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PRELIMINARY CONVENTIONS AND NOTATION

Conventions
Throughout this paper functional and operator will assume to be linear
and bounded. We also assume that the reader is familiar with the

definition of the dual operator of an operator T.

Notation

let E and F be normed spaces.

(E)1 ¢ the unit ball of E.

dim E : the dimension of E.

EBEHTET : the closure of the linear span of F in E.
£(E,F) : the class of all operators T:E — F.

2(E) : the class of all operators T:E — E.

¥(E,F) : the class of all finite rank operators in <(E,F).
¥(E,F) : the class of all nuclear operators in ¢(E,F).
¢(E,F) ¢ the class of all compact operators in ¢(E,F).
E* : the dual space of E.

T ¢ the dual operator of T € £(E,F).

ez(E,F)(T) : the set of eigenvalues of T € #(E,F).

°$(E,F)(T) : the spectrum of T € £(E,F).

ran(T) : the rank of T € £(E,F).
tr(T) ! the trace of an operator T.
det(A) . the determinant of a nxn matrix A.
¢, : the space of all bounded sequences.
Co : the space of all bounded sequences converging to zero.
e, : the space of all absolute summable sequences.
* .
X : the adjoint of an element x in a *-algebra.
om(u) ¢ the spectrum of an element u in an algebra .
m.a.p. : metric approximation property.
q.a.p. ! quasi-approximation-property.
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1. INTRODUCTION

The classical Ascoli’s theorem has interested many mathematicians and has
been the object of many modifications and generalisations. In its funda-
mental form it gives necessary and sufficient conditions for a family of
continuous functions, defined on a compact topological space, to be compact
in the topology of uniform convergence. M Freundlich [5] introduced and
studied the concept of completely continuous elements in a commutative
normed algebra, defining them as those elements for which the corresponding
regular representations are compact operators. K Vala [14] took this up
again, giving a different definition of a compact element in a normed
algebra. He called an element u of a normed algebra compact if the wedge
operator udu:x — uxu is compact. This definition generalises the notion
of a compact operator, since in ([15], Theorem 3) it is shown that the set
of all compact elements in the Banach algebra of operators on a Banach
space E, coincides with the class of all compact operators. A special
class of compact elements, called finite-dimensional, is formed by elements
u for which the wedge operator :x — uxu is of finite rank. J Puhl [10]
again gives a different definition of finite elements in a Banach algebra.
He defines an element u to be one-dimensional if there exists a non-zero

functional ru on the Banach algebra, such that uxu = <I‘u,x>u for all

X, and a finite element to be the sum of a finite number of one- dimen-

sional elements. In this paper it is shown that these two different
definitions, given by Vala and Puhl respectively, match.

The main purpose of the paper, however, is to introduce the trace of finite
elements of a Banach algebra, which includes the notion of the trace of
finite rank operators.

Since these generalisations depend heavily on the study of operators in the
Banach algebra 2(E). Chapter 2 contains a comprehensive account of
standard material concerning operators on a Banach space E, which will be
used in the chapters that follow.

As most of the results proved in the rest of the paper require that the
Banach algebra n is semi-prime, and a useful condition which is

equivalent for M to be semi-prime is proved in Theorem 3.
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The third chapter is devoted to a study of one-dimensional elements in a
Banach algebra M and in Theorem 3.22 it is shown how the two different
definitions, given by Vala and Puhl respectively, match. In Lemma 3.9 we
prove the existence of a unique complex number +tr(u) such that

u? = tr(u)u, which will be called the trace of u, provided that a is
semi-prime. We also show that the spectrum of a one-dimensional element u
consists only of two elements, namely O and tr(u). Another important
result, concerning the correspondence between the one-dimensional elements
in a semi~prime Banach algebra M and the minimal left (right) ideals of
M, is shown in Proposition 3.18 (Remark 3.19).

In the next chapter we define a finite element as used by Puhl, and in
Theorem 4.23 it is shown how this coincides with the definition given by
Vala. It is also shown in Proposition 4.21 that the spectrum of such an
element is finite. We proceed in Chapter 5 to prove that a finite element
has a well defined trace and some important results concerning this concept

are given in Theorem 5.9.

In the last chapter the definition of a nuclear element is given in a
natural way. The spectrum of a nuclear element is shown to be either
finite or countable, which can accumulate only in the origin. Furthermore,
it will be shown that if the Banach algebra fulfils certain conditions,
then the trace admits an extension to the nuclear elements. One such
condition is that the Banach algebra F | be semi-prime, having the
approximation property. Another condition is that M 1is semi-prime such
that for each finite element u and e > 0 we can find another finite
element x with Hxi < l+e and Xu=u oOr ux = u. Yet, another
condition is the following:

We say M has quasi-approximation-property (q.a.p.) if for each minimal
idempotent q € #, the Banach space Mg(resp. gM) has the approximation
property. Commutative Banach algebras and C*—algebras have q.a.p. as is
shown in Theorem 6.14. We also prove in Theorem 6.11 that the trace of a

nilpotent nuclear element is zero.

As far as the sources used in this work are concerned, detailed references
are given throughout the chapters.
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2. FINITE RANK- AND NUCLEAR OPERATORS, INCLUDING THE TRACE FUNCTIONAL

In this chapter, some basic results concerning finite rank - and nuclear
operators on a normed space are given, which will be needed in the rest of
the paper. The trace of a finite rank operator on a normed space E is
introduced and it is shown that if E fulfils a certain condition, then

the trace admits an extension to the nuclear operators.

Definition 2.1

Let E and F be normed spaces.

An operator T € £(E,F) 1is of finite rank if dim[T(E)] <

if dim[T(E)] = n we say that T 1is of rank n and write ran(T) = n.

Remark 2.2

If yeF and a e E* we denote the mapping T:E — F defined by
Tx := <a,x>y by the tensor product notation T =a® y. Clearly a®y
is linear and bounded and has rank at most one. Similarly for a, € E*

n
and yi € F, i=zl,...,n we denote by Z

a.® y. the operator T:E — F
=1 + 1

n
defined by Tx =Z <ai,x>yi. In this case T has rank at most n.
i=1

Before proving that any T e ¢(E,F) of finite rank can be represented in

this way, we need a lemma.

Lemma 2.3 ([12], p 32)

Let a, € E*, i=1l,...,n. Then {ai:i=1,...,n) is linearly independent if
and only if there exists ({x,:i=1,...,n} in E with <a,,x.> = 6, ..

1 i) 1J
Proof
let {ai:izl, ...yn} be linearly independent.
If n =1, nothing has to be proved. Suppose that the result is true for
n - 1 and consider n linearly independent elements ByseessB oo By the
induction hypothesis there are elements xl,...,xn_1 e E with
<ai,xJ.> = 61.]" i,j=1,...,n-1. For each x € E
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n-1 n-1
(x - z; <ai,x>xi) € N a. (0) :=N
i=1 i=1
There exists y, € N with (an,y°> # 0, since if this were not true, then

for all x € E

<a_,x>
n

0, i.e.

(a yX><a ,x >
n

<a_,x>
n

n-1
(a ,x)(a ,x > {<a_,x.>a,.,x>
i=1 n’" i7"
wich implies that a = ;i <ah,xi>ai. This contradicts the fact that
=1
{al,...,an) is linearly independent.

Yo

Define X iz ?"T?:?' Then <ai,xn> = 51n for all 1i=1,...,n-1,n.

n

Conversely, let }i Aiai = 0. Then for each j=1l,...yn we have
i=1

n
Z A;<8;,%> = 0 vhich implies that A = 0 for each j=l,...,n. o
-

Proposition 2.4
If E 1is a normed space, then the operator T € ¢(E,F) is of rank n ) 1

n
if and only if T  has a representation Tx = Zi <ai,x>yi for all

x € E, where {ai:i=1,...,n} and (yi:i=1,...,n} are linearly indepen-

dent subsets in E and F respectively.

Proof
Let dim[T(E)] = n. Then we can find a basis {yl,...,yh} such that for

each x € E, Tx can be written as Tx = }; (X) 1 aix) € €. For each

i=l,...,n define <ai,x>:= aix).

Clearly a, is linear, since T is. We show that a, is bounded.

For each x € E, there exists c¢ > 0 such that
n n n

_ |<ai,x>| = ' | (x)l sen ) aﬁx)yin < cliThixit (cf (6], Lemma
=1 =1 =1

2.4-1) which implies that |<ai,x>| < enTunxn, i.e. ha. i < ciTu for

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2022
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i=l,...,n. We still have to show that a, is linearly independent. There

exists x‘j € E with ij = yj, j=1,...,n. Then
n

yj = §;=1 <ai,xj)yi for each j=1,...,n.

Since {yi:i=1,...,n} is linearly independent, this implies that

a.,x.> =8, ..
17 iJ

By Lemma 2.3 it follows that {al,...,ah} is linearly independent.

On the other hand, let {al,...,an] and {yl,...,yn} be linearly inde-

n
pendent in E* and F respectively with Tx = Ei

i=1
x € E, It is easy to see that T is linear and bounded. Clearly
dim{T(E)] < n.

By Lemma 2.3 there exists {xl,...,x } in E with <a.,x.> = 6. ..
n i) 1)

<ai,x>yi for all

n

Then ij = §;=1 (ai,xj>yi =y., 1i.e. yj € T(E), j=1,...,n.

J

This implies that dim[T(E)] = n. x]

Definition 2.5
yn(E,F) = {T € £(E,F):T is of rank n} and

-]

#(E,F) = U ?n(E,F) = {T € (E,F):T is of finite rank}.
n=0

Definition 2.6

If T € #(E) we define the wedge operator TAT on £(E) by TAT(R) := TRT
for all R € £(E).

Next we want to prove an important theorem concerning finite rank
operators, from which K Vala [14] generalises the concept of finite
elements in a Banach algebra.

Lemma 2.7

Let {al,...,am}, {yl,...,yh] be linearly independent subsets of the

X
normed spaces E and F respectively. Then
{ai ® yj:izl,...,m, J=1,...n} is linearly independent in ¢£(E,F).
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Proof
n

We first show that if Z a, ®y, = 0 with {yl,. ..,yn} linearly
(=1

independent, then a, = 0, i=1,...,n.

n n
If a, ®8y. =0 then <a,,x>y. = 0 for all x € E from which
=1 1 i 2 & i

it immediately follows that a, = 0, i=l,...,n since (yl, cee ,yn} is
n m
linearly independent. Now let (Z A..a)ey. =0,
. . ij7i J
j=1 =1
m
By applying the discussion above we obtain Z Aijai = 0, j=1,...,n,
i=1

and since {al, ‘ea ,am} is linearly independent it follows that
'\ij =0, i=l,...,m, j=1,...,n. a]

Corollary 2.8

If 0O #ace€ E].l and {yl,...,yn} is linearly independent in F, then

{a ® yi:i=1,...,n} is linearly independent in ¢(E,F).

Theorem 2.9 ([1]1, p 17)

(a) The operator T € £(E) is of rank one (zero) if and only if the wedge
operator is of rank one (zero).

(b) T is of finite rank if and only if TAT is of finite rank. In this
case ran(T) < ran(TAT).

Proof

{(a) Clearly, if T = 0, TdAT = 0.

Now let T #0 be of rank one. Then by Proposition 2.4 T = a ® y,

OataeE}.l and 0 #y € E. Consider any R € $(E) and x € E. Then
TAT(R)x :

(a2 ® y)R(a & y)x

(a ® y)<a,x>Ry = <a,x><a,Ry>y
<a,Ry>(a ® y)x = <a,Ry>Tx

(I‘T ® T)(R)x

where we define the functional rT: $(E) — € by <I"T,R> := <a,Ry>.

We still have to show that rT # 0,

There exists x, € E such that <a,x,> # 0.

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2022
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Define Ro:span{y} — E Dby Ro(ay):= aXo,. Clearly Ro is linear and
bounded and by Hahn Banach it can be extended to E such that Roy = Xg»

Therefore <r._,R > # 0.
T o

On the other hand, if TAT =0 and T #0 we can find x, € E with
Txo, # 0. Let y = Tx,. Again by Hahn Banach there exists RO € £(E) with
Roy = Xo. Then TAT(Ro)x°:= ’I‘Ro'l‘xo = 'I‘Roy = Tx, # 0 which contradicts the
fact that TAT = 0. If TAT is of rank one, we can find Ro € £(E) such
that TAT(RO) = TROT #0, hence T # 0 and it follows that dim[T(E)] > 1.

If dim[T(E)]} > 1, we can find at least two linearly independent vectors
{Tx,,Tx,} in T(E). Choose a € E' with T'a # 0 and let

R1:=a®x, ;R2 T a® x,.

Clearly R and R are linear and bounded and TAT(Ri) = T'a® Txi,

1 2
i=1,2.
By Corollary 2.8 {TAT(Rl) , TAT(RZ)} is linearly independent in contradic-

tion to the fact that Jdim[TAT(£(E))] 1.

(b) Let T # 0 be of finite rank n » 2. By Proposition 2.4 we can write
n

T = a. ® y. with {a,:i=1,...,n} and {y,:i=1,...,n} linearly
=] i i i

independent in E* and E respectively. Then for all R € £(E) and

x € E it follows that
n n

" n
(Zzl a; ® Yi)R(Zj:l a; e yj)x = (Zzl a, ® yi) Zj:l <aJ.,x>RyJ.

n
Z i1 <8.i,RYJ.>(8.j ® yi)x , 1.e.
, j=

TAT(R)x

n
(TAT) (R) = Z,,j:l @Ry p(a; @ v,).

Therefore, {(TAT)R:R € £(E)} < span{aJ. ® yi:i,j=1, veoyn} which implies

that dim[(TAT)(£(E))] < n?2.

Furthermore, there exists {x,,...,Xx } such that <a.,x.> = 86.. by
1 n i) 1)

Lemma 2.3. By choosing Rk any operator such that Rky,j = 8 X

kK 1t

follows that

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2022
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n n
(TAT) (R, ) = Z’j:l @ Ry>a; ey = Z=1 <a;,x,>(a, 8 )
= (ak ® yk)-
Hence a ® Yie € TAT{£(E)] for k=1,...,n, which implies that

ran{TAT) > n.

Therefore n = ran(T) ¢ ran(TAT) ¢ n?

Conversely, if 2 < ran(TAT) < n, then clearly T # 0.

If dim[T(E)] > n, then similarly as in the case for n =1 we get a
contradiction to the fact that TAT[#(E) ] has at most n linearly
independent vectors. Consequently ran(T) < n. o

From the proof of this theorem we immediately derive a corollary on which J
Puhl [10] based his definition of finite elements in a Banach algebra.

Corollary 2.10 ([10], p 658)
If E is a normed space and 0 # T € £(E), then T € ¥,(E) if and only

if there exists a nor-zero functional rsz(E) — C such that

TRT = <rT,R>T for all R € ¥(E).

Definition 2.11

An operator T € ¢(E) is minimal idempotent if T # 0 is idempotent such
that T[#(E)]T is a division algebra.

Lemma 2.12

If Q € #(E) is minimal idempotent, then Q is a projection of rank one.
Proof The result directly follows by Gelfand Mazur and Theorem 2.9. o

Before proving that the spectrum of a finite rank operator T is finite,
we show that the spectrum of T equals the set of eigenvalues of T.

Lemma 2.13 ([7], p 96)
If T e ¥#¥(E), then (T-I) 1is one to one iff it is onto.

Proof
let B:= (T-I) T(E) " Clearly B € 2[T(E)] and since T(E) is finite

dimensional, B is one to one iff it is onto. Clearly (T-I) is one to

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2022
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one iff B is one to one. Next we show that (T-I) is onto iff B is
onto.

let (T-I) be onto and consider any v € T(E). We can find y € E with
v = Ty. Then there exists x € E such that (T-I)x = y. If we define
u:= Tx, then Bu = v.

On the other hand, let B be onto and y € E arbitrary. Then Ty € T(E)
and consequently there exists u € T(E) such that Bu = Ty. Let x:= u-y.
Then (T-I)x = (T-I)u - (T-I)y = y. o

Proposition 2.14 ([7], p 96)
If T e (E), then o(T) = e(T).

Proof

If 0#Aec, then %-e #(E) and by Lemma 2.13 it follows that (g.- I)

is one to one iff it is onto. Consequently A € o(T) iff A € e(T).

Next let us consider the case A = 0. If E is finite dimensional, then
T is one to one iff it is onto, hence 0 € o(T) iff 0 € e(T). If E is
infinite dimensional, then T cannot be one to one since T(E) is finite

dimensional. Therefore 0 € e(T) S'o(T). Consequently in all cases we

have o(T) = e(T). o

Lemma 2.15 ({2], p 80)

If Al,...,An are different eigenvalues of T and O # xi € E is the
corresponding eigenvector of each Ao then {xl,...,xh} is linearly
independent.

Proof

Clearly, the lemma holds for n = 1.

Suppose it is true for (n-1) and let Al,...,An be different eigenvalues

of T. Then for each i=l,...,n there exists 0 % X, € E with

Tx. = Aix.. If {xl,...,xn} is linearly dependent, we can find scalars

n-1 n-1

pl""’pn—l with x, = };_1 pixi. Therefore An*n = Txn = zi—l piAixi.

n-1 B.A.x.

Hence x = zi —ixi—i . From the linear independence of {xl,.

i1 o ..,xn_l}

it follows that g, = * 1 for all i. Since x, #0, notall g =0.
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&
&

ﬂ UNIVERSITEIT VAN PRETORIA

J UNIVERSITY OF PRETORIA

- ¥

UNIBESITHI YA PRETORIA

- 11 -

Assume pj # 0. Then AJ. = A contradicting our assumption. 0

Proposition 2.16
The spectrum of a finite rank operator is finite.

Proof
let E, F be Banach spaces and consider any T € #(E,F).
Assume that o(T) is not finite, i.e. there exists at least a countable

number of different spectrum values {Ai:i € N}. By Proposition 2.14, for
each i =1,2,... there exists 0 # Xy € E with 'I‘xi = Aixi € T(E) which

implies X, € T(E). Since {xi:i=1,2, . is linearly independent by

Lemma 2.15, this contradicts the fact that T is of finite rank. n|
Lemma 2.17
n
If T € ¥(E,F), then Z <ai,yi> is independent on the specific repre-
121
n

sentation of T = Z a. ® y..
jz1 L 1

Proof
n X
let T = E ai ® y.l be any representation where ai e E, yi € F. Ve

i=1
can find linearly independent vectors {xl, “es ,xm} < F such that

¥ € span{xl,...,xm}, (i=l,...,n). Let y; = Zj-l gijxj .
m X
Then there exists a representation T = 2 bj ® x‘j with bj € E .
=1

Therefore,
m n m n

b.®x. = a®y=§ [ f;..a.]&x.
=17 I 4i= j=il &= W MY

which implies that the functionals bl’ e ,bn € E* are uniquely determined

n

by b. = ¢£..a., since {x.:j=1,...,m} is linearly independent.
J =1 i1 J

We conclude that
m

(a ,y> Z (a ,x> E Z g, a,x)-} <b.,x.>. n|
Zz 1 J=1 1373 j=1 v I

J
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Definition 2.18

If T € ¥(E,F), the trace of T is defined by
n

tr(T):= }; <ai,yi>

n

where T = a. ® y., a., € E* and y. € F (i=l,...,n).
=1 & i’ 7i i

Lemma 2.19
If R e (E,F), T € ¥(F,G) and S € £(G,H), then STR € ¥(E,H).

Proof

o/

X
let T = a. ®y., a,. €F, y. € G. Then for all x € E
=1 & i i i

n n
STRx = S( Z a; ® y,)Rx = Z <a RSy,
=1 =1
n
= 22-1 <R'ai,x>Syi
n X
= R'a, ® Sy.)x with R'a. €eE , Sy, € H, i=1l,...,n.
i=1 i i i i
Therefore STR € #(E,H). 0

Proposition 2.20

If 022Te¢9%,(E,F), then T2 = tr(T)T.

Proof

let T=ae®y, ae E*, y € F and consider any x € E. Then
tr(T)Tx = <a,y>{(a ® y)x = <a,y><a,x>y = <a,x>(a ® y)y

(a ®y)la®y)x

sz o

Lemma 2.21

All eigenvalues of a nilpotent operator are zero.

Proof
let T € £(E,F) be nilpotent.

Suppose that A, € € 1is a non-zero eigenvalue of T with associated
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eigenvector xo, # 0, i.e. TX, = A¢Xo. Then by induction and substitution

we get the contradiction
Tnxo = A?x, 20 for all n €N. o

Lemma 2.22 ([8], p 264)
If A= (aij) is a nm matrix with eigenvalues Al,...,An, then

n n
tr(a) = }i A, and det(A) = TTA,.
i= i=1

Proof
If A is an eigenvalue of A, there exists x#0 such that
(A-AIn)x = 0 which implies that det(A—AIn) = 0. Put P(A):= det(A—AIn).

Then by expanding the determinant of (A—AIn) in terms of elements in the
n
first row, it follows that P(A) = (a11 - A)B11 + EézzaljBlj where B

is the cofactor of the (1,j) element of the matrix (A—AIn). In each of

15

the cofactors B12""’B1n there are only n-2 elements (aii - A)

involving A so that the largest power of A that can be obtained by
expansion of these cofactors is Aan. Consequently

P(A) = (an—p\)B11 + {terms in A of degree (n-2) or less}
By expanding B11 again in terms of elements in the first row, the same

argument as above can be applied and by repetition it follows that
P(A)

(all—A)(aZZ—A)...(ann-A) + {terms in A of degree (n-2) or less}

(—1)nAn+(—1)n-lAn_l(a11+322+...+ann)+{terms in A of degree (n-2) or less}

Since the constant term in P(A) would involve no A, it is given by
P(0):= det(A).
Therefore
P(A) = (1) + (1P LR ler(a) + ...+ det(a).
But as the characteristic polynomial P(A) = 0 is of degree n, it has

exactly n roots given by the eigenvalues of A. This implies that

P(A) = (AI—A)(AZ—A)...(AD—A)
_ n n _qyn-1 n-1
= (-1)"A" + (-1) A (A1+A2 +...4 An) + ...+ (AlAz An)
The result follows by comparing these. o
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Corollary 2.23
The trace of a finite rank nilpotent operator Is zero.

Next we turn to the concept of nuclear operators, and introduce a nuclear

norm which dominates the norm Ili-ll on ¢(E,F).

Definition 2.24

o0
An operator T € %(E,F) is called nuclear if Tx =Z <ai,x>yi with
i=1

[ -]
a. € E* and y. € F for all i €N such that Z fla. iy, I < oo,
i i i=1 i i
[ <]
We write TzZ a. ® y..
. i i
=1
Definition 2.25
o0
¥(E,F) = {T € ¢(E,F): T is nuclear}. Put vu(T):= ian llaillllyill where
i=1
the infimum is taken over all so-called nuclear representations described
above.
Theorem 2.26

(¥(E,F),v) is a Banach space and if R € #(D,E), S € £(F,G) and
T € #(E,F), then STR € ~#(D,G) such that wvu(STR) ¢ uSHu(T)IRI,

Proof

We first show that v 1is a norm on ¥(E,F).
[+, ]

let T = Z a, ® ¥s be any nuclear representation. If u(T) = 0, then
i=1

[ ]

uTH ¢ Z Ilaillllyill, since -l is continuous on ¥(E,F) and consequently
i=1

ITN ¢ v(T) = 0 which implies T = O.
Clearly, the converse also holds.

It is obvious that AT € #(E,F) for all A € € and u(AT) = |A|u(T).

o0

Finally, if U = 2 b. ® x. € ¥(E,F) we have
4 J J
j=1
0 - -
v(T+U) < Ha. iy, Il + E b.iix . for all such representations
i=1 1 1 5=1 J J

oo
of T and U. Fix the representation U = 2 bj ® xJ.. It follows that
j=1

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2022



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

<

- 15 -

©0
v(T+U) < v(T) +§ IIbJ.lluxJ.u. Since this is true for each such

=1
representation of U, we have

v(T+U) < v(T) + u(U).

Now we show that #(E,F) is complete with respect to this norm.
Let (Ti) < ¥(E,F) be any v-Cauchy sequence. Then (Ti) is also
all-li-Cauchy sequence, since efl ¢ v(-). Therefore, there exists
T € £(E,F) such that IIT—Tnll %—-» 0.

n

We prove that T € ¥#(E,F) and u(T - Tn) —_— 0.
We can find an increasing sequence (nk) <N such that

1

v(Tn-Tm) < EFZ for all n,m > n, .
For each k € N, we can choose a nuclear representation
<k) SB) Z” (k) (k) 1
. with a, nnwyt,n < .
r‘k+1 “k Z i i=1 ! 1 oF+2

Then for all p e N

ey ™ ey rpt) * et Tzl ot ™

[Z aSk+p-1) ® ygk'rp-l)]
(=1 1 i

+ [ a!kﬁ'p-Z) ® y§k+p—2)]+“'+[ agk) ® ygk)]
i=1 1 1 i=1 1 1

k+p-1 ®© . .
} { Z 200) y(J)].
5=k =] 1 .

i
Now, let p — ¢« and consider the I-ll-1limit. Then
k+p-1 o . .
n-wlim (T - T = . nlmE [ Z ai") ) yi(‘))}
o l'lk+p i=1

©0 o0

a4 (J) (J)
which implies (T-T ) = [ Z a. ®y ]
n, ijk =1 1 .

1
Furthermore,

S Tt

I
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Hence, (T—Tn ) € #¥(E,F) from which it follows that
k

T = (T-T ) + T_ e #(E,F).
“k

Furthermore, v(T—-T E Z Illly( )II < _11{_"_1. k_. 0.
j=k

Consequently U(T-Tn) T—o 0.

o

%
Now, let R € £(D,E), S € #(F,G) and T = a.®y., a. €E, y. €eF
=1 i i i
o0

with Z uaillllyill ¢ ®, Then for each x € D
i=1

© o

S[ Z 1 ai ® y.l]Rx = Z:l <a‘.1,Rx>Syi
Z <{R'a. ,x>Sy

=1
[ Z R'ai ® Syi]x

b 3
with R'aieD, SyieG for each i € N.

<0 o0
Z-l IIR'aiIIIISinI < IISII[ Z_l llaillllyill]llR'll { o

which implies that STR € #(D,G) and

(-]

v(STR) gZ uR'aiunSyiu < nSHu(T)uRN, o
i=1

STRx

Furthermore,

Proposition 2.27
¥(E,F) is dense in «(E,F) with respect to the nuclear norm.

Proof

Let U € #(E,F) be any nuclear operator with arbitrary nuclear
- <]

representation U = Z a, ® ;e For each n € N, put
i=1

n

Tn sz Z:l ai ® y:.L

o0 o0

Since Z la. lily.ll < o, it follows that 1lim na.miiy.t = 0 for
. i i . i i
=1 n—° =n+1

each nuclear representation of U.
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Therefore,
i n
u(U—Tn) < Z uainuyin — 0, i.e.
=n+1

v(-)1lim Tn = U. o
n—po

Before proving that the trace can be extended to the nuclear operators on a
Banach space E, we need to introduce a property which E should have.

Definition 2.28
Let E and F be Banach spaces and A < E a subset of E.

If (Tn) is a sequence in ¥(E,F), then Tr1 -+ T wuniformly on A if for
each € > 0, we can find n_e N such that IITnx - Txll < ¢ for all
n2n and for all x € A. This is equivalent to saying that

lim sup |1 o _ i = 0.
n-»o X€A n

Example 2,29
Tn — T uniformly on (E)1 if and only if T - Tnll —2—. 0, 1i.e. Iff

Tn — T in the norm topology of ¢(E,F).

Proposition 2.30
Let E be a Banach space. Then the following are equivalent:

(a) For any Banach space F, every compact K c E and every T € £{E,F)

there exists a sequence (Tn) < ¥(E,F) such that Tn — T uniformly

on K.

(b) For every compact K S€E and every T € 2(E) there exists a sequence
(Tn) < #(E) such that Tn — T uniformly on K.

{(c) For every compact K ::_E there exists a seguence (Ln) < ¥(E) such
that Ln_' I uniformly on K.

(d) For every compact K < E and e >0 there exists L € #(E) such

that
Ix - Lxll ¢ € for all x € K.

Proof

Clearly (a) => (b) => (c) and (c) <=> (d).

(c) => (a)

Consider any Banach space F. Let T € £(E,F) and K cE compact be
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given. We can find a sequence (Ln) < ¥{(E) such that :UGEIILnx - xit — 0.

Put

T :=TL for all n e€N.
n n

By Lemma 2.19 Tn € ¥(E,F) for all n elN and

sup
xeK

Hence,

_ _ sup _ sup _ n
IITnx Txil = xeK IIT(Lnx x)H < NTH xeK Ianx xil -~ 0.

Tn — T uniformly on K. o

Definition 2.31
A Banach space E possesses the approximation property if it satisfies any

one of the conditions in Theorem 2.30.

Definition 2.32
Let E and F be any normed spaces.
An operator T € £(E,F) is compact if T[(E)ll is a compact subset of F.

We write T € €¢(E,F).

Proposition 2.33
let E and F be any Banach spaces. If F  has the approximation

property, then #(E,F) = ¢(E,F).

Proof
let T € ¢(E,F) and put K:= T[(E)I]' Since K is compact in F, for
each n €N we can find Ln € ¥(F) such that

1
ly - Lnyll < = for all y € K.

Put Sn:= LnT for each n € N. Clearly Sn e ¥(E,F) and for all
1

X € (E)1 we have IITx - Snxll = ITx - Ln(Tx)ll o

Consequently, IT - S_il ¢ 1 hich implies that

=}

lim Sn =T, i.e. T € ¥(E,F).
n-wo

Hence, ¢(E,F) < #(E,F).

The converse surely holds, since <¢(E,F) is closed (cf [6], Theorem 8.1-5).
a
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Corollary 2.34

If E bhas the approximation property, then ¥(E) = ¢(E).

Remark 2.35

It can be shown that conversely if ¢(E) = ¢(E), then E has the appro-
ximation property.

Proposition 2.36

Every Hilbert space possesses the approximation property.

Proof
let H# {0} be a Hilbert space and choose an ortonormal basis
{ea:a € A}). Put F:= {® c Al B is finite} and for each % € F, define

S x:= }u (x,e e .
% - a’ Ta

Clearly SfB € ¥(H), and by Parseval’s equality we obtain

ns_xnz = (x,e ) |% = uxn?
= 3 1

from which it follows that llSwll = 1.

Now, consider any compact K <c H and let e > 0 be given. We can find a

finite set ({=z zm} such that

1,-'-’
m 3
K < iI;Jl(zi + T(H)I]'

For each j=1,...,m there exists *:BJ. € F with

€
lz. - S_z.ll € for all 3 > %..
J s =2 - J

m
Put 3, = U 3., and choose L:=S_ .
. Bo
j=1
Then for all x € K, we can find 2z, such that 1Hx - zJ.ll < 2.

and therefore

ix - Lxll < lix - z.0W + Nz, - Lz.0 + WLz, - Lxi
- J J J J

[ Fa

Z’ + % + uLui.

e since %, € F. o

Definition 2.37

A Banach space E is said to have the metric approximation property
(m.a.p.) if it satisfies condition (d) of Proposition 2.30 and if in
addition, L € ¥(E) can always be found with LI < 1.
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Lemma 2.38 ([9], p 29)

Let E be an n-dimensional Banach space. Then there exist xl,...,xh € E

and Biyeeey8 € E* with la.l =1, Wx.,H =1 such that <a,,x.> = 8. ..
n i J 179 ij

Proof
Let (z),...,2) be a fixed basis of E and Ki= (E*)l. Define

n2
Then f = govoT where T:K® — C t(byyeeeyb ) v (<by,z>)

. nz .
¥v:C — C: (alJ) — det(aij)

g:€C — R:Z }— |z|.
Clearly g 1is continuous. Since T is linear and K finite dimen-
sional, T is also bounded. By

- _1ySign(m)
det(aij) = zn (-1)

aln(l)"'ahn(n) where the sum is taken over all

n! permutations of 1,...,n, it follows directly that ¥ is continuous,
since it is the decomposition of multiplication and summation.
Consequently f is continuous and since K 1is compact, there exists

(al,...,an) € K® for which f attains its maximum, i.e.

f(ay,...,8 ) 2 f(b,...,b ) for all (by,...,b ) e K.

1,..
Since {zl,...,zn} is linearly independent it follows by Hahn Banach (cf

[6], Lemma 4.6-7) that we can find (bj,...,b!) e K® such that
0 < £(bi,...,bt) ¢ f(ay,...,a ).

By Cramer’s rule there exists a unique (xl,...,xn) e E® such that

n
zi—l <ai,zj>xi:= Zj y J=1,...,n.

By the uniqueness, we notice that

<ak,xi> = Gik'
It follows from
n

Z:l g,z ><by,x;> = by,z
that ]det(<ai,zj>)||det(<bk,xi>)| = [det((bk,zj>)|
i.e. f(al,...,an)[det((bk,xi))| = f(bl""’bn) < f(al,...,an)
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This implies that
|det(<by,x;>)| ¢ 1 for all (bj,...,b ) € K"

For 1 ¢ k ¢ n fixed and bi=ai if i # k we conclude that
|<bk,xi>| <1 for all hk € K

since (a.k,xi> = 5ik‘

Consequently llxkll <1, but from 1 = <ak,xk> < Hay i, It < 1 we obtain

"xk" = ua.kll =1 foreach k=1,...,n. o

Lemma 2.39 ([9], p 131)
If E bhas the m.a.p. and F < E 1is any finite dimensional subspace, then

for each e > 0 there exists an operator A € ¥(E) such that 1Al ¢ 1 + e
and Ax = x for all x € F.

Proof
let dim(F) =n and K = (F)l.

Choose & € (0,1) such that Tr-l-_&—_—gg €., Since K is compact we can find

Ue#(E) with nUn ¢ 1 such that ix - Uxt ¢ 8 for all x € K.
Consequently, for all x € F

[uxn - wUxn| ¢ ux - Uxit ¢ 0I - Unixn ¢ shxil
which implies that uwUxn ) (1 - &)uxil.
Therefore, the restriction of U on F is one to one, hence U(F) = F.
This implies that dim[U(F)] = dim(F) = n. According to Lemma 2.38 there
exists XyreeesX € F and Biyeeesd € F* with llUxill =1, uakll =1

such that <ai,Ux = 8.

k) = 65yt Define V € £¢(E) by

n
V:= IE + 2(:1 a ® (xk - ka).
Then

It I 1

lek—kallgallxkll and "xk“ST—-le—s'

Consequently,
n n

i < 1+ Z{ ey i, ~ Uk b <1+ §k
=1

which implies that

ndé

6|kall51+-1—_—651+e
=1

WU < WiVl ¢ (1 + e)nun < 1 + e.

Furthermore, VU € ¥(E) since #(E) is a bi-ideal of «£(E).
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Finally we show that (VU)x = x for all x € F.
n
(VU)xi = IE(Uxi) + Z(_1<81:’UXi)(xk - ka) = Uxi + (xi—Uxi) = x, for each

i=l,...,n. Since {xl,...,xn} is a basis of F, the result follows by

the linearity of VU.

Consequently A:= VU satisfies the desired conditions. n]
Lemma 2.40
A.
If (Ai) € ¢,, there exists (ai) € c, Ssuch that (Tl') €e¢,.
i
Proof

o0
Since Z |A.1| (o for each n € N we can find in e N with
i=1

i, = 0, in > in—l such that

i
oo n o

1
Al - Al = A < —
2L=1 l 1l Z:ll 1| 2i=in+1| 1| 4"

| . . .
Put @;i= 5?1:1' for all i1 Ci¢g i, n € N.

Clearly (ai) € c, and

© Ai i1 o n in+1
DI D N Y NI W LY
=1 i =1 =1 =i +1
n
11 ) =)
< zi [A;] + 2; 2" }i A, |
i=1  * =1 i=i 41
n
i
1 %
DD at
i=1 =1 2
< oo
Hence,
Ay
(T) €ee, . 0
1

Proposition 2.41
If E  has the approximation property, then +tr:¥(E) — € is continuous

with respect to the nuclear norm v.
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m
let T = i ® 2z be any finite representation of T € ¥(E), and
oo
€ > 0 be given. Choose a nuclear representation T = Z a; ® x. such
i=1
that
<
Z a, nix. it < v(T) + e.
jzy 1 1
n
Consider any L € ¥(E), say L = E b‘J ® yJ. Then
=1

TL = } b ® Ty and since b is continuous

n

tr(TL) = 2':1 <b ,Ty > = 2 [Z <ai,yj>xi]>

J
n -]
= Zj . ) <ai’yj><bj’xi>

~ ® l’l

(b X5 ><a ,y >

Z (a , E (bJ. ’ xi>,yj‘>

Z <a.,lx.>.
i=1 i1

m
Similarly ¢tr(TL) = Z( <ck,sz>.
=1

Since (uaillllxill) € ¢,, there exists (ai) € ¢, such that

lla Hllxill © Ilainllx. 1}
[.1—] € ¢, by Lemma 2,40, say Z _  -m Let
o, . a,
i =1 i
ay %, —
Ko:= {Zl""’zm’ le , 'I'I?:'é'ﬂ'xz""} and Kn:z nKo, n €N, Since Ko

is a sequence in E converging to zero, Ko is compact, hence Kn is

compact, n € N. Since E has the approximation property, for each n elN
we can find Ln € ¥(E) such that

Ix - Lxil <1 for all x € K .
n n

In particular,
na, na.

"’I'Ix_i%xi - L [m ]“ <1 and llnzk - L (nzk)ll <1

for all i,n €N, k=1,...,m.

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2022



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

<

- 24 -
Therefore,
o0 0 [ ]
|Z (a.,x.)-tr(TL)|=|Z B, ,x;> - Z <a;,L x> |
. 1" 1 n . 11 . i’ 'n"i
=1 =1 =1
[+ 2]
= | <a.,x. - L x.>|
i=1 1" 1 ni
o Xl na, na,
= |Z_1 na (ai’llx.il *i T Ln[llxill xi])l

I~

21:1 nclx ""ux TR S [le |11 xi]"

© IIX. a1l

zi i i
i=1 ai

M

[ Pa
Si= S

and similarly
m

5 apmp M| = 1Y om0 - ) <eolm)]

|
| zizl H'<ck’nzk - Ln(nzk)>|
m

1
= 2:1 lic, i
-]

m
Consequently, 1im tr(TLn) = }i_ <ai,xi> and lim tr(TLn) = };_ <Ck’zk>
N0 =1 n—0o =1

from which it follows that

(-]

tr(T) = Zi <ai,xi>.
=1
Thus,
o0 [ -]
jtr(T) | = | Z_1<ai,xi>| < Z:luai""xi" < u(T) + e,
Since € > 0 is arbitrary it follows that
|tr(T) | < v(T). o

Corolliary 2.42
If E has the approximation property and
0 0

T = a. ® x., lla.lix.ll < o is any nuclear operator on E, then
i=1 i i =1 i i v ¢

o

Zi (ai,xi> is independent of the specific representation of T.
(=1
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Proof
Since tr:¥(E) — € 1is continuous with respect to the v-norm, it can
uniquely be extended to #(E).

o0

let T = Z a; ® X be any nuclear representation. Then
i=1

n n
tr(lim a, ®x,) = lim tr(Z a, ®x,)
n-¥o i=1 n-»o i=1

tr(T)

o

Z a, ,Xx.>. a]
=y 101

Definition 2.43

If E  has the approximation property, we call the unique extension of
trace to W~(E) also the trace.

Finally we want to prove that the spectrum of a nuclear operator U is
countable (perhaps finite), and can accumulate only in the origin. We
first show that the set of eigenvalues of U equals the spectrum of U.

lemma 2.44
Let U e ¥#¥(E,F). If F is a Banach space, then U € ¢(E,F).

Proof
The result follows directly by the fact that V(E,F)i ¢(E,F),

¥(E,F) E?(E,F) and ¢(E,F) is closed in $(E,F) (cf [6], Theorem

8-1—5)0 8]

Lemma 2.45 ([7], p 86)
let X be a normed space. If Z <X is a finite dimensional closed

subspace of X, then there exists a closed subspace Y of X such that
X=Y+Z and YNZ-= {0},

Proof
Let {zl,...,zn} be a basis for Z with llzillzl, i=1l,...,n.
By Lemma 2.38 there exists 81ye00r8 € X}k such that
{a.,z.> = &5, ..
1 J 1)
n n
let Y:= nNn N(a.) = n a, (0).
. i . i
i=1 i=1

Then Y 1is closed, since each a; is continuous and Y N Z = {0} since

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2022



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

- 26 -

5%
<

{z,,+..,2_ } 1is a basis for Z and <a,,z.> = &6... Also, if x € X, then
1 n 1’73 ij

n
Z:i= zi <ai,x>zi €eZ and (x-2) €Y. Thus X =Y + Z. a]
i=1

Lemma 2.46 ([7], p 146)
Let X be a normed space, T € £(X) and Y,Z S.X closed subsapces of X

such that 2 g Y and (T - I)(Y) €« Z. Then there exists y € Y such that

iyh =1 and IlTy—TzIIg%— Yz el

Proof
By the Riesz lemma (cf [6], Theorem 2.5-4) we can find y € Y such that
iyt =1 and
inf
z€Z
Let B:=T - I.
Then for any z € Z, (z + Bz - By) = (Tz - By) € Z since B(Y) S.Z‘

Ny -z » é..

Hence,

inf
ITy - Tz = ly - (z + Bz - By)u > Sez

y - zit > é.. o

Lemma 2.47 ([7], p 147)

If T € ¢(X), then

(a) N(T - 1I) = {x €e X;(T - I)x = 0} is finite dimensional and (T - I)(X)
is closed in X.

(b) (T - I) 1is one to one iff it is onto.

Proof

let B:=T - 1I.

(a) Let, if possible, {xi:i=1,2,...} be an infinite linearly independent
subset of N(B) and let Yn:= span{xl,...,xn} S_N(B) for each n €N.
Then, being finite dimensional, each Yh is a closed subspace of X.

Clearly, for each n €N

Yn § Yn+1 and B(Yn-i-l) = {0} < Yn

By Lemma 2.46 there exists a sequence (yh) in X such that
1
Hynn =1 and llTyn - Tymu > A for n,m=1,2,..., n > m.

This contradicts the compactness of T.
Hence, N(B) is a finite dimensional closed subset of X. By Lemma 2.45,
there exists a closed subspace Y ¢ X such that

X =Y + N(B) and Y n N(B) = {0}.

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2022



Let

&
o

ﬂ UNIVERSITEIT VAN PRETORIA

J UNIVERSITY OF PRETORIA

- ¥

UNIBESITHI YA PRETORIA

- 27 -

A:= B ¥ Then A(Y) = B(X) and moreover, A is one to one, since

N(B) N Y = {0}.
We prove that A(Y) is closed in X.

Let

First

(yn) be a sequence in Y such that Ayn — x € X.

we show that (yn) is bounded. For, if it is not, we can assume, by

passing to a subsequence of (yn) , that Ilynll — o,

Let

Y.
Z = 0 . Then #iz 1 =1 foreach ne€N and Az — 0. Since T
n llynll n n

is compact and (zn) is a bounded sequence in Y, there exists a subse-

quence (zn ) such that Tzn — z € X (cf {6], Theorem 8.1-3) Now,

Zz =
n.
J

J J
Tz.'n - Azn — Z2~-0=2z and since Y 1is closed, =z € Y. Hence,
J J

Azn — Az which implies that Az = 0, and A being one to one we see

J
that 2z = 0. But this is impossible since Ilzn t=1 for j=1,2,... and
J
Z —_ Z.
n.
J
Thus, for the bounded sequence (yn) there exists a subsequence (yn ) in

J

Y such that Tyn —+y €X since T is compact. As before,

J
v, =Ty, - A&y, — (y - x) € Y since Y is closed.

n, n
J J J

Hence, Ayn — A(y - x) since A 1is continuous and consequently

J
x = A(y - x) € A(Y).

We have thus proved that A(Y) = B(X) is closed in X.

(b)

and

Note

Consider the following chains of subspaces of X:

N(B) ¢ NE%) < ... < NE") e NE™) < L.

“.Eﬁﬂm)ifm)iu.gﬁm)gmm.

that N(B™) = (Bn)—l(O) is closed since B" is continuous for each

n €e N. We show that Bn(X) is closed as well, for each n eN.
For any even n €N, I—Bn=I—(T--I)n and
foranyodd neN, I+ B" =1+ (T - I)n are polynomials in T with no

term

of degree zero.
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Hence, for each n €N, either (I - Bn) or (I + Bn) is compact and by
using (a) above it follows that Bn(X) is closed for all n €.
Furthermore, BIN(E"*1)] c N(B®) and BIE*(X)] = B*}(X) for all n e,

Now, since T is compact, Lemma 2.46 shows that not all the inclusions in

either of the two chains above can be proper; otherwise a sequence (yn)

in X would exist such that llynll =1 and IITyn - Tymll 2 %— for all

n,m=2,3,..., n>m. Thus, we can find ng,,m, € N such that
N, ne+l my+1 111
N(B ) = N(B ) and B (X) =B (X).
my+1 me

Now, let B be one to one. We have B (X) 3B (X).

mo mo-].
We show that B (X) o B (X).

me-1 mq me+1
let y € B (X). Then By e B (X) =B (X) which implies
Mo
By = B(B x) for some x € X. Since B is one to one,
My Mme
y=B xe€B (X). Proceeding in this manner we see that
mo+1 mo mo_l

B (X)?_B (X)iB (X)i“'iB(X)ix’

i.e. B 1is onto.
not+l N,
Conversely, let B be onto. We have N(B ) SN(B ).
no no'—l
We show that N(B ) iN(B ).
Ng
let y € N(B ) < X. There exists x €X with y

7

Then

ne+l Ne ne-1 Ny ne-1
x € N(B ) cN(B ). Hence B y=B x=0, i.e. y € N(B ).

Again proceeding in this manner we see that
n0+1 no no—l
N(B )i N(B )_c_N(B )f. "'EN(B)E {0},

i.e. B is one to one since ({0} < N(B). D

Proposition 2.48

If X is a Banach space and T € ¥(X), then o(T)\{0} = e(T)\{0}.

Proof
Clearly T € ¢(X). Let 0 # A € o(T). Since (T - AI) = ,\(%- I) is not

invertible, it is either not one to one or not onto. Since ;e €(X), it

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2022



&
o

ﬂ UNIVERSITEIT VAN PRETORIA

J UNIVERSITY OF PRETORIA

- ¥

UNIBESITHI YA PRETORIA

- 29 -

follows from Lemma 2.47(b) that (T - AI) is not onto iff it is not one to
one. Hence, A € e(T), i.e. o(T)\ {0} S_e(T)\{O}.

Consequently, o(T)\{0} = e(T)\{0}. D

Proposition 2.49
If U e #(E), then the spectrum of U is either finite or countable, with

zero the only point of accumulation.

Proof

let U be a nuclear operator. If U is of finite rank, it follows by
Proposition 2.16 that o(u) is finite. If U is not of finite rank, then
each non-zero spectral value of U is an eigenvalue. First we show that

for every ¢ > 0, at most a finite number of eigenvalues lie outside e(c)l.

Suppose the contrary holds for some &6 > 0, i.e. there exists at least a
countable number of different eigenvalues {Al,Az,...} such that |An[ > 6

for all n €IN. Also for each n €iN, there exists an eigenvector x #0

with an = An*n and the set {xi:i € N} is linearly independent (cf [6],

Theorem 7.4-3). For each n € N, let Mn = span{xl,...,xn}.
Then every x € Mn has a unique representation

X = ayX, + ...+ ax .
Since ij = ijj it follows that

(U—AnI)x = al(:\l—;\n)xl + ... + an_l(A )x

n-1"*n"*n-1
which implies that

(U-Aa_ I)x e M for all x e M.

n n-1 n
Since each Mn is closed (cf [6], Theorem 2.4-3) it follows by Lemma 2.46
. . _ 1
that there exists a sequence (yn) with Yy € Mn’ uyhu =1, Hyh-xu > >
for all x € Mn—l' We show that uuyh - Uymu > %-6 for all n > m which
implies that (Uyh) has no convergent subsequence. Since (yh) is

bounded, this would contradict the compactness of U (cf [6], Theorem
8.1-3) and therefore the fact that U is nuclear.
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~

let m < n. Then ¥, € Mm < Mn—l which implies that Uym € Mn—l since
UxJ. = ijj. Therefore, x € Mn——l since (Anyn-Uyn) = —(U—)\nI)yn € Mn-l
from which it follows that x: = z—eM ..

Hence

n

~

_ 1
, WUy - Uy W = WAy -xH

|A, [y %12 %—'Anl 2 % 5.

Consequently, for each n €N there exists at most a finite number A,

1

for which "\il >n. Now, for each n elN, let

e . e . 1
An._ {Ai.pil > n} and Bn" {Ai.lAil > rT}'

Clearly both sets are countable and consequently

€0 00
(U A)J)u(u B)
n=1 ™ n=1 °
is countable which implies that U has at most a countable number of
eigenvalues.
Now, let e > 0 be given and consider 1= {)\n € o(T): |An| > e}, If we

rearrange the set of eigenvalues in decreasing order, considering the

absolute value of each eigenvalue, and assume A to contain m, elements,

then

Since

IAnI <e forall n > m, + 1.

e > 0 is arbitrary it follows that An — 0. a
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3. ONE-DIMENSIONAL ELEMENTS

This chapter is devoted to a study of one-dimensional elements in a Banach
algebra. The trace of such an element is also introduced. In Proposition
3.26 it is shown that the spectrum of a one-dimensional element u con-
sists only of zero and the trace of u. We also prove in Proposition 3.18
that there exists a unique correspondence between the one-dimensional

elements and the minimal left ideals.

As was mentioned, K Vala [14] called an element 0 # u € M one-dimen-
sional if the wedge operator uAu:iM -5 Mix 4o uxu is of rank one. This
definition is motivated by Theorem 2.9. We now turn to the definition

given by J. Puhl [10] which generalises Corollary 2.10.

Definition 3.1
Let Mm be a Banach algebra. An element O # u € M is one-dimensional if

there exists a non-zero functional ru:m — € such that wxu = <ru,x>u

for all x € M. We write u € ¥,.

Most of the results proved in the rest of the paper, require that the

Banach algebra M possesses a certain property, introduced in the next
definition.

Definition 3.2

An algebra M is semi-prime if {0} is the only bi-ideal J of M with
2
J° = {0}.

Before proving a condition which is equivalent for M to be semi-prime,

the following lemmas:

Lemma 3.3

If uenMm is fixed such that wuxu = 0 for all x € M, then
n
= . .utub.+c.ud.) A, .b..c..d. .
Ju { §;=1(Alu+alu ub1+c1udl) A EC, al,bl,cl,dl € M, n € N}

is the bi~ideal generated by u.
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Proof
First we show that Ju is a subalgebra. Let

n m
X = (A,uta.ut+ub.+c.,ud,) and y = 2 (a .ute .utuf .+m.un.)
=y L1 i 7iTi 521 J g J oJ

be any two elements of J . Then by assumption

2
Z 1Aau +Z§Aueu+Z§Auf +Z§'\iumjun.j
ZEaau2+Z§ aueu+Z§au’f +Z§aumun
+ Z E.ajubiu + Z E'ubieju + Z z.ubiUfj + ZE.ubimJ.unJ.
J J J J
+ Z chxjciudiu + Z E‘jciudieju + Z chiucliuf.“j + Z zjciudim‘jun‘j
= Z E_(Aicxju)u + Z E'U\iu)u(f‘j) + Z 2'(ajaiu)u + Z E.(aiu)u(fj)
J J J J
= Z Zj [(Aiaju)u + (/\iu)u(fj) + (ajaiu)u + (aiu)u(fj)]

from which it is clear that xy € Ju. Furthermore, if ¥ € € then clearly
(x+vy) € Ju'

Finally, if me M and x € Ju as defined above, then
n

mx = [(A.m)u + (ma.)u + mub. + (mc.)ud.] €J and similarly xm € J .
=1 i i i i i u u

8]

Lemma 3.4
If the conditions of Lemma 3.3 are satisfied, then J = {0}.

Proof
n m
If x= (A.uta.utub.+c.ud.), ¥y = } (a.ute utuf +4m.un.) and
= 11 i 7iTi ey g Pttt
P . .
z = Z:l ('vku+rku+utk+vkuwk) €J, itecan easily be shown that xyz = 0,

by using the fact that uxu = 0 for x € M. D
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Lemma 3.5

cn

n
{ Z-l jiki:ji,ki € Ju’ n € N} Iis the ideal &(lel) generated by J'.

Proof
It directly follows that }(Jﬁ) is a subalgebra as well as a linear

subspace of M, since Ju is.

n
Furthermore, if x = EL jiki € }(Jﬁ) and m € M, then
(=1
" 2
mx = Z* m,)iki e #( u) since mj; € Ju. o

Lemma 3.6
Let M be a semi-prime Banach algebra.
If Jﬁ = {0} for any n > 2, then Ju = {0}.

Proof

Without loss of generality we prove it for n = 3, since the result will

then follow by using induction.
n m

. _ . _ 2
Consider any x = Z:l Jiki' y = 2:1 aebe € }(Ju).

Then since J = {0} it follows that

Z Z 1€e—xyef(Jﬁ)

. Consequently, Jﬁ < J(Jﬁ) = {0}.

1]

0

vhich implies #(J%)

Since M is semi-prime, it necessarily follows that Ju = {0}. o

Proposition 3.7 ([10], p 657)
M is semi-prime if and only if the following holds:

If uxu =0 for all x e M, then u= 0.

Proof
let uwu =0 for all x e m implies that u = 0. Suppose there exists a
non-zero bi-ideal J with J2 = {0). Then we can find O #u € J and by

assumption there exists x, e M with ux,u # 0, which contradicts the

fact that J2 = {0}, since MmJ <« J. Therefore M is semi-prime.
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Conversely, assume M to be semi-prime and uxu = 0 for all x e€ M. Let
n
J = { E; (A,uta.ut+ub.+c.ud.):r, e € and a,,b.,c.,d. € m}.
u oy 10i i7iTi v It T s §

The result then follows by Lemma 3.3, Lemma 3.4 and Lemma 3.6. 8]

Lemma 3.8

Let Mm be semi-prime.

(a) If u,v € ¥, with uv # 0, then uv € ¥,.

(b) If uey, and aeC with au# 0, then ou € ¥,.

(c) If uey, and x,y €M with wx # 0, yu# 0, then ux,yu € ¥,.

Proof
(a) Let u,v e ¥,. Then for all x € M we have uvxuv = <fu,vx>uv.
Define ruv on M by <ruv,x>:= <ru,vx>.
Clearly ruv is linear and for all x € M
[<r ,x>| < nr_unvxn ¢ Wr_nnviixi which implies that wr_w ¢ nr_innvi,

uv u u uv u
We now show that r __ # 0.

uv

Since uv # 0 it follows by Proposition 3.7 that there exists x, e M with

0 # uvxguv = <ru,vxo>u =: <ruv,xo>uv. Hence uv € ¥,.

(b) Let uey, and « € € such that ou # 0. Then

auxou = <ru,ax>au for all x € a.
let r be defined by <r ,x>:= (I ,ox>.
au au u
Then we can find y, €e M with
0 # auy,cu = <ru,ay°>au = <rau,y°>au which implies <rau’y°> # 0.

Clearly rau is also linear and bounded.

(c) Let ue¥, and x,y e M such that ux # 0 and yu # 0. The result
then follows directly by defining the functionals rux and ryu on M by

<rux,m>:=<ru,xm>, <ryu,m>:= <ru,my>

respectively. o
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The following lemma is needed to define the concept of the trace of a

one-dimensional element in a semi-prime Banach algebra.

Lemma 3.9

Suppose M to be semi-prime and let u € ¥,. Then there exists a unique

a € € such that u?® = a u.
u u

Proof

If u? = 0, everything is clear (choose «, = 0).

If u? # 0, then by Lemma 3.8 u®xu? = <I‘u2,x>u2 for all x e M.

By Proposition 3.7 we can choose x, € M such that u?x,u? # 0. Then
<ru2,x°> # 0. Consequently,

0 # <1'u2,x,,>u2 = u2xq.u® = <ru,uxou>u which implies that

e - <Fu,uxou> . <ru,ux°u> y
- Zruz,xos - <ru,ux°5
<ru,uxou>

Therefore we choose o = . It is clear that a is unique. 0O
u Zru,ux°5 u

Remark 3.10

Let M have an identity and be semi-prime. If u € ¥, then a, = <ru,1>.

Definition 3.11
Let M be a semi-prime Banach algebra.

If uey,, the trace of u is defined by u? = tr(u)u.

Proposition 3.12 ([10], p 657)
If M is semi-prime and commutative, then O # u € ¥, if and only if

there exists a non-zero functional ou on M such that

ux = <ou,x>u for all x € M.

Proof

By definition there exists a non-zero functional ru on M with

<ru,x>u = uxu = u®x = tr(u)ux for all x € M.

Since M 1is semi-prime there exists x, € # such that

0 # uxou = tr(u)ux, which implies that tr(u) # 0. The result now follows

. .. o 1 .
directly by defining <ou,x>.- EF-(-ﬁ-r<1'u,x>, X € M, o
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Definition 3,13
An element u € M is minimal idempotent if u # 0 is idempotent such that

umu Iis a division algebra.

Theorem 3.14 ([3], p 157)

If ueM is minimal idempotent then u € ¥,.

Proof
Clearly u# 0 and since utu 1is a division Banach Algebra, by Gelfand
Mazur there exists a unique surjective isometric algebra isomorphism

PiuMu =+ Ciuxu = A with A the only element in the spectrum of wuxu.
uxu uxu

Clearly u is the identity of wmu and consequently (uxu—Auxuu) is not

invertible in umu from which it follows that wm = A u. If we define

r on M by <Lr ,x>i= A it is clear that I # 0 1is linear and
u u uxu u

bounded, since o(uxu) is non-empty and bounded. O

Definition 3.15
A minimal left ideal of M is a left ideal J # {0} such that (0} and

J are the only left ideals contained in J.

We are now going to prove that the one-dimensional elements and the minimal

left ideals are in one to one correspondence.

Lemma 3.16
Let A be an algebra with identity e. If every element x #0 of A

has a left inverse, i.e. there exists y € A with yx = e, then A is a

division algebra.

Proof
Consider any O # x € A. Then we can find left inverses 0 # y,z € A for
x and y respectively with yx = e, 2y = e. Consequently

ZyX = ex = X which implies

ze = x, 1l.e. Z = X.

From this it follows that xy = zy = e which shows that y is also a

right inverse of x. o
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Lemma 3.17 ([111, p 45)
If J is a minimal left ideal of M with Jz # {0}, then J contains a
minimal idempotent u such that J = mu.

Proof
We first consider a unital algebra.

By assumption, there exists 0 #x, € J with Jx, # {0} a left ideal
contained in J. Since J is minimal it follows that Jx, = J.
Therefore we can find an element 0 2 u e€J with uxy, = x, .

Furthermore, J(u-1l) is also a left ideal contained in J and consequent-
ly either J(u-1) = {0} or J(u-1) =J. If J(u-1) =J, there exists
a € J with au-a = u which gives the contradiction

Xo = UXy = auXe—aX, = 0. Consequently, J(u-1) = {0} which shows that wu

is idempotent.

We still have to prove that u is minimal.

Clearly umu is a subalgebra of M. Let O # umu € umu be any non-zero
element, with m € M, Then

0 # umi = u{unu) € Jumu < Jm S.J

from which it follows that Jumu = J. Choose b € J such that bumu = u,.
Then
u = u? = ubumu = (ubu)(umu) which implies that

ubu 1is a left inverse of umu since u is the identity of
umu. It follows by Lemma 3.16 that umu is a division algebra.

Clearly Mmu = J, since if mu = {0} we get the contradiction u = u? = 0.

If Mm does not have an identity we consider ml = {(x,A):x € M, A € C}

with identity (0,1). Let J*' = {(x,0):x € J} denote the ideal imbedded
in ml . IfJ < is a minimal left ideal in M with Jz # {0}, then

J' is a minimal left ideal in ml with (J')2 # {0}. Thus by the first

part of the proof there exists a minimal idempotent (u,0) € J* such that
J' = ml(u,O). It remains to show that J = Mu with u minimal

idempotent. Since (u,0)2 = (u,0) it follows that u® = u.
Furthermore we show that umu is a division algebra, i.e. ufu = Cu.
Since (u,O)ml(u,O) = €(u,0) it follows that if wuxu € uttu then

(wxu,0) = (u,0)(x,0)(u,0) € (u,0)M;(u,0) = €(u,0).
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Hence uxu € €u and therefore umu < Cu.

Clearly the converse also holds, since if Au € €Cu, then
AU = u(Au)u € utu.

Finally, since u € J, mu S.J (J is a left ideal in m).
Conversely, if x € J, then (x,0) € J* which implies that
(x,0) = (y,A)(u,0) since J' = ml(u,O).

Thus (x,0) = (yu + Au,0), i.e. x = yu + Au = (y+Au)u € mi.
Hence J = Mu. 8]

Propostion 3.18 ([10], p 658)
Let M be semi-prime.

(a) If J is a minimal left ideal, then J contains a minimal idempotent
u such that J = mu.

(b) If ue¥,, then J:= mu is a minimal left ideal.

Proof
(a) It follows directly from Lemma 3.17, since J # {0} and A& is
semi-prime.

(b) Clearly J is a left ideal since MJ E.J'
Now let {0} #1I S.J be a non-zero ideal contained in J. Then we can
find 0#z el < M which implies that there exists =z, € M such that
0 # 2z =z,
Since M is semi-prime we can choose Yy, € M such that
0 2 ZouyeZou = <ru,yozo>z°u from which it follows that <ru,y°z°> # 0.

Now consider any x € # with xu € J. Then

<ru,y°z°>xu = x<ru,yozo>u = XUyeZeu

XUy,

from which it follows that xuz om0 ——2z € I
<ru,y°z°>

since I 1is a left ideal. This yields I = J. 8]

Remark 3.19

The above proposition can also be proved for minimal right ideals if M is

semi-prime, I.e.

(a) If J is a minimal right ideal, then J contains a minimal
idempotent wu such that J = um.

(b) If ueg9%,, then um is a minimal right ideal.
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Example 3.20 ([9], p 658)
Let K be a disconnected completely regular Hausdorff space and consider
the Banach algebra of all complex valued bounded continuous function on K,

denoted by Cb(K) with the surpremum nora. Then the one-dimensional

elements are of the form

£, (t) = {

where ap€ C is fixed and t, € K is an isolated point of K.

ap for t =1,

0 otherwise

Proof
let f e Cb(K) be one-dimensional. Then by Lemma 3.9 and Remark 3.10

f2 = aff , A = <Ff,1> , i.e.
[f(t)l2® = aff(t) for each t € K
which implies that either f(t) = ae 20 or f(t) =0 for each t € K.

We show that there exists exactly one t, € K for which f(t,) = ac and

f(t) =0, t # t,. Suppose there exist t, # t; with f(t,) = f(t,) = Qe
Since K is completely regular we can find a continuous function

g:K — [0,1] such that g(t,) =1, g(t,) = 0. Then (fgf)(t,) = a% and

(fgf)(t,) = 0. But since (f2f)(t,) = <rf,g>f(t°) = (rf,g>af we have
af = <rf,g> from which we get a contradiction

(fgf) (t,) = <Tp@>f(t,) = af # 0.

f
Hence, the one-dimensional elements of CbﬂK) are of the form defined

above. D

Next we show that the two different definitions of a one-dimensional

element, given by K Vala and J Puhl respectively, match, after giving a

lemma.

Lemma 3.21 ([10], p 659)

Let M be semi-prime

If ueM is a given non-zero element of M such that dim(umu) < o,

there exists a minimal idempotent p € mu(resp uf).
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Proof
We can find 0 # v € umu such that dim(vmv) 1is as small as possible.

First we show that for any y e M with vyv # 0, there exists =z e n
such that

vV = VZVyV.

let yem with vyv # 0. Then vyvavyv < vav, but since the dimension

of wvmv is as small as possible and vyvmvyv # {0} by Proposition 3.7 it
follows that

VyvVMvyv = vav, (3.1)
Consequently, there exists z e M with

VYVZVYV = VyV (3.2)
which implies that

(vzvyv-v)m(vzvyv-v) c vav.

Equality is impossible, since by (3.1) and (3.2) it would imply the false

assertion

{0} = vyl(vzvyv - v)M(vazvyv - Vv)]yv = vyvitvyv = vav
Consequently,

(vzvyv - v)m(vzvyv - v) = {0}

and since M is semi-prime, it follows that v = vzvyv.

By using this we show that Mv 1is a minimal left ideal and the result then
follows by Proposition 3.18.

Consider any left ideal {0} # J c v contained in #Mv. We can find
0 #y,€J such that y, = mv with m € M. .Since M is semi-prime,
there exists x, € M such that yeXo¥o # 0. This implies that
0 # vixgm)v € viv, hence we can choose 2z € M such that

V = VZVXMV.

Consequently,

MV = MVZVX MV = MVZVX Yo © My € J.

Thus, there is a minimal idempotent p € Mv < Mu.. o
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The following theorem proves that the two different definitions of a
one-dimensional element, given by Vala and Puhl respectively, match.

Theorem 3.22 ([10], p 660)
If m is semi-prime and O # u € M is given, then u € ¥, if and only if

utuix — uxu iIs of rank one.

Proof

If uey,, it follows directly that u4u is of rank one, since 0 # u
Xo

can be written as u = u ?F;Ti:?’u € umu by Proposition 3.7.

Conversely, if udu 1is of rank one, there exists a minimal idempotent
pem, say p=mu with m € M. Then
(u-up) M(u-up) < uftu

Equality is impossible since it would imply the false assertion

{0} = (u-up)M({u-up)p = utup = uMumu = utu.
The last equality follows since utumu < ufMu and umumu # {0} by the fact
that M is semi-prime.
Consequently, by the one-dimensionality of wtu it follows that

(u - up)m(u-up) = {0}.

Since M is semi-prime we have 0 # u = up. It follows by Lemma 3.8(c)
that up € #,, since p € #,. Hence u € ¥,. o

Finally we show that the spectrum of a one-dimensional element contains

only two elements.

Definition 3.23
Let x,y € M. The quasi-product of x and Yy is defined by
X0y = X +y - Xxy.
We say that x Is quasi-invertible if there exists =z € M such that

xoz = zox = 0 and 2z is then called the quasi-inverse of x.

Definition 3.24
If M has an identity, the spectrum of x € M is defined by

cm(x):z {A e C:(x-Al) is not invertible in A}

and if M does not have an identity, it is defined by

om(x):z {O}u{ar = O: §. is not quasi-invertible in A},
We define the spectral radius of x by r,(x):= sup{ |A]:A € o,(x)].
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Proposition 3.25 ([10], p 658)
Let M be semi-prime with dim(am) > 2. If u € ¥, then
°m(“) = {0,tr(u)}.

Proof
If M does not have an identity, then clearly O € om(u).

If m has an identity and we suppose that 0 € o(u), then u'-1 exists in

M. We show that umu = M which contradicts the fact that dim(umu) = 1.
Choose any x € # and consider y = u-lxu—l. Then x = uyu € umu.

Furthermore,
if 02 A ¢ om(u), then we can find a quasi-inverse y € M

tr(u) u - (tr(u) _

such that 0 = u(;-o y) = 3 X

Duy

which implies that A # tr(u).

On the other hand, if A #0 and A # tr(u), then
u u u

Y 52 OV R W 5 O R A Y

which implies that A ¢ am(u). n]

c
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4. FINITE ELEMENTS

In this chapter we define finite elements in a Banach algebra, in the sense
of J. Puhl [10], and in Theorem 4.22 it is shown how this coincides with
the definition given by Vala [14]. We also prove in Proposition 4.20 that

the spectrum of a finite element is finite.

Definition 4.1
n

An element u e M is finite if u=0 or u-= Ei u;, u; € ¥,.
21

We write u € %,

Proposition 4.2
Let M be a semi-prime Banach algebra. ¥ is a bi-ideal of M.

Proof
n m
Consider any U:Z ui,v=§ vje?,ael:andmem. Then
=1 .=1
uv = E; u. v .y Ou }; au, ,
-1 i
um = }L um and mu = mu, .
. i . i
=1 =1
If uv,=au, um=mu, =0 for all i=1,...,n and j=1,...,m there
i'J i i i

is nothing to prove, since it is clear that utv € ¥. If some i and

exist such that uivj # 0, ou, # 0, mu, # 0 and u.m # 0, then it fol-

lows by Lemma 3.8 that uv, aqu, um and mu € ¥. a)

Definition 4.3
If M has minimal left ideals, the smallest left ideal containing all of

them is called the left socle of M, denoted by Soce(m). The right socle
is similarly defined in terms of right ideals, denoted by Socr(m). If M

has both minimal left and minimal right ideals, and if the left socle co-
incides with the right socle, it is called the socle of M, denoted by
Soc(Mm).
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Before proving that the socle of M coincides with the class of finite

elements of M, we prove that the socle of a semi-prime algebra always

exists.

Lemma 4.4 ([3], p 155)
Let M be any algebra. If J is a minimal left ideal of M and x € M,

then either Jx = {0} or Jx 1Is a minimal left ideal.

Proof
Suppose that Jx # {0} and I is a left ideal with {0} # I c Jx.

Define H:= {a € J:ax € I}.

Then H # {0}, since if this were not true we would have had the contra-
diction Jx = {0}, Clearly H is a left ideal contained in J, and by
the mini-mality of J we have H = J. This implies that Jx cI which

proves that Jx is a minimal left ideal. ]

Lemma 4.5
Let {Ja} be the set of all minimal left ideals of M. Then

Soce(m) = span{z Ja} .

Proof
Clearly span{z {m} is a left ideal containing all Ja which directly
implies that Soce(m) < span {z J }. The converse is also true since

a
Soce(m) is a linear subspace. o

Lemma 4.6 ([3], p 156)

If M is any algebra possessing minimal left ideals, then Soce(m) is a

bi-ideal.

Proof

Let Jl""’Jn be minimal left ideals and consider any x € M. By Lemma

4.4 it follows for i=1,...,n that either

Jix = {0} or Jix is a minimal left ideal.

Then clearly
n

21:1 J.x < Soc,(n)
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irrespective whether Jix = {0} for all i or JJ.x # {0} for some j.
Since by Lemma 4.5 each element of Soce(m)x is of the form Z Jix, it

follows that
Soce(m)x < Soce(m). o

Proposition 4.7 ([3], p 156)

The socle of a semi-prime algebra always exists.

Proof
let M be semi-prime. Then by Proposition 3.18 and Remark 3.19
possesses both minimal right and minimal left ideals. Again by Proposition

3.18 Soc e(m) contains all minimal idempotents u_. Since u, € ¥,
uam < Socr(m) by Remark 3.19. Then uam < Soce(m) since Soce(m) is a
bi-ideal by Lemma 4.6. Consequently Socr(m) < Soc e(m) . Similarly

Soce(m) < Socr(m), which implies that Soc(M) exists. u|

Theorem 4.8 ([10], p 659)
If M is semi-prime, then ¥ = Soc(a).

Proof
n
let ue¥, say u = Z u., ug € #,. Since each Mui is a minimal left
i=1

n
ideal and Soc{(M) is a linear subspace it follows that Z mui < Soc(m).
.=1 —

u.x.
11

But since M is semi-prime, we can write u € mau, for

. = eree—— ],
i <r ,x.»> 1 1
ui 1

some x. € M with u. x.u, # 0, i=1,...,n and hence u € Soc(M).

Conversely, consider any u € Soc M. By Lemma 4.5 and Proposition 3.18
n
there exist u,,...,u € ¥, such that u € Mu. .
1 n 1 =1 L
n
Therefore, u = m.u. with m, € M.
=1 L1 i

If mJ.uJ. # 0 for some j it follows by lLemma 3.8 that u € 7. If

miu. = 0 for all i=1,...,n, then clearly u € ¥ by definition. D
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Definition 4.9
The centraliser of an element u € m is defined by

Y := {x € M:ux = xu}.
u

Remark 4.10
Clearly Yh is a closed subalgebra of M.

Before proving that the spectrum of a finite element is finite, we need a
few lemmas.

let uem be a fixed element and define an operator Du on the

centraliser of u by

D x:t=wu, x€Y.
u u

Lemma 4.11

Let M be semi-prime.

Suppose that M does not have an identity and consider no= mecC. Let

(ym)l denote the one-dimensional elements in M  and (fm ), the
1

one-dimensional elements in Ml' If ue (?m)l, then (u,0) € (gm1)1'

Proof

Consider any (x,A) € M Then

1°
(u,0)(x,A)(u,0)

{uxu + Au?,0) =_(<ru,x>u + Atr(u)u,0)

[<ru,x> + atr(u)j(u,0).

Define <r(u,o),(x,A)>:= <ru,x> + atr(u).

Clearly r(u o) is linear and bounded since
b
|<r(u,o),(x,a)>| < nrmnxn + [tr(u) | ]A]
< (urpin+ ftr(u) |) (uxn + [a))
= (nruu + |tr(u)])"(x,A)NM
which implies "r(u,o)" g ur i+ |tr(u)|.

Since M is semi-prime, there exists x, with ux,u # 0.

Consider (Xg,A,) € M Then

1°
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(r(u o)’(xotho)>(lh0) = (u,0)(XgyAo)(u,0) = (uxou + Aou2,0) # (0,0)

which implies that r #0 o

(u,0)

Corollary 4.12

If uenMn js finite in M, then (u,0) is finite in Ml'

We are going to show that if u € ¥, then Du is a finite rank operator

on Yﬁ if M has an identity and D ) is a finite rank operator on

(u,0

Y if M does not have an identity.
(u,0)

Definition 4.13

ITwo elements wu,v € ¥, are called equivalent (u ~ v) iIf there exists

Xo € M such that wuxev # 0.

Remark 4.14 ([10], p 661)

The relation ~ is an equivalence relation on %, if M Is semi-prime.

Proof

Clearly ~ 1is reflexive since M is semi-prime. By using the definition
of ~ and applying Proposition 3.7 it follows directly that =~ is
symmetric.

We now show transitivity.

let u,v,we#, with u~v and v ~w. We can find x,,x, € such
that uxev # 0 and wvx,w # O.
Consequently, there exists y, € # with
0 # (UXoV)Yo(uxev) = (rv,youxo>ux°v
which implies <rv,y°ux°> # 0. Therefore,
0= <rv,y°ux°>vx1w S V¥youXevX,w from which

it follows that u(x,vx,;)w #0, i.e. u-~w o

Lemma 4.15 ([10], p 661)

let u,v €¥, with u~v and M be semi-prime. Then the operator

D M — MX — uwxv  is of rank one, D it < wulitvit  and
u,v u,v. -

tr(Du,v) = tr(u)tr(v).
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Proof
Choose x, € M with w,v # 0. Then there exists y, € M such that

0 # (WXoV)yoluxev) = <rstouxo>uxoV

which implies <rv,y°ux°> # 0. Then for all x €

uxv(rv,youx°> UXVY o UX oV = <ru,xvy°>ux°v

and consequently
AT ,XVY¢o?
u
D x= UX V.
u,Vv er,youxos

Hence, D is of rank one.
u,v

Clearly IIDu v” < fluilivii and by Proposition 2.20 it follows that

- - 2 _ 2, 2 -
tr(Du’v)uxov = tr(Du,v)Du,vx° = (Du,v) Xo = uxyv? = tr(u)tr(v)ux,v

which implies tr(Du v) = tr(u)tr(v) since uxgv # 0. 1]
b

Corollary 4.16
Let M be semi-prime and u € ¥.

If m has an identity then Du is a finite rank operator on Yu’ and if

A does not have an identity, then D(u o) is of finite rank on
]
Y(u,0) £
Proof
n
Let u = }i U, u € ¥, be any representation. If M has an identity,
(=1

then clearly Yﬁ contains the identity. It follows directly by Lemma 4.15

that Du is of finite rank on Yu' The case if M does not have identity

is similar. 8]

Lemma 4.17 ([11], p 32)
let a e m be fixed and define Ta € £(m) by

Txizax , xXx € M,
a
If m bhas an identity, themn a Is invertible in M if and only if T

is invertible in ¢(M) and then om(a) =3

z(m)(Ta)'
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Proof

If a is invertible in #, then T _IEx —valx  exists in 2(m).
a

Clearly T —lTax = TaT X=X for all x e M from which it follows that
a a

Ta is invertible with inverse T

On the other hand, if Ta is
a

1.
invertible in £(M) we can find T e £(M) with

TT=TT =1.

a a
let x = Tl. Then

ax = T Tl =1 which implies TT =T _ =T, = I.
a a'x
Consequently, T. =T and T T = I.
X X a

Hence, xa = TxTal = 1 which shows that a is invertible.

Furthermore, A ¢ o(a) iff (a - Al) is invertible in #M, iff

T(a—Al) = (Ta - AI) is invertible in «(m), iff A ¢ ax(m)(Ta)'

Corollary 4.18 ([11], p 32)
Let a e M be fixed and M has identity. Then

ox(Ya)(Ta) = om(a).

Proof
Obviously Ya contains the identity.

We first show that oYé(a) = om(a). Clearly om(a) S'OYA(

On the other hand, if A ¢ om(a) then (Al - a) is invertible in M and

a).

since (Al - a) € Yﬁ we have

(A -a)la = (a1 - a) la(a1 - a)(a1 - a) ! = a(al - &)}

which implies that A ¢ Oy (a). Hence oy (a) < om(a).
a a

Hence, by Lemma 4.17 oz(Ya)(Ta) = aYa(a) = om(a). 8]

Proposition 4.19

If m bhas an identity and u € M is fixed, then

2
°2(Yu)(Du) = [°m(“)] .
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Proof
First we note that D =T , on Y .
u u u

Then by Corollary 4.18 and the spectral mapping theorem it follows directly

2
that Ox(Yu)(Du) = {om(u)] . o

Corollary 4.20

If m doesn't have an identity, and (u,0) € M, is fixed, then

1

o, (u,0)] .

o
(Y 1

))(D(u,O)) =1

(u,0

Proposition 4.21

Let A be semi-prime and u € ¥.

If M has identity, then om(u) is finite, otherwise L (u,0) 1is finite
1

in ml =me C.

Proof
Let M have identity. It follows directly by Corollary 4.16 and
Proposition 4.19 that om(u) is finite, since

cx(Yﬁ)(Du) is finite by

Proposition 2.16.
If M does not have an identity, it follows by Corollary 4.16, Corollary

4.20 and Proposition 2.16 that <:5J'l (u,0) is finite. o

1

Lemma 4.22 ([10]), p 660)

If M is semi-prime and u € M s a non-zero element such that
dim(umu) < o, there exists an idempotent p € ¥ N um such that
u = pu {(resp. u = up).

Proof

First we show that every subset of orthogonal idempotents of wum is finite
and then make use of Lemma 3.21.

let, if possible, {pi:i=1,2,...} be an infinite set of non-zero ortho-
gonal idempotents in um. Then for each p; € M we can find X, €M

with p; = ux,.
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Choose a sequence of distinct scalars '\i € € such that

]Ai] < 1 for all i eN
2 nx. 1
i
[ -
and let x: = Z '\ixi' Then x € M is well defined, since the series is
P21

absolute convergent, and
-3

o0
ux = A.ux, = A.P.
21:1 11 21:1 171

We show that '\j € om(ux), j € N. Suppose there exists an inverse gz € a

o0
with 1 = (ux—AJ.l)z = (_Z Aipi—/\jl)z. Then we have the contradiction
i=1

00
#p. = A.p.pP. — A.p. = (A.p% - A.D. = 0.
0#p; = 21:1 iPjP; ~ A3P;3)2z = (A;p5 - Apj)z
Therefore, {/\J.:,j=1,2,...} is an infinite set of om(ux) in contradiction
to the fact that Dux:Yux —_ My — (x)y(ux) is of finite rank and hence

[Gm(ux)]2 = o&!(Yux)Dux is finite .

Then by Lemma 3.21 and the Gram Schmidt orthogonalisation process there
exists a non-empty set of orthogonal minimal idempotents of wui.

Choose a maximal orthogonal set {pi:i=1,2, ...yn} of minimal idempotents.

n
Then 1Y € ¥, Nnum, i=1l,...,n. If we put p: = Z Py it is clear that
(=1

p €7 Nun is idempotent. If pu # u, then
(pu—u)M(pu-u) < umu which implies that

dim[ (pu-u)M(pu-u)] < dimfumu] < .
Again by Lemma 3.21 there is a minimal idempotent q € (pu-u)n < um.

Clearly qu = 0 for each j=1,...,n.
n

If we define w: = q - Z ap; » it is clear that w € ua.
i=1

Furthermore,
n
wq = q® - Z Q(piq) = q # 0 which implies w # O,
(=1

and w2 = w is minimal, since q and each p; are minimal idempotent.

Consequently w € #, N uM.
It can also easily be checked that pJ.w = pr. = 0 for each j=1,...,n.
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Hence {pl,...,pn,w} < ¥, Num is an orthogonal set of minimal idempotents
in contradiction with the maximality of {pl,...,pn} < ¥, NuM

Therefore, u = pu. ]

The same result as for one-dimensional elements, mentioned previous to

Theorem 3.22, is now proved for finite elements.

Theorem 4.23 ([10], p 661)

Let M be semi-prime and u € M a non-zero element. .

Then u € ¥ if and only if the wedge operator uAu!x - uxu is of a finite
rank.

Proof
n

let u-= Ei u,, u, € ¥,.
. i i
=1
Then for all x € M
n
utu(x) = uxu = Zi ui:m‘j
i,j=1
By using lLemma 4.15 it immediately follows that udau is of finite rank.

Conversely, if udu has finite rank, then there exists an idempotent

pe€e¥ such that u = pu. Since ¥ is a bi-ideal it follows that
u € 7, o
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5. THE TRACE OF FINITE ELEMENTS

In this section we introduce the notion of a trace of finite elements and

the results are analogous to that of the classical operator theory.
The following lemma gives rise to a well defined trace for finite elements.

Lemma 5.1 ([10], p 662)
n
Let M be semi-prime and Uyyeeer)u, €9, such that zi u, = 0.

n
Then }L tr(u.) = 0.
=1 i

Proof
let Al""’As be a disjoint decomposition of {1,...,n} induced by

~ on ¥,. For any fixed k € {1,...,s} we get

n
D x:= Z ugxu, = (Z “i”"} u;) =0 forall x e
i, JeA, i=1 JeA,

Then by Lemma 4.15 and Definition 2.18 it follows that

[ }L tr(u.)]2 = Ei tr(u, )tr(u,) = 0.
. i .. i J
Ay 1Ay

Consequently,
n s

Zﬂmui) ) Zm[ ZeAktr(“i’] =0 0

n
If u-= E; ui, ui € ¥, is any representation of u € ¥, the trace of u
=1

is defined by
n

tr(u):= E;—l tr(ui).
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Before proving a few properties concerning the trace on ¥, we need a few

lemmas.

Definition 5.3
Let M be a C*-algebra.

An element a € M is positive if a is selfadjoint and om(a) < [0,0).

We write a > O.
The functional f:M — € is said to be positive if <f,a> > 0 for all
a > 0.

Lemma 5.4 ([13], p 17)
Let M be a C*-algebra.
(a) If x € M is normal, then om(x) < {are C:|A| < ixi}, and

Hxlil,

r,(x)
(b) If x e M is unitary, then om(x) < {re c:|a| = 1}.

(c) If s eMm is selfadjoint, then cm(s) < R.

Proof

X
(a) Clearly x2™ = uxn2™ for all n €N, since x is normal and xx
selfadjoint. Therefore,

lim n t/.n
Ux2 i /2

rm(x) = o = Ixii (cf [4], Theorem 2.38).

{b) Observe first that if x is an element of a C*—algebra, then the

inequality ixii? = llx*xll < nx*uuxn implies that Ixi ¢ ux*n and hence
X
txii = Ix i, since x** = X. let x e m be unitary. Then
X2 = Hx*xn = 1 which implies that Hx*n = lixti = 1. By (a) we have
X -
o(x) = o(x) <« {a e C:|a]| < 1}. But since x* = x 1, we also have
o(x-l) - o(x) and it is clear that o(x 1) = {0 # A € C: ;_e o(x)}.
Consequently, o(x) < {rA ec:|a| =1},
(c) (cf [4], Theorem 4.27). u]

Lemma 5.5 ([131, p 7)
If M is an algebra with identity, then for any X,y € A

onlxy) U {0} = om(yX) u {0}.
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Proof
Suppose A € o,(xy) U {0}. Then (xy - }\1)_1 = u exists.

Since xyu = 1 + Au = WXy, we have
(yux - 1) (yx - Al)
which implies that
Mywx - 1)(yx = M) = 1, Hyx - Al)(ymx - 1) = 1.

y(l + Au)x - Ayux - yx + Al = (yx - Al)(yux - 1) = Al

Hence, (yx - Al) is invertible, i.e. A ¢ om(yx) U {0}. By symmetry

om(xy) u {0} = om(yX) u {0}. o

Lemma 5.6 ([13], p 23)
Let M be a C*-&Igebra. Then

a € M is positive iff there exists a selfadjoint s € m with a = s?.

Proof
Let a e€eM be any positive element, and consider the closed commutative

C*—algebra Ca generated by a. Let the set of multiplicative functionals

on Ca be denoted by MC . Since MC is homeomorphic to am(a), it
a a

follows that the Gelfand transform I':Ca — C[MC ], defined by
a

(rx)(f) = f(x), xeC, and feM,,
a

is a *-isometric algebra isomorphism of Ca onto C[om(a)] (cf [4],

Theorem 4.30).
1 L . -
let s:= a2, Since om(a) S_[O,w), the square root function .~ is con-

tinuous on om(a) ~ MC and consequently .& is well defined.
a
Furthermore, since the involution is continuous on M, we have

X . _ .
s = s since A=A if A € [0,»).

1 1
Therefore a = a%a® = s? with s € M selfadjoint. On the other hand, if
a = s2, s € M selfadjoint, it is clear that a is selfadjoint and

om(a) = {A%:A € om(s)} S_[O,w), since om(s) < R. 8]

Corollary 5.7

X
If m is a C -algebra and a > 0, then there exists x e Mm such that

X
a = X X.
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lemma 5.8 ([13], p 23)
let n1 bea C*—algebra. If v e M, then vv* is positive.

Proof
First we show that vv* = 82 for some selfadjoint s € m.

let P:= {x € M: x is selfadjoint and om(x) S_[O,w)}.

We prove that P n (-P) = {0}, with -P= {y e m: y = -x, x €P},
We first note that if y € -P, then by the spectral mapping theorem
o_p(¥) = o_p(-x)

-[op(x)] S.("“’O]' Therefore, if x € P n (-P) it fol-

lows that om(x) {0}. This implies that rP(x) =0, i.e. x=0.

X X X - .
Now, let v e m and consider vv*. Then vv = (vv )+ - (vv) and since
both the positive and negative parts of vv* are positive elements of A,
it follows by Lemma 5.6 that we can find selfadjoint elements s,t e a

such that vv* = g2 - t2, It can easily be checked that st = 0, since
(vv}'{)+ = §(|vv*| +w') and (vv*)— = ;(lw*l - w') where
X X X x_ 1 X 1
v iz [(vw ) (vw) 12 = [(vw)2]2,
Therefore,
(tv) (tv) ¥ = tww't = (ts)(st) - t* = —t* € -P (5.1)

and if we put tviz k, + ik, with k,,k, € m selfadjoint and making use
of (5.1) it follows that

(tv)*(tv) = (k, - ik,)(k, + ik,) + (k, + ik,)(k, - ik,) - (tv)(tv)*

= 2k, + 2k, - (tv)(tv)® e P
But since of(tv)(tv)*] = o[(tv)*(tv)] € [0,») by Lemma 5.5, it follows

that (tv)(tv)® € Pn (-P) = {0} which implies that -t* = 0. Hence t = O.

Therefore vv* = s?2, with s e m selfadjoint. It follows by Lemma 5.6

that vv* > 0. o

Theorem 5.8 ([10], p 663)
let M be a semi-prime Banach algebra. Then the trace has the following
properties:

(a) The trace is a linear functional on ¥.

(b) If ue¥ and x € M, then tr(ux)

tr(xu).

(c) If ueg¥ is nilpotent, then tr(u) 0.

(d) If m is a %-algebra and u € ¥, then tr(u*) = tr(u).
{e) If M is a C*-&lgebra, then rvv* is a positive functional on ™ M

for all v € ¥,.
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Proof

(a) This is obvious, since if v e#, and ae€cC, then av e¥, by
Lemma 3.8. Hence, tr(av)av = a?v? and atr(v)v = av? which implies that
tr(ev) = atr{v) if a# 0. If « =0, everything is trivial.

Therefore,

n m
if u:Z u.,v:} v, with u,,v. e¥, and « € C, then
. i . J 1" J
=1 =1
n m n m
tr(u + av) = Z tr(ui) + E tr(av.) = Z tr(ui) + 2 atr(v.)
i=1 J=1 J i=1 =1 J

tr(u) + atr(v)

(b) First we show for v € ¥,, x € & that tr(xv) = tr(vx).
Clearly xv,vx € ¥, by Lemma 3.8. Therefore,

<rv,x>xv = xvxv = tr{xv)xv and <rv,x>vx = vxvx = tr{vx)vx

which implies that tr{(xv) = <Fv,x> tr(vx).

Now it follows for u = Zi u;, u; €9, that
io1

n n

tr(xu) = Z tr(xu, ) Z tr(wx) = tr(ux).
i=1 1 i=1 1

(c) Let Al""’As have the same meaning as in the proof of Lemma 5.1.

For each fixed k, let

n
Dkx:= ux<§ uj), u = Ei u.,, x € M
jeAk i=1
n
Then Dkg = (Zi u. ) x( u,.) = E; u.xu, is a finite rank operator
.. i . J . it
=1 JeAk ,JeAk

by Lemma 4.15 with

tr(D, ) :Z tr(u, )tr(u,) = {Z tr(u.)]z.
k .. i J . i
nJeA-k EAk

On the other hand, since u is nilpotent it is obvious that Dk € ¥(M) is
nilpotent. Hence we also have tr(Dk) = 0 by Corollary 2.23.

Consequently,
Z tr(u;) = 0 for each fixed k, from which
| €A
k
it follows that
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tr(u) = 2:1 [}ieAkui] = 0.

(d) We first prove the result for one-dimensional elements.

(021.3—

X . X X . .
If vey¥,, then v € #,, since KT X D>V = vX'v implies that

¥ % X X
<I"v,x>v = vV XV

Let < ,,x>:= < ,x >, x € AM.
V* v

Clearly r x is linear and bounded since
v

¥ % 3 B 3
Lr $1X + ay>:= <rv,x + ay > = <I'v,x > + a(rv,y >
A

= Lr *,x> + oLkr *,y>
v v

and |<I' *,x)| < III"lellx n= ||I"vlll|xll for all X €N which implies
v

w o n < ur_i.
L S \%

v
. X . . . .
Furthermore, since v #0 and M is semi-prime, there exists x, € #
with
X X X X ¥_ X X
0 # v xov = (Vxgov) = <rv,x°>v =1 AT 41X edV
v

which implies r x * 0.

v
Consequently,
X
tr(v)v* = (tr(v)v)* = v*v}k = tr(v )v*, hence
—_— X
tr(v) = tr(v ).
n X n .
Now, if uzz u.,, u, € ¥,, thenu=z u. € ¥
. i i . i
=1 =1
and
n n

tr(u*) = Z tr(u}.k) = Z tr(u.,) = tr(u).
i=1 i =1 i

. X .
(e) Consider any v e€ ¥,. Then 0 #vw €%, and for any x e m with

X X X X
vwxx #0 we have vwx x € ¥, by Lemma 3.8.
Therefore,
X X X X X X X X X X X
tr(vwwx x)vwx x = (vwx xvv )x x = LTI *,xx>vvxx
vV
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. . . X X X X X . .
which implies tr(vv x x) = «<r $1X x>. If vwxx =0, there is nothing
v

to prove.
Now, let a € m be any positive element. Then by Corollary 5.7
x*x with x € a.
. X X * . X X
Since vwx e€¥, and xvw x =xvixv) €%, if vwx # 0 and
xvw'x' # 0 by Lemma 3.8, it follows by (b) and Proposition 3.25 that

* X X X X
r ,,a> =Ar X X = tr(vw x x) = tr(xvwx ) = tr(xv(xv)*)eom[xv(xv)*].
v v

Since (xv)(xv)* > 0 according to Lemma 5.8, it follows that
Kr *,a> € om[xv(xv)*] < [0,).

vv
X
If wv x* =0 or xvv*x* = 0, it is clear that <r *,a> = 0. Therefore,
v
r ,,a> 2 0 for all a > 0. n]
vv
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6. NUCLEAR ELEMENTS

The definition of nuclear operators on a Banach space E gave rise to that
of nuclear elements in a Banach algebra. In Theorem 6.4 we show that the
definition given by J Puhl {10] implies that of K Vala [14], but even for
C*—algebras the converse is not true. It will be shown that if the Banach
algebra fulfils certain conditions, then the trace admits an extension to
the nuclear elements. Three such conditions are needed in the proofs of
Theorems 6.6, 6.8 and 6.11. It is also shown in Proposition 6.5 that the
spectrum of a nuclear element is countable at most, which can accumulate

only in the origin.

Definition 6.1
Let M be a Banach algebra. An element u € M is called nuclear if

-]

0
u = u,, u, € ¥, for all i €N and hu,ll < «. The class of all
i=1 1 1 i=1 1

nuclear elements is denoted by X. We define
-]

v(u): = inf Ei tha, i
iz 1

where the infimum is taken over all nuclear representations.

Theorem 6.2 ([10], p 664)

N is a bi-ideal of M with ¥ < XN¥ and v 1is a normon N such that if

X,y €M u €N then
v(xuy) < nuxhu(u)iyn,

Moreover, X is complete with respect to this norm.

Proof
o0
Clearly # 1is a subalgebra of M, since for any u = Zi u,,
i=1
o0 o0
v=§ v. € ¥ we have uv:Z uv., with u,v,e¥, if wu.v,. #0
521 J i, =1 i g i'j i'j

[

(-] 0
by Lemma 3.8 and hu,v.lt ¢ ( nu.n)(E Iv.il) < ». This implies
i, =1 1) i=1 1 =1 J

that uv e ¥ if uivj #0 for some i and j. If uivj = 0 for all
i,j € N, then clearly uv € # ¢ #. It is also easy to check that ¥ is a

linear subspace.
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We show that v defines a norm on &.
[+ <]

let u = Z u, be any nuclear representation such that v(u) = 0. Then
(=1

_ . lim<"® lim T® o<
all = 1l Z u.ll € Iluill -Z Iluill

nw L4 1 nw Lo i=1
from which it follows that iull < v(u) = 0.
Hence, u = 0.

QO
Conversely, if u :Z u, = 0, then obviously wv(u) ¢ 0 which implies

i=1

v(u) = 0.
Clearly, if A €€, ue s then A e€#¥ and v(iu) = [A|u(u). Let

0 <0
uzz ui,w=§ w. € ¥. Then
i=1 =1 Y
oo oo
uv(u + w) ¢ Z lluill + 2 Iw.ll  for all such representations of u and w.
i=1 =1 Y
= <] o0
Fix the representation w :Z W Then v(utw) ¢ v(u) +§ Ile.II.
i=1 =1

Since this is true for each such representation of w, we have
v(utw) < v(u) + v(w).
Therefore v 1is a norm on &.

Now, if x,y € M, u € ¥ then clearly xuy € ¥ since ¥ is a bi-ideal and

Q0

v(xuy) < Z uxuiyu < fixnu(u)uyn.
=

Finally we prove that ¥ is complete with respect to wv. Let (ui) c ¥

be any v-Cauchy sequence in #. Since 1H-ll < u(:), it follows that
(ui) is a I-1-Cauchy sequence in 1.

Therefore, there exists u e M such that Iu - unll -2-. 0. We show that

uexy and v(u - un) %. 0. Choose an increasing sequence (nk) of

natural numbers such that

1
v(un - um) < EE?? for all n,m > n_.

Then for the subsequence (u );zl C KN we have
' 1
v(u -u_ )« for each k eNN.
My1 By gRF2

For each k € N we choose a representation
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u -u = .(k) with Il < 1 . v.(k) € ¥,.
et Dy =1 Vi + 1
Then for all p eNN
u - u =(un -1 ) + (u -u ) +...+ (u -u )
k+p  k k+p  “hip-1 Drap-1 Pkip-2 w41 Pk
o0 0 (- -]
N D N L I Q)
N 21 & 27 &

k+p—1 .
= (Z ia)).

Now let p — o and consider the norm limit u. Then for each k €N,

(J)
u-u_ = U-nlim (u —u)- Z
Tk 2-k

pw  “kip
and
1 1 1
|| < —_—t —t . <
2 =k Z } 2J+2 [ 22 23 ] - ZIE'*'I

which implies that (u-u_) e #¥. Since ¥ 1is a linear subspace and

u € ¥ for each k € N, it follows that u € # and furthermore
k

v(u - u 2 Z -—11{—_'_1- —2-—. 0.
=k 2
Hence,
u(‘)limun=ue/l. o
N0

Example 6.3 ([10], p 664)
(a) If m=¥(E), then u e ¥ if and only if u € ¥(E).
(b) If a = € then ¥ = ¢,.

Proof
(a) The result follows directly by Corollary 2.10 which states that Ui

is a one-dimensional element of «(E) if and only if Ui is an operator

of rank one on the Banach space E.

o0 o
(b) lLet x = X.y, X. € ¢ one-dimensional with Hx.ll < oo,
=1 1 i o 21 1@
By Example 3.20 it follows that each one-dimensional element xi of ¢

[

is of the form
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« if n=1

xi(n) = {

by putting K =N, and llxillooz lcxi|, i € N. Therefore,

x = (x(n)) = <Z=1 x;(n)>_

and x(n) 52} Z x.{(n) :Z, a |l ¢ e
PINCCIED NI CUED IR Y

which implies that x € ¢,.

0] if n#1i

Conversely, let x = (x(n)) € ¢, < foo.

<0

Then x=§n x(n)e with e = (0,...,0,1,0,...).
-1 n n

Clearly each x(n)en € em is one-dimensional and

*® *®

Ix(n)e It = Z-. x(n) | < oo,
Z::l ne =1 | |

Hence, x € ew is nuclear. o

Next we show that Theorem 4.23 for finite elements does not necessarily

hold for nuclear elements.

Theorem 6.4 ([10], p 664)

If u € A, then uwMlX — UXu is a nuclear operator, but even for

C*—algebras, the converse doesn't hold.

Proof

Choose a nuclear representation u = Z u;, u; € ¥, Z fhu, 1 < «, Then
1 .

for all x € n
<O o0 O

uwtu(x) = Z u.xu, = Z {a. .,X>y.. = (Z a.. ®Yy..)x with
1,521 i%7j P31 iJj ij i,5=1 ij ij

b 4 .
aij en, yij € M. By Lemma 4.15 each operator (aiJ. ® yij) is of rank

one with la, .y, .l < Hu.ily . I from which it follows that
1J 1) 1 J

O o

v(utu) < Z Hu, lia i = [Z uu.u}2 < oo,
i, =1 1 J i=1 1
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Hence, uMu 1is a nuclear operator on A.

If we consider the algebra n= ew and the sequence u:= ('1'1?) , it
immediately follows that u € €. but uee¢,, i.e. u ¢ #¥. However, it

is clear that the wedge operator on ew is nuclear, since for any

o -~

= (x(n)) e ¢ we have utu(x) = EL l—-x(n)e =§L' (—— e ®e ) (x)
et - 2 n n
=1n 1 n?
® 1
with Z‘ ll— e, e _n = Z-, — < w». Hence wtu 1is a nuclear operator
1 n? n =1 n?
whereas u 1is not a nuclear element. 8|

Proposition 6.5 ([10], p 665)
Let m be a Banach algebra.

If m has an identity, then for every u € ¥, om(u) is either finite or

countable and has no non-zero point of accumulation. If M doesn’t have

an identity and we consider ml =me C, then the same result is true for

every nuclear element in ml.

Proof

Let ¥l have an identity and consider any nuclear representation
[~ o] (=~

u = u., u., € ¥,, Z hu. n € oo,
Z:l 1 1 i=1 1

Since Yu is a closed subalgebra of A, Du is a nuclear operator on Yu,

by applying the same argument as in the proof of Theorem 6.4. By
Proposition 2.49 o.‘ﬂ(Y )(Du) is at most countable which can accumulate
u

only in the origin. The result then follows by Proposition 4.19. o

We are now going to investigate conditions under which the trace on ¥

admits an extension to the nuclear elements.

Theorem 6.6 ([10], p 665)

If m 1is a semi-prime Banach algebra, having the approximation property,

then every u € ¥ has a well defined trace.
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Proof
o0 [ -]
Let u,. =0, u, € ¥, and lu, i < «, We prove that
=1 & i o7 &
0

Z tr(ui) = 0. let Al""’As have the same meaning as in the proof of
i=1
Lemma 5.1. For each fixed k, put

Dkx:= Z uixu‘j for all x € M.
i, jeAy

By Lemma 4.15 Dk is a nuclear operator on M and since M has the
approximation property, it follows by Definition 2.43 that Dk has a well

defined trace given by

tr(D,) = Z tr(ui)tr(uj) = [Z t:r(ui)]2
1, JeA ieA

But since

Dx = Z=1 ui)X(EJ.eAk u;) = 0
it follows that tr(Dk) = 0.

Therefore, Z tr(ui) = 0 for each fixed k=1,...,s which implies that
i eA

k
© s

Zﬂ tr(ui) ) Z{:l [Zﬂktr(ui)] =0 o

Another property we are going to investigate is the following.

Property 6.7

Let Mm be a semi-prime Banach algebra such that for each u € ¥ and

e > 0, there exists x € ¥ with Uxt {1 +e and xu=u or ux = u.

Theorem 6.8 ([10], p 665)
If M posseses Property 6.7, then every u € ¥ has a well defined trace.

Proof
We first show that the trace is a continuous linear mapping on ¥. If
vegs and e > 0, it follows by Property 6.7 that there exists x € ¥

with Ix) ¢ 1 +e such that xv =.v. Choose a nuclear representation
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<

v = }i V., V. € ¥, such that
, i’7 i

L.

Eézl HviH < v(v) + e.

Then by Lemma 3.8 and Theorem 4.11(a) it follows that
n n k

lim
|tr(xv)| = |§i tr(x. v)| |§i <rx.,v>| = |§;_ <rx.’k4w 3 vj>|
=1 =1 i j=1

|Z <rx_,vJ.>| = |k_m} Z tr(x;v,) |
1

[tr(v) |

n

lim
= tr( X.V.)
ko IE‘]‘:I Z:l 1 |
< §;=1 |tr(xvj)| < zgzl uxvju
< (E Wv.iixh ¢ (v(v) + e){(l + €) — v(Vv) €
=1 Y

since ¢ > 0 is arbitrary.
Therefore, by Hahn Banach the trace allows a unique extension to the

nuclear elements.

Furthermore,
o0 oo
if u = u,, u, € ¥, with il u,ll < © is any nuclear
=1 11 i=1 i
representation, then
. n . n o
tr(u) = tr(llm u,) = lim tr(u,) = tr(u, ). a
neo £y 01 e L4 i i=1 i

Proposition 6.9 ([9], p 131)
Let E be a Banach space and M = £(E).
If E or E has the m.a.p., then M satisfies Property 6.7.

Proof
Consider any U € #(E) and € > O.
Since dim[U(E)] < »« and E has the m.a.p. we can find X € #(E) with
Xl < 1+e¢ and Xy =y for all y e€ U(E) by Lemma 2.39.
Therefore,
XUx = Ux for all x € E which implies that XU =
Similarly by assuming E* to have the m.a.p. we can show that
WX = U. o

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2022



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

- 67 -

(021.3—

Finally we are going to investigate the quasi-approximation-property of a
semi-prime Banach algebra, given below, under which the trace admits an

extension to .

Definition 6.10

A semi-prime Banach algebra M is said to have the gquasi-approximation-
property (qgq.a.p.) if for each minimal idempotent q € M, the Banach space
mq (resp. qm) has the approximation property.

Theorem 6.11 ([10], p 667)

Suppose M has the q.a.p.

(a) Then every u € ¥ has a well defined trace.
(b) If uew is nilpotent, then tr(u) = 0.

Proof
Without loss of generality we can assume that Mg has the approximation
property for each minimal idempotent q € M.

[ 2]
(a) Consider any u € ¥ and choose a nuclear representation u = Z uy
=1

(-]

with Z TR
.=1 1

Since Itr(u.)lllu.ll = ptr(u.)u.n = nu,.)2n < .12 for each i elN, it
i i i’ i i

n n oo

follows that |tr(u.)| < u, it ¢ u, it < o for each n €IN.
=1 i . i 21 I

Consequently,

-}

. n
|tr(u.)| = Lim |tr(u,)| < =
(=1 i nwe Loy i

o

which implies that Z tr(ui) is absolute convergent.
=

0

As in the proof of Theorem 6.6 we show that if Z v, = 0, v, €9, with
=1

L2 24 o«

Z Ilvill ¢ o, it follows that Z tr(vi) = 0.
.=1 ':1

As before, let Al""’As be a disjoint decomposition of 11,2,...]
induced by ~ on ¥,. For each fixed k, choose a minimal idempotent

q €%, such that Q. ~ Vs for each 1 € Ak Define an element W € M

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2022



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

- 68 -

(@

and an operator I..k € :e(mq ) by
k

wk:= ZEAk vi, ka:= wkx.
Clearly W € # and we show that Lk € N(qu).

let x = mq, for some m € M. Then it follows by Lemma 4.15 that for each

ieAk

D m:= v.mq, is an operator of rank one on M with
Vi Gy ik
i
uDV" "< nviuuqku and tr(Dv.’qk) = tr(vi)tr(qk) = tr(vi) since
i i
2
Qe = Qe
Consequently,

ka = Lk<mqk):= ZeAk vimg = ZeAk Dvi,qkm
with ZeAk "Dvi’qk" < Ilqkll 'EAk ||Vi|| { o

which implies that Lk is a nuclear operator on qu Since qu has the
approximation property, it follows by Definition 2.43 that Lk has a well

defined trace given by

tr(L, ) =Z tr(D ) =Z tr(v.). (6.1)
Ly o, Vi g o, i

On the other hand, for all x e qu,

-]
0=(Z V. )XW, =Z v.xv.:(z v.)x(} V.) = W XW, .
. k . s . .
- 1 ,J€Ak ig EAk i JEAkJ k'k
Since M is semi-prime, it follows that W = 0, hence Lk = 0 which
implies that tr(Lk) = 0.

Therefore, we have Z tr(vi) = 0 for each fixed k=1,...,s from which
i€A
k

it follows that

0

s
tr(v,) = Z( (Z tr(v.)) = 0.
Z:l i -1 eAk i

(b) If u e~ is nilpotent, then clearly Lk € N(qu) is a nilpotent

operator and by Corollary 2.23 we have
tr(Lk) = 0 for each fixed k=1,...,s.
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But if we choose a nuclear representation u = }i u,, ui € ¥,,

oo

}i flu. il < o and put
=1 1

W iE }; u, kazz WX, X € qu,
8"

it follows by (6.1) that
tr(Lk) = }; tr(ui) for each fixed k.

e

By using (a) we have
'S

[ 3 S
tr(u) = Ei tr(u,) = }; (}; tr(u.)) = E; tr(L,) = 0. o
o T T 0y Qg O T 0

Finally we investigate the conditions under which an algebra has q.a.p.

Lemma 6.12 ([13], p 7)
Let M be a C*-algebra.

If fim — € is a positive functional on M, then

X ¥
Kf,y x> = <f,x »

Proof
Consider the following polarisations:

ay¥x = (xy) ¥ (xy) + i(xriy) ¥ (xtiy) - (xy) ¥ (xoy) - i(x-iy) (x-iy)
1x*y = 4y 0% = (o) ¥ (xay) - iGeriy)F(xriy) - ) (xy) + ix-iy) ¥ (xy)
Then by Lemma 5.8

(x + ) ¥(x+y) 20 and (x + iy)*(x + iy) 3 O.
Consequently,
0 < <f(x+3) (x+y)> eR and 0 ¢ <, (x +iy) (x + iy)> e R

and by making use of the polarisations it follows directly that

A, x> = a<E, 3% o

Lemma 6.13
Let M be a C*—algebra.

If x e M is selfadjoint, then nxnu = uxun for all n €.
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Proof
Clearly nx2™n = quzn, n € N. Therefore,
mxu® = ax*n ¢ nx*unxn < uxnPuxn = ouxnd
which implies that nx*n = uxn?.
By continuing in this way, the result follows directly. o

Theorem 6.14 ([10], p 666)

(a) Let Mm = 2(E). Then
M possesses q.a.p. if and only if E or E* has the approximation
property.

(b) A commutative Banach algebra M possesses g.a.p.

(c) A C*—algebra M has the q.a.p.

Proof

(a) Consider any minimal idempotent Q € M.

We show that mQ = E (resp. QM & E*).

Clearly @Q is a projection of rank one by Gelfand Mazur and Theorem 2.9.
Put Q(E):= El' Choose 0 # y, € E1 with iy, = 1 such that

El = span{y,}. Define a mapping ¢:mQ — E by
#(TQ):= Ty,, T € M.

Clearly ¢ is well defined since for any T,S e s with TQ = SQ we have

TRy, = SQyey, i.e. Ty, = Sy, . ¢ is also linear and isometric, since

NTQN = "i‘:lls’l NT(Qx) I = IA}S(TIS)I WT(A o)l = l"jl-:l A, [Ty on
= ITy lt = Ne(TQ) N,

This implies that ¢ is one to one. We still have to show that ¢ is
onto. Let x € E be any fixed element and define a mapping

TxyO:: X.
Extend Tx linearly to E1 by Tx(Ayo) = Ax. Obviously TX is linear

and bounded since

sup

- sSup -
uTXu = |A|$1 HTX(Ayo)H = IA151

|Afuxn = uxn.

By Hahn Banach we can extend Tx to E, i.e. Tx € M. Furthermore,

<P(TXQ) = Txyo = X.
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(021.3—

(b) Let M be a commutative Banach algebra and q €M minimal
idempotent. Then Mq 1is isomorphic to € by Proposition 3.12 and
consequently has the approximation property.

(c) Let m be a C*—algebra and q € M minimal idempotent. We show that
Mq is a Hilbert space. Put
X
(x,y):= LT Y X>, X,y € Aq.
qq
Clearly (x,¥) is well defined and we show that it defines an inner

product on Mmq. By Theorem 5.9(e) I % is a positive functional on

aq
and by Lemma 5.8 we have (x,x) = <I ,,x'x> 3 0. By using Lemma 6.12 it
qq
follows that (x,y) = (y,x). It is also obvious that
(Ax + F’y’z) = Alx,z) + F(yyz)-

1
We now prove that (x,x)2 = ux#i. Let x =mq, m € m. Then

llxqqmll2 = Iqu*x*xqq*ll = «Lr *,x*x>lqu*ll = (x,x)lqu*ll = (x,x)ligh?
qaq
and by using Lemma 6.13 we have

(|<I'q,q*>l"q")2 = (lag’qm)* = n(qa’q) (aa*q)n

¥ X x
= llg qq qq qll
X
= lig qn®
= liqne.
X . .
Hence |<I‘q,q >| = nqn* from which it follows that
leqq* I leqq*qll leqq* il
mgn & lxat = ¥ < Tan ¢’
|<r_,q >|
q
X
i.e. Wxgg W = uxghngi.
2 2
Consequently, (x,x) = lxqliZigh” - (mg)qli? = uxi?, hence #Mq is an inner
lignz

product space. Since Mg is complete, it follows by Proposition 2.36 that
nq has the approximation property. a]
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SUMMARY

The classical Ascoli’s theorem has proved to be of great interest to many
mathematicians and has been the object of many modifications and

generalisations.

K Vala [14] studied compact and finite elements in a Banach algebra, giving
a definition which generalises a theorem in operator theory which states
that the mapping :T — ATC on the Banach algebra of operators on a Banach
space E 1is compact (of finite rank), if and only if both mappings A and
C are compact (finite rank) operators on E. In this paper a different
definition for finite (in particular one-dimensional) elements in a Banach
algebra, due to J Puhl [10], is given, generalising the following theorems
in operator theory:

(i) An operator T # 0 on a Banach space E is of rank one if and only

if there exists a non-zero functional rT on the Banach algebra of

operators on E such that TRT = < ,,R>T for all operators R.

T’
(ii) T is of finite rank if and only if it can be written as a finite sum
of operators of rank one. It is shown that the two different defi-
nitions for finite elements, given by Vala and Puhl respectively,

coincide.
Since most of the results throughout the paper require the Banach algebra

to be semi-prime, a condition which is equivalent for this concept is

proved. A well defined trace for one-dimensional elements is introduced,
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provided the Banach algebra is semi-prime. The trace of finite elements is
also defined and the results are analogous to those of finite rank

operators.

Furthermore, the spectrum of a one-dimensional element is shown to consist
of exactly two elements and that of a finite element to be finite, by using

the same result which is proved to be valid for finite rank operators on a
Banach space E.

We also prove that if the Banach algebra is semi-prime, the one-dimensional
elements and the minimal left (right) ideals are in one to one correspon-
dence. Furthermore, the socle of a semi-prime algebra always exists and

equals the class of all finite elements.

Nuclear elements are defined in a .natural way and a well defined nuclear
norm is introduced, which dominates the norm on the Banach algebra. It is
shown that if the Banach algebra fulfils certain conditions, the trace can
be extended to these elements.

However, it is shown that the definition for nuclear elements, given by
Vala, implies that of Puhl, but the converse is not necessarily true (even
in C*—algebras). The spectrum of a nuclear element is shown to be at most

countable, with zero the only point of accumulation.
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SAMEVATTING

Die klassieke stelling van Ascoli het tot dusver groot belangstelling deur
baie wiskundiges geniet en was die onderwerp van verskeie wysigings en

veralgemenings.

K Vala [14] het ’'n studie gemaak van kompakte en eindige elemente in ’'n
Banach algebra en ’n definisie gegee wat ’'n veralgemening is van die
stelling wat beweer dat die afbeelding :T — ATC op die Banach algebra
van operatore op ’'n Banach-ruimte E kompak {van eindige rang) is, as en
slegs as beide afbeeldings A en C kompakte (eindige rang) operatore op
E is. In hierdie verhandeling word ’'n ander definisie vir eindige (in die
besonder een-dimensionele) elemente in ’'n Banach algebra, geinisieer deur J
Puhl [10], gegee, en wat veralgemenings is van die volgende stellings:

(i) 'n Operator 0 # T op ’'n Banach-ruimte E is van rang een as en

slegs as daar ’'n nie-nul funksionaal rT op die Banach algebra van

operatore op E bestaan so dat TRT = <rT,R>T vir alle operatore R.

(11i) T 1is van eindige rang as en slegs as dit geskryf kan word as 'n
eindige som van operatore van rang een.
Daar word bewys dat die twee verskillende definisies vir eindige elemente,

deur Vala en Puhl onderskeidelik gegee, harmonieer.
Aangesien die oorgrote meerderheid resultate wat in die verhandeling bewys

word, vereis dat die Banach algebra semi-priem is, word ’'n ekwivalente
voorwaarde vir hierdie begrip bewys. ’'n Goed gedefinieerde spoor vir
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een-dimensionele elemente word gegee, mits die Banach algebra semi-priem
is. Ook word die spoor van eindige elemente gedefinieer en die resultate
is analoog aan die van eindige rang operatore.

Verder word aangetoon dat die spektrum van 'n een-dimensionele element uit
presies twee elemente bestaan en die van ’n eindige element eindig is, deur

gebruikmaking van dieselfde resultaat wat vir eindige rang operatore bewys
word.

Ons bewys ook dat as die Banach algebra semi-priem is, daar ’'n een-een-
duidige verband bestaan tussen die een-dimensionele elemente en minimale
linkse (regse) ideale. Verder bestaan die voetstuk van ’'n semi-priem
algebra altyd en is gelyk aan die klas van alle eindige elemente.

Nukleere elemente word op natuurlike wyse gedefinieer en ’'n goed gedefi-
nieerde nukleere ﬁom, wat die norm op die Banach algebra domineer, word
gegee. Daar word bewys dat as die Banach algebra aan sekere voorwaardes
voldoen, die spoor uitgebrei kan word na hierdie elemente.

Daar word egter bewys dat die definisie van Vala vir nukleere elemente die
van Puhl impliseer, maar dat die omgekeerde nie noodwendig geld nie (selfs
in C*—algebras) . Ons bewys dat die spektrum van ’'n nukleere elemente hoog-
stens aftelbaar is, met nul as enigste verdigtingspunt.
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SUMMARY

K Vala defined compact (finite) elements in a Banach algebra. A different
definition for finite elements in a Banach algebra is given in this trea-
tise and we show that the two different definitions coincide. A well
defined trace for finite elements is introduced, provided the Banach alge-
bra is semi-prime. The one-dimensional elements of a semi-prime Banach
algebra are shown to be in one to one correspondence with the minimal left
(right) ideals. Furthermore, it is shown that the socle of a semi-prime
algebra equals the class of all finite elements.

Nuclear elements are then defined, and if the Banach algebra fulfils cer-
tain conditions, the trace can be extended to these elements. However, for
nuclear elements, the definition given by Vala implies the latter defini-

tion, but the converse does not necessarily hold.
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SAMEVATTING

K Vala het kompakte {eindige) elemente in ’n Banach algebra gedefinieer.
'n Ander definisie vir eindige elemente in ’'n Banach algebra word in die
verhandeling gegee en ons toon aan dat die twee verskillende definisies
harmonieer. ’'n Goed gedefinieerde spoor vir eindige elemente word gegee,
mits die Banach algebra semi-priem is. Daar word aangetocn dat die een-
dimensionele elemente van ’'n semi-priem Banach algebra in een-eenduidige
verband met die minimale linkse (regse) ideale is. Verder word aangetoon

dat die voetstuk van ’n semi-priem algebra gelyk is aan die klas van alle
eindige elemente.

Nukleére elemente word dan gedefinieer, en as die Banach algebra aan sekere
voorwaardes voldoen, kan die spoor uitgebrei word na hierdie elemente. Die
definisie gegee deur Vala vir nukleére elemente impliseer laasgenoemde

definisie, maar die omgekeerde is nie noodwendig waar nie.
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