therefore the solutions to these 

integrals may be computionally intensive for q and N large. In Chapter 5 it is shown 

how the dimensionality of integrals of this form may be reduced when multi-component 

functions of the type 

( 4.3.38) 

such as the multi-component Richards function ( cf. Chapter 2), is considered. 

4.4 THE MAXIMUM APOSTERIOR ESTIMATOR. 

For the posterior function defined in ( 4.2.3) it follows that 

(4.4.1) 

For g(xi), f(yil xi) and h(yi) defined in ( 4.3.3), ( 4.3.5) and ( 4.3. 7) respectively it follows 

that 

( 4.4.2) 

where 

K - ~i ln(21r)-T ln(21r)-½lnlAil-½lnl«pl -lnh(yi). 
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The MAP estimator :x:MAP is found by solving 

( 4.4.3) 

given initial values for a 2, () and c)_ 

Linear model 

For the linear model ( cf. ( 4.3.8)) it follows that (see for example, Bock and Du Toit 

(1992)) 

a z n P ( xi j Yi) 1 ( , -1 ) 1 ( -1 ) ---,----- = -- -2B- A- (y• -B-x-) -- 2() (x- -0) 8x- 2 z z z z z 2 z · 
'l 

( 4.4.4) 

Setting ( 4.4.4) equal to zero yields 

( 4.4.5) 

Note that for the linear model the MAP estimator is identical to the Bayes estimator 

E(xilYi) in ( 4.3.15). 

Nonlinear model 

Maximization of ( 4.4.3) with respect to xi is equivalent to the minimization of 

with the constant K omitted (
8
8K=0) that is 

X· 
'l 

F(xilYi) = 2!2( Yi -f(xi,ti) )'(yi-f(xi,ti)) + ½(xi-fJ)'c)-1(xi-fJ) · 

Hence for 
8F(x• I Y·) a i i = 0, it follows that 

xi 
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where the nixr matrix, Ji, of first order derivatives has typical element 

J·=l 2 • • • n• and k=l 2 • • • r 
' ' ' z ' ' ' • 

( 4.4.8) 

4.5 THE MAXIMUM APOSTERIORI ALGORITHM 

The maximum aposteriori algorithm is an iterative procedure, making use of the MAP 

estimator along with the information matrix, .'I, given by -E(H), where 

H = (4.5.1) 

to find the unknown parameter estimates 8, cl>, and a 2. 

Linear model 

From ( 4.4.4) and ( 4.5.1) it follows that for the linear model 

.'I = (B-'A--1B-+cI>-1) z z z (4.5.2) 

In the linear case, the MAP estimators ( 4.4.5) and ( 4.5.2) is used iteratively to find the 

unknown parameter estimates iJ, i, and a 2 given in (3.3.13), (3.3.14) and (3.3.16) 

respectively. Note that in the linear case E(xilYi) = :x:MAP and Cov(xilYi) = .'1-1, thus for 

the linear model the maximum aposteriori algorithm is equivalent to the EM algorithm 

described in Section 3.6. 

Nonlinear model 

From (4.4.7) it follows that the Hessian matrix (cf. (4.5.1)) for the nonlinear model can 

be obtained as follows: 
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a~i ( ( X; - O)'ct>-1 - :2 (Y;-f(x;,t;) )' Ji) 

= if!-1 + (J/Ji)/a2 - -¾- H* ' 
a 

where Ji is given in ( 4.4.8) and 

* ( I a2£( Xi,ti) 
H = Yi-f(xi,ti)) 8 8 

xk xz 

(4.5.3) 

k,l =1,2, · · · ,r (4.5.4) 

For the maximum aposteriori algorithm in case of the nonlinear model, E(xilYi) and 

Cov(xilYi) in (3.3.13), (3.3.14) and (3.3.15) is substituted iteratively by ( 4.4. 7) and 

( 4.5.3) respectively. 

Substituting E(xi1Yi) and Cov(xilYi) with equations ( 4.4. 7) and ( 4.5.3) respectively a-2 in 

(3.3.15) can be written as 

f y'y+ trJ-'J.[H- 1] 
A 2 i=l z z 
a = N ( 4.5.5) 

:En• 
i=l z 

The unknown parameter estimates iJ, 4> and a-2 can also be found iteratively using the 

Fisher scoring algorithm described in Section 3.5. 

4.6 PRACTICAL APPLICATIONS 

Example 4.6.1 

The data used in this section is reported in Childs, et al (1992), see Appendix A for the 

raw data. Reaction times were measured monthly on 8 occasions. The covariate, z, is 

the amount of damage caused to the neural paths in the brains of 9 rats. A negative 

value indicates damage to those neural paths which are believed to stimulate reaction. 

A positive value indicates damage to those neural paths believed to suppress reaction, 

this mechanism being linked to the chemical dopamine. If the neural paths stimulating 

reaction are damaged, (z < 0), the suppressing paths are dominant and hence reaction 
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suppressing reaction (z<O), is expected to decrease reaction times. 

A second degree polynomial was fitted to the reaction times. The model includes the 

covariate, z, and is as follows: 

i=l,2, · · · ,N . (4.6.1) 

It is assumed that xi ,..., N ( B( (J + vzi), cI>) independent of fi where fi ,..., N ( O,a-2 I), and 

where 

1 1 1 

1 2 4 

1 3 9 

1 4 16 
B= 

1 5 25 

1 6 36 

1 7 49 

1 8 64 

8=(00,01,02)', and v=(v0,v1,v2)' (cf. (4.3.9)). The covariate values are respectively z1= -
0.543 , z2= -0.450, z3=-0.399, z4=-0.153, z5=L013, z6=L019, z7=L331, z8=1.477 and 

Z9=2.030. 

Estimates of the unknown parameters ( cf. ( 4.3.25) to ( 4.3.28)) are as follows: 

(J = ( 396.2306, 16.4567, -0.8356)' , 

with standard errors 12.9805, 8.1507, and 0.9772 respectively. 

The maximum likelihood estimates of v and cl> are 

v = ( -1.0753 , -19.3992, 2.2427)' , 

and 
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613.0541 
(714.04) 

«I>= -382.7771 349.4373 
(417.32) (281.11) 

40.7486 -40.9746 5.4718 
(47.21) (32.84) ( 4.03) 

with standard errors indicated in brackets below each estimate. 

Finally the maximum likelihood estimate of a-2 is &2=445.3415. 

Let 

E(y) = B ( 8 + vz) 

and 

A typical element y t of y is 

t=l, · · · ,8. (4.6.2) 

Figure 4.6.1 is a graphical representation of Yt for various values of t. Each graph 

corresponds to a fixed covariate value in the range z= - 2.0, - 1.5, - 1.0, - 0.5, 0, 0.5, 

1.0, 1.5, 2.0. 

It is apparent from Figure 4.6.1 that an increase in reaction times is associated with 

negative covariate ( z) values, whereas a decline in reaction times is associated with 

positive values of z. In both instances it seems that the effect of the covariate 

diminishes after a period of eight months. 

The Bayes estimates E(xilYi), i=l,2, · · · ,9, of the random parameter vector x, are given 

below (x=(x0, x1, x2)'): 

Page 4.15 

 
 
 



 Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2022

Rat number. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

E(xolYi) 

398.458 

419.871 

369.691 

395.680 

422.863 

376.556 

391.644 

391.401 

394.186 

Reaction 

(ms) 

550 

533 

516 

• 
499 • 

♦ 

483 

466 • 
■ 

• ■ 
450 

♦ ■ • 
433 

416 

400 

383 

366 

E(x1 IYi) E(x21Yi) 

19.774 -1.878 

20.188 -2.014 

44.511 -2.780 

22.745 -1.518 

-39.652 6.755 

3.426 0.292 

-3.079 1.560 

-11.750 1.448 

-11.354 2.557 

0.5 1.2 2.0 2.7 3.4 4.1 4.9 5.6 6.3 7.0 7.8 8.5 

Figure 4.6.1 Reaction times of rats. 

Months 

Key to figure: 

z =-2.0 : filled diamond 

z =-1.5 : filled square 

z =-1.0 : filled triangle 

z =-0.5 : filled circle 
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Figure 4.6.2 is a graphical representation of the curves fitted to the reaction times of the 

9 rats. The solid lines denote curves based on Bayes parameter estimates whereas the 

dotted lines indicate curves based on 01S parameter estimates. 

Reaction 

(rns) 

550 

533 

516 

4-99 

4-83 

4-66 

4-50 

4-33 

4-16 

4-00 

383 

366 

350 

0.5 

.-.:)/··-·•' 
',.,>'~, 

:(<:::::::::, 

1.2 2.0 2.7 

, 

......... 

,, 
,, 

.... ------··-··· 

------------------.)-/ . 

.... /// 

// 
:' ,' 

./ 

3.4- 4-.1 4-.9 5.6 6.3 7.0 7.8 8.5 

Months 

Figure 4.6.2 Curves fitted to the reaction times of 9 rats. 
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Example 4.6.2 

The dataset used m this example was obtained from Dr. Gree££, Department of 

Agriculture, University of Pretoria (see Appendix A for part of the data). Weights of 

lambs were recorded weekly over a period of 14 weeks. The covariate, z, is the birth 

weight of the father ram. The birth weight, weight for each of the first 13 weeks, as well 

as weight at weaning in the 14th week were recorded for each lamb with an unique 

identity number. The identity number of the father ram, including his age as well as the 

identity number of the mother ewe including her age, is known in each case. 

A first degree polynomial was fitted to the weights. The model includes the covariate, z, 

and is as follows: 

i=l,2, · · · ,N, (4.6.3) 

with xi ,...., N(B( 8 + vzi),4>) independent of Ei and where Ei,...., N(O,o-2 I). For an ewe lamb 

with a father ram of 55 months, Bi is given by: 

B-= 
'l 

1 1 1 55 

1 2 1 55 

1 3 1 55 

1 ni-l 1 55 

1 ni 1 55 

In the model considered, 8=(00,01,02,03)', and v=(v0,v1,v2,v3)', and the different values 

of the covariate, z, for the 21 rams are as follows: 
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zl = 3.0 Z2 =2.8 Z3 = 3.6 

Z4 = 1.4 Z5 =2.2 z6 = 2.6 

Z7 = 3.3 z8 =2.0 Z9 = 2.0 

Z10 = 2.5 z 11=2.5 Z12= 2.5 

Z13 = 4.0 Z14=3.O Z15= 1.8 

z16 = 3.0 Z17=2.2 Z18= 3.0 

Z19 = 2.0 Z20=2.6 Z21 = 3.0 

Note that the first column of the design matrix Bi relates to the intercept term x0, the 

elements of the second consists of the birth order (x1) of the lambs, 1 denoting the first 

born, 2 the second born and so on. The third column of Bi is a dummy variable (x3) for 

gender, 1 denoting male and -1 female, the fourth column denotes the age (x4) of the 

ram at birth. 

Estimates of the unknown parameters ( cf. ( 4.3.25) to ( 4.3.28)) are as follows: 

8 = ( 2.64810, 1.30878, -5.05868, 0.00965) I , 

with standard errors: 0.67582, 0.02595, 1.21871, 0.01296; 

V = ( -0.21888, -0.02082, 4.35167, -0.00048) ', 

8.117728 
(0.00) 

0.131244 0.011964 
(> = (0.00) (0.00) 

-4.313944 0.091234 26.780573 
(0.00) (0.00) (0.00) 

-0.151547 -0.003276 0.055602 0.002933 
(0.01) (0.00) (0.01) (0.00) 

with standard errors indicated in brackets below each estimate. 

Finally the maximum likelihood estimate of a-2 is 8.692198. 

Let 
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E(y) B(fJ+ vz) 

and 

A typical element y t of y is 

Yt ( 00 + v 0z) + ( 01 + v1z)t + 02(sex) + 03( age of ram) t=l, • • • ,ni. 

i =1,2, ... ,21 

f(t) 

Sheep data: Effect of Covariate 

21.5 

19.8 

18.0 

16.3 

14.5 

12.8 

11.0 

9.3 

7.5 

5.8 

4.0 

2.3 

0.5 

0.0 1.4 2.8 4.2 5.6 7 .0 8.5 9.9 11.3 12.7 14.1 15.5 

t 

( 4.6.4) 

Figure 4.6.3 Effect of covariate. The upper line denotes the line with covariate 1.5 and the bottom line 

is aswciated with covariate value 4.5. 
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Figure 4.6.3 is a graphical representation to indicate the effect of the covariate on the 

weight of lambs, given that the age of the ram is fixed at 55 months and that the 

covariate values are 1.5, 2.0, 2.5, 3.0, 3.5, 4.0 and 4.5 respectively. It is apparent from 

this representation that the birth weight of the father ram has an influence on the 

weights of the lambs. 

f(t) 

23.0 

21.2 

19.4-

17.6 

15.8 

14-.0 

12.3 

10.5 

8.7 

6.9 

5.1 

3.3 

1.5 

0.0 

Sheep data: Effect of Sex & Age 

1. 4- 2.8 4-.2 5.6 7.0 8.5 9.9 11.3 12.7 14-.1 15.5 

t 

Figure 4.6.4 Effect of age and sex on lambs. 
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In Figure 4.6.4 the effect of age and sex is illustrated with a fixed covariate value, 

z=3.0. The solid line indicates the male lambs while the dotted line indicates the female 

lambs. The different ages that were used are 20, 40, 60, 80 and 100 months, where the 

upper solid line as well as dotted lines are associated with 100 months for males and 

females respectively and the bottom solid and dotted lines are associated with a father 

ram age of 20 months. It seems that sex has a greater influence on the weights of the 

lambs than the age of the father ram. 

The Bayes estimates E(xilYi), i =1,2, • • • ,21 are given below: 

Ram E(xolYi) E(x1IYi) E(x2IYi) E(x3IYi) 

1 2.00365 1.26975 5.14966 0.00014 

2 3.11075 1.29008 7.83652 -0.01598 

3 2.68172 1.27350 11.60170 -0.00990 

4 2.80059 1.49301 6.40398 -0.01890 

5 -1.04168 0.99817 -4.09239 0.08925 

6 4.87727 1.24648 10.49291 -0.04016 

7 0.22920 1.23377 7.20904 0.04751 

8 1.18164 1.19044 2.41839 0.03302 

9 -0. 78231 1.28181 10.04484 0.06218 

10 1.17579 1.21410 8.44762 0.02182 

11 2.56605 1.28483 9.58174 -0.00396 

12 1.35833 1.39151 3.34767 0.00965 

13 2.98541 1.29129 10.37900 -0.01588 

14 2.31415 1.33187 11.53216 -0.00388 

15 11.44295 1.37180 -8.83541 -0.15265 

16 -1.23074 1.10396 10.49478 0.07238 

17 -0.07368 1.23312 12.34438 0.04635 

18 3.60221 1.17296 12.24061 -0.01938 

19 -0.66151 1.14515 0.48296 0.07200 

20 1.96677 1.20638 1.64170 0.01636 

21 3.06588 1.31534 4.38799 -0.01384 
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Example 4.6.3 

Initial estimates usmg the MAP estimation procedure described Sections 4.4 and 4.5 

were computed for the female mice data set as well as the male data set using model 

(3.8.3) with response function (3.8.4) in Chapter 3. 

When fitting the model to the female mice data, the MAP procedure converged in 41 

iterations yielding the following estimates of the unknown parameters: 

41.182 

0 = 1.462 

-0.457 

58.688 

~ = 1.441 0.098 

-0.111 0.008 0.047 

and &2 = 3.158. 

For the male mice data, the MAP procedure converged m 23 iterations yielding the 

following estimates of the unknown parameters. 

47.331 

IJ = 1.683 

-0.301 

108.354 

~ = 2.561 0.134 and &2 = 3.881 . 

-1.592 0.002 0.123 

Comparing the results in this example with those of Example 3.8.2 it is seen that the 

estimates of the unknown parameters are nearly the same. 

Example 4.6.4 

Model (3.8.17) with sex as covariate for the male and female mice data and xi given in 

(3.8.18) of Example 3.8.4 were used to obtain initial estimates using the MAP 

estimation procedure. The MAP procedure converged in 53 iterations yielding the 

following estimates of the unknown parameters: 
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44.424 

() = 1.545 

-0.405 

Example 4.6.5 

2.823 

iJ = 0.083 

0.058 

83.579 

cI> = 2.165 0.119 and &2 = 3.974. 

-0. 771 0.004 0.084 

Initial estimates were obtained usmg the MAP procedure for the data described in 

Example 3.8.5 with the Gompertz function given in equation (3.8.23) and the measure 

of cognitive ability (zi) as covariate for the U.S. Air Force enlisted personnel ( cf. 

(3.8.21) and (3.8.22) ). 

34.609 

8 = 1.0811 

0.772 

0.0267 

iJ = -0.0015 

-0.0001 

91.1471 

cI> == 1.1476 0.1609 and &2 == 11.2872 . 

-0.3423 -0.0116 0.0318 

Comparing the results of the MAP estimation procedure in Examples 4.6.3 and 4.6.4 

with the results of the EM-algorithm in Examples 3.8.4 and 3.8.5 respectively it is seen 

that the estimates of the unknown parameters are nearly the same. The modified EM

algorithm as well as MAP estimation procedure seem to be both very reliable. 

4.7 SUMMARY. 

The posterior distribution of xi, given Yi , contains all the information about the xi 

afforded by the observation Yi, and the information is conveyed by the posterior mean 

and covariance matrix. Correspondingly, all the sample information about the 

population parameters cr2, µ and E, is contained in the marginal distribution whose 

density is expressed in ( 4.3. 7). 

The procedures for structural (MML estimation) and nonstructural (MAP estimation) 

analysis, described in chapters 3 and 4, are based on proven statistical techniques and 

are excellent to describe and predict the future course of growth. The Bayesian origin of 
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these procedures enables them to make the best use of the observations available, 

however fragmentary, when fitting individual growth curves. 

The procedures discussed in Section 4.3 are implemented in the Fortran program NLIN, 

and a program MAPESTIM has been written, by S. H. C. du Toit, Department of 

Statistics, University of Pretoria, to implement the theory discussed in Section 4.4. 
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CHAPTER 5 ESTIMATION OF THE UNKNOWN PARAMETERS IN MULTI

COMPONENT RICHARDS MODELS. 

5.1 INTRODUCTION 

In this chapter models are considered to demonstrate the existence of growth phases or 

cycles in growth curves, using data with frequent measurements in time. Two different 

approaches for estimating the unknown parameters in nonlinear multi-component 

Richards models ( cf. (2.1.1)) are considered. 

The Fels as well as the Berkeley data sets which compnse of large male and female 

longitudinal growth records are used. R. D. Bock (1989) obtained access through Dr. 

Alex Roche to the growth records begun at the Fels Institute in 1929. The Fels data 

include a great number of cases measured from birth to maturity, making it possible to 

evaluate the accuracy of the growth prediction system by predicting growth at maturity 

from data recorded at any earlier stage of development. The following information 

required for the growth prediction system is included in the records: sex of the child, 

height of first degree relatives, especially parents, and estimates of the skeletal age of 

the child based on hand-wrist or knee radiographs. The Berkeley data (Tuddenham and 

Snyder 1954) is similar and some analyses are given in Appendix C. 

We started off by fitting a nine parameter multi-component model to the Fels and 

Berkeley human growth records. We found however that both these data sets were over 

parameterized using the nine parameter triple-logistic model. This result was verified by 

an eigenvalue analysis on the correlation matrix of the estimated parameters. For both 

male and female datasets the smallest eigenvalue was essentially zero. This result is in 

agreement with the findings of Bock and Thissen (1980), who placed a linear restriction 

on the parameters thereby reducing the model fitting problem to the estimation of 8 

free parameters. 

Instead of resorting to the use of linear restrictions, an eight parameter function was 
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employed in the following model: 

i = 1,2, · · · ,N. (5.1.1) 

where Yir, f(xi,a,tir) and Eir, r=l,2, • • • ,ni, denote typical elements of the nix 1 

component vectors Yi, f(xi,o:,ti) and €.i respectively, a=( a 1 ,a2,a3)' with a a set of fixed 

parameters that may be set to predetermined values, and where f(xi,a,tir) is defined as 

follows 

-x4t- a 1 x5-x6t- a 2 x7-x8t- a 3 f(xi,a,tr) = x1[ l+e ir] +x2[ 1+ e ir] +x3[ 1+ e ir] + €.ir. 

(5.1.2) 

It is assumed that x 1,x2, · · · ,xN are a random sample from a N(O,~) distribution. The 

error vectors, € 1,€2, • • • ,EN are assumed to be independently distributed as N(O,Ai) 

variates, independently distributed form the xi. It is also assumed that the covariance 

matrices, Ai, can be expressed in terms of a common set of unknown parameters 

Ai=Ai( r) (see Chapter 3 Section 3.2). The vector of unknown parameters, ,, is defined 

as follows: 

(5.1.3) 

In the first approach, considered in Section 5.2, it is assumed, when estimating the 

unknown parameters, that n repeated measurements on each of N experimental units 

were obtained on the same occasions t1,t2, • • • ,tn. Since the response functions to be 

considered in this chapter are nonlinear in the parameters, it follows from (5.1.1) and 

the distributional assumptions for xi and fi, i=l,2, · · · ,N, that y 1, · · • YN are not 

normally distributed. However, Anderson and Rubin (1956: 145-146) showed that in 

such cases consistent estimates of the unknown parameters may still be obtained using 

normal maximum likelihood, although the standard errors of the estimated parameters 

and test statistic values may then be incorrect. 
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Estimates of the unknown parameters, ,, (cf. (5.1.3)) are obtained using the approach 

described in Section 3.4. 

(5.1.4) 

(5.1.5) 

where f=f(x,a,t). 

It is shown in Section 5.2 how to calculate ! and :E using Gauss quadrature numerical 

integration (see Section 3.7). The high dimensional integrals involved are respectively 

reduced to lower dimensional integrals when calculating the moments of the response 

function. 

Du Toit and Browne (1991) developed a computer program, AUFITPC, to implement 

the theoretical procedures required to handle the automated fitting of nonstandard 

models under the assumption of multivariate normality. The user has to supply a 

subroutine for the evaluation of the mean vector, !, and covariance matrix, :E. 

The second approach, namely the MML ( cf. Section 3.3) procedure of estimating 

unknown parameters, is given in Section 5.3. The derivatives of the log likelihood 

funcion are given in Section 5.4. 

The data used in the application in Section 5.5 is the incomparable collection of data 

contained in the Fels growth study (see e.g. Bock 1973), which is a large sample of 

longitudinal male and female human growth records begun at the Fels Institute in 1929. 

In Examples 5.5.1 and 5.5.2 the theory discussed in Section 5.2 is applied to the Fels 

growth data. In Examples 5.5.3 and 5.5.4 the results of the MML procedure using the 

similar subsets of Examples 5.5.1 and 5.5.2 of the Fels data, are given. 
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5.2 FIRST AND SECOND ORDER MOMENTS OF MULTI-COMPONENT 

RICHARDS MODELS 

At timepoint tj, j=l,2, • • • ,n, the triple-component response function defined in (5.1.2) 

can conveniently be expressed in the following form: 

(5.2.1) 

where 

f1j = (1 
-X4t. Q'. 

+ e J) 1 
' 

f2j = (1 
X5 - X6t · a + e J) 2 

' 

f3j = (1 
X7 - X8t. Q'. + e J) 3 

' 
j=l,2,• · •,n. (5.2.2) 

From (5.2.1) and (5.2.2) it follows that 

f(x,o:,t) = Fx1 (5.2.3) 

where F is defined by 

F 
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and x1 by 

( 5.2.4) 

The mean is found by determining the expected value of the response function 

j=l,2,• · •n. 

Proposition 5.2.1 

The expected value ~kr = E(xkfkr), k=2,3 can be expressed as 

Nt Nt 
~kr '.::::'. l,E .E wiw j(µ3+t31 xi+ t32X j)h( xi,x j) ; 

z=lJ=l 

with 

h(x;,xj) = ( 1 + exp(t 11 X; + µ1 - (t21x; + t 22xj + µ2)tr )°'k 

= ( 1 + exp(µ 1 - µ2tr + (t 11 - t 21 tr)x;-t22trxj))°'k , 

(5.2.5) 

(5.2.6) 

(5.2.7) 

and where wi and xi in (5.2.6) denote the weights and nodes (See Stroud and Secrest 

1966), respectively. 

Proof 

where g(x1) is the marginal distribution of x1, with probability density function 
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(5.2.9) 

with 

and 

Transform x1 =(x2,x5,x6)', to z1 =(z1,z2,z3)' where z1 =x5, z2= x6 and z3= x2, (5.2.10) 

with 

(5.2.11) 

(5.2.12) 

For z1=x1 (cf. (5.2.10)), the Jacobian of the transformation is equal to 1 and hence 

(cf. (5.2.8)) 

r=l,2, • • • ,n; (5.2.13) 

where 

(5.2.14) 
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To evaluate (5.2.13), the following transformation is used. Let 

(5.2.15) 

where T* is the Choleski square root of r 1, that is, 

(5.2.16) 

It follows that 

u'u (5.2.17) 

and 

(5.2.18) 

The Jacobian of the transformation I ::~I, is equal to the determinant 1./2T* I where 

T* is a 3x3 matrix, so that (cf. (5.2.16)) 

Let 

T = J2T*. 

Using the above transformation with ~2r=E(x2£2r) it follows that ( cf. (5.2.13)) 

2 2 2 

I I I 
-U1-UrU3( ) ( ~2r= c e t 31u1 + t32u2 + t 33u3 + µ3 -g u1,u2) du1 du2du3 

where 

C=7r 
-3/2 

and 
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(5.2.23) 

□ 
Note that g(u1,u2) defined in (5.2.23) can denote any other transformation of the 

parameters (see Chapter 2), for example 

(5.2.24) 

The three dimensional integral (5.2.21) can be reduced to a two dimensional integral as 

follows. 

where 

and 

with c defined in (5.2.22). 

Note that u3 is distributed N(O,½) and therefore 12 = 0 and it follows that 

2 2 
1 J J -U 1 - U2 ( ) (2r = 7f e t31 ul + t32u2 + µ3 g( ul, u2)du1 du2 · 

(5.2.25) 

(5.2.26) 

( 5.2.27) 

The integral in (5.2.27), has no closed form solution and can be evaluated to a high level 

of accuracy by making use of the Gauss quadrature numerical integration procedure, 

outlined in Section 3.7. The result in (5.2.6) follows. Similarily an expression for {3r 

can be obtained. 
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Proposition 5.2.2 

The expected value ~lr = E(x1f1r), can be expressed as 

(5.2.28) 

where 

(5.2.29) 

Proof 

The computation of ~lr=E(x1f1r) is similar to the computation of !kr, for k=2,3 but 

involves the solution of a double and not a triple integral and ~ lr reduces to the 

expression in (5.2.28). 

From Propositions 5.2.1 and 5.2.2 it is possible to evaluate 

r=l,2, • • • ,n. (5.2.30) 

The covariance for the response function at timepoints tr and t8 is as follows: 

Cov(f(x,a,tr), f(x,a,t 8 )) = E(f(x,a,tr) -f(x,a,t8 )) - E(f(x,a,tr))E(f(x,a,t8)). 

(5.2.31) 

From (5.2.1) to (5.2.4) it follows that 

E(f(x,a,tr) • f(x,a,t 8 )) = E((x1f1r + x2f2r + xi3r) · (x1f1s + x2f2s + xi3 8 )) 

= E(xr · f1r · f18) + E(x~ · f2r · f28) + E(x~ · f3r · f3s) 
+ E(x1f lr. x2f2s) + E(x1f1r. x3f3s) + E(x2f2r. x3f3s) 

+ E(x1f18 · x2f2r) + E(x1f18 · xi3r) + E(x2f28 • xi3r). (5.2.32) 
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Proposition 5.2.3 

The expression for E( xr f kr · £ kJ for k = 2 or 3 reduces to: 

(5.2.33) 

(5.2.34) 

with 

(5.2.35) 

and 

Proof 

The computational procedure as well as the transformations used when computing 

E(x~-fkr • £ks) for k = 2 and 3 respectively is similar to the procedure discussed in 

Proposition 5.2.1. □ 

Proposition 5.2.4 

The expression for E(xr · £1r · £1s) reduces to: 

E(xy-£1r -f1s) ~ j; Ywihr(xi) . (5.2.37) 

hr( xi) = h1 ( xi) x(h2r( xi) tl(h2s( xi) t 1 , (5.2.38) 

with 

( 5.2.39) 
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r=l,2, • • • ,n. ( 5.2.40) 

Proof 

The proof is similar to Proposition 5.2.2. □ 

Proposition 5.2.5 

The expected value of the product, 

(5.2.41) 

where wi and xi in (5.2.41) denote the weights and nodes (see Stroud and Secrest 1966) 

respectively. 

The functions h ! , h;r and h38 are defined as follows 

+ 5 65555). 

h;r(xi,xj) = 1+ exp(/31 +s11xi-s21x/r-s22xir-f32tr) 

h38(xi,xj,xk,xl) = 1 + exp(/33 - (34t 8 + (s31 - s41 t 8 )xi + (s32 - s42t 8 )xj 

+ (s33 - 843ts)xk- 844tsx1) · 
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Proof 

(5.2.46) 

(5.2.4 7) 

and 

(5.2.48) 

Consider the transformation 

Vl X5 

V2 x6 

V 
V3 X7 

(5.2.49) 
V4 X8 

V5 X2 

v6 X3 

and let 

E(v) = {3, (5.2.50) 

Cov(v,v') = '11, (5.2.51) 

then 
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/31 05 

/32 06 

/3= /33 07 

/34 0g 

/35 02 

/36 03 

and 

c/>55 

¢>65 ¢>66 

'11= c/>75 ¢>16 c/>77 

c/>g5 ef>s6 ¢>s1 ef>ss 

¢>25 ¢>26 ¢>21 ¢>2s ¢>22 

c/>35 c/>36 ¢>37 c/>3s c/>32 c/>33 (5.2.52) 

For the transformation in (5.2.49) the Jacobian of the transformation is equal to 1 and 

hence (cf. (5.2.46)) 

E(x2f2r. x3f3,) = J ... f vll + e V1-v2tr)°'2. vll + e vrv 4ts)°'3 g(v)dv1dv2dv3dv 4dv5dv6 ' 

r, s=l,2, · · · ,n; (5.2.53) 

with g(v) (cf. (5.2.47)) 

g(v) = (2 ... r 6l 2 I •JW112 exp( -½(v-,8)'\J!-1(v-,8)). (5.2.54) 

To evaluate (5.2.53), the following transformation is used. 

(5.2.55) 

where S* is the Choleski square root of \JI, that is, 

( 5.2.56) 
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It follows that 

(5.2.57) 

and that 

v = ./2,S*w+ fJ. (5.2.58) 

The Jacobian of the transformation is 

(5.2.59) 

It follows from (5.2.53) to (5.2.59) that 

E(x2f2r. xi3s) = f ... f e-w'wg5(w)(l + egl (w) - g2(w)tr)°'2 

. g6(w)(l + eg3(w) -g4(w)ts)a3dw' (5.2.60) 

where gi(w) = vi with v given in (5.2.58). 

Let 

where 

111 = c • J f e -wg-w~dw5dw6 · 

ff ff e-wi-w~-w~-wt b(w). h(w1,w2,w3,w4)dw1dw2dw3dw4 

and ( 5.2.61) 

( 5.2.62) 
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with 

c = 1r-
3 , and for s- • = [ 0.S*]· • ZJ V L, i,J 

b(w) = (s54W4 + S53W3 + S52W2 + S51W1 + ,85)(s64W4 + 8 63w3 + 8 62W2 + 8 61W1 + ,86), 
(5.2.63) 

d(w) = (s55w5)(s64w4 + 8 63w3 + 8 62w2 + 8 61wl + ,86) 

+ (s66w6 + 8 65w5)(s55W5 + S54W4 + S53W3 + S52W2 + S51W1 + ,85) (5.2.64) 

and 

(5.2.65) 

For w5 and w6 each N(O,½) distributed and independent, it follows that: 

(5.2.66) 

and 

( 5.2.67) 

The expected value (5.2.60) may be evaluated numerically by making use of the Gauss 

quadrature integration technique discussed in Section 3. 7 of Chapter 3. Hence using 

(5.2.66) and (5.2.67) the result follows. D 

Proposition 5.2.6 

(5.2.68) 
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where wi and xi respectively denote the weights and nodes of a q-point Gauss 

quadrature numerical integration formula. 

k=2 or 3. (5.2.69) 

The functions k1, k2r and k38 are defined as follows: 

(5.2.70) 

(5.2.71) 

and 

(5.2.72) 

Proof 

The calculation of E(x1f1r • xkfk
8

), k=2 or 3 is similar to the calculation of E(x2f2r • x3f38) 

described in Proposition 5.2.5 except that instead of 6 parameters there are only 5 

parameters. The transformation (5.2.55) would thus have one dimension less and be as 

follows 

(5.2.73) 

where 

V (5.2.74) 
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and 

Vl X4 

V2 X7 

V V3 X8 (5.2.75) 

V4 Xl 

V5 X3 

□ 

It has been shown how to calculate E(x/ir · x/js) as well as E(fir) for i,j=l,2,3 and 

r,s=l,2, • • • ,n. It is thus possible to calculate the covariance matrix, Cov(f,f'), ( cf. 

( 5.2.31)) for an eight parameter multi-component model. It is now possible to compute 

! (cf. (5.1.4)) and E (cf. (5.1.5)). The evaluation of the mean vector and covariance 

matrix, for the eight parameter model, outlined above has been implemented in the 

Fortran subroutine COV AX8. 

Using the iterative generalised least squares approach it is possible to obtain the 

unknown parameters. The theory discussed above was applied to the Fels data 

(Examples 5.5.1 and 5.5.2) using the computer program, AUFITPC, developed by Du 

Toit and Browne (1991), along with the subroutine COVAX8 necessary to run the 

program. 

5.3 THE LIKELIHOOD FUNCTION OF MULTI-COMPONENT RICHARDS 

MODELS 

For model (5.1.1) let f(x,a,t) 

(5.2.4) respectively and let 

Fx1 (cf. (5.2.3)) with F and x1 given in (5.2.3) and 

(5.3.1) 
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and partition c)-l as follows 

Under the priori assumption of normality for x it follows that 

From the distributional assumptions given in Section 5.1 it follows that: 

Let 

and 

y* =Ly' 

F* = LF, 

q = y*'F*, 

Q = F*'F. 

(5.3.2) 

(5.3.3) 

(5.3.4) 

(5.3.5) 

(5.3.6) 

then the conditional p.d.f. (5.3.4) with x' = (x1,x2) and x1 defined in (5.2.3) can be 

writ ten as follows: 

(5.3.7) 

Use of (5.3.7) and (5.3.3) shows that 

f(y I x)g(x) (5.3.8) 

with 
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(5.3.9) 

Q* as defined in (5.3.9) with 

(5.3.10) 

(5.3.11) 

is given by: 

Q* = -½exp( 8' 1 ~1181 -½x1 w-lxl + s'x1 + 81'~12( x2 - 82) -½( x2 - 82)'~22( x2 - 82)) ' 

(5.3.12) 

Note that s has the same dimension as x1. 

Proposition 5.3.1 

h(y) = J f(ylx)g(x) dx 

1 
= C1 J I '111 2 exp (½s'\Jls + 81 ~12( x2 - 82)) · exp ( -½ ( x2 - 82!'~22 ( x2 - 82) )dx2, 

(5.3.13) 

where 

(5.3.14) 

Proof 

From (5.3.8), with r = 8 parameters and 

(5.3.15) 
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it follows that 

Using (5.3.9) h(y) can be expressed as 

h(y) = C2 exp(-¥Jlif>1101)f( f exp(-½xlW-1x1 +s'x1) dx1} 

( exp ( 01'if>12( x2 - 02) -½( x2 - 02)'if>22( X2 - 02)) f x2 . 

But 

The result in (5.3.16) follows from the fact that for 

v :(pxl) ~ N(0,'11) 

Mv( t) = E( exp ( t'v)) = exp½t'wt . 

Theorem 5.3.1 

h(y) 

where 
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q* q q q 
E E E E (5.3.20) 
(l' i= lj = 1 m=l 

Wa = wiwjwkwzwm, (5.3.21) 

Xa = (xi, xj, xk, Xz, Xm)'. (5.3.22) 

The wi and xi respectively denote the associated weights and nodes of a q-point Gauss 

quadrature numerical integration formula. 

Proof 

Let 

where ( cI>22)-1 = T'T , with T a lower triangular matrix. 

From (5.3.23) it follows that 

and the Jacobian of the transformation is 

Using (5.3.23) to (5.3.25) it follows that h(y) (cf. (5.3.13)) can be written as 

h(y) = C J exp -z'z I \JI I 1/
2 

exp (½s'\Jls + y1281 cI>12Tz )dz . 

Approximating the 5-th dimensional integral 

00 00 2 2 2 

J J 
- zl - z2 - ... - Z5 

• • • e -f(z)dz, 
-00 -00 

by the Gauss quadrature formula ( cf. Section 3. 7) 
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for a denoting the summation over the nodes xi, xi' xk, x 1, and Xm in the quadrature 

formula with weights wi, wj, wk, w1, and Wm the result in (5.3.17) follows. D 

Since 

it follows that ( cf. (5.3.16)) 

(5.3.27) 

Consider the next three examples: 

(5.3.28) 

(5.3.29) 

and 
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= (21r)
3

/
2 

I '1i I 112
( 'P21 + (s1 'Pu+ s2'P21 + s3'P31)(s2'P22 + s1 'P12 + s3'P31) ) exp½s''1is. 

(5.3.30) 

Approximate expressions for the Bayes estimator E(x I y) of the parameter vector x and 

for Cov (x,x' I y) using ( cf. (3.3.20)) can be obtained as follows: 

Case 1 (k,l = 1,2,3): 

J xix~ f(y I x)g(x)dx 

J f(y I x)g(x)dx 

* t w O I '1i I 1/
2 

exp (½s''1is + u'z0 ) 

o:= 1 

(5.3.31) 

where, by comparing with equations (5.3.28) to (5.3.30), C1, C2 and C3 are defined 

as: 

Note that 

Case 2 (k,l = 

C1 = s1 'Pu +s2'P21 + S3'P31 ' 

C2 = s2'P22 + Sl \Jf 12 +s3'P32, 

C3 = s3'P33 +s1'P13 + s2'P23 · 

c. 
'l 

= _Q___( ls''1is) . 
OS· 2 

'l 

i= 1,2,3 

1,2, · · · ,5): 

q* 1 

o: ~ 
1 
w 0 xkxl I '1i 1

2 exp (½s'\Jis + u'z0 ) 

q* 1 
E w o: I '1i 12 exp ( s''1is + u'zo:) 

o:= 1 
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Case 3 (k = 1,2,3 ; l = 1,2,. · · ,5): 

q* l 
E w 0 1'1t1 2 exp(s'\Jts +u'z0 ) 

a=l 

( 5.3.34) 

Using equations (5.3.31 ), (5.3.33) and (5.3.34), the conditional moments E(xjy) and 

Cov(x,x'jy) can be evaluated. For example Cov(x1,x21y)=E(x1x21y) - E(x11y) · E(x21y). 

Marginal maximum likelihood estimators ( cf. Section 3.3) of the unknown parameters , 

(cf. (5.1.3)) are obtained by maximizing the marginal likelihood, 

(5.3.35) 

From 5.3.35 it follows that 

(5.3.36) 

Each marginal p.d.f h(yi) ( cf. Theorem 5.3.1) can be numerically evaluated using an 

appropriate Gauss quadrature formula in which allowance is made for the number of 

repeated measurements ni and for the set of time points til, ti2, • • •, tin. on which 
'l 

these measurements were made. 

The marginal likelihood equations for the parameters of the prior probability density 

function, e (cf. (3.3.2)), and measurement error, T (cf. (3.3.4)), are obtained by 

differentiating and equating (5.3.35) to zero. This aspect is dealt with in the following 

Section. 
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5.4 DERIVATIVES OF THE LOG LIKELIHOOD FUNCTION. 

Using the marginal maximum likelihood method of estimation, estimates of the 

unknown parameters {! ( of the prior p.d.f g(x), cf. (3.3.2)) and T ( of the p.d.f. f(ylx), 

cf.(3.3.4)) are obtained by differentiating and equating (5.3.35) to zero as follows ( cf. 

(3.3.10) and (3.3.11)) 

olnL - £ _l_ (Bh(yi)) - £ E (olng(x))- 0 k=l,2, ... ,44 
Bek - i= 1 h(yi) Bek - i= 1 xjyi Bek - ' 

(5.4.1) 

Maximization of ln L is equivalent to the minimization of F = - ~ln L. Denote the 

gradient vector by g('y), where 1 is defined in (5.1.3). It follows from (5.4.1) and Section 

3.3 of Chapter 3, that the derivatives of F with respect to the parameters (} and ~, of 

the prior probability function are as follows: 

( 5.4.3) 

Substituting iJ defined in (3.3.13) into (5.4.3) it follows that 

( 5.4.4) 

It also follows from (5.4.1) that 

g(vecs~) - _1_ ~ E ( B lng(x)) 
- N i;;'l x!yi Bvecs~ 

= _1_ £ E I .(-l~-1((x-8)(x-8)' - ~)~- 1a') 
N i = 1 X Yi 2 

= ~+-1J Ex I Y;(( (x- xjyi)(x- xlyi) + (xlyi - 8)(xjyi - 8)' - ~ )~-1a') 
z-1 (5.4.5) 
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Substituting cl> defined in (3.3.14) into (5.4.5) it follows that 

(5.4.6) 

If for example Ai=0"2ln., T=0"
2, it follows from (3.3.11) that 

z 

(5.4. 7) 

Denoting f(xi,a,ti) by fi, it can be shown that 

(5.4.8) 

Therefore 

( 5.4.9) 

So that 

(5.4.10) 

From (5.4.7) and (5.4.10) it follows that 

(5.4.11) 

Solving g( 0"
2) = 0, yields the maximum likelihood estimate for 0"

2, 

(5.4.12) 

Let 
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and 

(5.4.13) 

where Qij denotes a typical element of the (3x3) matrix Q, qi a typical element of the 

(3xl) vector q (cf. (5.3.6)), \J!ij a typical element of the (3x3) matrix \JI defined by 

(5.3.11) and Ci, i=l,2,3 defined by (5.3.32). 

Using Theorem 5.3.1 it follows that: 

= Exly/x1F/Fix1 -2y'Fix1) 

q* 1 
~w0 IWl 2 exp(½s'\Jls +u'x0 )•(h1 +h2+h3) 

q* 1 
~ Wa I \JI I 2 exp (½s'\Jls + u'xa) 

(5.4.14) 

with a, Wa and Xa as defined by (5.3.21) and (5.3.22). 

Information Matrix 

In the optimization algorithm the information matrix is used as an approximation to 

the Hessian, where ( cf. Addendum to Chapter 3) 

Under the assumption of multivariate normal third and fourth order moments, the 

expressions for .9( 8), .9( <I>) and .9( 8,4>) are similar to those given by Bock(1990) where 

and 
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To calculate 3(cr2), 3(cr2,«I>) and 3(cr2,8) numerical deri~atives were used. A FORTRAN 

program NLIN has been written to obtain estimates of the unknown parameters 8, «I> 

and T. 

5.5 PRACTICAL APPLICATIONS. 

In Example 5.5.1 the estimation of the unknown parameters for the male and female 

Fels data using the first approach discussed in Section 5.2 is considered. 

The computer program AUFITPC written by Du Tait and Browne (1990) consists of 

two parts: The nucleus program AUFIT.OBJ which is supplemented by the user 

supplied subroutines COY AXI.FOR (for the evaluation of covariance structures), 

CONSTR.FOR (an optional subroutine for the evaluation of equality and/or inequality 

constraints) as well as SPECIN.FOR and SPCOUT.FOR (optional special input and 

output subroutines). The user has to supply a subroutine for the evaluation of the 

mean vector, {, and covariance matrix, E. The subroutine, COVAXS was developed to 

calculate the mean vector, {, and the covariance matrix, E, for the three component 

eight parameter Richards model. 

The Cross-Validation Index ( CVI) is used in A UFITPC to assess the model fit once the 

parameters have been estimated (Browne & Cudeck, 1989). The CVI indicates to what 

extent a fitted moment structure derived from one sample can be expected to fit 

another sample of the same size from the same population. Assuming that the 

discrepancy function is correctly specified for the distribution of the data, the expected 

cross-validation index is obtained from a single sample using 

CVI = F + 2q/N. (5.5.1) 

where 

F = - iZnL( -r) (5.5.2) 

The point estimate of the CVI is linearly related to the Akaike Information Criterion 

(Akaike 1973) and will lead to the same conclusions. It can be seen that a penalty for 

the number, k, of parameters is added to Fin (5.5.1). If N becomes very large, however, 
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the effect of this penalty becomes negligible. An interval estimate of the CVI' is 

obtained from a confidence interval on the noncentrality parameter of a chi-squared 

distribution. The CVI of the saturated model, where no structure is imposed on µ and 

~, is as follows: 

CVI(Saturated Model) =p(p + 3)/N. (5.5.3) 

The CVI takes inaccuracy in parameter estimates obtained from a sample of specified 

size into account and N does appear in (5.5.1). 

Example 5.5.1 

Use was made of two datasets from the Fels institute, the one being the height 

measurements (cm.) of 158 males and the other one the corresponding measurements of 

132 females. For both the males and females the number of responses per individual 

differ. A subset of the dataset for both males and females were created to obtain an 

equal number of observations for all the individuals. Growth measurements made at 

intervals of length 0.5 years were selected. Measurements made at timepoints 2.491, 

2.991, 3.491, 3.991, 4.491, • • •, 16.491 years, regardless of the number of the 

experimental unit, were selected for both the male and female datasets. 

The following 8-parameter triple-logistic function was employed to describe human 

growth over the period 2 years to 1 7 years. 

f(x,a,tr)=xi(l + (1 + ex4rtrr + x2[l + ex5(1 + ex6)-trr + x3[(l + ex7(1 + ex8)-trr 

(5.5.4) 

tr = ( 2.491 2.991 3.491 3.991 4.491 4.991 5.491 5.991 6.491 6.991 

7.491 7.991 8.491 8.991 9.491 9.991 10.491 10.991 11.491 11.991 

12.491 12.991 13.491 13.991 14.491 14.991 15.491 15.991 16.491 ) 
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The vector x, of the growth parameters, is assumed to be multivariate normally 

distributed N( 0,(>) in the population from which the data cases were drawn. 

It was first assumed that A=0"2 I. Thereafter a better fit was obtained for the same 

male and female datasets when the residuals were assumed to be generated by an 

ARMA(l,1) process (see Chapter 6) with unknown parameters a, /3 and 0"
2. Part of 

these outputs for the male and female datasets are given below. The input of the male 

dataset along with a description of the input is given in Appendix B. 

OUTPUT OF AUFIT PROGRAM:_ 

FELS DATA WITH 29 RESPONSES AT THE SAME TIMEPOINTS FOR 96 MALES 

1) MEASURES OF FIT OF THE MODEL FOR MALE DATA 

SAMPLE DISCREPANCY FUNCTION VALUE : 9.164 ( 0.916357E + 01) 

EXPECTED CROSS-VALIDATION INDEX 

POINT ESTIMATE (MODIFIED AIC) : 9.226 

90 PERCENT CONFIDENCE INTERVAL : ( 8.393 ;10.140) 

CVI (MODIFIED AIC) FOR THE SATURATED MODEL: 9.667 

2) SAMPLE MEANS: 

Tl T2 T3 T4 T5 T6 T7 T8 T9 Tl0 

92.872 96.845 100.763 104.386 107.996 111.713 114.998 118.293 121.470 124.600 

Tll T12 T13 T14 T15 T16 T17 T18 T19 T20 

127.640 130.655 133.461 135.798 138.374 141.532 144.324 146.951 149.787 152.759 

T21 T22 T23 T24 T25 T26 T27 T28 T29 

155.994 159.770 163.351 166.841 169.938 173.352 175.819 177.564 178.648 

3) REPRODUCED MEANS : 

Tl T2 T3 T4 T5 T6 T7 T8 T9 TlO 

93.156 97.626 101.557 105.175 108.618 111.965 115.254 118.498 121.694 124.829 

Tll T12 T13 T14 T15 T16 T17 Tl8 T19 T20 

127.889 130.859 133.727 136.486 139.140 141. 707 144.224 146.753 149.390 152.249 
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T22 T23 T24 T25 T26 T27 T28 T29 T21 

155.431 158.961 162.732 166.515 170.043 173.108 175.616 177.582 179.086 

4) SAMPLE COVARIANCE MATRIX : 

Tl T2 T3 T4 T5 T6 T7 T8 T9 TIO Tll T12 T13 T14 T15 

Tl 10.6 

T2 11.2 12.4 

T3 12.0 13.3 14.7 

T4 12.2 13.6 14.9 15.8 

T5 12.1 13.6 15.0 15. 7 16.5 

T6 12.7 14.0 15.4 16.2 16.9 18.2 

T7 12.9 14.2 15.7 16.6 17.3 18.3 19.1 

T8 13.1 14.6 16.1 17.1 17.7 18.7 19.4 20.3 

T9 13.3 14.8 16.4 17.4 18.0 19.1 19.8 20.6 21.5 

TIO 13.9 15.5 17.1 18.1 18.9 20.1 20.9 21.6 22.4 23.9 

Tll 13.7 15.3 17.0 18.1 18.8 20.0 20.8 21.7 22.5 23.8 24.3 

T12 13.9 15.5 17.3 18.5 19.3 20.5 21.2 22.1 23.0 24.2 24.7 25.6 

T13 14.2 16.1 17.9 19.0 19.8 21.1 21.8 22.8 23.7 25.1 25.7 26.3 27.7 

T14 14.8 16.7 18.6 19.7 20.6 21.9 22.6 23.5 24.5 26.0 26.5 27.2 28.4 30.3 

T15 14.8 16.6 18.6 19.6 20.5 21.8 22.5 23.5 24.5 26.0 26.6 27.2 28.5 30.2 30.9 

T16 14.9 16.9 18.9 20.1 21.0 22.3 23.1 24.3 25.3 26.8 27.5 28.2 29.5 30.9 31.3 

Tl 7 15.0 17.0 19.1 20.2 21.3 22.6 23.3 24.3 25.5 27.0 27.8 28.4 29.8 31.4 31. 7 

T18 15.5 17.5 19.6 20.8 21.8 23.2 24.0 25.1 26.2 27.6 28.5 29.2 30. 7 32.1 32.6 

T19 15.8 17.9 20.3 21.4 22.5 23.8 24.6 25. 7 26.9 28.4 29.4 30.2 31. 7 33.3 33.9 

T20 16.5 18.9 21.4 22.6 23.5 24.7 25.7 27.1 28.3 29.8 30.8 31.7 33.2 35.0 35.6 

T21 17.1 19.4 22.0 23.1 23.9 25.2 26.2 27.6 28.8 30.5 31.7 32.5 34.3 35.8 36.7 

T22 17.5 19.8 22.6 23.6 24.4 25.7 26.8 28.2 29.5 31.1 32.4 33.4 35.1 36.5 37.5 

T23 17.6 20.0 22.7 23.6 24.3 25.6 26.7 28.1 29.6 31.2 32.5 33.5 35.4 36.7 37.8 

T24 18.5 20.7 23.6 24.3 25.0 26.6 27.5 29.0 30.6 32.2 33.3 34.5 36.3 37.5 38.9 

T25 18.4 20.5 23.1 23.9 24.5 26.1 26.8 28.4 29.9 31.5 32.5 33. 7 35.3 36.9 38.0 

T26 17.2 19.2 21.6 22.2 23.0 24.6 25.2 26.8 28.2 29.6 30.5 31.7 33.3 34.7 35.6 

T27 16.4 18.3 20.5 21.3 22.0 23.7 24.1 25.6 26.9 28.4 29.1 30.4 31.6 33.0 33.6 

T28 15.5 17.4 19.6 20.4 21.1 22.5 23.1 24.4 25.5 27.0 27.7 29.0 30.1 31.6 32.2 
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T29 15.2 17.0 19.1 19.8 20.5 21.8 22.4 23.5 24.6 26.0 26.6 27.9 28.9 30.5 31.0 

T16 Tl 7 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27 T28 T29 

T16 32.6 

Tl 7 32.8 33.8 

T18 33.8 34.4 35.9 

T19 34.9 35.7 37.2 39.3 

T20 36.8 37.6 39.4 41.6 45.2 

T21 37.8 38.7 40.8 43.5 47.2 51.5 

T22 38.6 39.4 42.0 45.0 49.3 54.5 59.6 

T23 39.1 39.8 42.4 45.5 50.0 55.7 61.3 64.4 

T24 40.0 40.5 43.5 46.1 50.6 55.9 61.7 64.8 67.5 

T25 39.2 39.6 42.1 44.4 48.4 52.7 57.3 60.5 63.7 62.4 

T26 36.7 37.1 39.3 41.2 44.7 48.0 51.8 54.6 57.8 57.2 54.5 

T27 34.7 34.9 36.7 38.4 41.2 43.3 45.7 47.8 50.9 51.2 49.2 47.2 

T28 33.0 33.4 34.8 36.4 38.7 40.1 41.7 43.3 45.9 46.4 45.2 44.3 43.1 

T29 31.6 32.0 33.1 34.4 36.4 37.0 38.0 39.0 41.4 42.1 41.4 41.2 40.6 39.6 

5) REPRODUCED COVARIANCE MATRIX: 

Tl T2 T3 T4 T5 T6 T7 T8 T9 TIO T11 T12 T13 T14 T15 

Tl 10.9 

T2 11.2 12.6 

T3 11.6 12.9 14.3 

T4 11.9 13.3 14.5 15. 7 

T5 12.1 13.6 14.8 15.8 16.9 

T6 12.3 13.9 15.1 16.1 16.9 17.9 

T7 12.6 14.1 15.3 16.4 17.2 18.0 19.0 

T8 12.8 14.3 15.6 16.6 17.5 18.3 19.1 20.2 

T9 13.0 14.5 15.8 16.9 17.9 18.7 19.5 20.3 21.4 

TIO 13.3 14.8 16.1 17.2 18.2 19.1 20.0 20.8 21.6 22.7 

T11 13.5 15.1 16.4 17.6 18.6 19.6 20.4 21.3 22.1 23.0 24.1 

T12 13.8 15.4 16.7 18.0 19.0 20.0 20.9 21.8 22.6 23.5 24.4 25.6 

T13 14.1 15.7 17.1 18.3 19.5 20.5 21.4 22.3 23.2 24.1 25.0 25.9 27.1 
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T14 14.3 16.0 17.4 18.7 19.9 20.9 21.9 22.8 23.7 24.6 25.5 26.4 27.4 28.6 

T15 14.5 16.2 17.8 19.1 20.3 21.3 22.3 23.3 24.2 25.2 26.1 27.0 28.0 29.0 

T16 14. 7 16.4 18.0 19.4 20.6 21. 7 22. 7 23. 7 24. 7 25. 7 26.6 27 .6 28.6 29.5 

Tl 7 14.8 16.6 18.2 19.6 20.9 22.0 23.1 24.1 25.1 26.1 27.1 28.1 29.1 30.2 

T18 14.9 16.7 18.3 19.8 21.1 22.3 23.4 24.5 25.6 26.6 27.6 28.7 29.7 30.8 

T19 15.0 16.8 18.4 19.9 21.3 22.6 23.8 25.0 26.1 27.2 28.2 29.3 30.4 31.5 

T20 15.3 17.0 18.6 20.1 21.6 22.9 24.2 25.5 26.7 27.9 29.0 30.1 31.2 32.4 

T21 15.8 17.4 18.9 20.5 21.9 23.4 24.8 26.1 27.4 28.7 29.9 31.0 32.1 33.3 

T22 16.4 17.9 19.4 20.9 22.4 23.9 25.4 26.8 28.2 29.5 30. 7 31.9 33.0 34.2 

T23 17.0 18.4 19.8 21.3 22.8 24.3 25.8 27.2 28.6 29.9 31.2 32.4 33.5 34.7 

T24 17.2 18.7 20.1 21.5 23.0 24.4 25.9 27.3 28.6 29.9 31.2 32.3 33.5 34.6 

T25 17.0 18.6 20.0 21.4 22.8 24.1 25.4 26. 7 28.0 29.3 30.4 31.6 32. 7 33.8 

T26 16.4 18.1 19.5 20.9 22.2 23.4 24.6 25.8 26.9 28.1 29.2 30.3 31.4 32.4 

T27 15.7 17.5 19.0 20.3 21.5 22.6 23.7 24.7 25.8 26.8 27.9 28.9 30.0 31.0 

T28 15.0 16.8 18.4 19.7 20.8 21.8 22.7 23.7 24.6 25.6 26.6 27.6 28.6 29.6 

T29 14.3 16.2 17.8 19.1 20.2 21.1 22.0 22.8 23. 7 24.6 25.5 26.5 27.4 28.4 

T16 Tl 7 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27 T28 T29 

T15 30.2 

T16 30.6 31.9 

Tl 7 31.2 32.3 33.8 

T18 31.9 33.1 34.4 36.2 

T19 32. 7 34.0 35.5 37.2 39.5 

T20 33.6 35.0 36.6 38.6 41.1 44.3 

T21 34.5 36.0 37.7 40.0 43.0 46.6 50.7 

T22 35.4 36.8 38.6 41.1 44.3 48.5 53.1 57.5 

T23 35.9 37.2 39.0 41.3 44.6 49.0 54.1 59.0 62.2 

T24 35.7 37.0 38.6 40.7 43.7 47.8 52.9 58.0 61.7 63.0 

T25 34.9 36.0 37.4 39.2 41.7 45.2 49.7 54.5 58.4 60.2 59.3 

T26 33.5 34.5 35. 7 37.1 39.1 41.8 45.4 49.4 53.0 55.2 55.2 53.3 

T27 31.9 32.9 33.9 35.0 36.5 38.4 41.0 44.1 47.2 49.5 50.2 49.3 47.5 

T28 30.5 31.4 32.3 33.1 34.1 35.4 37.1 39.4 41.8 43.9 45.1 45.1 44.3 43.2 

T29 29.3 30.2 30.9 31.6 32.3 33.0 34.1 35.6 37.4 39.3 40.8 41.5 41.6 41.2 40.9 
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6) ESTIMATES OF THE ELEMENTS OF cl> 

46.26993 

-2.74716 0.18700 

21.31685 -1.26545 33.63064 

0.60121 -0.03624 0.24014 0.01755 

-0.88388 0.05664 -0.30813 -0.01156 0.01858 

-31.02166 1.84258 -17.67083 -0.39811 0.57867 31.73510 

21.34192 -1.26558 8.87019 0.27888 -0.41142 -16.93392 15.2155 

1.78576 -0.09941 0.88299 0.02069 -0.03254 -1.64857 1.39933 0.14553 

7) ESTIMATES OF THE ELEMENTS OF fJ : 

76.74165 0.66951 87.44015 1.80262 -1.09774 21.44730 18.98271 1.06660 

8) ESTIMATES OF TIMESERIES PARAMETERS: 

&2=0.55982 &=0.42975 ~=0.11233 . 

FELS DATA WITH 29 RESPONSES AT THE SAME TIMEPOINTS FOR 72 FEMALES 

1) MEASURES OF FIT OF THE MODEL 

SAMPLE DISCREPANCY FUNCTION VALUE 

EXPECTED CROSS-VALIDATION INDEX 

POINT ESTIMATE (MODIFIED AIC) 

:10.540 ( 0.105396E + 02) 

:11.845 

90 PERCENT CONFIDENCE INTERVAL : (10.827 ;12.972) 

CVI (MODIFIED AIC) FOR THE SATURATED MODEL:12.889 

2) SAMPLE MEANS: 

Tl T2 T3 T4 T5 T6 T7 TS T9 

91.349 95.418 99.242 102.926 106.483 109.927 113.394 116.654 119.954 

Tll T12 T13 T14 T15 T16 T17 T18 T19 

125.900 128.797 131.614 133.878 136.690 139.900 143.419 146.601 149.972 

T21 T22 T23 T24 T25 T26 T27 T28 T29 

156.732 159.517 161.593 162.819 163.836 165.068 165.806 166.300 166.535 
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3) REPRODUCED MEANS : 

Tl T2 T3 T4 T5 T6 T7 T8 T9 

91.217 95.457 99.266 102.861 106.352 109.785 113.163 116.472 119.686 

Tll Tl2 Tl3 Tl4 Tl5 Tl6 Tl7 Tl8 Tl9 

125.742 128.563 131.268 133.907 136.570 139.374 142.430 145.771 149.304 

T21 T22 T23 T24 T25 T26 T27 T28 T29 

156.059 158.844 161.092 162.823 164.118 165.074 165.780 166.307 166. 708 

4) SAMPLE COVARIANCE MATRIX: 

Tl T2 T3 T4 T5 T6 T7 T8 T9 TIO Tll T12 T13 T14 T15 

Tl 8.9 

T2 9.2 10.6 

T3 9.9 11.3 12.8 

T4 10.4 12.1 13.5 14.8 

T5 11.0 12.7 14.2 15.5 17.0 

T6 10.9 12. 7 14.3 15.5 17.0 17.5 

T7 11.4 13.2 14.8 16.0 17.5 17.9 18.8 

T8 11.9 13.9 15.6 17.0 18.5 19.0 19.8 21.2 

T9 12.1 14.0 15.8 17.2 18.9 19.3 20.2 21.6 23.0 

TIO 12.2 14.1 16.0 17.4 18.9 19.3 20.0 21.5 22.4 22.7 

Tll 12.7 14.6 16.6 17.9 19.6 20.0 20.9 22.5 23.6 23.6 25.1 

Tl2 12.8 14.8 16.7 18.1 19.8 20.3 21.3 22.7 23.9 24.0 25.3 26.1 

T13 12.5 14.4 16.3 17.7 19.4 19.9 21.0 22.4 23.6 23.7 25.2 25.8 26.0 

T14 13.0 15.1 17.0 18.5 20.4 20.7 21.7 23.2 24.3 24.5 25.9 26.6 26.7 28.2 

T15 13.5 15.4 17.2 18.7 20.5 20.9 22.0 23.5 24.7 24.9 26.4 27.1 27.3 28.6 29.7 

T16 13.8 15.6 17.4 19.0 20.9 21.5 22.8 24.3 25.5 25.6 27.3 28.2 28.5 29.8 31.0 

Tl 7 14.6 16.3 18.3 19.9 21.8 22.2 23.5 25.1 26.5 26.5 28.3 29.3 29.5 30.8 32.4 

Tl8 14.9 16.4 18.6 20.1 22.1 22.5 23.9 25.3 26.9 26.8 28.5 29.7 29.8 31.2 32.9 

T19 14.6 16.2 18.4 20.1 22.1 22.6 24.1 25.5 27.1 26.9 28.6 29.8 30.2 31.6 33.4 

T20 15.0 16.7 19.1 21.0 23.1 23.5 25.1 26.6 28.3 27.9 29.6 30.9 31.2 32.7 34.3 

T21 15.0 17.0 19.3 21.2 23.1 23.6 25.2 26.6 28.3 28.1 29. 7 30.9 31.3 32. 7 34.3 

T22 13.8 15.9 18.2 20.1 21.8 22.3 23.7 25.0 26.5 26.3 27.8 28.8 29.1 30.4 31.6 

T23 12.9 14.9 17.1 18.8 20.2 20.6 22.1 23.4 24.7 24.6 26.0 26.9 27.1 28.2 29.1 
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T24 11.6 13.8 15.7 17.3 18.7 19.1 20.4 21.5 22.5 22.5 23.7 24.6 24.7 25.8 26.4 

T25 11.5 13.6 15.5 17.0 18.3 18.9 20.0 21.0 22.1 21.9 23.0 23.9 23.8 24.9 25.4 

T26 10.4 12.3 14.2 15.4 16.5 17.1 18.1 19.1 20.4 20.4 21.4 22.3 22.1 22.7 23.1 

T27 10.3 12.1 13.8 14.8 15.8 16.3 17.5 18.5 19.8 19.7 20.8 21.5 21.2 21.6 22.1 

T28 9.8 11.6 13.3 14.1 15.1 15.6 16.7 17.7 19.0 18.7 19.9 20.6 20.3 20.6 21.0 

T29 9.7 11.5 13.2 14.1 15.0 15.4 16.5 17.5 18.8 18.6 19.7 20.3 20.0 20.2 20.6 

T16 Tl 7 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27 T28 T29 

T16 33.6 

Tl 7 34.9 37.6 

T18 35.6 38.6 40.5 

T19 36.3 39.4 41.4 43.3 

T20 37.1 40.2 42.3 44.5 46.8 

T21 36.8 39.3 41.2 43.5 45.9 46.6 

T22 33.6 35.5 37.1 39.1 41.7 43.0 40.9 

T23 30.7 32.1 33.2 34.8 37.3 38.9 37.3 35.4 

T24 27.5 28.4 29.4 30.5 32.5 34.1 33.1 31.8 30.1 

T25 26.1 26.9 27.6 28.4 30.4 32.5 32.0 31.4 30.0 31.5 

T26 23.7 24.5 24.9 25.2 26.8 28.6 28.3 28.3 27.4 28.8 28.2 

T27 22.3 23.3 23.5 23.7 25.3 27.0 26.8 27.0 26.2 27.7 27.3 27.8 

T28 21.3 22.2 22.4 22.4 23.9 25.6 25.4 25.8 25.2 26.9 26.6 27.0 26.6 

T29 20.7 21.6 21.6 21.5 23.0 24.8 24.8 25.2 24.7 26.3 26.4 26.9 26.4 26.7 

5) REPRODUCED COVARIANCE MATRIX: 

Tl T2 T3 T4 T5 T6 T7 T8 T9 TIO Tll T12 T13 T14 T15 

Tl 9.3 

T2 9.7 11.2 

T3 10.2 11. 7 13.2 

T4 10.7 12.3 13.8 15.2 

T5 11.112.914.4 15.7 17.1 

T6 11.6 13.4 15.0 16.3 17.5 18.8 

T7 11.9 13.9 15.5 16.9 18.1 19.2 20.5 

T8 12.3 14.3 16.0 17.4 18.6 19.8 20.8 22.0 
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T9 12.6 14.6 16.3 17.8 19.1 20.3 21.3 22.3 23.4 

TlO 12.8 14.9 16. 7 18.2 19.5 20. 7 21.8 22. 7 23. 7 24. 7 

Tll 13.0 15.1 16.9 18.5 19.8 21.1 22.2 23.1 24.0 24.9 25.9 

T12 13.2 15.3 17.1 18.7 20.1 21.4 22.5 23.5 24.4 25.2 26.0 26.9 

T13 13.4 15.5 17.3 18.9 20.3 21.6 22.8 23.8 24.8 25.6 26.4 27.1 28.1 

T14 13.6 15.7 17.5 19.2 20.6 21.9 23.1 24.2 25.2 26.1 26.9 27.6 28.5 29.7 

T15 13.9 16.0 17.9 19.5 21.1 22.4 23.7 24.8 25.8 26.7 27.6 28.4 29.3 30.5 32.2 

T16 14.5 16.5 18.4 20.2 21.7 23.2 24.5 25.7 26.7 27.7 28.6 29.5 30.5 31.8 33.7 

Tl 7 15.2 17.3 19.2 21.0 22. 7 24.2 25.6 26.9 28.0 29.0 30.0 30.9 32.0 33.5 35. 7 

T18 16.0 18.1 20.1 22.0 23.8 25.4 26.9 28.2 29.4 30.4 31.4 32.4 33.6 35.2 37.5 

Tl9 16.5 18.7 20.8 22.7 24.5 26.2 27.7 29.1 30.3 31.4 32.3 33.3 34.5 36.1 38.5 

T20 16.5 18.7 20.9 22.8 24.7 26.3 27.8 29.2 30.4 31.4 32.4 33.4 34.4 35.9 38.1 

T21 15.9 18.2 20.3 22.2 23.9 25.5 27.0 28.3 29.4 30.4 31.4 32.2 33.2 34.5 36.3 

T22 14.9 17.1 19.1 20.9 22.6 24.1 25.4 26.6 27.7 28.6 29.5 30.3 31.1 32.1 33.5 

T23 13.7 15.8 17.7 19.4 20.9 22.3 23.5 24.6 25.6 26.4 27.2 27.9 28.6 29.4 30.5 

T24 12.6 14.6 16.3 17.9 19.2 20.5 21.6 22.6 23.5 24.3 25.0 25.6 26.2 26.8 27.5 

T25 11.6 13.5 15.1 16.5 17.8 18.9 19.9 20.8 21.7 22.4 23.0 23.6 24.1 24.6 25.1 

T26 10.8 12.6 14.2 15.5 16. 7 17. 7 18.6 19.5 20.2 20.9 21.5 22.1 22.5 22.9 23.2 

T27 10.3 12.0 13.5 14.7 15.8 16.8 17.6 18.4 19.2 19.8 20.4 20.9 21.3 21.6 21.9 

T28 9.9 11.6 13.0 14.2 15.2 16.1 17.0 17.7 18.4 19.1 19.6 20.1 20.5 20.8 20.9 

T29 9.6 11.3 12.6 13.8 14.8 15.7 16.5 17.2 17.9 18.5 19.1 19.5 19.9 20.2 20.3 

T16 Tl 7 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27 T28 T29 

T16 36.3 

Tl 7 38.6 42.2 

T18 40.8 44. 7 48.6 

T19 41.8 46.0 50.3 53.3 

T20 41.2 45.3 49. 7 52.9 53.9 

T21 39.0 42.6 46.6 49.9 51.3 50.3 

T22 35.6 38.5 41.9 44.9 46. 7 46.3 44.3 

T23 32.0 34.1 36.8 39.4 41.1 41.5 40.2 38.2 

T24 28.6 30.1 32.1 34.1 35.8 36.5 36.1 34.9 33.3 

T25 25.8 26.8 28.2 29.8 31.3 32.2 32.4 31.9 31.0 30.2 
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T26 23.7 24.3 25.3 26.5 27.9 28.9 29.4 29.5 29.2 28.7 28.4 

T27 22.1 22.6 23.3 24.2 25.4 26.5 27.2 27.7 27.7 27.6 27.4 27.5 

T28 21.1 21.3 21.8 22.6 23.7 24.8 25.7 26.4 26.7 26.8 26.8 26.9 27.1 

T29 20.4 20.5 20.9 21.6 22.6 23.7 24.6 25.5 26.0 26.3 26.4 26.5 26.7 27.0 

6) ESTIMATES OF THE ELEMENTS OF c): 

36.37360 

-2.09097 0.15911 

-15.40616 0.88381 29.13850 

0.92392 -0.04093 -0.64422 0.04108 

0.11233 0.00263 -0.10920 0.00783 0.00622 

-8.96931 0.51314 -1.86263 -0.16557 -0.01292 13.91069 

12.61590 -0.81447 -4.49620 0.28273 0.01564 -5.24238 7.13797 

1.27870 -0.08387 -0.15928 0.02161 0.00325 -0.90309 0.77360 0.10543 

7) ESTIMATES OF THE ELEMENTS OF 8 : 

73.60763 0.92061 75.67389 1.81054 -0.88171 19.16425 15.98011 1.05029 

8) ESTIMATES OF TIMESERIES PARAMETERS : 

a-2 = 0.52257 & = 0.54458 ~ = 0.13758 . 

Conclusion 

The male data CVI point estimate 10.174 was within the 90% confidence interval. The 

female data the CVI point estimate 12.251 was also within the 90% confidence interval. 

The eight parameter logistic model seemed to fit well for both the male and female 

data. 

In Example 5.5.2 the same datasets are analysed usmg the marginal maximum 

likelihood approach, discussed in Section 5.3, when estimating the unknown parameters. 
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Example 5.5.2 

The theoretical results, described in Section 5.4, were implemented in the FORTRAN 

program NLIN. The computer program was designed to accommodate the analyses of 

single, double or triple component Richards models. 

The two datasets being subsets of the growth data from the Fels institute, described 

and analysed in Example 5.5.1 above are considered here to compare the results of the 

estimation procedure described in Section 5.3 to the estimation procedure described in 

Section 5.3 and 5.4. Part of the computer output is given below. The analyses reported 

here were carried out under the assumption that the error terms are generated by an 

ARMA(l,1) process (cf. Chapter 6). The unknown parameters are: (J, <I>, a-2, a and /3, 
that is a total of 4 7 parameters. 

FELS DATA WITH 29 RESPONSES AT THE SAME TIMEPOINTS FOR 96 MALES 

1) ESTIMATES OF THE ELEMENTS OF 8: 

1 77.063515 

2 0.545378 

3 87.226905 

4 1.818112 

5 -1.114967 

6 21.351310 

7 18.361727 

8 1.002274 

2) ESTIMATES OF THE ELEMENTS OF <I>: 

1 42.849613 

2 -1.892674 0.114719 

3 15.826220 -0.699014 26.561223 

4 0. 725772 -0.034155 0.324034 0.022380 

5 -0.639478 0.033365 -0.238112 -0.013126 0.011331 

6 -25.920165 1.145144 -19.928187 -0.467133 0.387856 44.258444 
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7 16.407684 -0.722915 5.889351 0.277361 -0.244560 -19.932980 15.666908 

8 1.276104 -0.044769 0.390637 0.018566 -0.016550 -1.881860 1.525804 0.170849 

3) ESTIMATES OF TIMESERIES PARAMETERS: 

a-2 = 0.551706 & = 0.42975 fi = 0.11233 

4) Sample discrepancy function value is 10.52 with degrees of freedom equal to 417. 

FELS DATA WITH 29 RESPONSES AT THE SAME TIMEPOINTS FOR 72 

FEMALES 

1) ESTIMATES OF THE ELEMENTS OF 8: 

1 74.066726 

2 0.870408 

3 75.748935 

4 1.857916 

5 -0.863224 

6 18.798948 

7 15.439837 

8 0.987948 

2) ESTIMATES OF THE ELEMENTS OF 4> : 

1 30.983525 

2 -0.366152 0.059921 

3 -14.660585 0.172064 36.572845 

4 1.036158 0.011083 -0.717127 0.058089 

5 0.351636 0.005968 -0.524290 0.021780 0.017791 

6 -11.950499 0.141286 -0.780095 -0.350767 -0.057996 16.024422 

7 5.395030 -0.187010 o. 765326 0.102403 -0.001754 -10.002325 9.979458 

8 0.882658 -0.019883 -0.222350 0.021856 0.011667 -1.316145 1.364687 0.203048 

3) ESTIMATES OF TIMESERIES PARAMETERS : 

a-2 = 0.475874 & = 0.54458 fi = 0.13758 
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4) Sample discrepancy function value is 11.75 with degrees of freedom equal to 417. 

CONCLUSION 

A comparison of the estimates of the unknown parameters obtained in Example 5.5.2 

with those reported in Example 5.5.1 shows that there is a reasonable agreement 

between them. This remark holds for both the male and female data sets. It can be 

concluded that the method of analysis described in Section 5.3 and 5.4 is reliable and 

give accurate results. 

Example 5.5.3 

A single component nonlinear Richards function was fitted to a dataset containing 

measurements on mice reported by Williams and lzeman (1981) and analyzed by Rao 

(1984,1987) and Lee (1988,1991). This dataset, given in Appendix A, consists of the 

weights of 13 male mice measured on 7 occasions at intervals of 3 days over a period of 

21 days, from birth to weaning. The single component Gompertz function ( cf. ( 4.3.3)) 

used to describe individual growth over time is 

a= -1000 (5.5.6) 

In Figure 5.5.1 the fitted single component Gompertz models for mouse numbers 1, 5 

and 13, as well as the observed data points for these 3 mice are illustrated. 

The Bayes estimates of the parameters x1, x2, x3 of the 13 mice are as follows: 

Mouse 

1 

2 

3 

4 

1.3221 

1.0820 

1.0395 

1.1868 

-5.7651 

-5.9891 

-6.0276 

-5.8426 
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5 0.85345 -6.2139 0.12814 

6 0.98292 -6.1375 0.12209 

7 1.0409 -6.0407 0.13905 

8 1.0631 -6.0109 0.14148 

9 1.0243 -6.0580 0.14314 

10 1.0123 -6.0357 0.15098 

11 1.1147 -5.9524 0.15401 

12 0.87185 -6.2252 0.11655 

13 1.1853 -5.9535 0.15458 

f(t) 

1.2 

1.1 

1.0 

0.9 

0.B 

0.7 

0 

0.6 

0.5 

0.4 

0 . .3 

0.2 

0.1 

0.0 

0.0 2.0 4.0 6.0 B.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 

t 

Figure 5.5.1 Graph of 3 fitted Grompertz curves as well as the observed data points. 

Observed data points 

□ 

0 

Fitted curve 

f(x,a,t) = 1.3221(1 + exp (-5.7651 - 0.16517]-lOOO 

f(x,a,t) = 0.85345(1 + exp (-6.2139 - 0.12814]-lOOO 

f(x,a,t) = 1.1853[1 + exp (-5.9353 - 0.15458]-lOOO 
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Example 5.5.4 

In this example the complete datasets from the Fels growth study, the one being the 

height measurements (cm.) of N =158 males and the other one the corresponding 

measurements of N = 132 females, were used. In Figures 5.5.2 and 5.5.3 graphical 

illustrations of the fitted models, for the first male and female in the Fels data set, are 

given. As in Examples 5.5.1 and 5.5.2 the 8 parameter function was used ( cf. ( 5.5.4)). 

Computer Output: Male data 

(i) Estimates of unknown parameters: 

ESTIMATES OF THE ELEMENTS OF 8: 

1 96.43346 

2 0.77303 

3 64.87808 

4 2.79312 

5 0.37227 

6 22.62562 

7 17.40924 

8 1.25737 

ESTIMATES OF THE ELEMENTS OF cl>: 

1 18.62534 

2 -0.31942 0.01131 

3 2.35331 -0.04036 5.41299 

4 0.01936 0.00226 0.00360 0.00177 

5 -0.04493 0.00238 -0.00775 0.00067 

6 -4.13284 0.07091 -4.34873 -0.00483 

7 -0.08920 -0.01526 0.28878 -0.00764 

8 -0.02130 0.00162 -0.00688 0.00053 
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ESTIMATE OF (]"2 

0.61938 

(ii) Estimates of parameters given Yi (height measurements), Cases 1-2: 

Case number : 1 Ojy i 

99.002 0. 70961 65.341 2.7844 0.36683 20.629 17.071 

Case number : 2 Ojyi 

90.644 0.91804 64.561 2.8098 0.37890 27.693 17.488 

(iii) Estimates of covariance matrix given Yi (height measurements), Cases 1-2: 

Case number : 1 <)jyi 

2.2800 -0.54530E-01 0.14316E-02 -0.54060 0.92608E-02 

0.56270 -0.11625E-02 0.23192E-03 0.99701E-03 0.6437 4E-03 

-0.14927E-01 0.39220E-03 0.21533E-02 0.67908E-04 0.10989E-03 

-1.6221 0.42200E-01 -0.40509E-02 0.47787E-03 0.11853E-01 

1.6319 0.80436 -0.21203E-01 -0. 73482E-0 1 -0.28410E-02 

-0.58455E-02 -0.65927 0.39108 0.63752E-01 -0.16694E-02 

-0.83934E-02 -0.24793E-03 -0.45898E-03 -0.51118E-01 0.29114E-01 

0.22256E-02 

Case number : 2 <)jyi 

3.0590 -0.17251 0.10301E-01 2.7351 -0.17508 

6.1768 -0.41632E-01 0.28228E-02 -0.53437E-01 0.13288E-02 

-0.44443E-0l 0.26527E-02 -0.58545E-01 0. 77368E-03 0. 75578E-03 

-5.0606 0.30369 -7.7589 0.82512E-01 0.89731E-01 

11.331 0.60552 -0.36959E-01 0.72082 -0.10396E-01 

-0.97935E-02 -1.1307 0.26128 0.44900E-01 -0.27167E-02 

0.50003E-01 -0. 76351E-03 -0. 71156E-03 -0.82873E-01 0.16845E-01 

0. l 1593E-02 
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(iv) Value of- 2 -log-likelihood function at convergence. 

F = 10694.4 Number of parameters are 45. 

Computer Output: Female data 

(i) Estimates of unknown parameters: 

ESTIMATES OF THE ELEMENTS OF(): 

1 84.69261 

2 1.09609 

3 61.24890 

4 2.45085 

5 0.41993 

6 20.51877 

7 14.39602 

8 1.23351 

ESTIMATES OF THE ELEMENTS OF () : 

1 11.39391 

2 -0.21002 

3 3.57264 

4 -0.09546 

5 -0.03179 

6 -1. 76134 

7 -0.54427 

8 0.01982 

ESTIMATE OF o-2 

0.50918 

0.01227 

-0.06587 6.94299 

0.00807 -0.02127 0.00612 

0.00212 -0.01578 0.00161 

0.03247 -1.14412 0.01387 

-0.01105 -0.47681 -0.01174 

-0.00073 -0.06802 -0.00057 
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(ii) Estimates of parameters given Yi (height measurements), Cases 1-2: 

Case number : 1 Ojy i 

85.240 1.1523 60.523 2.4839 0.40686 18.249 13.899 1.2446 

Case number : 2 Ojyi 

86.157 0.91738 66.376 2.3643 0.44663 20.468 14.137 1.3184 

(iii) Estimates of covariance matrix given Yi (height measurements), Cases 1-2: 

Case number : 1 (>jyi 

0.18851 -0.23224E-03 0.51814E-04 -0.82558E-01 -0.11722E-02 

2.5075 0.60454E-02 0.28108E-04 -0.21827E-02 0.59320E-03 

-0. 71222E-03 0.11655E-04 -0.14342E-01 0.36024E-04 0.10298E-03 

-0.81487E-01 0.11652E-02 -2.1810 -0.39639E-02 0.13171E-01 

2.0736 0.22708E-01 -0.88614E-03 0.73445 0.10582E-02 

-0.42283E-02 -0.74780 0.81959 0.20630E-02 -0. 72426E-04 

0.67921E-01 0.10348E-03 -0.39011E-03 -0.69161E-01 0. 75876E-01 

0. 70262E-02 

Case number : 2 (>jyi 

0.47877 -0.12265E-01 0.70606E-03 -0.86951E-01 -0. 70063E-02 

1. 7182 -0.l 7514E-02 0.45466E-03 -0.12856E-01 0. 78626E-03 

-0.42045E-02 0.19861E-03 -0.11677E-01 0.19589E-03 0.14472E-03 

-0.31676 0.15758E-01 -1.5566 0.11533E-01 0.14195E-01 

1.7925 0.12329 -0.85108E-02 0.76867 -0.51329E-02 

-0.59842E-02 -0.89722 1.0820 0.91157E-02 -0.65588E-03 

0.69992E-01 -0.39010E-03 -0.51760E-03 -0.80261E-0l 0.98780E-01 

0.90408E-02 

(iv) Value of - 2 • log-likelihood function at convergence. 

F = 13178.6 Number of parameters are 45. 
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In Figures 5.4.2 and 5.4.3 the male and female fitted models, obtained through the 

empirical Bayes analysis described in Section 5.5.3 and 5.5.4, along with the observed 

data, from the Fels growth data, are given respectively. 

HEIGHT LEGEND 

CM. 

190 

180 

170 

160 

150 

140 

130 

120 

110 

100 

90 

80 

70 

IN. 

75 

71 

67 

63 

59 

55 

51 

47 

43 

39 

35 

31 

27 

0 

ID 306 

SEX M 

__ ,,..,,../,,...// 

2 4 6 

,, 
,, 

... 

8 

... 
10 12 14 

AGE (YRS.) 

Figure 5.5.2 Raw and fitted data for a male 
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Additional analyses were also performed on the male and female datasets originating 

from the Berkeley growth study (Tuddenham and Snyder, 1984). The results of these 

analyses are reported in Appendix C. 

HEIGHT LEGEND 

CM. 

190 

180 

170 

160 

150 

140 

130 

120 

110 

100 
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80 

70 
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75 

71 

67 

63 

59 

55 

51 

47 

43 

39 

35 

31 

27 

0 

ID 

SEX 

2 4 

1 

F 

6 8 10 12 14 

AGE (YRS.) 

Figure 5.5.3 Raw and fitted data for a female 
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5.6 SUMMARY. 

The multi-component Richards models, used for the description of growth, were 

considered in this chapter. Two approaches of estimating the unknown parameters were 

considered and compared. In the first approach of Section 5.2 use were made of the fact 

that although the function is no longer normally distributed consistent estimates are 

still obtained (see Anderson and Rubin (1956: 145-146)) using normal likelihood in the 

approach discussed in Section 3.4. 

In the second approach, Sections 5.3 and 5.4, the analysis of the population dispersion of 

the parameters of multi-component Richards models using maximum marginal 

likelihood (MML ), also known as the empirical Bayes method of estimation, is 

considered. Approximate expressions for the mean and covariance of the parameters 

were obtained for a three component Richards model. The Fortran program NLIN was 

used to apply the theory discussed in this chapter using the Fels and Berkeley growth 

data. 
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CHAPTER 6 MULTI-COMPONENT RICHARDS MODELS WITH ARMA(l,l) 

DEVIATIONS. 

6.1 INTRODUCTION. 

In longitudinal data research with equally spaced measurements the first order 

autoregression, (AR(l)) model, have long been a popular model for the within subject 

error structure (Potthoff & Roy, 1964; Chi & Reinsel, 1989). Extensions to discrete 

time autoregressive-moving average, ARM A, processes have also been developed 

(Rochon & Helms, 1989). In this chapter methods for fitting a nonlinear model, which is 

commonly used in growth curve studies using an ARM A(l,l) structure for the within 

subject errors, is presented for the general case of nonconsecutive measurements. 

Estimation methods for ARM A models were developed under the assumption that the 

observations are made at consecutive equally spaced intervals of time. In practice, 

however, there may often be a substantial number of missing values in the time series 

for various reasons. With nonconsecutive data, the usual "complete data" estimation 

procedures need to be generalised and estimation becomes more complicated because 

the covariance matrix of the observed variables is no longer Toeplitz, a structure that 

the complete data procedures either explicitly or implicitly make use of. Wincek and 

Reinsel (1986) gives an explicit procedure for obtaining the exact maximum likelihood 

estimates of the parameters in a regression-ARM A time series model with possibly 

nonconsecutive data. The method of Wincek and Reinsel is based on an innovation 

transformation approach from which an explicit recursive procedure is derived for the 

efficient calculation of the exact likelihood function and associated derivatives. 

In Section 6.2 a nonlinear fixed parameter regress10n model with non-consecutive 

ARM A(l,l) deviations is considered. It is assumed that each element of the error 

vector is a weighted linear sum of past values and residual deviations. 

The random parameter nonlinear model with ARM A(l,l) deviations is introduced in 

Section 6.3. The theoretical principles of both Section 6.2 and 6.3 are applied in Section 

6.4 by re-analysing the Fels data, as well as including some other examples. 

Page 6.1 

 
 
 



 Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2022

6.2. NONLINEAR FIXED PARAMETER MODELS WITH NON-CONSECUTIVE 

ARMA(l,l) DEVIATIONS. 

Suppose that the change in response pattern over time may be represented by the 

following fixed parameter nonlinear regression model. 

i =1,2,·. -,N (6.2.1) 

where Yi, £(8,a,t) and fi have typical elements Yij, f(8,a,tj) and cij, j = 1,2, • • • ,n and 

where the response function is defined as follows: 

Assume that E1 ,E2, • • • ,EN are a random sample of the random vector E, where f has a 

normal distribution with zero mean and covariance matrix A. Assume also that each 

element Et of the vector f is a weighted linear sum of past values and residual deviations 

lit: 

t = · · · -1,0,1, · · · (6.2.3) 

which generates the covariance structure A of an ARM A(l,1) process. 

The sequence { ut} consists of Gaussian distributed variates, with E( ut)=O and 

E(utus)=btsa-2, where bts=l, i=s and bts=O otherwise, thus 

(6.2.4) 

Proposition 6.2.1 

For t = k + m, the residual ck+ m can be expressed m terms of Ek and a linear 

combination of uk,uk + 1, · · · ,uk + m' where 
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and 

1} = ( CY - /3) . (6.2.6) 

Proof 

Assume that the first observation was taken at time t = k and that the next observation 

was taken at time t = k + s; s=l ,2, • • • ,m. Therefore, ( cf. ( 6.2.3)) at 

t=k: (6.2.7) 

where 

(6.2.8) 

Similarly for t = k + 1, 

(6.2.9) 

and for t = k + 2, 

(6.2.10) 

Substitution of Ek+ 1 defined by (6.2.9) into (6.2.10) gives 

(6.2.11) 

At t=k+3, 

( 6.2.12) 

Substitution of Ek+ 2 defined by (6.2.11) into (6.2.12) gives 
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Continuation of the above procedure results in (6.2.5). 

Proposition 6.2.2 

with 

E:(nx 1) 

and 

1 0 0 

0 

T 0:(nxn) 

0 0 0 

The n * x 1 vector u is defined by 

where 

0 0 

0 0 

0 0 

(6.2.13) 

(6.2.14) 

(6.2.15) 

(6.2.16) 

(6.2.17) 

Note that in the case of consecutive data, mi=l, i=2,3,· • •,n and therefore n*=n. 
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The (nxn*) matrix T /3 is defined as follows: 

[T13] · . = i,J 

Proof 

O· 
' 

ffi·-1 
-f3a i ; 

j =2,3, • • • ,n*, 

]. = 1 2 ... k- 1 -1 
' ' ' 'l-

ffi·-1-/ 
a i ·, 1· = k. l + l · l = 1 · · · m ·- 1 

'l- ' ' ' 'l 

1· 
' 

O· 
' J·=k-+1 k-+2 ... n* 

'l ' 'l ' ' 

(6.2.18) 

(6.2.19) 

Suppose that n repeated measurements were made on occasions t = t 1,t2, • • • ,tn. For a 

stationary ARM A process, there is no loss in generality if we assume that t 1 = 1. 

Suppose therefore that the measurements were made on the occasions t = k1 ,k2, • • • ,kn, 

where 

k- ti-(t1 -1), z - 1,2, • • • ,n 
'l 

with 

k1 = 1, 

k- = k- 1 +m• z - 2,3,· • • ,n 
'l 'l- 'l 

(6.2.20) 

and 

ill· - 1,2,3, · · · 'l 

We then obtain (cf. (6.2.5)) 

(6.2.21) 
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the result in (6.2.13) follows from (6.2.21). □ 

Proposition 6.2.3 

Denote the covariance matrix of t=.. by A, then 

(6.2.22) 

with 

(6.2.23) 

Proof 

It follows from (6.2.8) that for 

(6.2.24) 

Substituting Ek = uk + xk ( cf. ( 6.2. 7)) in ( 6.2.24) 

(6.2.25) 

where xk and uk are independent. Let p denote the variance of xk. For a stationary 

process using (6.2.4) and (6.2.25) it follows that, 

and therefore 

(6.2.26) 

For A = Cov(t=..,t=..') the result in (6.2.22) follows from (6.2.26) and (6.2.13) in Proposition 

6.2.2. □ 
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Theorem 6.2.1 

Let (cf. (6.2.22)) 

( 6.2.27) 

then for an ARM A(l,l) process sampled at integer points t 1,t2, • • • ,tn, or equivalently 

t=ki where ki=ti-(t1 -1), i=l,2,• • •,n; ki ki-l +mi; i=2,3,· • •,n; and 

mi= 1,2,3, • • •, A is a symmetric (nxn) tridiagonal matrix of the form: 

al b2 0 0 0 0 

b2 a2 b3 0 0 0 

0 b3 a3 b4 0 0 

0 0 b4 a4 0 0 
A= 

0 0 0 0 

0 0 0 0 

The elements of A are defined as follows: 

with p * defined by ( 6.2.23) , and for i = 2,3, • • • ,n: 

a-= z 

m--1 
bi = -/30: z 
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Proof 

[Jn,1P* J~,l]i,j = p*, 

= 0' 

i=j=l 

otherwise 

Therefore ( cf. (6.2.19)) 

[T13 T13'] .. z,z 

k- 1-1 k- * z- 2 z 2 n 2 
= ~ [T ,B]i,s + L [T 13]i,s + L [T ,B]i,s 

s-1 s=k• 1 s=k• + 1 z- z 

/32 2(m--1) 2 2(m--2) 2 2(m--3) + T/2 + 1 = a z +TJa z +TJa z +··· 

Using the well known result 

a + ar + ar2 + n - 1 a( 1 - rn) 
··•+ar = 1-r' 

it follows that 

Similarly, for i = 2,3, • • • ,n: 

[T,BT,B']i i-l = 0 + [T/3]. k- [T/3]. k- + 0, 
' z, z-1 z, z-1 

and from (6.2.19): 
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a m--1 -pa z (6.2.34) 

(6.2.35) 

For the elements of the matrix A defined in (6.2.27) and (6.2.28) it follows that 

ai = [T ,aT J]i,i and bi= [T ,aT p]i,i-l for i = 2,3, · · · n. The results in ( 6.2.30) and ( 6.2.31) 

follows from (6.2.33) and (6.2.34) respectively. Finally, from (6.2.35) it follows that the 

remaining elements of A are all zero. D 

Proposition 6.2.4 

The tridiagonal matrix A defined by (6.2.28) can be written as the product of a lower 

and upper triangular matrix. 

A= LU, 

where 

(1 0 0 0 

b2 ( 2 0 0 

0 b3 ( 3 0 

L= 
0 0 b4 ( 4 

0 0 0 0 

0 0 0 0 

0 0 

0 0 

0 0 

0 0 
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U= 

1 ,2 0 0 

0 1 ,3 0 

0 0 1 ,4 
0 0 0 1 

0 0 0 0 

0 0 0 0 

and where 

Proof 

0 0 

0 0 

0 0 

0 0 

1 ,n 
0 1 

k=2,3, - - -,n 

k=2,3, - - -,n 

From (6.2.37) and (6.2.38) it follows that 

(1 (i,2 0 0 

b2 (b2,2 + (2) (2,3 0 

0 b3 (b3,3 + (3) (3,4 

0 0 b4 (b4,4 + (4) 
LU= 

0 0 0 0 0 
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Since A = LU, bi, i = 2, · • • ,n as defined by ( 6.2.37) 1s equal to the bi defined by 

(6.2.31). It follows further that 

and also that 

k=2,3, ... ,n 

Therefore 

k=2,3, · · · ,n 

Finally, 

k=2,3, ... ,n 

and therefore 

k=2,3, · · · ,n 

Note that the elements of Land U may be determined recursively from (6.2.39). D 

Proposition 6.2.5 

Let A: (nxn) be the matrix defined by (6.2.27), and let 

* A-1 X = X, (6.2.40) 

then x* can be determined by operations of order n for a given x. 

Proof 

From (6.2.40) and (6.2.36) we have 
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LUx* = x. ( 6.2.41) 

Let 

Ux* = v, 

then ( 6.2.41) becomes 

Lv = x. (6.2.42) 

We first use forward substitution to obtain a solution to v using (6.2.42) and then 

backward substitution to solve x* from Ux* = v. Note that the elements of L and U 

are both obtained during the forward substitution stage. □ 

Proposition 6.2.6 

Let A:(nxn) denote the covariance matrix of an ARMA(l,l) process for which the data 

is non-consecutive, then 

I A I = a 2n IT ( · 
i=l z 

(6.2.43) 

with (i, i=l,2,• • •,n; defined by (6.2.39). 

Proof 

From (6.2.22) and (6.2.27) it follows that 

since (cf. (6.2.15)) !Tai = 1. 

But from Proposition 6.2.4, 
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IAI ILIIUI 

n 
TI (i · □ 

i=l 

Proposition 6.2. 7 

Let 

Q -, A-1-= y Y, ( 6.2.44) 

then Q can be calculated in order n operations instead of the usual n 3 operations 

required for matrix inversion. 

Proof 

From (6.2.22) and (6.2.27) it follows that 

( 6.2.45) 

Let 

u ( 6.2.46) 

and 

(6.2.4 7) 

then 

Q I * = uy. ( 6.2.48) 

From ( 6.2.46) it follows that u may be obtained using simple forward substitution. Use 

of Proposition 6.2.5 then completes the proof. D 

Under the assumptions above and that Eis generated by an ARMA(l,1) process (cf. 

(6.2.3)) and u--N(O,a-2/) (cf. (6.2.4)), it follows that 
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y ~ N(f( 8), A) (6.2.49) 

were A is defined by (6.2.22). 

If {y1 ,y2, • · · ,yN} is a random sample of y, it follows that the likelihood function, 

1(8,A), of y 1,y2, • • • ,yN can be expressed as 

(6.2.50) 

where 

(6.2.51) 

From (6.2.50) using (6.2.45) it follows that the logarithm of the likelihood function is 

given by 

(6.2.52) 

where ui and y* is given m ( 6.2.46) and ( 6.2.4 7) respectively and use 1s made of 

(6.2.43). 

Consider a generalization of model ( 6.2.1) to the model 

i = 1,2,•. -,N, (6.2.53) 

where it is supposed that for individual i measurements were taken at time points 

til,ti2, • • • ,tin( Let us further suppose that ti,j + 1 - tij = mij, j = 2,3, • • • ,n. The 

covariance matrix Ai of €i is obtained from (6.2.22), where mij replaces mi in the 

definitions of Ta and T/3 (cf. (6.2.15) and (6.2.19)). Also (cf. (6.2.43)) 

Il· 

= cr2n TI (- . 
. 1 1,J' 
J= 
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where (ij denotes the diagonal elements of Li, and Li corresponds to L ( cf. (6.2.37) 

when mi is replaced by mij, so that Ai = LiUi. 

For the general model described in (6.2.53) it follows that the log-likelihood function of 

Y1,Y2, · · · ,YN is given by (cf. (6.2.52)) 

(6.2.54) 

Derivatives: 

Let I s denote a typical element of the vector ; of unknown parameters. From ( 6.2.54) it 

follows that 

8lnL(8,A*) 
a,s 

1 N ( 8 , */ 2 ni (a (ij 1)) -- E -(u•y• (J" )+ E --(~- · 
2 i=l a,s z z j=l a,s ZJ 

From (6.2.55) it follows that 

and 

where 

8lnL(8,A*) 
aa 

a I * - U·Y· aa z z 

It also follows that 
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Similarly 

8lnL(8,A*) 
a f3 

General remarks 

Typical elements for T~, A, fa T~, i 1, i: , are calculated for mij = 1,2,3, • • • ,M. 

These values ( e.g. the off-diagonal elements of T~, the diagonal elements and the off

diagonal elements of A) are respectively stored as (Mx 1) vectors. Appropriate elements 

are selected from these vectors, given the differences in time points for a specific 

individual. Suppose measurements were made as follows: 

Individual 1: 

20 2 4 2 5 2 8 3 0 3 1 • • • (months) 
4 1 3 2 1 

Individual 2: 

16 1 7 2 2 2 3 2 8 3 0 3 7 • • • (months) 
1 5 1 5 2 7 

At time t=t2 we use m=4 for individual 1 and hence obtain the appropriate elements of 

Ai, these being the 4th element of the vectors containing information about the 

diagonal and off-diagonal elements of A. Since all operations are of order (n), the 

procedure is computationally efficient since it avoids the actual inversion of matrices of 

high order. 

8A 8a- 8b-
To obtain -

8
, expressions for -

8 
z and -

8 
z are required. 

IS IS IS 

For the sake of completeness, expressions for the typical non-zero elements of A along 

with the first and second order derivatives are given in the addendum to this chapter in 

Section 6.5. 
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6.3. STOCHASTIC PARAMETER NONLINEAR RJCHARD MODELS WITH 

ARMA(l,1) DEVIATIONS. 

Consider the following nonlinear regression model 

y = f(x,a,t) + E , i = 1,2, · · · ,N (6.3.1) 

where ( cf. Section 5.1) f( x,a,t) denotes an nx 1 vector-valued function with typical 

element f(x,a,tj); j = 1,2, • • • ,n defined by (5.1.2). We assume that xis distributed as a 

N( 8,4>) variate, independent of E which is assumed to be independently distributed as a 

N(O,A) random variate. 

Assume also that A is the covariance matrix of an ARM A(l,1) process corresponding to 

the case where the observed measurements are non-consecutive. Hence ( cf. (6.2.40)) 

(6.3.2) 

Denote f( x,a,t) by f( x). Since f(ylx) ( cf. ( 5.3.4)) may be expressed as 

it follows from (6.3.2) that 

since (cf. (6.2.16)) IT~I = 1. 

In the expression (6.3.3) y and f(x) are respectively defined by 

( 6.3.4) 

(6.3.5) 

Page 6.17 

 
 
 



 Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2022

Proposition 6.3.1 

The conditional pd£ (6.3.3) may be expressed in the form 

where ( i, i = 1,2, • • • ,n are defined by ( 6.2.34), 

and 

q' 

Proof 

Y* A-l"" = y 

Q = F'F*, 

= y*'F 

It was shown in Proposition 6.2.6 that 

n 
IAI = o-2n TI (-

i=l i 

Since (cf. (5.2.3)) 

where F and x 1 are defined in (5.2.3) and (5.2.4) respectively, 
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and the elements of x1 are the asymptotes of the three components, it follows that 

(6.3.14) 

Finally, substitution of (6.3.5), (6.3.7), and (6.3.13) into (6.3.14) gives 

which using (6.3.10), (6.3.11) and (6.3.12) simplifies to 

(6.3.15) 

□ 
From Proposition 6.3.1 it further follows that 

with 

(6.3.17) 

Approximate expressions for the estimators of the parameter vector x can be obtained 

( cf. Section 5.3 of Chapter 5) from 

Let 

f xix~ f(y I x)g(x)dx 

f f(y I x)g(x)dx 
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and 

where c_1>-l is defined in (5.3.2), Qin (6.3.9) and q in (6.3.12) then: 

Case 1 (k,l = 1,2,3): 

* f: w a I \JI I 1/
2 

exp (½s'\Jls + u'za) 
a=l 

where, 

Note that 

i=l,2,3 

Case 2 (k,l = 1,2, · · · ,6): 

q* 1 
I: w a I \JI 1

2 exp ( s'\Jls + u'za) 
a=l 

Case 3 (k = 1,2,3 ; l = 1,2,. · · ,6): 

q* 1 
I: w a I \JI 1

2 exp ( s'\Jls + u'za) 
a=l 
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Using equations (6.3.20), (6.3.22) and (6.3.23), the conditional moments E(xly) and 

Cov(x,x'ly) can be evaluated. 

Maximum likelihood estimators of the unknown parameters T=( 0:,/3,0"2) and 

P=( 8,vecs~) are obtained by maximizing the marginal likelihood thus 

(6.3.24) 

(6.3.25) 

Remarks 

1) Since ( cf. Proposition 6.2.5), A-1 is tridiagonal, we solve for y* and F* in order n 

operations. 

3) Expressions for the derivatives of the log-likelihood function with respect to the 

ARM A parameters are as given in Section 6.2, but preceded by the E I operator. xy 

6.4. PRACTICAL APPLICATIONS 

Example 6.4.1 Analysis of a fixed parameter model of au pollution data with 

ARMA(I,I) deviations. 

Air pollution data measured m the vicinity of a coal fired power station in the 

Transvaal m South Africa were analysed using ARM A deviations from a fixed 

parameter curve. The dependent variable is the amount of air pollution (in parts per 

billion) measured. In Figure 6.4.1 a graphical illustration of the raw data, recorded over 

a period of six years, is given. The x-axis denotes the months when the measurements 

were recorded. Although the period is 70 months there are only 57 observations, 

resulting in 13 missing observations (see Appendix A). 
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Meosur-ement 

(n,n,) 

14'15 _ 

1371 .._ 

1247 

.... : /! ;\ 
ggg - ; \/ \ 

B75 -U \ 
750 -,! ~--
626 ._j 

502 ,_ 

37B _ 

254 \ 
130 ~__,_~~~~~ ............ -'---'---'--~.___.___,___.____.___...__.______.___, 

0 6 12 1g 25 31 3B 44 50 57 63 70 

Yeors 

Figure 6.4.1 Raw data of air pollution recorded over a period of six years. 

The model that was fitted to the data consists of a trend function, a seasonal function 

and an error term and is as follows: 

i = 1,2, • • • ,n (6.4.1) 

where t 1 <t2 • • • <tn are integers that represent the n observation times, which are not 

consecutive or equally spaced. Under the assumption of a non-consecutive ARM A(l,1) 

model the estimated model for the error terms is 

ut - 0.97ut-l and fr = 278.4 . 

It can easily be shown that a straight line fit to the trend results in forecasted au 

pollution values which eventually become negative and therefore become unrealistic. A 

parabola fitted to the data results in high positive future predicted values which are also 

not realistic. It was found that the trend is best described by the nonlinear function 

(6.4.2) 

the function with the parameter estimates is given and illustrated in Figure 6.4.2. 
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Measurement 

(mm) 

1620 

1495 

1371 

1247 

1123 

999 

875 

750 

626 

502 

378 

254 

130 I I I I I 

0 6 12 19 25 31 38 44 so 57 63 70 

Years 

Figure 6.4.2 The nonlinear function describing the trend: ftrend = 580.6(1 + 0.65 X 0.94t) . 

Looking at Figure 6.4.1 it seems that the seasonal effect is decreasing. The amplitude of 

the cyclical movement is thus changing and decreasing over time. The seasonal function 

that we fitted is, 

(6.4.3) 

where 

The parameter estimates obtained for the seasonal function as well as a graphical 

illustration is given in Figure 6.4.3. 
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Measurement 

(mm) 

800 1-

666 1-

-533 _ 

-666 _ 

0 6 12 1i;o 25 31 38 44 50 57 63 70 

Yecr-s 

Figure 6.4.3 The fitted seasonal function is 
A A O 1 
fseason=K sm(21r · 11.s2t + -1.14) 

with K = 173.2(1 + 1.52 X 0.96t) 

Three reasons why this dataset could not be analysed with the SAS ARIMA procedure 

using the Box and Jenkins (see Box and Jenkins (1976)) methodology are: 

(i) The time points at which measurements were made are not consecutive and equally 

spaced. 

(ii) With the Box and Jenkins methodology polynomial trends of degree k are 

eliminated using k-th order differencing. The trend seems to follow the pattern of an 

asymptotic growth curve rather than that of a polynomial. 

(iii) The seasonal model of Box and Jenkins does not provide for a trend on the 

amplitude of the cyclical movement. The amplitude of the seasonal model for this data 

set decreases in time. 

In Figure 6.4.4 a graphical illustration is given of the raw data ( dotted line) and the 

fitted data ( straight line). 
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Measurement 

(mm) 

1620 

1371 

i 

ll 

1247 

1123 

875 

62 

50 

378 

~:: ..........____.___,__~~_.___,__~~ ...... \-'--~ ........... ~_.___,__~__.__.__.___.._____, 

0 6 12 1g 25 31 38 44 50 57 63 70 

Years 

Figure 6.4.4 Raw data as well as fitted model. 

Example 6.4.2 Analysis of a Gompertz parameter model with ARM A{l,1) deviations. 

Using the data set described in Example 3.8.1 of Chapter 3 (see also Du Toit 1979) an 

illustration of an extension to a 2 group fixed parameter model ( cf. Section 3.2 of 

Chapter 3) is given. The two group model (groups defined as male and female), allows 

for the number of repeated weight measurements on mice to differ across groups. A 

Gompertz function was chosen to describe the change in mean weights over time. 

j=l males, t-1=1 2 · .. 9 
z ' ' ' 

j=2 females ti2=1,2, • • • ,8 . ( 6.4.4) 

A common ARM A(l,1) covariance structure with zero initial state variance was fitted. 

(see Chapter 6). In this example allowance was made for the white noise variances to 

differ across groups. The model is therefore 

i=l,2, · · · ,N j ; j=l,2. (6.4.5) 
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where f.ij ,-.,; N(O,Aj) and Aj=Aj( oj,a,,8). In Figure 6.4.5 a graphical display of the raw 

data and the fitted means are given. 

f(t) 

Moles -- Fen.oles MICE DATA 

45.0 

41.9 

58.B 

55.B 

52.'7 

29.6 

26.5 

25.4 

20.5 

17 .5 

14.2 

11.1 

B.O 

0 0 2 5 4 5 6 '7 B 9 10 

t 

Figure 6.4.5 Mean weights of mice and fitted Gompertz functions. 

* Male mice 0 Female mice 

A partial listing of the computer output is given below. 

MALE GROUP (N1=42) 

1) SAMPLE MEANS : 

Tl T2 T3 T4 T5 T6 T7 T8 T9 

11.333 17.000 23.000 28.524 33.333 37.905 40.476 42.405 44.429 

2) REPRODUCED MEANS : 

Tl T2 T3 T4 T5 T6 T7 T8 T9 

11.309 17.152 23.126 28.658 33.425 37.327 40.405 42.768 44.549 
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3) SAMPLE COVARIANCE MATRIX : 

Tl T2 T3 T4 T5 T6 T7 T8 T9 

Tl 7.032 

T2 7.571 16.952 

T3 5.976 13.405 16.000 

T4 4.944 13.190 16.881 25.011 

T5 5.389 16.881 21.119 30.825 44.413 

T6 1.865 11.000 16.476 26.693 40.722 46.372 

T7 0.746 8.071 12.571 21.155 36.056 41.450 47.107 

T8 -0.563 6.333 9.762 18.669 35.079 42.800 51.188 62.717 

T9 -0.762 4.571 8.381 15.871 31.905 40.588 50.224 62.446 66.959 

3) REPRODUCED COVARIANCE MATRIX: 

Tl T2 T3 T4 T5 T6 T7 T8 T9 

Tl 7.780 

T2 7.835 15.670 

T3 7.767 15.656 23.424 

T4 7.700 15.520 23.342 31.043 

T5 7.633 15.386 23.140 30.896 38.532 

T6 7.567 15.253 22.940 30.628 38.319 45.891 

T7 7.501 15.120 22.741 30.363 37.987 45.615 53.123 

T8 7.436 14.989 22.544 30.100 37.658 45.220 52.784 60.230 

T9 7.372 14.860 22.349 29.839 37.332 44.828 52.327 59.830 67.215 

A2 
O" 1 a /3 011 812 813 

7.78045 -0.99134 0.01566 49.41309 2.05512 0.71754 

FEMALE GROUP (N2=40) 

1) SAMPLE MEANS : 

Tl T2 T3 T4 T5 T6 T7 T8 

10.850 15.975 20.825 25.550 28. 775 33.025 35.325 38.075 
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2) REPRODUCED MEANS : 

Tl T2 T3 T4 T5 T6 T7 TS 

10.880 15.698 20.614 25.240 29.337 32.807 35.648 37.917 

3) SAMPLE COVARIANCE MATRIX: 

Tl T2 T3 T4 T5 T6 T7 TS 

Tl 6.027 

T2 6.296 12.974 

T3 5.699 12.296 17.144 

T4 4.732 10.689 16.571 21.747 

T5 6.016 12.119 20.311 23.574 32.174 

T6 7.204 12.476 19.979 23.686 31.981 36.974 

T7 6.474 10.433 18.457 23.521 31.773 36.067 38.969 

TS 5.736 8.877 16.888 24.109 31.117 36.323 39.651 45.219 

4) REPRODUCED COVARIANCE MATRIX: 

Tl T2 T3 T4 T5 T6 T7 TS 

Tl 5.808 

T2 5.849 11.698 

T3 5. 798 11.687 17.486 

T4 5.748 11.586 17.425 23.174 

T5 5.698 11.486 17.27 4 23.064 28. 764 

T6 5.649 11.386 17.125 22.864 28.606 34.257 

T7 5.600 11.288 16.976 22.666 28.358 34.052 39.656 

T8 5.551 11.190 16.829 22.470 28.112 33.757 39.404 44.962 

A 2 A, 
0-2 LC 

5.80813 -0.99134 

'/3 821 

0.01566 45.32695 

822 

1.92040 

x2= 135.0 Degrees of freedom=(9+45+8+36) - 10=88 

Total number of observations: 82 
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Example 6.4.3 Analysis of a triple logistic fixed parameter model with ARM A(l,l) 

deviations. 

Consider the following fixed parameter growth curve model 

01 03 06 --=---+-----+----+ Et, 
1 + e -02t 1+e04-05t /1-08t 

Yt = ( 6.4.5) 

where Et is generated by an ARM A(l,l) process. 

We have further assumed that measurements were taken at intervals of length 0.125 

years. This assumption implies that the growth measurements were made at 2.000, 

2.125, 2.250, 2.375, 2.500, • • •, 24.875 years. The occasions on which growth 

measurements were made for each individual are subsets of the 184 timepoints given 

above. On average, there are approximately 40 measurements per individual, so that the 

timepoints of an individual corresponds to roughly 20% of the possible times at which 

height measurements may have been taken. 

Part of the computer output is given below. Note that the unknown parameters in 

(6.4.5) are 8 (8xl), a 2, the AR parameter a and the MA parameter /3, therefore a total 

of 11 parameters. 

Computer Ouput: Male data (N=158) 

(i) Estimates of unknown parameters 

a-2 = 0.40549 

& 0.99185 

~ 0.14934 

01 = 37.93766 

02 = 0.77303 

03 = 115.03313 

0 4 = 0.83153 

05 = 0.37227 

06 = 28.99544 
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07 = 11.03194 

08 = 0.81739 

(ii) Value of - 2 -log-likelihood function at convergence 

F= 11226.283, number of parameters are 11 

Computer Ouput: Female data (N =132) 

( i) Estimates of unknown parameters 

&2 = 0.37266 

6 0.99304 

/3 0.16898 

01 = 42.12805 

02 = 0.27303 

03 = 98.28330 

04 = 0.85954 

05 = 0.37227 

06 = 26.67480 

07 = 9.41146 

08 = 0.82461 

(ii) Value of - 2 -log-likelihood function at convergence 

F= 14027.201, number of parameters are 11 

Example 6.4.4 Analysis of a single logistic stochastic parameter model AR(l) deviations. 

The mice data set consisting of 8 weight measurements on each of 40 female mice, and 9 

weight measurements on each of 42 male mice ( cf. Section 4. 7 and 7.5) is analysed. Sex 

is used as a covariate and it is assumed that the errors are generated by a first order 

autoregressive process. 

Page 6.30 

 
 
 



 Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2022

The model fitted to the data is as follows 

i= 1,2,. · · ,N (6.4.6) 

It is assumed that the errors are generated by a first order autoregressive process with 

parameter a and white noise variance a~, that is, for any element Eij of t:i, 

(6.4. 7) 

where alj, • • • ain- are uncorrelated with mean O and variance a~. Hence t:i ,,...., N(O,Ai) 
z 2 ' where Ai=A/T) and T = (aa, a). 

The response function f(x,ti) has typical element 

(6.4.8) 

where 

X = () + 'YZ + U . 

It is assumed that u has a normal distribution with zero mean and covariance matrix <P. 

The covariate z assumes the values 1 and -1 for males and females respectively. 

Estimates of the unknown parameters are as follows: 

45.068 

8 = 1.578 

-0.411 

2.263 

0.090 

0.090 

a~ = 3.875 and & = 0.466. 

83.356 

<P = 2.123 0.082 

-0.873 -0.018 0.077 
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Example 6.4.5 Analysis of a triple logistic stochastic para.meter model with ARMA(l,1) 

deviations. 

Consider the random parameter growth curve model ( cf. 6.4.6) 

Yt == (6.4.9) 

where it is assumed that the 8-dimensional vector x of stochastic parameters is 

distributed N ( 6 ,<P) and that the Et' s are generated by an ARM A ( 1, 1) process with 

parameters a-2, a and /3. We use the same spacing between time points as in Example 

6.4.3. 

Note that in contrast with the 45 parameter model considered in Example 5.5.4 of 

Chapter 5, the total number of unknown parameters assuming ARMA(l,l) deviations 

becomes 47. Part of the computer output is given below. 

Computer Output: Male data 

(i) Estimates of unknown parameters 

Estimate of 6 

1 94.40887 

2 0.84438 

3 64.54539 

4 2.83259 

5 0.38581 

6 23.34824 

7 17.42463 

8 1.25866 

Estimate of q> 

1 19.99671 

2 -0.32962 0.01169 

3 2.29715 -0.03787 11.99040 
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4 -0.03873 0.00363 0.00607 0.00229 

5 -0.04147 0.00222 -0.02996 0.00079 0.00084 

6 -3.29680 0.05434 -5.37246 0.00190 0.01756 29.30710 

7 -0.15748 -0.01858 0.69018 -0.00918 -0.00639 -0.00583 0.26684 

8 -0.06057 0.00240 0.05358 0.00084 0.00034 -0.03028 -0.00493 0.00553 

Estimate of CJ'
2 Estimate of a Estimate of /3 

0.38336 0.87348 0.36817 

(ii) Estimates of parameters given Yi (height measurements), Cases 1-2 

Case number: 1 8jyi 

97.964 o. 75796 65.586 2.8116 0.37818 20.530 17.502 1.2215 

Case number: 2 8jyi 

90.963 0.94033 64.643 2.8627 0.38415 27.250 17.488 1.2212 

(iii) Estimates of covariance matrix given Yi (height measurements), Cases 1-2 

Case number: 1 4>jyi 

3.4027 -0.91331E-01 0.31779E-02 -1.6779 0.33407E-01 

3.5691 -0.16484E-0l 0.95865E-03 0.25171E-02 0.11219E-02 

-0.19931E-01 0.64059E-03 -0.43161E-02 0.23184E-03 0.21613E-03 

-1.4437 0.48906E-01 -1.7910 0.11154E-01 0.21019E-01 

3.1389 -0.84865E-01 -0.50709E-03 0.34582 -0.10487E-02 

-0.98624E-03 -0.23181 0.15451 -0.49354E-02 -0. 30969 E-04 

0.20077E-01 -0.6294 7E-04 -0.57889E-04 -0.13543E-01 0.90587E-02 

0.53866E-03 

Case number: 2 4>jyi 

1.8976 -0.66342E-0 1 0.36371E-02 -0.17640 -0.17137E-01 

6.0339 -0.12481E-01 0.12265E-02 -0. 72778E-02 0.12547E-02 

-0.16319E-01 0. 77790E-03 -0.28178E-01 0.28724E-03 0.32250E-03 

-1.4763 0.72172E-01 -5.4276 0.16137E-01 0.39706E-01 

6.5628 -0.10316E-01 -0.26154E-02 0.35216 -0.13540E-02 
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-0.l 7476E-02 -0.31281 0.11216 

-0.11721E-03 

-0.93416E-04 -0.18233E-03 

0.69259E-02 0.22279E-01 -0.91739E-04 -0.20779E-01 

0.46449E-03 

(iv) Value of - 2 -log-likelihood function at convergence 

F = 10348.8, number of parameters are 47. 

Computer Output: Female data 

(i) Estimates of unknown parameters 

Estimate of (J 

1 84.52477 

2 1.10812 

3 61.24890 

4 2.45085 

5 0.42264 

6 21.14966 

7 14.12992 

8 1.21111 

Estimate of 4> 

1 10.67189 

2 -0.20115 

3 4.35935 

4 -0.11417 

5 -0.02801 

6 -2.33425 

7 -0.52424 

8 0.02168 

Estimate of a-2 

1.21111 

0.01291 

-0.08217 

0.00927 

0.00214 

0.04399 

-0.01163 

-0.00078 

7.56808 

-0.03797 0.00736 

-0.01708 0.00175 

-1.15755 0.02466 

-0.59830 -0.01176 

-0.07384 -0.00065 

Estimate of a 

0.42264 

0.00088 

0.00632 

-0.00206 

-0.00004 
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(ii) Estimates of parameters given Yi (height measurements), Cases 1-2 

Case number: 1 Oiyi 
85.298 1.1439 59.889 2.4664 0.40795 18.925 13.447 1.2084 

Case number: 2 iJ1yi 
87.239 0.88753 64.694 2.3126 0.43493 21.012 13.240 1.2607 

(iii) Estimates of covariance matrix given Yi (height measurements), Cases 1-2 

Case number: 1 <l>lyi 
0.33451 -0.12399E-01 0.37 488E-02 -0.13954 -0.39983E-01 

2.6252 -0.51453E-02 0.26930E-02 -0.35306E-0 1 0.24214E-02 

-0.31092E-02 0.62935E-03 -0.l 7768E-01 0.53084E-03 0.20449E-03 

-0.14373 0.43769E-01 -2.2358 0.33511E-01 0.l 7905E-01 

2.2040 0.19634 -0.54258E-01 0.92650 -0.39556E-01 

-0.11385E-01 -1.0420 1.5392 0.16517E-01 -0 .45009 E-02 

0.81152E-01 -0.32889E-02 -0.97322E-03 -0.91528E-01 0.13707 

0.12269E-01 

Case number: 2 <l>ly i 
0.61411 -0.84829E-02 0. 73529E-03 -0.16152 0.63299E-02 

3.1421 -0.32483E-03 0.56910E-03 0.70144E-02 0.91707E-03 

-0.60882E-02 0.14718E-03 -0.16841E-01 0.11360E-03 0.20661E-03 

-0.35948 0.20466E-02 -2.7870 -0.63722E-02 0.20228E-01 

3.0130 -0.40990E-01 0.35600E-02 1.0707 0.55700E-02 

-0.40480E-02 -1.1387 1.6800 -0.21931E-02 0 .19849 E-03 

0.10096 0.42266E-03 -0.41540E-03 -0.10918 0.15981 

0.15233E-0 1 

(iv) Value of - 2 -log-likelihood function at convergence 

F=13010.92, number of parameters are 47. 

Testing of Hypotheses. 

Consider the following restricted alternative hypothesis: 

Page 6.35 

 
 
 



 Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2022

Ha: The triple-logistic stochastic parameter model with AR.l\,f A(l,1) deviations is an 

adequate model for the description of height from birth to maturity (Example 6.4.5). 

Further, consider the following null hypotheses. 

H01 : The triple-logistic fixed parameter model with ARM A( 1, 1) deviations 1s an 

adequate model for the description of height (Example 6.4.3). 

H02 : The triple-logistic stochastic parameter model with uncorrelated errors 1s an 

adequate model for the description of height (Example 5.5.4). 

Asymptotic test statistics. 

Let la denote -2 -log-likelihood function under Ha and /0 the corresponding value under 

Ho. 

Then /0 - la has an asymptotic x2-distribution with degrees of freedom ( d.f.f.) equal to 

the number of parameters estimated under Ha -the number estimated under H0 . 

For the male dataset ( cf. Sections 5, 10 and 12) we have 

xy = 101 - la = 11226.283 -10348.8 = 877.5 with d.f.f. ( 4 7 -11) = 36 

and 

x~ = 102 - la = 10694.4 - 10348.8 = 345.6 with d.f.f. ( 4 7 - 45) = 2 

The corresponding values for the female dataset is 

xy = /01 - la = 14027.201-13010 = 1016.3 with d.f.f. ( 4 7 -11) = 36 

and 

x~ = 102 - la = 13178.6 -13010 = 167.68 with d.f.f. ( 4 7 -45) = 2 . 

The test statistic values are all highly significant and indicate that the stochastic 

parameter model with time series deviations is to be preferred to the stochastic 
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parameter model without time series deviations or the fixed parmeter model with time 

series deviations. 

The theoretical results, as implemented in the computer programs, were tested and 

verified with the use of a large number of simulation studies. In the simulation studies 

it became evident that one requires at least 6 Gauss-quadrature points per integral to 

obtain accurate estimates of the unknown parameters. However, good initial 

approximations can be obtained by using as few as 3 Gauss-quadrature points per 

integral. 

6.5 ADDENDUM -DERIVATIVES OF ARMA(l,1) MODEL. 

From Theorem 6.2.1 it follows that 

where A is a symmetric (nxn) tridiagonal matrix of the form: 

A= 

al 

b2 

0 

0 

0 

0 

b2 

a2 

b3 

0 

0 

0 

0 

b3 

a3 

b4 

0 

0 

0 

0 

b4 

~4 

0 

0 

0 0 

0 0 

0 0 

0 0 

The elements of A are defined as follows: 

* 1 + ( Ci - (3)2 
al= 1 + p = 1 2 ' 

-Ci 
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and for i = 2,3, • • • ,n: 

Therefore for p* defined in (6.2.25) it follows that 

aa1 ap* 2(ap* - /3 ) 
8a 8a 1 - 0'.2 

aa1 ap* -2(a - /3 .) 

8/3 alf 1 - 0'.2 

8ai 8a1 2(mi- l)a2mi- 3(/32 -p*) 2(m• - l)ap* 
8a = 8a + - a z -

8a 

8ai 8a1 
0 2 ( m; - 1) ( 2 /3 _ ,: ) 

8/3 = 8/3 + 

ab- = -/3(mi-1)a(mi- 2) 'l 

8a 

ab- (m• -1) z = -a i 
8/3 

For T~ defined in (6.2.16) and u defined in (6.2.41) it follows that 

au 8T~,.., 
8a = 8a y 

where 

[ OT~ 
ffi·-1 

i-j=l 8a ij 
-ffi·O'. 'l 

'l 

0 otherwise 

~~ is obtained recursively. From (6.2.34) it follows that for example, 

b2 
12 = a1 , 

Page 6.38 

(6.5.3) 

(6.5.4) 

(6.5.5) 

(6.5.6) 

(6.5.7) 

(6.5.8) 

(6.5.9) 

(6.5.10) 

(6.5.11) 

 
 
 



 Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2022

hence 

and 

Therefore 

From ( 6.2.49) and ( 6.5.1) it further follows that 

8 2Zn L( 8,A *) 
a,ra,s 

From (6.5.4) we have 

_Q_ u'y* = 2(8T~ y ')y* -y*'( 8A)y*. a,s a,s a,s 

Hence 

Since ( cf. (6.2.42) y* = A-1u, it follows that 

with 

8y* 
a,r 
au 
a,r 
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Typical elements of a° 2 
A may, for example, be obtained as follows: 

1r1s 

For i = 2,3, • • • ,n: 

8(380: 

8 2b-1, 

80:2 

8 2b-z 

8 f32 

8 2b-1, 

80:8(3 

2 
1-o:2 

= _Q_(- 2( a - (3 )) 
8a 1-o:2 

4a(f3- a) - 2(1- o:2) 
= 

1-o:2 

(m•-3) = -f3(mi-l)(mi-2)a z • 

= 0. 

= -( mi - 1) a ( mi - 2). 
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Typical elements of 
8

82
~ °' may, for example, be obtained as follows: 

rr rs 

6.6 SUMMARY. 

m--2 
m-(m• - l)a z 

'l 'l ' 

0 

0 and 

i-j=l; 

otherwise . 

0. 

( 6.5.25) 

In this chapter the analysis of multi component models with time series deviations is 

considered. The theoretical results derived are used to estimate parameters in an 8-

parameter triple-logistic model. The latter model was used to describe human growth 

from 2 years to maturity of the Fels data. A similar analysis was done on the Berkeley 

growth study and is given in Appendix C. 

In Section 6.2 a fixed parameter nonlinear model with ARMA(l,1) deviations is 

discussed. The derivation of the likelihood functions of nonlinear random parameter 

regression models with non-consecutive ARM A(l,1) deviations is discussed in Section 

6.3. 

Using the Fels growth data two possible models, namely the random parameter model 

with uncorrelated errors ( cf. Example 5.5.4) and the fixed parameter model with 

ARM A(l,1) deviations ( cf. Example 6.4.3), were compared with the random parameter 

model with ARMA(l,1) deviations (cf. Example 6.4.5). 
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CHAPTER 7 SUGGESTIONS FOR FURTHER RESEARCH. 

It was not proved in Chapter 3 that the iterative reweighted GLS estimator 1'GLS that 

minimizes (3.4.23) is identical to 1' that minimizes (3.4.25). This matter requires further 

research. 

The dispersion matrix of the sample means and covariances, n, is defined differently for 

the normal theory generalised least squares (GLS), maximum Wishart likelihood 

(MWL) and asymptotically distribution free ( ADF) estimators, available for use in the 

analysis of covariance structures, because the assumptions about the distribution of 

the data are different. Further attention has to be given to the elliptically contoured 

multivariate class of distributions which has not been considered here. 

The computation of fourth order moments for the type of nonlinear random parameter 

models discussed in this thesis is currently very time consuming. It will be worthwhile 

to program these, once faster computers become affordable. 

In Section 5.3 of Chapter 5 it was shown that in the case of random parameter models, 

the derivatives of the likelihood function may be expressed in terms of the moments of 

the posterior probability density function, for example 

f x1g(x)f(yjx)dx 
E(x1jy) = f g(x) f(yjx)dx 

l=l,2, · · · ,r (7.1) 

It was further shown (cf. (5.3.31) to (5.3.34)) that the integrals in (7.1) can be evaluated 

by means of a Gauss quadrature integration formula. Bock (personal communication to 

Du Toit, June 1993) proposed that Newton-Coates quadrature now substitute the 

Gauss-Hermite quadrature, and that the points x=(x1, x2, • • • ,xr)' of the integration 

formula be obtained from 

x = 7ii + (D0 _T)k 
z 

(7.2) 
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where 

k= (7.3) 

and where ki, i=l,2, • • • ,r are the points of a 3m fractional factorial design. 

In the above notation 8i is a provisional estimate of x for subject i from a previous 

iteration and the elements of D0 _are the standard deviations of a previous estimate of 
z 

Cov(x,x'lyJ Note further that TT'=P, with Pan estimate of the correlation matrix of 

x. An advantage of the proposed method is that for the fractional factorial design, only 

243 r-dimensional points are evaluated. The numerical integration procedure described 

above, is known as adaptive quadrature, since use is made of the Bayes estimates and 

conditional covariance matrices of each individual. 

In Chapter 6 specific attention was given to the nonlinear fixed and random parameter 

models with ARMA(l,1) deviations. It may be interesting to consider higher order 

ARM A models, for the case of non-consecutive data. 
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APPENDIX A 

Table 1. Reaction times measured over 8 months on 9 rats. 

Reaction time measured over 8 months 

RAT 1 2 3 4 5 6 7 8 Amount of neural patch laceration 

1 397.4 462.0 417.0 427.8 462.6 453.0 434.2 434.8 -0.543 

2 480.6 450.0 455.6 472.4 477.8 468.0 452.4 -0.450 

3 406.6 439.6 445.0 528.0 530.6 549.8 571.8 530.8 -0.399 

4 424.6 428.4 470.0 469.4 481.8 478.8 480.0 -0.153 

5 372.0 379.8 373.2 367.4 399.4 412.8 407.6 606.0 1.013 

6 358.6 377.0 386.8 394.8 395.4 426.8 403.8 416.4 1.019 

7 403.0 383.2 392.4 389.4 449.2 431.8 437.0 1.331 

8 378.6 372.2 359.8 368.2 364.8 386.4 368.0 382.2 1.477 

9 380.4 412.2 398.8 389.6 396.6 411.2 441.6 473.2 2.030 

Table 2. Dental measurements of 11 girls and 16 boys. 

Case no. Time Case no. Time 

8 10 12 14 8 10 12 14 

1 21 20 21.5 23 15 25.5 27.5 26.5 27 

2 21 21.5 24 25.5 16 20 23.5 22.5 26 

3 20.5 24 24.5 26 17 24.5 25.5 27 28.5 

4 23.5 24.5 25 26.5 18 22 22 24.5 26.5 

5 21.5 23 22.5 23.5 19 24 21.5 24.5 25.5 

6 20 21 21 22.5 20 23 20.5 31 26 

7 21.5 22.5 23 25 21 27.5 28 31 31.5 

8 23 23 23.5 24 22 23 23 23.5 25 

9 20 21 22 21.5 23 21.5 23.5 24 28 

10 16.5 19 19 19.5 24 17 24.5 26 29.5 

11 24.5 25 28 28 25 22.5 25.5 25.5 26 
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12 26 25 29 31 26 23 24.5 26 30 

13 21.5 22.5 23 26.5 27 22 21.5 23.5 25 

14 23 22.5 24 27.5 

* Individuals 1-11 are girls, 12-27 are boys. 

Table 3. Weights of 13 ma.le mice measured at successive intervals 

of 3 days over 21 days from birth to weaning. 

Days 

Mouse 3 6 9 12 15 18 21 

1 .190 .388 .621 .823 1.078 1.132 1.191 

2 .218 .393 .568 .739 .839 .852 1.004 

3 .211 .394 .549 .700 .783 .870 .925 

4 .209 .419 .645 .850 1.001 1.026 1.069 

5 .193 .362 .520 .530 .641 .640 .751 

6 .201 .361 .502 .530 .657 .762 .888 

7 .202 .370 .498 .650 .795 .858 .910 

8 .190 .350 .510 .666 .819 .879 .929 

9 .219 .399 .578 .699 .709 .822 .953 

10 .225 .400 .545 .690 .796 .925 .836 

11 .224 .381 .577 .756 .869 .939 .999 

12 .187 .329 .441 .525 .589 .621 .796 

13 .278 .471 .606 .770 .888 1.001 1.105 

Table 4. Jawbone length measurements (in mm) of 20 boys. 

Individual Age Individual Age 

8 8.5 9 9.5 8 8.5 9 9.5 

1 47.8 48.8 49.0 49.7 11 51.2 51.4 51.6 '51,9 

2 46.4 47.3 47.7 48.4 12 48.5 49.2 53.0 55.5 

3 46.3 46.8 47.8 48.5 13 52.1 52.8 53. 7 55.0 

4 45.1 45.3 46.1 47.2 14 48.2 48.9 49.3 49.8 
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5 47.6 48.5 48.9 49.3 15 49.6 50.4 51.2 51.8 

6 52.5 53.2 53.3 53. 7 16 50.7 51.7 52.7 53.3 

7 51.2 53.0 54.3 54.5 17 47.2 47.7 48.4 49.5 

8 49.8 50.0 50.3 52. 7 18 53.3 54.6 55.1 55.3 

9 48.1 50.8 52.3 54.4 19 46.2 47.5 48.1 48.4 

10 45.0 47.0 47.3 48.3 20 46.3 47.6 51.3 51.8 

Table 5. Sheep data. 

The abstract of the data obtained from Dr. Gree££ at the research laboratory of Irene 

are given in the following order. 

1: Mass of the ewe after birth. 2: Sex of lamb (l=male, 2=female). 

3: The identity code of ram. 4: The birth date of the lamb. 

5: The birth weight of the lamb. 6-18: The weights of the lambs for the first 13 weeks. 

19: The weaning weight at the 14th week. 

20: The identity code of the lamb. 21: The identity code of the ewe. 

Note that a O indicates a missing data point and the first two digits of the identity 

codes indicates the year of birth. 

41 2 790051 810908 2.3 4 5 6 7 8 10 11 11 12 14 15 16 17 18.5 810049 800047 

41 1 790051 810909 3.4 5 7 8 10 12 12 14 15 16 17 21 21 22 23.4 810067 800179 

43 2 790051 810911 3.0 4 5 7 9 11 12 14 14 16 17 19 20 21 23.4 810074 800049 

54 2 790051 810922 2.2 3 5 6 7 8 8 9 10 10 12 13 14 15 15.9 810096 790074 

54 1 790051 810922 2.2 3 4 5 6 6 6 7 8 10 9 10 10 11 11.3 810097 790074 

54 1 790051 810922 2.2 2 3 3 4 4 4 5 5 6 6 7 7 8 8.5 810098 790074 

47 1 790051 811009 3.8 5 6 7 7 8 10 11 12 12 13 14 16 15 16.8 810114 800108 

57 1 790101 830912 3.4 6 8 9 11 12 13 15 17 19 0 0 0 0 25.5 830113 800022 

57 1 790101 830912 3.4 6 8 9 12 14 15 18 0 0 0 0 0 0 29.9 830114 800022 

74 2 790146 820830 2.6 5 7 8 10 12 13 15 17 19 20 21 24 25 24.6 820006 790145 

74 2 790146 820830 2.6 5 7 9 10 13 14 16 18 21 22 23 24 25 24.8 820007 790145 
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64 2 800020 830902 2.5 3 3 4 5 0 5 5 5 5 4 0 0 0 0.0 830014 800105 

64 2 800020 830902 2.5 2 2 3 4 5 5 6 0 0 0 0 0 0 0.0 830015 800105 

64 2 800020 830902 2.5 2 3 4 5 6 7 7 8 9 12 13 12 13 0.0 830016 800105 

64 2 800020 830902 2.5 2 3 5 5 6 6 8 8 7 7 6 0 0 0.0 830017 800105 

64 2 800020 830902 2.5 2 2 3 4 5 5 6 5 5 5 5 0 0 0.0 830018 800105 

61 2 800020 830904 3.9 5 7 8 10 12 12 15 16 16 17 19 22 21 23.6 830044 7 45031 

61 1 800020 830904 3.9 5 6 7 9 11 12 12 14 15 16 17 20 17 19.4 830045 7 45031 

58 2 800020 830905 3.4 5 7 9 11 12 14 15 16 16 16 17 19 18 20.6 830056 760028 

Table 6. Pollution data. 

Timepoint Value(p.p.m) Timepoint Value(p.p.m) Timepoint Value(p.p.m) 

1 616.855 2 818.254 3 1322.637 

4 844.011 5 1050.540 6 1180.684 

7 1042.918 8 747.600 10 713.190 

12 263.027 13 581.766 14 1077.637 

15 714.565 16 1615.300 17 1135.947 

18 1228.400 19 1321. 792 20 448.354 

24 301.492 25 581.062 26 620.200 

27 715.146 28 812.405 29 521.200 

30 284.211 31 1213.387 32 484.604 

33 139.339 34 554.069 35 335.701 

37 399.280 38 665.000 39 1348.672 

40 575.399 41 665.429 42 266.226 

43 936.629 44 236.629 45 894.708 

46 698.000 48 288.403 50 711.546 

51 1138.071 52 740.069 53 571.692 

54 553. 775 55 337.992 58 565.800 

62 567.977 63 1293.680 64 456.973 

65 728.662 66 974.878 67 1351. 759 

68 468.269 69 318.0 70 168.340 
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APPENDIX B 

INPUT FOR MALE DATA IN EXAMPLE 5.5.1, CHAPTER 5 

The following statements are used as input for A UFITPC: 

PROG A UFIT options; 

VARNAMES = variable names; 

NCASES= number of cases per group; 

GRNAMES=group names; 

PARNAMES=parameter names; 

INDPAR=information on free, fixed and equality parameters; 

IND CON =information on equality and inequality constraints; 

P ARMV ALS=initial values of unknown parameters; 

LBOUNDS=lower bounds for parameters; 

UBOUNDS=upper bounds for parameters; 

TITLE=program title; 

SCOV =values of sample covariance (correlation) matrix; 

XBAR=values of sample mean vector; 

REMARKS 

Except for the PROG A UFIT statement, which should appear first m the list of 

instructions, the other paragraphs may be given in any order. 

Free format is used throughout and commas as well as parenthesis may be used freely in 

each paragraph. 

PROG AUFIT options; 

Mode of analysis options are: 
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MODE=MEAN specifies analysis of structured mean vector (matrix) only. 

MODE=COV specifies analysis of structured covariance matrix only. 

MODE=MEAN+COV specifies analysis of structured mean- and covariance matrices. 

MODE=CORR is the default, if MOD=type not specified. This specifies the analysis of a structured 

correlation matrix. 

Type of discrepancy function options are: 

DISCREP=ML good approximation to final solution available - use ML (maximum likelihood) 

discrepancy function throughout. 

DISCREP=GLS+ML is the default. Initial approximation for ML obtained by GLS (generalised least 

squares). 

DISCREP=GLS discrepancy function is GLS. 

DISCREP=OLS discrepancy function is OLS (ordinary least squares). 

Printout options are: 

OUTPUT=PART is the default. Prints out all results, except the large sample correlation matrix of 

the parameters. 

OUTPUT=FULL prints out all results. 

Maximum number of iterations option is: 

MAXITER=n ( default is n=30). If n=0, limited printout is provided. 

Convergence option is: 

CONVERGE=value(default is 0.001). 

Maximum number of stephalving option is: 

MAXHAL VE = n ( default is n=3). 

(ii) VARNAMES 

The VARN AMES paragraph allows AUFIT to generate 3 types of variable names, which , for the sake 

of convenience, is denoted as scalar, vector and matrix names. Scalar names are names with no 

subscripts such as LENGTH or HEIGHT. Vector names are names with single numerical subscripts 

such as IQ1,IQ2, • • • ,IQ12. Matrix names are names with double numerical subscripts such as PSil,1; 
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PSI2,1; · · · ;PSil0,5. 

(iii) NCASES 

The NCASES paragraph supplies information on the number of cases per group and has the form: 

NCASES=n1 n2 · · · n9; 

(iv) GRNAMES 

Group names follw the same convention as the variable names. 

(v) PARNAMES 

The parameter names may also be mixed and may be of scalar, vector or matrix type. Valid 

expressions are: 

(a) PARNAMES=THETA1:THETA20 ALPHA:5*3 PSI TAU RHO 

(b) PARNAMES=Pl:P20; 

(vi) INDPAR 

The INDPAR paragraph supplies information on free, fixed and equality parameter. To specify for 10 

free parameters the following statements are valid: 

(a) INDPAR=l:10; 

(b) INDP AR= 1 2 3 4 5 6 7 8 9 10; 

If the element of INDPAR corresponding to the parameter in question, is set equal to zero, then this 

parameter is regarded as fixed in the subsequent analysis. 

(vii) INDCON 

The INDCON paragraph supplies information on inequality ( ~ 0 or ~ 0) as well as equality 

constraints. 

If value = -1 then constraint is of the form ~ 0 

If value = 0 then constraint is an equality constraint 

If value = 1 then constraint is of the form ~ 0. 
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(viii) PARMVALS 

Initial values for the parameters have to be supplied in this paragraph, or alternatively, be computed 

via the subroutine SPECIN. 

(ix) LBOUNDS (Optional) 

This paragraph contains information on the lower bounds for the parameters. 

(x) UBOUNDS (Optional) 

This paragraph contains information on the upper bounds for the parameters. 

(xi) TITLE (Optional) 

The program title must be less or equal to 80 alpha-numerical characters. 

(xii) SCOV 

In this paragraph the n(n+l)/2 distinct values of the sample covariance (or correlation) matrix is 

supplied. The corresponding statement in the SCOV paragraph is 

scov = 

(xiii) XBAR 

In this paragraph the sample mean vector is supplied. 

The corresponding statement in the XBAR paragraph is 

XBAR= 

The input data file to run AUFIT for the male Fels data in Chapter 5 is as follows: 

PROG AUFIT MODE=MEAN+COV DISCREP=ML MAXITER= 1 

OUTPUT=PART MAXHALVE=4 CONVERGE=0.001; 

TITLE = MALE HEIGHT DATA; 

VARN AMES = TIM2:TIM30 ; 

NCASES = 96 

INDPAR = 1:47; 

PARNAMES = gphil:gphi36 gthetal:gtheta8 gsigmaA2 galpha gbeta; 
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PARMVALS = 

46.26993 

-2.74716 0.18700 

21.31685 -1.26545 33.63064 

0.60121 -0.03624 0.24014 0.01755 

-0.88388 0.05664 -0.30813 -0.01156 0.01858 

-31.02166 1.84258 -17.67083 -0.39811 0.57867 31.73510 

21.34192 -1.26558 8.87019 0.27888 -0.41142 -16.93392 

15.21554 

1.78576 -0.09941 0.88299 0.02069 -0.03254 -1.64857 

1.39933 0.14553 

76.74165 

0.66951 

87.44015 

1.80262 

-1.09774 

21.44730 

18.98271 

1.06660 

0.55982 0.42975 0.11233 ; 

XBAR= 

92.87169 96.84548 100.76302 104.38611 107.99583 111.71251 

114.99826 118.29271 121.46979 124.60000 127.63958 130.65521 

133.46146 135. 79792 138.37396 141.53229 144.32396 146.95104 

149.78750 152.75938 155.99427 159.76979 163.35104 166.84063 

169.93750 173.35208 175.81875 177.56354 178.64792 ; 

scov = 
10.59180 

11.15167 12.42921 

11.96544 13.25453 14.67357 

12.17951 13.55731 14.87773 15. 75449 

12.13434 13.55455 14.97821 15.72884 16.50527 

12.66988 13.96568 15.43627 16.20097 16.88052 18.18876 
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12.85515 14.24052 15.73592 16.63878 17.29806 18.30922 

19.10763 

13.07583 14.59350 16.09359 17.05049 17.66305 18.67710 

19.39299 20.25568 

13.26667 14.75901 16.36078 17.37125 18.00599 19.11655 

19.82223 20.56332 21.50065 

13.88554 15.46429 17.09854 18.12825 18.90054 20.09309 

20.86710 21.61724 22.39646 23.90792 

13.65265 15.27968 16.96593 18.05889 18.81868 20.04341 

20.82263 21.66044 22.49026 23.83031 24.33427 

13.89219 15.54544 17.34646 18.50484 19.26867 20.48355 

21.18618 22.07275 22.97750 24.24917 24.70240 25.56206 

14.19643 16.05161 17.89577 18.98596 19.81721 21.11829 

21.84903 22.80363 23.73977 25.12458 25. 70173 26.27682 

27.74216 

14.76156 16.67370 18.56903 19.73122 20.64056 21.87857 

22.56113 23.46014 24.52994 25.98667 26.51727 27.16803 

28.39284 30.26833 

14.76672 16.58503 18.56351 19.61712 20.52403 21.76866 

22.52581 23.51294 24.51963 25.98156 26.55603 27.19779 

28.52139 30.15776 30.86088 

14.90309 16.86013 18.87347 20.05192 20.97355 22.34135 

23.11535 24.28143 25.31025 26.77417 27.51820 28.15593 

29.52072 30.92705 31.27855 32.63760 

15.04714 17.04338 19.06503 20.23743 21.25629 22.55786 

23.27633 24.34346 25.47760 26.97542 27.82145 28.41284 

29.83988 31.38203 31.69437 32.81162 33.76161 

15.46451 17.47449 19.64977 20.78524 21.76418 23.19539 

23.97016 25.08787 26.16383 27.59698 28.49621 29.23708 

30.65624 32.12261 32.64248 33.82929 34.41649 35.93958 

15.75540 17.91505 20.25210 21.44543 22.45697 23.76005 

24.58267 25.73017 26.90525 28.36510 29.35810 30.24246 

31.68087 33.25456 33.90603 34.94759 35.69072 37.15501 

Page B.6 

 
 
 



 Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2022

39.34151 

16.45381 18.90589 21.37287 22.62927 23.50299 24.67842 

25.70695 27.07205 28.32784 29.80052 30.84567 31. 72141 

33.23468 34.98471 35.64342 36.79423 37.62191 39.35187 

41.64585 45.16345 

17.07985 19.37740 22.01592 23.13903 23.93273 25.16056 

26.18518 27.59324 28.82852 30.47281 31.68174 32.52881 

34.28593 35.79983 36.68959 37.81873 38.66295 40.76034 

43.51186 47.16320 51.51791 

17.53082 19.83759 22.60461 23.63217 24.36190 25.67896 

26.80141 28.16718 29.45377 31.07573 32.35036 33.40708 

35.09644 36.45171 37.49671 38.61660 39.36166 42.01113 

45.03243 49.26794 54.53118 59.59544 

17.62983 19.96632 22.70990 23.59111 24.25201 25.63495 

26.74077 28.11193 29.55477 31.22427 32.45673 33.52854 

35.35259 36.69709 37.83748 39.05283 39.75336 42.44687 

45.49876 50.02072 55.71753 61.25113 64.37792 

18.51648 20.69920 23.56381 24.34667 25.00181 26.61881 

27.47988 28.96165 30.56300 32.17510 33.30902 34.49057 

36.27313 37.53561 38.85158 39.99327 40.53538 43.48699 

46.14384 50.60811 55.94805 61.69571 64.77730 67.47116 

18.42863 20.49743 23.14491 23.92449 24.51238 26.09510 

26.80386 28.36210 29.93238 31.48677 32.45372 33.73522 

35.29613 36.89966 37.95702 39.19868 39.60358 42.11652 

44.37474 48.36298 52.72818 57.33113 60.53736 63.68921 

62.38318 

17.22312 19.16289 21.58047 22.17527 23.02777 24.61082 

25.17857 26.82502 28.20428 29.57271 30.50033 31.74015 

33.27211 34.67615 35.58979 36.74905 37.09094 39.33745 

41.21201 44.65055 48.02723 51.75845 54.57578 57.83903 

57.18034 54.53916 

16.36467 18.25668 20.52094 21.28114 21.99110 23.69936 

24.14925 25.60764 26.94265 28.38677 29.12624 30.40230 
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31.58104 33.01108 33.61882 34.66846 34.93684 36.69592 

38.35034 41.16087 43.31495 45.73411 47.82915 50.94309 

51.15805 49.17309 47.19819 

15.52175 17.41684 19.64279 20.38767 21.11438 22.54054 

23.14786 24.40130 25.54400 26.95229 27.69738 29.01555 

30.07995 31.63482 32.20457 32.96264 33.38473 34.80988 

36.42652 38.71498 40.05052 41.71921 43.28082 45.86940 

46.37751 45.24086 44.25829 43.05065 

15.17120 17.00725 19.07755 19.84904 20.47412 21.82261 

22.40440 23.54748 24.60249 26.03677 26.62581 27.85194 

28.87070 30.54197 30.98125 31.59262 31.98031 33.06953 

34.44612 36.40309 36.95095 37.98863 39.04766 41.41545 

42.09622 41.35709 41.15723 40.60102 39.58395 ; 

I* 
10 10 (NTDIM2 NTDIM4) 

-1 -1 -1 (!ALPHA) 

2.491 2.991 3.491 3.991 4.491 4.991 5.491 5.991 6.491 6.991 

7.491 7.991 8.491 8.991 9.491 9.991 10.491 10.991 11.491 11.991 

12.491 12.991 13.491 13.991 14.491 14.991 15.491 15.991 16.491 (VTIME) 

Note that NTDIM2 and NTDIM4 denotes the number of Gauss quadrature terms to 

use when computing the expected values of the response function in the subroutine 

COY AXS.FOR . The values in the line immediately below the Gauss quadrature terms 

denote the values for a in the three component Richards function. The last three lines 

denote the selected timepoints. 
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APPENDIX C 

BERKELEY DATA ANALYSES. 

Uncorrelated errors: 

(1) BERKELEY GROWTH STUDY MALES N=66 

F= -2*LN(L)= N*118.7 

MEAN VECTOR 8 : 

Estimates Std.Errors 

1 81.127136 0.404335 

2 1.387041 0.025976 

3 75.716948 0.651938 

4 2.250795 0.011638 

5 0.360581 0.004199 

6 23.977645 0.567817 

7 16.316685 0.371770 

8 1.192397 0.026986 

COVARIANCE MATRIX~: 

(i) Estimates: 

1 19.13012 

2 -0.91678 0.08230 

3 3.50075 -0.16796 38.58706 

4 -0.03139 0.00181 0.07728 0.00216 

5 -0.08185 0.00690 -0.07944 -0.00017 0.00138 

6 -6.74768 0.32350 -16.66603 -0.02270 0.05509 25.76471 

7 2.71789 -0.15336 -0.23887 -0.00627 -0.01217 -6.14615 7.08039 

8 0.19256 -0.00603 0.06527 0.00032 -0.00062 -0.40529 0.51145 0.04567 
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(ii) Standard Errors 

1 1.13727 

2 0.04129 0.00343 

3 1.33442 0.07538 3.01889 

4 0.02255 0.00133 0.03548 

5 0.00702 0.00037 0.01129 

6 1.05570 0.05923 1.66615 

7 0.37905 0.02076 0.63975 

8 0.02932 0.00162 0.04887 

CORRELATION MATRIX: 

1 1.00000 

2 -0.73064 1.00000 

3 0.12885 -0.09425 1.00000 

4 -0.15451 0.13597 0.26782 

5 -0.50453 0.64894 -0.34480 

6 -0.30394 0.22216 -0.52857 

7 0.23353 -0.20090 -0.01445 

8 0.20600 -0.09837 0.04916 

ERROR VARIAN CE : 

Estimate 

0.55831 

Std.Error 

0.00000 

0.00052 

0.00019 0.00009 

0.03129 0.00926 

0.01171 0.00337 

0.00088 0.00026 

1.00000 

-0.09977 1.00000 

-0.09627 0.29262 

-0.05069 -0.12336 

0.03193 -0.07767 

(2) BERKELEY GROWTH DATA FEMALES N=70 

MEAN VECTOR 8: 

1 

2 

3 

Estimates 

69.339921 

1.708820 

77.608391 

Std.Errors 

0.496921 

0.030954 

0.667789 
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4 1.771315 

5 0.377633 

6 20.455258 

7 13.611135 

8 1.179327 

0.021686 

0.004707 

0.529785 

0.213778 

0.017888 

COVARIANCE MATRIX~: 

(i) Estimates 

1 15.52072 

2 -0.81392 0.11525 

3 -1.52777 0.07999 29.90624 

4 0.09332 -0.00370 -0.19986 0.02452 

5 -0.06426 0.01069 -0.05656 0.00096 0.00213 

6 -8.08989 0.42550 -12.33809 0.03543 0.06137 31.91939 

7 2.24904 -0.22870 -1.73213 0.02143 -0.01730 -7.14624 4.04894 

8 0.17070 -0.00800 -0.23488 0.00574 0.00019 -0.41646 0.27780 

(ii) Standard Errors 

1 1.52831 

2 0.07224 0.00682 

3 1.41039 0.10179 2.78920 

4 0.05009 0.00372 0.07298 0.00373 

5 0.01119 0.00073 0.01486 0.00056 0.00016 

6 1.14908 0.07822 1.48959 0.05910 0.01197 1.69626 

7 0.34234 0.02279 0.44862 0.01795 0.00357 0.33056 0.14210 

0.02819 

8 0.03268 0.00220 0.04290 0.00168 0.00034 0.03334 0.00838 0.00131 

CORRELATION MA TRIX: 

1 1.00000 

2 -0.60855 1.00000 

3 -0.07091 0.04309 1.00000 

4 0.15127 -0.06970 -0.23339 1.00000 

5 -0.35265 0.68104 -0.22360 0.13264 1.00000 
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6 -0.36346 0.22184 -0.39934 0.04005 0.23487 1.00000 

7 0.28371 -0.33479 -0.15741 0.06802 -0.18594 -0.62861 1.00000 

8 0.25808 -0.14038 -0.25582 0.21841 0.02496 -0.43904 0.82228 1.00000 

ERROR VARIANCE : 

Estimate 

0.32628 

Std.Error 

0.00000 

ARMA(l,1) DEVIATIONS: 

BERKELEY GROWTH DATA MALES N=66 

MEAN VECTOR 8: 

1 51.11639 

2 1.56381 

3 117.16589 

4 1.13019 

5 0.23458 

6 16.58997 

7 21.75483 

8 1.57483 

COVARIANCE MATRIX~: 

1 35.72877 

2 -1.30306 0.13223 

3 -10.64028 0.38699 34.26880 

4 0.66273 -0.01739 -0.19250 0.01975 

5 -0.00191 0.00249 0.00931 -0.00020 0.00025 

6 -3.75982 0.13713 -23.93465 -0.07376 -0.00687 

7 2.75895 -0.09739 -0.80850 -0.05143 -0.00005 

8 0.25177 0.00417 -0.20384 0.00597 0.00032 

Page C.4 

46.64464 

-0.77480 6.76420 

0.20272 0.34566 0.03023 

 
 
 



 Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2022

CORRELATION MATRIX: 

1 1.00000 

2 -0.59951 1.00000 

3 -0.30408 0.18180 1.00000 

4 0.78892 -0.34028 -0.23398 1.00000 

5 -0.02036 0.43605 0.10138 -0.09206 1.00000 

6 -0.09210 0.05522 -0.59866 -0.07685 -0.06407 1.00000 

7 0.17747 -0.10298 -0.05310 0.14070 -0.00125 -0.04362 1.00000 

8 0.24224 0.06592 -0.20025 0.24439 0.11882 0.17070 0.76433 1.00000 

ARMA(l,1) PARAMETERS 

/3 
0.10857 0.96603 0.16415 

BERKELEY GROWTH DATA FEMALES N=70 

MEAN VECTOR 8: 

1 71.51844 

2 1.75703 

3 73.63314 

4 1.93508 

5 0.40535 

6 21.87592 

7 12.86096 

8 1.11132 

COVARIANCE MATRIX 4>: 

1 13.14121 

2 -0.83825 0.10820 

3 1.96016 -0.12502 20.49084 

4 0.00078 0.00952 -0.12700 0.00400 
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5 -0.03126 0.00995 -0.06195 0.00168 0.00207 

6 -4.77515 0.30574 -7.33915 0.04162 0.03032 18.71622 

7 1.67541 -0.17371 -2.37196 0.00491 -0.00627 -3.64289 2.78060 

8 0.19950 -0.01028 -0.30012 0.00270 0.00082 -0.23981 0.21866 0.02648 

CORRELATION MATRIX: 

1 1.00000 

2 -0.70297 1.00000 

3 0.11945 -0.08396 1.00000 

4 0.00341 0.45780 -0.44362 1.00000 

5 -0.18945 0.66469 -0.30067 0.58431 1.00000 

6 -0.30448 0.21484 -0.37476 0.15213 0.15399 1.00000 

7 0.27716 -0.31669 -0.31424 0.04658 -0.08259 -0.50497 1.00000 

8 0.33822 -0.19213 -0.40747 0.26246 0.11129 -0.34068 0.80590 1.00000 

ARMA(l,l) PARAMETERS 

(J & /3 
0.17001 0.99045 0.22576 
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