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0. PRELIMINARY OONVENTIONS AND NOI'ATIOO' 

0.1 Conventions 

0.2 

Throughout this paper ftmctional and operator will assume to be linear 

and bounded. We also assume that the reader is familiar with the 

definition of the dual operator of an operator T. 

Notation 

Let E and 

(E) 1 

dim E 

spa.n(F) 

!e(E,F) 

!f(E) 

9-"(E,F) 

N(E,F) 

ce(E,F) 
E* 

T• 

e!e(E,F) (T) 

a!f(E,F) (T) 

ran(T) 

tr(T) 

det(A) 

l 
00 

Co 

l 1 

* X 

".m(u) 

m.a.p. 

q.a.p. 

F be normed spaces. 

the tmit ball of E. 

the dimension of E. 

the closure of the linear span of F in E. 

the class of all operators T:E ~ F. 

the class of all operators T:E ~ E. 

the class of all finite rank operators in !f(E,F). 

the class of all nuclear operators in !f(E,F). 

the class of all compact operators in !e(E,F). 

the dual space of E. 

the dual operator of Te :t(E,F). 

the set of eigenvalues of Te ~(E,F). 

the spectrum of Te !f(E,F). 

the rank of T e ~(E,F). 

the trace of an operator T. 

the determinant of a rum matrix A. 

the space of all bmmded sequences. 

the space of all bounded sequences converging to zero. 

the space of all absolute summable sequences. 

the adjoint of an element x in a *-algebra. 

the spectrum of an element u in an algebra .m. 

metric approximation property. 

quasi-approximation-property. 
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1. INTRODUCTION 

The classical Ascoli's theorem has interested many mathematicians and has 

been the object of many modifications and generalisations. In its funda­

mental form it gives necessary and sufficient conditions for a family of 

continuous functions, defined on a compact topological space, to be compact 

in the topology of tmifonn convergence. M Freundlich [5] introduced and 

studied the concept of completely continuous elements in a coI1111utati ve 

nonned algebra, defining them as those elements for which the corresponding 

regular representations are compact operators. K Vala [ 14] took this up 

again, giving a different definition of a compact element in a nonned 

algebra. He called an element u of a normed algebra compact if the wedge 

operator w1u:x---+ uxu is compact. This definition generalises the notion 

of a compact operator, since in ([15], Theorem 3) it is shown that the set 

of all compact elements in the Banach algebra of operators on a Banach 

space E, coincides with the class of all compact operators. A special 

class of compact elements, called finite-dimensional, is formed by elements 

u for which the wedge operator :x---+ uxu is of finite rank. J Puhl [10] 

a.gain gives a different definition of finite elements in a Banach algebra. 

He defines an element u to be one-dimensional if there exists a non-zero 

functional r on the Banach algebra, such that uxu = <r ,x>u for all u u 

x, and a finite element to be the sum of a finite number of one- dimen­

sional elements. In this pa.per it is shown that these two different 

definitions, given by Vala and Puhl respectively, match. 

The ma.in purpose of the pa.per, however, is to introduce the trace of finite 

elements of a Banach algebra, which includes the notion of the trace of 

finite rank operators. 

Since these generalisations depend heavily on the study of operators in the 

Banach algebra ~(E). Chapter 2 contains a comprehensive accm.mt of 

standard material concerning operators on a Banach space E, which will be 

used in the chapters that follow. 

As most of the results proved in the rest of the paper require that the 

Banach algebra At is semi-prime, and a useful condition which is 

equivalent for ~ to be semi-prime is proved in Theorem 3. 
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The third chapter is devoted to a study of one-dimensional elements in a 

Banach algebra .m and in Theorem 3. 22 it is shown how the two different 

definitions, given by Vala and Puhl respectively, match. In Lemma 3. 9 we 

prove the existence of a tmique complex number tr(u) such that 

u 2 = tr(u)u, which will be called the trace of u, provided that Al is 

semi-prime. We also show that the spectrtm1 of a one-dimensional element u 

consists only of two elements, namely O and tr ( u) • Another important 

result, concerning the correspondence between the one-dimensional elements 

in a semi-prime Banach algebra Al and the minimal left (right) ideals of 

.m, is shown in Proposition 3.18 (Remark 3.19). 

In the next chapter we define a finite element as used by Puhl, and in 

Theorem 4.23 it is shown how this coincides with the definition given by 

Vala. It is also shown in Proposition 4.21 that the spectrum of such an 

element is finite. We proceed in Chapter 5 to prove that a finite element 

has a well defined trace and some important results concerning this concept 

are given in Theorem 5.9. 

In the last chapter the definition of a nuclear element is given in a 

natural way. The spectrum of a nuclear element is shown to be either 

finite or countable, which can accumulate only in the origin. Furthermore, 

it will be shown that if the Banach algebra fulfils certain conditions, 

then the trace admits an extension to the nuclear elements. One such 

condition is that the Banach algebra Al be semi-prime, having the 

approximation property. Another condition is that Al is semi-prime such 

that for each finite element u and E. > 0 we can find another finite 

element x with llxll ~ l+e. and xu = u or ux = u. Yet, another 

condition is the following: 

We say Al has quasi-approximation-property (q.a.p.) if for each minimal 

idempotent q e .m, the Banach space .mq(resp. q.m) has the approximation 

property. Commutative Banach algebras and c* -algebras have q.a.p. as is 

shown in Theorem 6.14. We also prove in Theorem 6.11 that the trace of a 

nilpotent nuclear element is zero. 

As far as the sources used in this work are concerned, detailed references 

are given throughout the chapters. 
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2 • FINITE RANK- AND NUCLEAR OPERA'Ia?S, INCWDING nm TRACE FUNCTIOOAL 

In this chapter, some basic results concerning finite rank - and nuclear 

operators on a normed space are given, which will be needed in the rest of 

the paper. The trace of a finite rank operator on a normed space E is 

introduced and it is shown that if E fulfils a certain condition, then 

the trace admits an e:Ktension to the nuclear operators. 

Definition 2.1 

Let E and F be normed spaces. 

An operator Te ~(E,F) 1s of finite rank if dim[T(E)] < oo; 

if dim[T(E)] = n we say that T is of rank n and write ran(T) = n. 

Remark 2.2 

* If y e F and a e E we denote the mapping T:E --+ F defined by 

Tx : = <a, x>y by the tensor product notation T = a ® y. Clearly a ® y 

is linear and bm.mded and has rank at most one. Similarly for a. e E* 
1 

n 
and y. e F, i=l, .•. ,n 

1 
we denote by \ a.® y. the operator 4:1 1 1 

T:E--+ F 

n 
Tx = \ <a. ,x>y .• 4.:1 1 1 

defined by In this case T has rank at most n. 

Before proving that any Te £(E,F) of finite rank can be represented in 

this way, we need a lemma. 

Lenuna 2.3 ([12], p 32) 

Let a. e E*, i=l, ..• ,n. Then {a.:i=l, ••• ,n} is linearly independent if 
1 1 

and only if there exists {x.:i=l, ... ,n} 
1 

in E with <a. ,x .> = 6 ..• 
1 J 1J 

Proof 

Let {a. :i=l, ..• ,n} be linearly independent. 
1 

If n = 1, nothing has to be proved. Suppose that the result is true for 

n - 1 and consider n linearly independent elements a 1, ..• ,an. By the 

induction hypothesis there are elements 

<a. , x . > = 6 . . , i , j = 1 , •.. , n-1 . For each x e E 
1 J 1J 

x1 , ... , xn- l e E with 
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n-1 n-1 _
1 ( x - \ · <a. , x>x. ) e n a. ( 0) : = N 

f.:i.:1 1 1 i=l 1 

There exists Yoe N with 

for all x e E 

<a ,Yo>¢ 0, n since if this were not true, then 

<a ,x> n 

<a ,x> = n 

n-1 
\ <a. ,x><a ,x.> = 4:l 1 n 1 

n-1 
\ · <a. ,x><a ,x. > = 4:l 1 n 1 

n-1 

0, i.e. 

n-1 
\ · <<a ,x. >a. ,x> 4:l n 1 1 

wich implies that a = \ <a ,x. >a . . 
n 4:l n 1 1 

This contradicts the fact that 

{a1, .•• ,an} is linearly independent. 

Yo 
Define Then <a. ,x > = 6. 

1 n in for all i=l, ••• ,n-1,n. 

n 
Conversely, let \ A.a. = 0. 

½=1 1 1 
Then for each j:1, ... ,n we have 

A. <a. ,x .> 
1 1 J 

Proposition 2.4 

= 0 which implies that A.: 0 
J 

for each j=l, ... ,n. • 

If E is a normed space, then the operator Te ~(E,F) 

Tx = \ n 
4:1 

is of rank n ~ 1 

if and only if T has a representation <a. ,x>y. 
l. l. 

for all 

x e E, where 

dent subsets in 

{a. :i=l, .•• ,n} and {y. :i=l, •.• ,n} 
1 1 

are linearly indepen-

E* and F respectively. 

Proof 

Let dim[T(E)] = n. Then we can find a basis {y1 , ... ,yn} such that for 

each x e E, Tx can be written as 

i=l, ..• ,n define <a. ,x>: = a~x). 
1 1 

Tx = \ n 

4=1 
(x) (x) 

a. y., a. 
1 1 1 

e c. For each 

Clearly a. is linear, since T is. We show that a. is bm.mded. 
1 1 

there exists c > 0 such that For each x e E, 

\ n I <al.. , x> I = 
4:1 

n n 4=l lat> I ~ ell 4=l af x)Y ill ~ cllTllllxll (cf [6], Lemma 

2.4-1) which implies that l<ai,x> I ~ cllTllllxll, i.e. Ila. II ~ cllTII for 
1 
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We still have to show that a. is linearly independent. 
1. 

exists x. e E with Tx. = y., j=l, ••• ,n. Then 
J J J 

<a. ,x .>y. 
1. J 1. 

for each j=l, ••• ,n. 

Since {y. :i=l, ••• ,n} is linearly independent, this implies that 
1. 

(a . , X • ) : 5 . . • 
1. J 1J 

By Lemna 2.3 it follows that {a1 , ••• ,an} is linearly independent. 

There 

On the other hand, let {a
1

, ... ,an} and {y1 , ... ,y
0

} be linearly inde-

pendent in and F respectively with Tx = <a. ,x>y. 
1. 1. 

x e E. It is easy to see that T is linear and bounded. Clearly 

dim[T(E)] ~ n. 

By Lemma 2.3 there exists {x1, •.. ,xn} in E with <a. ,x .> = 5 •.• 
1. J 1.J 

Then Tx. = 
J 

<a.,x.>y. = y., 
1. J 1. J 

This implies that d.im[T(E)] = n. 

Definition 2.5 

i.e. y. e T(E), 
J 

a 

Y (E,F) ={Te !f(E,F):T is of rank n} and n 

j=l, ... ,n. 

¢0 

Y(E,F) = U 
n=O 

Y (E,F) n = {T e !f(E,F) :T is of finite rank}. 

Definition 2.6 

for all 

If Te !f(E) we define the wedge operator TAT on !f(E) by TAT(R) := TRT 

for all Re ~(E). 

Next we want to prove an important theorem concerning finite rank 

operators, from which K Vala [14] generalises the concept of finite 

elements in a Banach algebra. 

Lemma 2.7 

Let {a1 , ... ,am}, 

* normed spaces E 

be 1 inearly independent subsets of the 

and F respectively. Then 

{a.® y.:i=l, •.. ,m, j=l, ... n} is linearly independent in !f(E,F). 
1 J 
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n 
We first show that if \ a. 8 y. = 0 with 4:1 ]. ]. 
independent, then a. = 0, 

]. 

n 
If \ a. ® y. = 0 then 4:1 ]. ]. 

i=l, ... ,n. 

<a. ,x>y. = 0 
]. ]. 

for all 

linearly 

xeE from which 

it innnediately follows that ai = 0, i=l, ••• ,n since {y1 , ..• , yn} is 

n m 
linearly independent. Now let ~ ( \ A •• a. ) ® y . = 0. 

Lj=l 4:1 l.J]. J 
m 

By applying the discussion above we obtain 4:l '\jai = 0, j=l,, •• ,n, 

and since {a1, ... ,am} is linearly independent it follows that 

A •• =O, i=l, ••. ,m, j=l, ..• ,n. • 
l.J 

Corollary 2.8 

If * 0 ~ a e E and is 1 inearly independent in F, 

{a® y.:i=l, ••. ,n} is linearly independent in ~(E,F). 
]. 

Theorem 2.9 ([1], p 17) 

then 

(a) The operator Te ~(E) is of rank one (zero) if and only if the wedge 

operator is of rank one (zero). 

(b) T is of finite rank if and only if TAI' is of finite rank. In this 

case ran(T) ~ ran(TAr). 

(a) Clearly, if 

Now let T ~ 0 

0 ~ a e E* and 

TAr(R)x 

T = O, TAI'= O. 

be of rank one. Then by Proposition 

0 ~ye E. Consider any R e ~(E) 
. - (a® y)R(a ® y)x .-
=(a® y)<a,x>Ry = <a,x><a,Ry>y 

= <a,Ry>(a ® y)x = <a,Ry>Tx 

= (r T ® T) (R)x 

and 

2.4 T =a® Y, 

x e E. Then 

where we define the functional rT: ~(E)--+ c by <rT,R> := <a,Ry>. 

We still have to show that rT ~ 0. 

There exists x 0 e E such that <a,x 0 > ~ O. 
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R ( ay) : = axo . 
0 

Clearly R 
0 

is linear and 

bounded and by Hahn Banach it can be extended to E such that Ry= x 0 • 
0 

On the other hand, if TAr = 0 and T '# 0 we can find x 0 e E with 

Let Y = Tx 0 • Again by Hahn Banach there exists R e !f ( E) with 
0 

Ry= x 0 • Then TAr(R )x0 := TR Tx 0 = TR y = Tx 0 '# 0 which contradicts the 
0 0 0 0 

fact that TAr = O. If TAr is of rank one, we can find R e !t(E) such 
0 

that TAr(R) = TR T '# O, 
0 0 

hence T '# 0 and it follows that d.im[T(E)] ~ 1. 

If dim[T(E)) > 1, we can find at least two linearly independent vectors 

* {Tx 1 ,Tx 2 } in T(E). Choose a e E with T 1 a '# 0 and let 

Clearly R
1 

i=l,2. 

and R
2 

are linear and bounded and TAI'(R.) = T•a ® Tx., 
l. l. 

By Corollary 2.8 {TAT(R
1

), TAT(R
2

)} is linearly independent in contradic-

tion to the fact that dim[TAT(~(E))] = 1. 

(b) Let T '#- 0 be of finite rank n ~ 2. By Proposition 2.4 we can write 
n 

T = \ a. ® y. with 4:1 l. l. 
{a. : i=l, ..• ,n} 

1 
and {y. :i=l, ••. ,n} 

1 
linearly 

independent in E * and E respectively. Then for all R e ~(E) and 

x e E it follows that 
n n n n 

TAI'(R)x = (\ a. ® y.)R(~ a.® y.)x = (\ a. ® y.) ~ <a.,x>Ry. 
4=1 l. l. Lj=l J J L.i.:1 l. 1 Lj=l J J 

n 
= 4 <a. , Ry . > ( a . ® y. ) x , i.e. 

·-1 l. J J l. ,J-
n 

(TAI')(R) = 4 <a.,Ry.>(a. ® y.) • 
. ·-1 l. J J l. ,J-

Therefore, {(TAr)R:R e £(E)} c span{a. ® y.:i,j=l, ..• ,n} 
- J l. 

which implies 

that dim[ (TAr)(£(E))) ~ n 2 • 

Furthennore, there exists 

Lemma 2 . 3 . By choosing 

follows that 

{x
1

, ... ,xn} such that <a. ,x .> = 6. . by 
l. J l.J 

J\ any operator such that Vj = <5kjxk' it 
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n n 
(TAr)(R.) = \ <a.,Ry.>(a. * y.) = \ <a

1
.,x. >(a. * y

1
.) 

-K L:i_' j=l l. -K J J l. L.i_:l K K 

= (8it GD yk) • 

Hence for k=l, ••• ,n, which implies that 

ran(TAr) ~ n. 

Therefore n = ran(T) ~ ran(TAr) ~ n 2
• 

Conversely, if 2 ~ ran(TAr) ~ n, then clearly T ¢ 0. 

If d.im[T(E)] > n, then similarly as in the case for n = 1 we get a 

contradiction to the fact that TAr[~(E)] has at most n linearly 

independent vectors. Consequently ran(T) ~ n. • 

From the proof of this theorem we inmediately derive a corollary on which J 

Puhl [10] based his definition of finite elements in a Banach algebra. 

Corollary 2.10 ([10], p 658) 

If E is a normed space and O ¢TE ~(E), 

if there exists a nor»-zero functional 

TRT = <rT,R>T for all RE ~(E). 

Definition 2. 11 

then T E g: 1 (E) if and only 

r T::e(E) ~ c such that 

An o-perator Te ~(E) is minimal idempotent if T ¢ 0 is idempotent such 

that T[:e(E)]T is a division algebra. 

Lemma 2.12 

If Q e ~(E) is minimal idempotent, then Q is a projection of rank one. 

Proof The result directly follows by Gelfand Mazur and Theorem 2.9. • 

Before proving that the spectrum of a finite rank operator T is finite, 

we show that the spectrum of T equals the set of eigenvalues of T. 

Lemma 2.13 ([7], p 96) 

If Te g:(E), then (T-I) is one to one iff it is onto. 

Let B:= (T-I) IT(E). Clearly Be ~[T(E)] and since T(E) is finite 

dimensional, B is one to one iff it is onto. Clearly (T-I) is one to 
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one iff B is one to one. Next we show that (T-I) is onto iff B is 

onto. 

Let (T-I) be onto and consider any v e T(E). We can find y e E with 

v = Ty. Then there exists x e E such that (T-I)x = y. If we define 

u: = Tx, then Bu = v. 

On the other hand, let B be onto and y e E arbitrary. Then Ty e T ( E) 

and consequently there exists u e T ( E) such that Bu = Ty. Let x: = u-y. 

Then (T-I)x = (T-I)u - (T-I)y = y. o 

Proposition 2.14 ([7], p 96) 

If Te ~(E), then o(T) = e(T). 

If 0 '# A e C, then T 
- e 9'(E) 
A 

and by Le11111a 2.13 it follows that T 
(- - I) 

A 

is one to one iff it is onto. 

Next let us consider the case 

Consequently 

A = 0. If 

A e o(T) iff A E e(T). 

E is finite dimensional, then 

T is one to one iff it is onto, hence OE o(T) iff O e e(T). If E is 

infinite dimensional, then T cannot be one to one since T(E) is finite 

dimensional. Therefore O e e(T) c o(T). Consequently in all cases we 

have o(T) = e(T). D 

Lemma 2.15 ([2], p 80) 

If A1 , . .. , An are different eigenvalues of T and O '# x. e E 
l. 

is the 

corresponding eigenvector of each 

independent. 

Proof 

A • ' l. 

Clearly, the lemma holds for n = 1. 

then is linearly 

Suppose it is true for (n-1) and let A
1

, ... ,An be different eigenvalues 

of T. Then for each i=l, ... ,n there exists 0 '# x. e E 
]. 

with 

Tx. : A.x .• 
l. ]. ]. 

If {x1, .•. ,xn} is linearly dependent, we can find scalars 

n-1 n-1 
with x = \ p.x.. Therefore A x = Tx = \ /J. A .x .. 

n 4:l l. 1. n n n 4:l 1 1. 1 

n-1 /J.A.x. 
Hence x - \ 1 

l. 
1 

n 4=1 "n 
/J.A. 

l. l. 
it follows that /Ji = -A-

n 

From the linear independence of {x1, ..• ,xn_1} 

for all i. Since x '# 0, not all /J. = 0. 
n l. 
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AsstDlle /J. '¢ O. Then A.= A contradicting our asslDllption. a 
J J n 

Proposition 2.16 

The spectrum of a finite rank operator is finite. 

Proof 

Let E, F be Banach spaces and consider any Te !r(E,F). 

Assume that o(T) is not finite, i.e. there exists at least a cmmtable 

ntnnber of different spectrum values {A.:i e N}. By Proposition 2.14, for 
l. 

each i = 1,2, •.• there exists O 'I: x. e E with Tx. = A.x. e T(E) which 
l. l. l. l. 

implies x. ET(E). 
l. 

Since {x. :i=l,2, ••• } 
l. 

is linearly independent by 

Lemma 2.15, this contradicts the fact that T is of finite rank. a 

Lemma 2.17 

If T e !r(E,F), then <a. ,Y. > 
l. l. 

is independent on the specific repre-

sentation of T = 4:
1 

a. 181 y .• 
l. l. 

n 
T = \'. a. ® y. L i. i 

Let be any representation where * a. e E, y. e F. 
l. l. 

i=l 

can find linearly independent vectors {x
1

, ... ,x} c F such that 
m -

m 
y. e span{x1 , ••. ,x } , (i=l, ••• ,n). 

l. m Let y. = ' t . .x . • 
l. Lj=l l.J J 

Then there exists a representation T 2m * = b. ~ x. with b. e E . 
j=l J J J 

Therefore, 
m 

~ b. 
Lj=l J 

n 
® x. = \ a.® y. = 

J 4:1 l. l. 

~ m [ \ n ( .. a.] 
Lj=l 4=1 l.J l. 

8 x. 
J 

We 

which implies that the functionals b1, ... ,bn e E* are uniquely determined 

n 
by b. = \ t .. a., since {x.:j=l, ..• ,m} is linearly independent. 

J 4:1 l.J l. J. 

We conclude that 
n n m 

\ <a. , y. > = \ \'. t .. <a. , x . > 4:1 l. l. 4.:1 Lj=l l.J l. J 

m -n 
=\'. <\ ( .. a.,x.>= 

Lj=l 4.:1 l.J 1 J 

m 
~ <b. ,x .>. 
Lj=l J J 

a 
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Definition 2.18 

If Te ~(E,F), the trace of T 
n 

- 12 -

is defined by 

tr(T) := \ 
4=1 

<a. ,Y. > 
l. l. 

where T = 4:
1 

Lemma 2.19 

a.®y.,a. eE* 
l. l. l. 

and y. e F 
l. 

(i=l, ••• ,n). 

If Re ~(E,F), Te ~(F,G) and Se ~(G,H), then STR e ~(E,H). 

Proof 

Let T = 4:l a. ~ y., * a. e F, y. e G. Then for all x e E 
l. l. l. l. 

STRx 
n 

= S( \ a. 0 y. )Rx 
4:1 l. l. 

n 
= \ <a. ,Rx>Sy. 

4:1 l. l. 

= <R•a. ,x>Sy. 
l. l. 

= ( R •a. @ Sy. ) x with R •a. e E , Sy. e H, 4n * 
·=1 l. l. l. l. 

i=l, ... ,n. 

Therefore STR e ~(E,H). a 

Proposition 2.20 

If O ~Te 9-" 1 (E,F), 2 then T = tr(T)T. 

Proof 

Let T = * a ® y, a e E , y e F and consider any x e E. Then 

Lemma 2.21 

tr(T)Tx = <a,y>(a ® y)x = <a,y><a,x>y = <a,x>(a ® y)y 

=(a® y)(a ® y)x 

= T2x a 

All eigenvalues of a nilpotent operator are zero. 

Proof 

Let T e ~(E,F) be nilpotent. 

Suppose that A 0 e C is a non-zero eigenvalue of T with associated. 
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eigenvector x 0 ¢ 0, i.e. Tx 0 = A0 x 0 • Then by induction and substitution 

we get the contradiction 

rflx 0 = A~x 0 '¢ 0 for all n e IN. • 

Lemma 2.22 ([8], p 264) 

If A= (aij) ls a nxn matrix with eigenvalues A1, .•• ,An' 

Proof 

If A 

tr(A) = \ n A. 

4=1 ]. 
n 

and det(A) = TT A .. 
. 1 ]. 1= 

is an eigenvalue of A, there exists X '¢ 0 

then 

such that 

(A-AI )x = 0 which implies that det(A-AI ) = O. Put P(A) := det(A-AI ) • 
n n n 

Then by expanding the determinant of (A-AI) in terms of elements in the 
n 

first row, it follows that 

is the cofactor of the (1,J) element of the matrix (A-AI ) . n 

the cofactors B12, ••. ,B1n there are only n-2 elements 

where 

In each of 

(a .. - A) 
].]. 

involving A so that the largest power of A that can be obtained by 

expansion of these cofactors is An-z. Consequently 

P(A) = (a11-A)B11 + {tenns in A of degree (n-2) or less} 

By expanding B11 again in terms of elements in the first row, the same 

argument as above can be applied and by repetition it follows that 

P( A) 

= (a11-A)(a22-A) ... (ann-A) + {terms in A of degree (n-2) or less} 

n n n-1 n-1 = (-1) A +(-1) A (a11+a22+ ... +ann)+{tenns in A of degree (n-2) or less} 

Since the constant term in P(A) would involve no A, it is given by 

P ( 0 ) : = det (A) . 

Therefore 

P(A) = (-l)nAn + (-l)n-lAn-ltr(A) + + det(A). 

But as the characteristic polynomial P (A) = 0 is of degree n, it has 

exactly n roots given by the eigenvalues of A. This implies that 

P(A): (A 1-A)(A 2-A) ... (An-A) 

: (-l)nAn + (-l)n-1An-l(Al+A2 + ... +An)+ .•. + (AlA2 ••• An) 

The result follows by comparing these. • 
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Corollary 2.23 

The trace of a finite rank nilpotent operator is zero. 

Next we turn to the concept of nuclear operators, and introduce a nuclear 

nonn which dominates the norm II• II on ~(E,F). 

Definition 2.24 

An operator T e ~(E,F) is called nuclear if Tx=\00 

4=1 
<a. ,x>y. 

a. e E* 
l. 

and y. e F 
l. 

We write T 

Definition 2.25 

for all 

~ y .• 
l. 

i e IN 

H(E,F) ={Te ~(E,F): T is nuclear}. 

l. l. 

such that Ila. II lly. 11 < oo, 
l. l. 

Put v(T): = inf\ 
00 

4=1 
Ila. lllly.11 

l. l. 

with 

where 

the infimum is taken over all so-called nuclear representations described 

above. 

Theorem 2.26 

(N(E,F),v) is a Banach space and if Re ~(D,E), Se ~(F,G) and 

T e N(E,F), then STR e N(D,G) such that v(STR) ~ 11S llv(T) IIRII. 

Proof 

We first show that v is a nonn on H(E,F). 
00 

Let T = \ a.® y. be any nuclear representation. If v(T) = 0, then 
4=1 l. l. 

00 
IIT II ~ \ Ila. 11 lly. II, since II • II is continuous on ~( E, F) and consequently 

4=1 l. l. 

IITII ~ v(T) = 0 which implies T = O. 

Clearly, the converse also holds. 

It is obvious that AT e H(E,F) for all A e c and u(AT) = IAlu(T). 
00 

Finally, if U = \ b. ® x. e N(E,F) we have 
Lj=l J J 

00 00 
u(T+U) < \ Ila. !Illy. II + \ lib .llllx .II for all such representations 

- 4=1 l. l. Lj=l J J 

of T and U. Fix the representation u:\
00

b.®x .. 
Lj=l J J 

It follows that 
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00 

v(T+U) ~ v(T) + ~ 
Lj=l 

llb . 11 llx • II • 
J J 

representation of U, we have 

- 15 -

Since this 

v(T+U) ~ v(T) + v(U). 

is true for 

Now we show that H ( E, F) is complete with respect to this nonn. 

each such 

Let ( T. ) c H ( E, F) be any v-Cauchy sequence. Then ( T. ) is also 
1 - 1 

all• II-Cauchy sequence, since II• II ~ v( ·) • 

Te !e(E,F) such that n 
IIT-T 11 -----+ 0. n oo 

Therefore, there exists 

We prove that Te N(E,F) and v(T - T ) n 
n 

----+ o. 
00 

We can find an increasing sequence ( ~) =.. IN such that 

v(T0 -Tm) < z~+Z for aJ.l n,m ~ '1.:· 

For each k e IN, we can choose a nuclear representation 
00 00 

T -T = \ a~k) ® y~k) with \ lla~k) lllly(~) II ~ --,;..,,-+ . 
~+1 ~ 4:1 1 1 4:1 1 1 2AT~ 

Then for all p e IN 

T°k+p- T°k= [T°k+p- T°k+p-l] + [T°k+p-l- T°k+p-Z]+ ... + [T°k+l - T°k] 

= 2 k+p-1 [ 400 a~ j ) ® y ( j ) ] • 
. k . 1 1 . J= = 1 

Now, let p--+ oo and consider the 11•11-limit. Then 
k+p-1 oo 

ll•lllim (T - T ) = ll•lllim \'. [ \'=l afj) ® Ylj)] 
J)• QO 11t+p ~ J)• QO Lj=k 4 

which implies ( T-T ) = 2 00 

[ 400 

a~ j) ® y ( j ) ] • 
n. 'k '1 1 . K J: = 1 

Furthennore, 
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Hence, 
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(T-T ) e N(E,F) from which it follows that 
nk 

T = (T-T ) + T e N(E,F). 
11k I\ 

Furthennore, v(T-Tl\:) ~ 2 
00 400 

Ila~ j ) 11 lly ~ j ) II ~ l ~ 0 • 
l. l. :It+T2+ 00 j:k . =1 

n Consequently v(T-T)----. O. n oo 

Now, let R E ~(D,E)' s E ~(F ,G) and a. e y., 
l. l. 

* a. e E , y. e F 
l. l. 

with lla.lllly.11 < oo. 
l. l. 

Then for each x e D 

STRx = S [ \ 
00 

a. ® y. }Rx = \ 
00 

<a. , Rx> Sy. 4=1 l. l. Y.=1 l. l. 

00 

= \ <R•a. ,x>Sy. 4.:1 l. l. 

= [ 4:
1 

R•ai a Syi}x 

with R •a. e D *, Sy. e G for each i e N. 
l. l. 

Furthermore, 

4:l IIR'aillllSy ill ~ 11S11 [ 4:l llailllly ill] IIR' 11 < co 

which implies that STR e N(D,G) and 
00 

v(STR) < \ IIR 1 a. IIIISy. 11 S 11S llv(T) IIRII. • - 4.:1 l. l. 

Proposition 2.27 

~(E,F) is dense in N(E,F) with respect to the nuclear norm. 

Proof 

Let U e N(E,F) be any nuclear operator with arbitrary nuclear 
00 

representation U = \ 
4=1 

a. ® y. • 
l. l. 

For each n e IN, put 

Since 

T n 

Ila. II lly. 11 < oo, 
l. l. 

·­·-
n 

\ a.® y. 
4=1 l. l. 

it follows that 

each nuclear representation of U. 

lim 
n...p, 

Ila. lllly.11 : 0 
l. l. 

for 
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Therefore, 

v(U-T ) < \ 
00 

Ila. lllly.11 ~ 0, i.e. 
n - -½.=n+l i i oo 

v( • )lim T = U. a n n~ 

Before proving that the trace can be extended to the nuclear operators on a 

Banach space E, we need to introduce a property which E should have. 

Definition 2.28 

Let E and F be Banach spa.ces and A ~ E a subset of E. 

If (T ) 
n 

is a sequence in £(E,F), then T • T n 
uniformly on A if for 

each E. > O, we can find n e IN such that IIT x - Txll < E. for all 
E. n 

n ~ n and for all x e A. This is equivalent to saying that 
E. 

Example 2.29 

lim sup IIT x - Txll = 0. 
n-P> xeA n 

T ---+ T uniformly on n if and only if n IIT - T 11 ____. 0, n oo 

T ---+ T in the norm to[)Ology of £(E,F). 
n 

Proposition 2.30 

Let E be a Banach space. Then the following are equivalent: 

i.e. iff 

(a) For any Banach space F, every compact Kc E and every Te ~(E,F) 

there exists a sequence (T) c Y(E,F) 
n -

such that T ---+ T uniformly n 

on K. 

(b) For every compact Kc E and every Te £(E) there exists a sequence 

(T) c ~(E) such that T ---+ T uniformly on K. 
n - n 

(c) For every compact K c E there exists a sequence 

that L ---+ I uniformly on K. n 

(L) C 9-"(E) 
n such 

(d) For every compact K c E and E. > 0 there exists L e 9-"(E) such 

that 

llx - Lxll ~ E. for all x e K. 

Proof 

Clearly (a) => (b) => (c) and (c) <=> (d). 

(c) => (a) 

Consider any Banach space F. Let T e £(E,F) and K c E compact be 
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given. We can find a sequence (L ) c: Y-(E) 
n such that 

8 ~11L x - xii --+ 0. 
X-.::n. n 

Put 

By Lenma. 2.19 

T := TL for all n e IN. 
n n 

T e 9-"(E,F) n for all n e IN and 

sup IIT x - Txll = supEK IIT(L x - x) II ~ 11TH sup HL x - XII ..2:.__. o. 
xEK n x n xEK n oo 

Hence, 

T --+ T tllliformly on K. • n 

Definition 2.31 

A Banach space E possesses the approximation property if it satisfies any 

one of the conditions in Theorem 2.30. 

Definition 2.32 

Let E and F be any normed spaces. 

An operator Te ~(E,F) is compact if T[(E) 1] is a compact subset of F. 

We write Te ~(E,F). 

Proposition 2.33 

Let E and F be any Banach spaces. If F has the approximation 

property, then 9-"(E,F) = ~(E,F). 

Let T e ~(E,F) and put K: = T[ (E) 1]. Since K is compact in F, for 

each n elN we can find L e !l(F) such that 
n 

1 Hy - L yll < - for all ye K. n - n 

Put S := LT for each n e IN. Clearly s e Y:-(E,F) n n 

X E (E)l we have 

Consequently, IIT -

n 

ll'l'x - S x II = ll'l'x - L (Tx) II < 1 
n n - n 

s ti < .!. which implies that n - n 

lim S = T, i.e. Te ~(E,F). n 
n...-» 

Hence, ~(E,F) c: 9-"(E,F). 

and for all 

The converse surely holds, since ~(E,F) is closed (cf (6], Theorem 8.1-5). 

• 
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Corollarv 2.34 

If E has the approximation property, then ~(E) = ~(E). 

Remark 2.35 

It can be shown that conversely if !r(E) = <f(E), then E has the appro­

ximation property. 

Prooosition 2.36 

Every Hilbert space possesses the approximation property. 

Proof 

Let H ~ {0} be a Hilbert space and choose an ortononnal basis 

{e :a e A}. Put F:= {~ c A:~ is finite} and for each ~ e F, define 
a 

S x:= 
~ 

(x,e )e • a a 

Clearly S~ e ~(H), and by Parseval's equality we obtain 

11s,,x11 2 = 4a I (x,ea) 1 • = 11x11
2 

from which it follows that IIS?JII = 1. 

Now, consider any compact Kc H and let e. > 0 be given. We can find a 

finite set {z1, ... ,zm} such that 

m 
e Kc u [z. + :..tH)

1
]. 

- . 1 l. 4' 
1.= 

For each j=l, •.. ,m there exists ?J. e F with 
J 

m 

$::>$ •• 
- J 

Put ~o = U ~. and choose L: = S'4
0

• 

j=l J 

'!hen for all x e K, 

and therefore 

we can find z . such that 
J 

llx - L,c II ~ llx - z . II + llz . - Lz . II + IILz . - L,c II 
J J J J 

E. E. E. 
~ 4 + '2'" + 11L114 

= e. since ~o e F. a 

Definition 2.37 

A Banach space E is said to have the metric approximation property 

(m.a.p.) if it satisfies condition (d) of Proposition 2.30 and if in 

addition, Le ~(E) can always be found with IILII ~ 1. 
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Lemma 2. 38 ( [ 9] , p 29 )· 

Let E be an n-dimensional Banach space. Then there exist x1 , ... ,xn e E 

and 

Proof 

with Ila. II = 1, 
1. 

IIX. II = 1 
J 

such that <a. ,x .> = ~- .• 
1. J 1.J 

Let {z
1

, ••• , zn} be a fixed basis of E and K: = (E*) 
1

• Define 

f:K.11 ~ IR:(b1, .•• ,bn) ~ jdet(<bi,zj>) I 

Then 

n2 
1':C ~ c: (a .. ) .-. det(a .. ) 

l.J 1.J 

g:c ~ IR:z ~ jzj. 

g is continuous. Since T is linear and finite dimen-

T is also botmded. By 

Clearly 

sional, 

det(a .. ) ~ sign(n) 
= L (-l) aln(l) · • .amr(n) where the SlDil is taken over all 

l.J 
1f 

n! permutations of 1, ... ,n, it follows directly that 1' is continuous, 

since it is the decomposition of multiplication and sununation. 

Consequently f is continuous and since K is compact, there exists 

(a1 , ... ,an) e it1 for which f attains its maximlDil, i.e. 

f(a1 , ... ,an) ~ f(b1 , ... ,bn) for all (b1 , ... ,bn) e ir1. 

Since {z
1

, ... ,zn} is linearly independent it follows by Hahn Banach (cf 

[6], Lemma 4.6-7) that we can find (bi, ••• ,b~) e x.11 such that 

0 < f(bi, •.• ,b~) 5 f(a1 , ... ,an). 

By Cramer's rule there exists a tn1ique 

n 
\ <a.,z.>x.:= z., j=l, ••• ,n. 4=1 l. J l. J 

By the uniqueness, we notice that 

<8it,xi> = 6 ik 0 

It follows from 
n 

\ <a. ,z.><h ,x.> = <h ,z.> 
½.=l 1. J K 1. 7c J 

that jdet(<ai,zj>) I jdet(<bk,xi>) I= jdet(<bk,zj>) I 

i.e. f (a1 , ... ,an) ldet( <~,xi>) I = f(b1 , ... , b
0

) ~ f(a1 , ... ,an) 
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This implies that 

ldet(<"l\,xi>) I ~ 1 for all (b1 , ... ,bn) e ir1. 

For 1 ~ k ~ n fixed and b. = a. if i '# k we conclude that 
l. l. 

Consequently ll"kll ~ 1, but from 1 = <8it,"k> ~ 118itllll"kll ~ 1 we obtain 

llxkll = 118kll = 1 for each k = 1, •.• ,n. • 

Lemma 2.39 ([9], p 131) 

If E has the m.a.p. and F c E is any finite dimensional subspace, then 

for each e. > 0 there exists an operator A e Y:(E) such that IIAII ~ 1 + e. 

and Ax= x for all x e F. 

Proof 

Let dim(F) = n and K = (F) 1• 

n5 Choose 5 e (0,1) such that --- ~ e.. Since K is compact we can find 
1 - 5 

U e Y:(E) with IIUII ~ 1 such that llx - Uxll ~ 5 for all x e K. 

Consequently, for all x e F 

111x11 - IIUxll f ~ llx - Uxll ~ Ill - Ull llxll ~ 5llxll 

which implies that IIUxll ~ (1 - 5)11xll. 

Therefore, the restriction of U on F is one to one, hence U(F) = F. 

This implies that d.im[U(F)] = dim(F) = n. According to Lemma 2. 38 there 
* exists x 1 , ... ,xn e F and a 1, ••. ,an e F with IIUxill = 1, 118kll = 1 

such that <ai,Uxk> = 5ik' Define V e !f(E) by 

n 
V: = IE + \ . ~ ® ( xk - Uxk) • 

4=1 
Then 

11~11 l 
11"k 11 ~ l - 5 = l 5 • 

Consequently, 
n n 

IIVII S 1 + 4:l 118iiclll¾ - ~II S 1 + 4:l 1511:,..11 S 1 + t~ l5 S 1 + £ 

which implies that 

IIVUII ~ IIVIIIIUII ~ ( 1 + E.) IIUII ~ 1 + e.. 

Furthermore, VU e g:(E) since g:(E) is a bi-ideal of .:f(E). 
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Finally we show that (VU)x = x for all x e F. 
n 

(VU)xi = 1t(Uxi) + ~=l<8it,Uxi>(,c - ll,c) = Uxi + (xCUxi) = xi for each 

i=l, ••. ,n. Since {x
1

, ••• ,xn} is a basis of F, the result follows by 

the linearity of VU. 

Consequently A:= VU satisfies the desired conditions. • 

Lemma 2.40 
>.. 

If (A.) e l 1 , there exists (a.) e c 0 such that (--=..) e e1 • 
l. l. u. 

l. 

Since for each n e IN we can find i etN with n 

i 0 = O, in> in-l such that 

Put a.:= ~ for all 
1. 

2
n-i 

Clearly (a.) e c 0 and 
l. 

i < i ~ in, n-1 n e ft\l. 

00 00 il 

~ 4=1 l"'il + 4=1 2
n 4=i +1 

n 
il 00 

1 
~ 4=1 l"'i I + 4=1 2n 

< 00 

Hence, 
>... 
(-1. > e E l • a. • 

l. 

Proposition 2.41 

11\I 

If E has the approximation property, then tr:Y:(E) -+ c is continuous 

with respect to the nuclear norm u. 
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m 
Let T = ~=l °k ~ ~ be any finite representation of T e !F(E), and 

E. > 0 be given. Choose a nuclear representation 

that 

Consider any L e Y: ( E) , 

Ila. IIIIX. II ~ v(T) + E.. 
1 1 

say L = 
n 

"\ b.®y .• 
Lj=l J J 

T = 

Then 

n 
TL = "\ b . 8 Ty . and since b . is continuous Lj=l J J J 

tr (TL) = '\ n <b . , Ty . > = '\ n {b . [ \ 
00 

<a. , y . >x. ] ) 
Lj=l J J Lj=l J 4=1 1 J 1 

n oo 

= "\ \ <a. , y . > <b . , x. > 
Lj=l 4=1 1 J J 1 

oo n 
= \ ~ <b . , x. ><a. , y . > 

½.=1 Lj=l J 1 1 J 
oo n 

= \ (a. , "\ <b . , x. >y ·) 4:1 1 Lj=l J 1 / J 

= <a. ,Lx. >. 
1 1 

Similarly tr(TL) = \ m <ck,Lzk>. 
4=1 

Since (lla.llllx.11) e f. 1 , there exists (a.) e c 0 such that 
1 1 1 

[
Ila. llllx.11] 

1 1 n 
E C 1 a.. 

1 

by Lenuna 2.40, say 
Ila. llllx.11 

1 1 

a. 
1 

= M. Let 

a. 8 x. 
1 1 

such 

and K .-nK, ne(N. 
n o Since K 

0 

is a sequence in E converging to zero, K 
0 

is compact, hence K n is 

compact, n eJN. Since E has the approximation property, for each n elN 

we can find L e Y:-(E) such that n 

llx - L xii~ 1 for all x e K. 
n n 

In particular, 

II nai - L [ nai x. ) II ~ 1 and 
llx. II xi n IIX. II 1 

1 1 

for all i,n e [N, k=l, ... ,m. 
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Therefore, 

j\ 
00 

<a. ,x. > - tr(TL ) I = 4=l 1 1 n 
<a. ,x. > 

1 1 

Consequently, lim tr(TL) n 
n~ 

from which it follows that 

Thus, 

= 14:1 
= 14:1 

<a. ,x. - L x. > I 
1 1 n 1 

llx.11 na. 
1 1 

na. {ai' llx. II xi 
1 1 

400 llxi II II nai 
~ -- Ila.II --X. 

1 
na. 1 nx.11 1 

: 1 1 

1 400 llx . II Ila • II 
( _ 1 1 

- n . =1 ai 
1 =-M n 

00 

= \ <a. ,x. > 
4:1 1 1 

and 

00 

tr(T) = \ <a. ,x. >. 
4=1 1 1 

00 00 

<a. ,L x. > I 
1 n 1 

jtr(T) I = I \ <a. ,x.> I ~ \ Ila. llllx.11 ~ v(T) + e.. 4=1 1 1 4=1 1 1 

Since e. > 0 is arbitrary it follows that 

!tr(T) I ~ v(T). • 

Corollary 2.42 

If E has the approximation property and 
00 00 

T = \ a. ® x., 
4=1 1 1 

\ Ila. llllx.11 < oo is any nuclear operator on E, then 
4=1 1 1 

<a. ,x. > 
1 1 

is independent of the specific representation of T. 
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Proof 

Since tr:Y:(E) --+ C is continuous with respect to the v-norm, it can 

uniquely be extended to H( E) • 

® x. 
1 

be any nuclear representation. Then 

tr(T) = 
n n 

tr ( lim \ a. e x. ) = lim tr ( \ a. e x. ) 
n...,.oo 4=1 1 1 n...,.oo 4=1 1 1 

Definition 2.43 

<a. ,x. >. 
1 1 

a 

If E has the approximation property, we call the unique extension of 

trace to H(E) also the trace. 

Finally we want to prove that the spectrum of a nuclear operator U is 

countable (perhaps finite), and can accumulate only in the origin. We 

first show that the set of eigenvalues of U equals the spectrum of U. 

Lemma 2.44 

Let U e N(E,F). If F is a Banach spa.ce, then U e <e(E,F). 

Proof 

The result follows directly by the fact that !F(E,F) C <e(E,F)' 

H(E,F) c Y:(E,F) and <e(E,F) is closed in ~(E,F) (cf [6], Theorem 

8 .1-5). • 

Lenma. 2.45 ([7], p 86) 

Let X be a normed space. If Z c: X is a finite dimensional closed 

subspace of X, then there exists a closed subspace Y of X such that 

X = Y + z and Y n z = {O}. 

Let IIZ. II = 1, 
1 

By Lemma 2.38 there exists a 1 , ..• ,an ex* such that 

<a., z .> = ~- .• 
1 J 1J 

Let Y:= 
n 
n 

i=l 
N(a.) = 

1 

n 
n 

i=l 

-1 a. ( 0) • 
1 

i=l, ... ,n. 

Then Y is closed, since each a. 
1 

is continuous and Y n Z = {0} since 
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is a basis for Z and <a. ,z .> = 6. . • Also, if x e X, then 
l. J l.J 

n 
z:= \ <a.,x>z. e Z and (x - z) e Y. Thus X = Y + z. 4:1 l. l. 

a 

Leunna 2.46 ([7], p 146) 

Let X be a normed spa.ce, Te !t!(X) and Y,Z c: X closed subsapces of X 

such that Z j Y and (T - I)(Y) c: z. Then there exists ye Y such that 

1 llyll = 1 and IITy - Tz II ~ '2" V- z e Z. 

Proof 

By the Riesz lemna ( cf [ 6], Theorem 2. 5-4) we can find y e Y such that 

llyll = 1 and 

Let B:= T - I. 

inf ~ 1 
zeZlly - ZII ~ '2" • 

Then for any z e z, (z + Bz - By)= (Tz - By) e Z since B(Y) c: z. 

Hence, 

IITy - Tzll inf ~ 1 
= lly - ( z + Bz - By) II ~ zeZ lly - zll ~ '2" I 

Lemma 2.47 ([7], p 147) 

If Te ~(X), then 

a 

(a) N(T - I)= {x e X:(T - I)x = O} is finite dimensional and (T - I)(X) 

is closed in X. 

(b) (T - I) is one to one iff it is onto. 

Proof 

Let B:= T - I. 

(a) Let, if possible, {x. :i=l,2, ... } be an infinite linearly independent 
l. 

subset of N(B) and let Y : = spa.n{x1, ... ,x } c N(B) for each n e IN. 
n n -

Then, being finite dimensional, each Y is a closed subspace of X. 
n 

Clearly, for each n e IN 

yn j yn+l and B(Yn+l) = {O} =. yn 

By Lenuna. 2.46 there exists a sequence (yn) in X such that 

lly II= 1 and IITy - Ty 11 > ~ for n,m=l,2, ... , n n m - ~ 
n > m. 

This contradicts the compactness of T. 

Hence, N(B) is a finite dimensional closed subset of X. By Lemma 2.45, 

there exists a closed subspace Y c: X such that 

X = Y + N(B) and Y n N(B) = {O}. 
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Let A:= Bly• 
N(B) n Y = {O}. 

Then A(Y) = B(X) and moreover, A is one to one, since 

We prove that A(Y) is closed in X. 

Let be a sequence in Y such that Ay: --+ x e X. 
n 

First we show that (yn) is bol.ll1d.ed. For, if it is not, we can assume, by 

passing to a subsequence of ( y n) , 

Let 
Yn 

zn:= iiyTi . 
n 

Then IIZ II= 1 n 

that lly 11 --+ co. 
n 

for each n e N and Az --+ O. n Since T 

is compact and ( z ) is a bol.ll1d.ed sequence in Y, there exists a subse-n 

quence (z ) such that Tz --+ z E X (cf [6], Theorem 8.1-3) Now, n. n. 
J J 

z = Tz - Az --+ z - 0 = z and since Y is closed, z E Y. Hence, n. n. n. 
J J J 

Az n. --+ Az which implies that Az = O, and A being one to one we see 
J 

that z = o. But this is impossible since llz II = 1 for j=l,2,... and n. 

z --+ z. n. 
J 

J 

Thus, for the bounded sequence (yn) there exists a subsequence (yn.) in 
J 

Y such that Ty --+ y e X since T is compact. As before, n. 
J 

Yn. = Ty - Ay_ -+ (y - x) E Y since Y is closed. n. n. 
J J J 

Hence, Ay_ --+ A(y - x) since A is continuous and consequently n. 
J 

x = A( y - x) e A(Y). 

We have thus proved that A(Y) = B(X) is closed in X. 

(b) Consider the following chains of subspaces of X: 
2 n n+l N(B) C N(B) C ••• C N(B) C N(B ) C 

and c Bn+l(X) c Bn(X) c ••. c B2(X) c B(X). 

Note that N(efl) = (efl)-1 (0) is closed since ef1 is continuous for each 

n e IN. We show that Bn(X) 

For any even n e[N, I - Tf1 
is closed as well, for each 

= I - (T I)n and 

n e IN. 

for any odd n E IN, I+ Bn =I+ (T - I)n are polynomials in T with no 

term of degree zero. 
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Hence, for each n e IN, either ( I - Bn) or ( I + Bn) is compact and by 

using (a) above it follows that Bn(X) is closed for all n e IN. 

Furthermore, B[N(~+l)] c N(~) and B[~(X)] = ~+l(X) for all n e IN. 

Now, since T is compact, Lemma 2.46 shows that not all the inclusions in 

either of the two chains above can be proper; otherwise a sequence ( y n) 

in X would exist such that lly II = 1 and 
n 

n,m=2,3, .•. , n>m. Thus, we can find n 0 ,m0 e IN such that 

n 0 n 0 +l m0 +1 m0 

N(B ) = N(B ) and B (X) = B (X). 
m0 +l m0 

Now, let B be one to one. We have B (X) ::> B (X). 

m0 m0 -1 
We show that B (X) ::> B (X). 

m0 -l m0 m0 +l 
Let y e B (X). Then Bye B (X) = B (X) which implies 

mo 
By= B(B x) for some XE X. Since B is one to one, 

mo mo 
y = B x e B (X) • Proceeding in this manner we see that 

m0 + 1 m0 m0 -l 
B (X) ::> B (X) ::> B (X) ::> ••• ::> B(X) ::> X, 

i.e. B is onto. 
n 0 +1 n 0 

Conversely, let B be onto. We have N(B ) c N(B ) . 

n 0 n 0 -l 
We show that N(B ) c N(B ) • 

no 
Let ye N(B ) c X. There exists xeX with 

n 0 +1 n 0 n 0 -1 n 0 

x e N(B ) c N(B ). Hence B y = B x = 0, i.e. 

Again proceeding in this manner we see that 
n 0 +1 n 0 n 0 -l 

y = Bx. 

n 0-l 
ye N(B ). 

N(B ) c N(B ) c N(B ) c ••. c N(B) c {0}, 

i.e. B is one to one since {0} c N(B). • 

Proposition 2.48 

If X is a Banach space and Te H(X), then o(T)\{0} = e(T)\{0}. 

Proof 

Then 

Clearly Te ~(X). Let 0 ~ A e a(T). Since (T - AI)= A(!_ - I) is not 
A 

invertible, it is either not one to one or not onto. Since !. e ~(X), it 
A 
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follows from Lemma 2.47(b) that (T - AI) is not onto iff it is not one to 

one. H~nce, A e e(T), i.e. o(T)\{0} c e(T)\{O}. 

Consequently, o(T)\{O} = e(T)\{O}. • 

Proposition 2.49 

If U e H(E), then the spectrum of U is either finite or countable, with 

zero the only point of accumulation. 

Proof 

Let U be a nuclear operator. If U is of finite rank, it follows by 

Proposition 2.16 that o(u) is finite. If U is not of finite rank, then 

each non-zero spectral value of U is an eigenvalue. First we show that 

for every ~ > O, at most a finite ntunber of eigenvalues lie outside ~(c) 1. 

Supp:>se the contrary holds for some 5 > O, i.e. there exists at least a 

cotmtable number of different eigenvalues {A1, >. 2 , .•• } such that l>.n I ~ 5 

for all n e IN. Also for each n e IN, there exists an eigenvector x ~ 0 
n 

with Ux = >. x and the set {x. : i e IN} is linearly independent ( cf [ 6] , n n n 1 

Theorem 7.4-3). For each n e N, let M = span{x1, .•. ,x }. n n 

Then every x e M has a tmique representation 
n 

x = a 1x1 + ••• + anxn. 

Since Ux. = A.x. it follows that 
J J J 

(U-AnI)x = a 1(Al-An)x 1 + ••• + an-l(An-l-An)xn-l 

which implies that 

(U->. I)x e M l for all x e M. n ~ n 

Since each M is closed (cf [6], Theorem 2.4-3) it follows by Lemma 2.46 n 

that there exists a sequence (yn) 

for all x e M 1. We show that n-

with y e M , 
n n 

1 
IIUyn - Uymll ~ Z° 6 

lly II = 1, n 

for all 

implies that (Uy) 
n has no convergent subsequence. Since 

n > m which 

is 

botmded, this would contradict the compactness of U ( cf [ 6] , Theorem 

8.1-3) and therefore the fact that U is nuclear. 
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Let x: = A y - Uy - Uy +Uy. Then Uy - Uy = A y - x. nn n n m n m nn 

Let m < n. 

Ux. = 'A .x .. 
J J J 

ThenyeMcM
1 m m - n-

which implies that Uy e M l m n- since 

Consequently, for each n e IN there exists at most a finite mmiber 'A. 
1 

for which !Ai I ~ n. Now, for each n e IN, let 

A : = {A. : I A. I > n} n 1 1 -

Clearly both sets are countable and consequently 
00 00 

( U A ) U ( U B ) 
n=l n n=l n 

is countable which implies that U has at most a countable mmiber of 

eigenvalues. 

Now, let e. > 0 be given and consider A:= {'An e o(T): I An I ~ e.}. If we 

rearrange the set of eigenvalues in decreasing order, considering the 

absolute value of each eigenvalue, and asstDile A to contain m0 elements, 

then 

1 "n I < e. for all n ~ m0 + 1. 

Since e. > 0 is arbitrary it follows that 'A ~ o. n • 

 
 
 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2022

- 31 -

3. ONE-DIMENSIONAL ELEMENTS 

This chapter is devoted to a study of one-dimensional elements in a Banach 

algebra. The trace of such an element is also introduced. In Proposition 

3. 26 it is shown that the spectrum of a one-dimensional element u con­

sists only of zero and the trace of u. We also prove in Proposition 3.18 

that there exists a tmique correspondence between the one-dimensional 

elements and the minimal left ideals. 

As was mentioned, K Vala [ 14] called an element O '# u e Al one-dimen­

sional if the wedge operator uAu: .m • .m: x • uxu is of rank one. This 

definition is motivated by Theorem 2. 9. We now turn to the definition 

given by J. Puhl [10) which generalises Corollary 2.10. 

Definition 3.1 

Let m be a Banach algebra. An element 0 ~ u e At is one-dimensional if 

there exists a non-zero functional r :.m ....... c such that uxu = <r ,x>u 
u u 

for all x em. We write u e ~,. 

Most of the results proved in the rest of the paper, require that the 

Banach algebra At possesses a certain property, introduced in the next 

definition. 

Definition 3.2 

An algebra m is semi-prime if {0} is the only bi-ideal J of m with 
2 J = {O}. 

Before proving a condition which is equivalent for Al to be semi-prime, 

the following lemmas: 

Lemma 3.3 

If u E Al 

J 
u 

is fixed such that uxu = 0 for all x em, then 
n 

{ \ ( A • u+a . u+ub . +c . ud . ) : >. • e c, a . , b . , c . , d. e At; n e IN} 4=1 1 1 1 1 1 1 1 1 1 1 

is the bi-ideal generated by u. 
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Proof 

First we show that J is a subalgebra.. Let 
u 

X: 

n 
\ (A.u+a.u+ub.+c.ud.) 4:1 1 1 1 1 1 

and Y = \m 
Lj=l 

(a.u+e.u+uf .+m.un.) 
J J J J J 

be any two elements of J . u 
Then by assumption 

xy = \n \mA.a.u2 +\ \A.ue.u+\ \A.u2f.+\ \A.uni.un. 
4=1 Lj=l i J 4 Lj i J 4 Lj i J 4 Lj i J J 

+ \ \ a.a.u 2 + \ \ a.ue.u + \ \ a.u 2 f. + \ \ a.um.un. 4 Lj J 1 4 Lj 1 J 4 Lj 1 J 4 Lj 1 J J 

+ 4 \a.ub.u + 4 'ub.e.u + 4 'ub.uf. + 4'ub.m.un . . L- J 1 . L- 1 J . L- 1 J -L- 1 J J 
J J J J 

+ 4 \ a .c.ud.u + 4 \ c.ud.e .u + 4 \ c.ud.uf. + 4 \ c.ud.m .un. . L- J 1 1 . L- 1 1 J . L- 1 1 J . L- 1 1 J J 
J J J J 

= 4 \ (A .a .u)u + 4 \ (A .u)u(f .) + 4 \ (a .a.u)u + 4 \ (a.u)u(f .) L- 1 J . L- 1 J . L- J 1 . L· 1 J 
J J J J 

= \ \ [(A.a.u)u + (A.u)u(f .) + (a.a.u)u + (a.u)u(f .)] 4 Lj 1 J 1 J J 1 1 J 

from which it is clear that xy e J. Furthermore, if .., e C then clearly 
u 

(X+#fy) e J. 
u 

Finally, if m E ~ and x e J as defined above, then u 
n 

mx = \ [( A .m)u + (ma. )u + rnub. + (me. )ud.] e J and similarly xm e J . 4=1 1 1 1 1 1 u u 

Lemma 3.4 

If the conditions of Le11U11a 3.3 are satisfied, then J3 = {0}. 
u 

n m 
If x = \ (A. u+a.u+ub.+c.ud.), y = \ (a .u+e .u+uf .+m .un.) and 4=1 1 1 1 1 1 Lj=l J J J J J 

p 
z = \ ('Yku+rku+u~+vkuwk) e J it can easily be shown that xyz = O, 4:1 u 

by using the fact that uxu = 0 for x em. • 

• 
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is the ideal generated by J 2 • 
u 

It directly follows that is a suba.lgebra as well as a linear 

subspace of At, 

Furthermore, if 

n 

since J is. 
u 

n 
X = \ j.k. 

4:1 l. 1 
and me At, 

mx = \ mj.k. e J-(f) 4:1 1 l. u 
since mj. e J. 

l. u 

Lemma 3.6 

Let At be a semi-prime Banach algebra. 

If :f1 = {0} for any n > 2, then J = {0}. u u 

Proof 

then 

• 

Without loss of generality we prove it for n = 3, since the result will 

then follow by using induction. 
n m 

Consider any x = \ j .k., y = \ aebt e J-(J~). 4.:1 l. l. 4:1 
Then since J3 = {0} it follows that u 

1:1 
m 

0 = ~=1 jikiatbt 

which implies J-(J2) = {0}. Consequently, u 

= xy e J-(J2) 
u 

J2 C J,(J2) = 
U- u {O}. 

Since At is semi-prime, it necessarily follows that J = {O}. D u 

Prooosition 3.7 ([10], p 657) 

At is semi-prime if and only if the following holds: 

If uxu = 0 for all x e At, then u = O. 

Proof 

Let uxu = 0 for all x e A1 implies that u = O. Suppose there exists a 

non-zero bi-ideal J with J 2 = {0}. Then we can find O ~ u e J and by 

asstm1ption there exists x 0 e .,11 with ux 0 u '# 0, which contradicts the 

fact that ? = {0}, since A1J c J. Therefore .m is semi-prime. 
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Conversely, asstm1e At to be semi-prime and uxu = 0 for all x e Al. Let 
n 

J : = { \ ( A • u+a. u+ub. +c. ud. ) : A • e C and a. , b. , c. , d. e Al} • 
u 4:1 l. l. l. l. l. l. l. l. l. l. 

The result then follows by Lemma 3 • 3 , Lemma. 3. 4 and Lemma 3 • 6 • a 

Lemma. 3.8 

Let Al be semi-prime. 

(a) If u,v e g:1 with UV '# 0, then UV e g: i. 

(b) If u e "'1 and a E C with au '# o, then au e g: 1. 

(c) If u e Y:1 and x,y e Al with ux '# 0, yu '# 0, then ux,yu e Y: 1 • 

Proof 

(a) Let u,v e g: 1 • Then for all x e Al we have uvxuv = <r ,vx>uv. u 

Define r on Al by <r ,x>:= <r ,vx>. 
UV UV U 

Clearly r is linear and for all x e Al 
UV 

l<ruv,x>I ~ 11ru1111vx11 ~ 11ru1111v1111x11 which implies that nr 11 ~ 11r 1111v11. 
UV U 

We now show that r ~ O. 
UV 

Since uv '# 0 it follows by Proposition 3.7 that there exists x 0 e At with 

0 ~ uvx 0uv = <r ,vx0 >uv =: <r ,x0 >uv. Hence uv e g: 1 • 
U UV 

(b) Let u e Y: 1 and a e c such that au~ O. Then 

auxau = <r ,ax>au for all x e At. 
u 

Let r be defined by <r ,x> := <r ,ax>. au au u 

Then we can find Yoe At with 

0 '# auyoau = <r ,ay0 >au = <r ,y0 >au which implies <r ,Yo>'# 0. u au au 

Clearly r is also linear and bounded. 
au 

(c) Let u e Y: 1 and x,y e At such that ux '# 0 and yu '# 0. The result 

then follows directly by defining the functionals r 
ux 

<r ,m>:=<r ,xm>, <r ,m>:= <r ,my> 
ux u yu u 

respectively. • 

and r 
yu on Al by 
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The following lemma is needed to define the concept of the trace of a 

one-dimensional element in a semi-prime Banach algebra. 

Lemma 3.9 

Suppose .m to be semi-prime and let u e Y 1 • Then there exists a unique 

a e c such that u 2 =au. u u 

Proof 

If u 2 = O, everything is clear (choose 

If u 2 ¢ O, then by Lemma 3.8 

a = 0). u 

for all x e .m. 

By Proposition 3. 7 we can choose x 0 e At such that u 2x 0 u 2 ¢ 0. Then 

<r 2 ,x0 > ¢ 0. Consequently, 
u 

0 ¢ <r 2 ,xo>u 2 

u 

Therefore we choose 

Remark 3.10 

u2 = 

a u = <r ,uxo> u 

which implies that 

<r ,uxou> u 
.... (T...,,.__,UX __ o.->- U 

u 

It is clear that a u is unique. • 

Let At have an identity and be semi-prime. If u e ~ 1 then a = <r ,1>. u u 

Definition 3.11 

Let .m be a semi-prime Banach algebra. 

If u e Y 1 , the trace of u is defined by u 2 = tr(u)u. 

Proposition 3.12 ([10], p 657) 

If .m is semi-prime and commutative, 

there exists a non-zero functional au 

then 

on At 

0 ¢ u e '1 1 

such that 

ux = <a ,x>u for all x e At. u 

Proof 

if and only if 

By definition there exists a non-zero functional r on .m with 
u 

<r ,x>u = uxu = u 2x = tr(u)ux for all x e At. u 

Since .m is semi-prime there exists x 0 e .m such that 

0 ¢ ux 0 u = tr(u)ux 0 which implies that tr(u) ¢ 0. The result now follows 

directly by defining 1 <a ,x>:= t ( )<r ,x>, x e At, u r u u • 
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Definition 3.13 

An element u e Al is minimal idempotent if u 'F- 0 is idempotent such that 

umu is a division algebra. 

Theorem 3.14 ([3], p 157) 

If u e Al is minimal idempotent then u e ~ 1 • 

Proof 

Clearly u 'F- 0 and since wtu is a division Banach Algebra, by Gelfand 

Mazur there exists a unique surjective isometric algebra isomorphism 

4P:umu • c:uxu • A with A the only element in the spectnun of uxu. 
uxu uxu 

Clearly u is the identity of uAtu and consequently (uxu-A u) 
uxu 

is not 

invertible in umu from which it follows that uxu = A u. If we define uxu 

r on At by <r ,x>: = A it is clear that r ~ 0 is linear and u u uxu u 

brnmded, since o(uxu) is non-empty and bounded. a 

Definition 3.15 

A minimal left ideal of At is a left ideal J 'F- {0} such that {0} and 

J are the only left ideals contained in J. 

We are now going to prove that the one-dimensional elements and the minimal 

left ideals are in one to one correspondence. 

Lemma 3.16 

Let A be an algebra with identity e. If every element x 'F- 0 of A 

has a left inverse, i.e. there exists ye A with yx = e, then A is a 

division algebra. 

Proof 

Consider 

x and y 

any 0 '#- x e A. Then we 

respectively with yx = 
zyx = ex = 
ze = x, 

can find left inverses 0 '#- y,z e A for 

e, zy = e. Consequently 

X which implies 

i.e. z = x. 

From this it follows that xy = zy ... e which shows that y is also a 

right inverse of x. a 
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Lemma 3.17 ([11], p 45) 

If J is a minimal left ideal of Al with ;j, # {O}, then J contains a 

minimal idempotent u such that J = .mu. 

Proof 

We first consider a tmital algebra. 

By assumption, there exists 0 ¢ x 0 e J with Jx 0 # {0} a left ideal 

contained in J. Since J is minimal it follows that Jx 0 = J. 

Therefore we can find an element 0 ¢ u e J with ux 0 = x 0 

Furthermore, J(u-1) is also a left ideal contained in J and consequent­

ly either J ( u-1 ) = { 0} or J ( u-1 ) = J. If J ( u-1 ) = J, there exists 

a e J with au-a= u which gives the contradiction 

x 0 = ux0 = aux0 -ax0 = 0. Consequently, J(u-1) = {0} which shows that u 

is idempotent. 

We still have to prove that u is minimal. 

Clearly uA1u is a subalgebra of Al. Let 0 # umu e uA1u be any non-zero 

element, with me Al. Then 

0 # umu = u(umu) e Ju.mu c J.mu c J 

from which it follows that JuAIU = J. Choose be J such that bumu = u. 

Then 

u = u 2 = ubumu = (ubu) (umu) which implies that 

ubu is a left inverse of umu since u is the identity of 

UAlu. It follows by Lemma 3.16 that UAlu is a division algebra. 

Clearly .mu= J, since if .mu= {0} we get the contradiction u = u 2 = 0. 

If Al does not have an identity we consider All = { (x,A) :x e .m, A e C} 

with identity ( 0, 1) . Let J • = { ( x, 0) : x e J} denote the ideal imbedd.ed 

in All • If Jc Al is a minimal left ideal in Al with J 2 
# {0}, then 

J• is a minimal left ideal in All with (J•) 2 
# {0}. Thus by the first 

pa.rt of the proof there exists a minimal idempotent (u,0) e J• such that 

J• = m1 (u,0). It remains to show that J = .mu with u minimal 

idempotent. Since (u,0) 2 = (u,0) it follows that u 2 = u. 

Furthennore we show that uAtu is a division algebra, i.e. umu = cu. 
Since (u,0)~1(u,0) = C(u,0) it follows that if uxu e UJ1tu then 

(uxu,0) = (u,0)(x,0)(u,0) e (u,0)At1 (u,0) = C(u,0). 
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Hence uxu e cu and therefore u.mu c cu. 

Clearly the converse also holds, since if Aue cu, then 

Au= u(Au)u e uAtu. 

Finally, since u e J, Alu c J (J is a left ideal in ~). 

Conversely, if x e J, then ( x, 0) e J • which implies that 

( x, O) = ( y, A ) ( u, 0) since J' = .All ( u, 0) • 

Thus (x,O) = (yu + Au,O), i.e. x = yu +Au= (y+Au)u e AIU. 

Hence J = .mu. • 

Promstion 3.18 ([10], p 658) 

Let At be semi-prime. 

(a) If J is a minimal left ideal, then J contains a minimal idem'f)Otent 

u such that J = Alu. 

(b) If u e g- 1 , then J•-.- Alu is a minimal left ideal. 

Proof 

(a) It follows directly from Lemma 3 .17, since J ¢ {0} 

semi-prime. 

(b) Clearly J is a left ideal since AtJ c J. 

and At is 

Now let { 0} ¢ I c J be a non-zero ideal contained in J. Then we can 

find O ¢ z e I c Alu which implies that there exists z 0 e At such that 

0 '# Z: z 0u. 

Since At is semi-prime we can choose Yoe At such that 

0 '# z 0uy0 z 0u = <r ,y0 z 0 >z 0 u from which it follows that <r ,y0 z 0 > '# 0. u u 

Now consider any x e At with xu e J. Then 

<r ,YoZo>xu = x<r ,YoZo>u = XllYoZoU u u 

from which it follows that xu = 
XUYo 

......-----z EI <r ,YoZo> u 

since I is a left ideal. This yields I= J. • 

Remark 3.19 

The above proposition can also be proved for minimal right ideals if At is 

semi-prime, i.e. 

(a) If J is a minimal right ideal, then J contains a minimal 

idem'f)Otent u such that J = uAt. 

(b) If u e ~ 1 , then lLfl is a minimal right ideal. 

 
 
 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2022

- 39 -

Example 3.20 ([9], p 658) 

Let K be a disconnected completely regular Hausdorff spa.ce and consider 

the Banach algebra of all complex valued bounded continuous function on K, 

denoted by %(K) with the surpremum norm. Then the one-dimensional 

elements are of the form 

ft. (t) = { :f 
for t = t 0 

otherwise 

is fixed and t 0 e K is an isolated point of K. 

Proof 

Let f e % (K) be one-dimensional. Then by Lemma 3. 9 and Remark 3. 10 

[f(t)] 2 = aff(t) for each t e K 

which implies that either f(t) = af ~ 0 or f(t) = 0 for each t e K. 

We show that there exists exactly one t 0 e K for which f(t 0 ) = af and 

f(t) = O, t ~ t 0 • Suppose there exist t 0 ~ t 1 with f(t 0 ) = f(t 1 ) = af. 

Since K 

g:K-+ [0, 1] 

is completely regular we can find a 

such that g ( t O ) = 1 , g ( t 1 ) = 0. Then 

But since 

af = <rf,g> from which we get a contradiction 

(fgf)(t 1 ) = <rf,g>f(t 1 ) = af ~ O. 

continuous ftmction 

(fgf)(t 0 ) = af and 

we have 

Hence, the one-dimensional elements of Cb(-K) are of the form defined 

above. a 

Next we show that the two different definitions of a one-dimensional 

element, given by K Vala and J Puhl respectively, match, after giving a 

lemma. 

Lemma 3.21 ([10), p 659) 

Let At be semi-prime 

If u e .At is a given non-zero element of At such that dim(uAlu) < oo, 
there exists a minimal idempotent p e .mu(resp u~). 
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Proof 

We can find O '¢ v e umu 

First we show that for any 

such that 

such that dim(v.mv) is as small as possible. 

y e Al with vyv '¢ 0, there exists z e Al 

v = vzvyv. 

Let ye Al with vyv ~ O. Then vyvAtvyv c v.mv, but since the dimension 

of vAlv is as small as possible and vyvAtvyv ~ {O} by Proposition 3.7 it 

follows that 

vyvJttvyv = v.mv. 

Consequently, there exists z e Al with 

vyvzvyv = vyv 

which implies that 

(vzvyv-v)At(vzvyv-v) c vAtv. 

(3.1) 

(3.2) 

Equality is impossible, since by (3.1) and (3.2) it would imply the false 

assertion 

{O} = vy[ (vzvyv - v)Al(vzvyv - v) ]yv = vyv./ftvyv = v.Atv 

Consequently, 

(vzvyv - v)At(vzvyv - v) = {0} 

and since m is semi-prime, it follows that v = vzvyv. 

By using this we show that Alv is a minimal left ideal and the result then 

follows by Proposition 3.18. 

Consider any left ideal {0} ~Jc .t1tv contained in Atv. We can find 

0 ~Yoe J such that Yo= mv with me m . . Since Al is semi-prime, 

there exists x 0 e Al such that y 0 x 0 y 0 ¢ 0. This implies that 

0 '¢ v(x 0m)v e vAtv, hence we can choose z e Al such that 

V = VZVXornv• 

Consequently, 

AIV: .1'1Vzvx Omv = .t1tvzvx 0 y O C Aty O CJ. 

Thus, there is a minimal idempotent p e .t1tv c .mu.. • 
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The following theorem proves that the two different definitions of a 

one-dimensional element, given by Vala and Puhl respectively, match. 

Theorem 3.22 ([10], p 660) 

If .m ls semi-prime and O ¢ u e .m is given, then u e Y 1 if and only if 

uAu:x --+ uxu is of rank one. 

Proof 

If u e '!f 1, it follows directly that ullu is of rank one, since O ¢ u 
Xo 

can be written as u = u <r ,xo> u e ~ by Proposition 3.7. 
u 

Conversely, if Ullu is of rank one, there exists a minimal idempotent 

p e Alu, say p = mu with m e .m. Then 

(u-up).m(u-up) c ~ 

Equality is impossible since it would imply the false assertion 

{0} = (u-up).m(u-up)p = umup = u.mumu = umu. 

The last equality follows since u,ttumu c umu and umumu '# {0} by the fact 

that .m is semi-prime. 

Consequently, by the one-dimensionality of umu it follows that 

(u - up).m(u-up) = {O}. 

Since .m is semi-prime we have O '# u = up. It follows by Lemma 3.8(c) 

that up e 'fF 1 , since p e 'fF 1 • Hence u e 'fF 1 • a 

Finally we show that the spectrum of a one-dimensional element contains 

only two elements. 

Definition 3.23 

Let x,y e .m. The quasi-product of x and y is defined by 

xoy = x + y - xy. 

We say that x is quasi-invertible if there exists z e Al such that 

xoz = zox = 0 and z is then called the quasi-inverse of x. 

Definition 3.24 

If .m has an identity, the spectrum of x e .m is defined by 

a.m(x):= {A e c:(x-Al) is not invertible in At} 

and if ,11 does not hat'e an identity, it is defined b}' 

o.m(x):= {0}U{A ~ 0: ~ is not quasi-invertible in .m}. 

We define the spectral radius of x by r~(x):= sup{ jAj:A e o (x)}. 
JII )fl 
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Proposition 3.25 ((10], p 658) 

Let At be semi-prime with dim(At) -~ 2. If u e Y: 1 then 

aAt(u) = {O,tr(u)}. 

Proof 

If At does not have an identity, then clearly O e aAt(u). 

If Al has an identity and we suppose that O E a(u), then u-l exists in 

.11. We show that UAtu = At which contradicts the fact that dim(u.mu) = 1. 

Choose any x E At 

Furthermore, 

-1 -1 and consider y = u xu • Then x = uyu e u.mu. 

if O '# A E aAt(u), then we can find a quasi-inverse ye At 

u tr(u) tr(u) 
such that O = u(- o y) = -- u - (-- - l)uy 

A A A 

which implies that A'# tr(u). 

On the other hand, if A'# 0 and A'# tr(u), then 
u u u u 
A O tr(u) - A= tr(u) - A

O A= O 

which implies that A E a.At(u). • 
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4. FINITE ELEMENTS 

In this chapter we define finite elements in a Banach algebra, in the sense 

of J. Puhl [10], and in Theorem 4.22 it is shown how this coincides with 

the definition given by Vala [14]. We also prove in Proposition 4.20 that 

the spectrum of a finite element is finite. 

Definition 4.1 

An element u e Al is finite if u = 0 or u = \n u
1
., u

1
. e ~1 • 

4=1 
We write u e ~. 

Proposition 4.2 

Let Al be a semi-prime Banach algebra. ~ is a bi-ideal of Al. 

Proof 

Consider any u = 4:
1 

ui, v = 2j:l vj e Y, a e C and m e Al. Then 

n m 

= 1:1 UV = 4=1 2j=l 
u.v ., au aui' l. J 

4n u.m n 
um = and mu= 4 mu .. 

=1 l. . =1 l. 

If u.v. = au. = u.m = mu. = 0 for all i=l, .•. ,n and j=l, .•• ,m there 
l.J l. l. l. 

is nothing to prove, since it is clear that u+v e Y. If some i and j 

exist such that u.v. ~ 0, au. ~ 0, mu. ~ 0 and u.m ~ 0, then it fol-
l. J l. l. l. 

lows by Lemma 3. 8 that uv, au, um and mu e g:. • 

Definition 4.3 

If Al has minimal left ideals, the smallest left ideal containing all of 

them is called the left socle of At, denoted by Soce(m). The right socle 

is similarly defined in terms of right ideals, denoted by Soc (At). 
r If Al 

has both minimal left and minimal right ideals, and if the left socle co­

incides with the right socle, it is called the socle of At, denoted by 

Soc(AI). 
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Before proving that the socle of At coincides with the class of finite 

elements of Al, we prove that the socle of a semi-prime algebra always 

exists. 

Lemma 4.4 ([3], p 155) 

Let At be any algebra. If 

then either Jx = {0} or Jx 

J is a minimal left ideal of Al and x e At, 

is a minimal left ideal. 

Proof 

Suppose that Jx '# {0} and I is a left ideal with {0} ~ I c Jx. 

Define H:= {a e J:ax e I}. 

Then H '# { 0} , since if this were not true we would have had the contra­

diction Jx = { 0} • Clearly H is a left ideal contained in J, and by 

the mini-mality of J we have H = J. This implies that Jx c I which 

proves that Jx is a minimal left ideal. • 

Lemma 4.5 

Let {J} be the set of all minimal left ideals of Al. Then 
a 

Proof 

Clearly 

u 
Socn(At) = span{ J} • 

c a a 

span {u J } is a left ideal containing all 
a a J 

a 
which directly 

implies that Soon (.m) C span {u J } • The converse is also true since 
c - a a 

Soct(At) is a linear subspace. • 

Lemma 4.6 ([3], p 156) 

If Al is any algebra possessing minimal left ideals, then SocR.(At) is a 

bi-ideal. 

Proof 

Let J 1, ••. ,Jn be minimal left ideals and consider any x e At. By Lemma 

4.4 it follows for i=l, •.• ,n that either 

J.x = {0} or J.x is a minimal left ideal. 
1 1 

Then clearly 

J . X C Soc n (Al) 
1 - C 
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irrespective whether J.x = {0} 
l. 

for all i or J .x '¢ {0} 
J 

for some j. 

Since by Lemma 4.5 each element of Soct(.m)x 

follows that 

Prooosition 4.7 ([3], p 156) 

n 
is of the form \ J.x, 

4:1 l. 

The socle of a semi-prime algebra always exists. 

Proof 

it 

Let Al be semi-prime. Then by Proposition 3. 18 and Remark 3. 19 Al 

possesses both minimal right and minimal left ideals. Again by Proposition 

3.18 contains all minimal idempotents u. 
a 

Since u e 'ff 1 , 
a 

bi-ideal by Lemma 4.6. Consequently Similarly 

Socf(.m) =. Socr(.m), which implies that Soc(.m) exists. • 

Theorem 4.8 ([10], p 659) 

If .m is semi-prime, then '!f = Soc(.m). 

n 
Let u e g:, say u : \ U, , U, E 'ff l • 4:::1 l. l. 

Since each .mu. 
l. 

is a minimal left 

n 
ideal and Soc(AI) is a linear subspace it follows that 4=l Alui :_ Soc(AI), 

But since .m is semi-prime, we can write 
u.x. 

l. l. 
ui = <r ,x.> ui e .Atui 

u. l. 
l. 

some x. e .m with u.x.u. ~ O, i=l, ..• ,n and hence u e Soc(.m). 
l. l.l.l. 

for 

Conversely, consider any u e Soc .m. By Lemma 4. 5 and Proposition 3. 18 

there exist 

Therefore, u= \n m.u. 
4: 1 l. l. 

such that u e \ n 

4=1 
with m. e .m. 

l. 

.mu .• 
l. 

If m.u. ~ 0 for some j it follows by Lennna 3.8 that u e g:. If 
J J 

m.u. = 0 for all i=l, ... ,n, then clearly u e ~ by definition. o 
l. l. 
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Definition 4.9 

The centraliser of an element u e .m is defined by 

Yu:= {x e At:ux = xu}. 

Remark 4.10 

Clearly Yu is a closed subalgebra of At. 

Before proving that the spectrum of a finite element is finite, we need a 

fe~ lemmas. 

Let u e Al be a fixed. element and define an operator 

centraliser of u by 

D x: = uxu, X E y • u u 

Leimna 4.11 

Let At be semi-prime. 

D u on the 

Suppose that At does not have an identity and consider At1 = At m c. Let 

denote the one-dimensional elements in At and (~Al ) 1 the 
1 

one-dimensional elements in At1 . If u e (g:Al) 1 , then (u,O) e (g:.m ) 1 , 

1 

Proof 

Consider any (x,A) e .m1 . Then 

(u,O)(x,A)(u,O) = (uxu + Au 2 ,0) =- (<r ,x>u + Atr(u)u,O) u 

= [<r ,x> + >..tr(u)](u,O). 
u 

Define <r( )'(x,A)>:= <r ,x> + >..tr(u). u,o u 

Clearly r( ) is linear and bounded since u,o 

which implies 

I <r ( u, 
0

) , ( x, >.. ) > I i 11r u 1111x 11 + I tr ( u) I I >.. I 
i ( 11r u 11 + I tr ( u) I ) ( llx 11 + I A I ) 
= ( 11r 11 + I tr ( u) p 11 ( x, >..) 11. 

u ml 

11r ( ) 11 < 11r 11 + I tr ( u) I . u,o - u 

Since Al is semi-prime, there exists x 0 with ux 0 u ~ 0. 
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<r( ) , (x0 ,A 0 )>(u,0) = (u,0) (x 0 ,A 0 ) (u,0) = (ux0 u + A0 u 2 ,0) ¢ (0,0) u,o 

which implies that r( ) ¢ o u,o a 

Corollarv 4.12 

If u E Al is finite in .m, then (u,0) is finite in ~1• 

We are going to show that if u e '!I, then D is a finite rank operator u 

on y if .m has an identity and D is a finite rank operator on u (u,o) 
y 

(u,o) if .m does not have an identity. 

Definition 4.13 

Two elements u,v e '!I 1 are called equivalent (u ~ v) 

x 0 e Al such that ux 0v ¢ 0. 

if there exists 

Remark 4.14 ([10], p 661) 

The relation is an equivalence relation on '!f 1 if .m is semi-prime. 

Proof 

Clearly 

of 

is reflexive since Al is semi-prime. By using the definition 

and applying Proposition 3. 7 it follows directly that is 

symmetric. 

We now show transitivity. 

Let u,v,w e 'ff 1 with u ~ v and v ~ w. We can find x 0 ,x 1 e Al such 

Consequently, there exists Yoe~ with 

which implies Therefore, 

it follows that u(x 0 vx 1 )w ¢ 0, i.e. u ~ w a 

Lenuna 4.15 ([10], p 661) 

Let u,v e '!1 1 with u ~ v and At be semi-prime. Then the opera tor 

D :.m --+ .m:x--+ uxv is of rank one, IID II $ llullllvll and u,v u,v 

tr(D ) = tr(u)tr(v). u,v 
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Proof 

Choose x 0 e Al with ux 0 v '# 0. Then there exists Yoe Al such that 

which implies 

and consequently 

Then for all x e ~ 

D X = u,v 

<r ,xvyo> u 
-,----------------.- UX 0 V • <r ,YoUXo> 

V 

Hence, D is of rank one. u,v 

Clearly IID II < llull ltvll u,v - and by Proposition 2.20 it follows that 

2 tr(D )ux Ov = tr(D )D x O = (D ) x 0 = u 2x Ov 2 = tr(u)tr(v)uxOv u,v u,v u,v u,v 

which implies tr(D ) = tr(u)tr(v) u,v since ux 0 v '# 0. a 

Corollary 4.16 

Let Al be semi-prime and u e 'ff. 

If Al has an identity then D u 
is a finite rank operator on Y, u and if 

does not have an identity, then D (u,o) 

Proof 

Let u = 4:
1 

ui' u. e '!1 1 be any representation. 
J. 

is of finite rank on 

If Al has an identity, 

then clearly Y contains the identity. It follows directly by Lemma 4.15 
u 

that D is of finite rank on Y. The case if Al does not have identity u u 

is similar. D 

Lemma 4.17 ([11], p 32) 

Let a e Al be fixed and define T e ~(Al) by 
a 

T x: = ax , x e Al. 
a 

If m has an identity, then a is invertible in m 

is invertible in ~(Al) and then om(a) = o~(Al)(Ta), 

if and only if T 
a 
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If a is invertible in Al, then . -1 
T _1 :x-... a x exists in !f(Al). 

a 

Clearly T 1T x =TT 1x = x for all x e ~ from which it follows that 
- a a -a a 

Ta is invertible with inverse T _1 . On the other hand, 
a 

invertible in !f(Al) we can find Te !f(AI) with 

TT= 'IT = I. a a 

Let x = Tl • Then 

if T is 
a 

ax= T Tl= 1 which implies TT = T =Tl= I. a ax ~ 

Consequently, T = T and TT = I. x xa 

Hence, xa =TT 1 = 1 which shows that a is invertible. xa 

Furthennore, A E o(a) iff (a - Al) 

T(a-Al) = (Ta AI) is invertible in 

Corollary 4.18 ((11], p 32) 

is invertible in Al, iff 

!e(Al)' iff A E a!f(Al) (Ta). 

Let a e Al be fixed and Al has identity. Then 

a!f(Y )(Ta) = a.m(a). 
a 

Proof 

Obviously Y contains the identity. 
a 

We first show that oy (a)= oAl(a). 
a 

Clearly o Al (a) :_ oy (a) • 
a 

a 

On the other hand, if A E aAl(a) then (Al - a) is invertible in Al and 

since (Al - a) e Y we have 
a 

(Al - a)-la = (Al - a)-la(Al - a)(Al - a)-l = a(Al - a)-l 

which implies that A E oy (a). 
a 

Hence, by Lemma 4 • 1 7 

Proposition 4.19 

Hence ay (a) :. o Al(a). 
a 

= oy (a)= a.m(a). 
a 

If Al has an identity and u e Al is fixed, then 

• 
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Proof 

First we note that D = T 2 on Y. 
u u u 

Then by Corollary 4.18 and the spectral mapping theorem it follows directly 

Corollary 4.20 

If Al doesn't have an identity, and (u,0) e .i11
1 

is fixed, then 

2 

a (D ) 
~(Y( )) (u,o) 

= [o.m (u,0)] 
u,o 

Proposition 4.21 

Let Al be semi-prime and u e 'ff. 

If Al has identity, then oAl(u) 

in All = Al fB C. 

Proof 

1 

is finite, otherwise a~ (u,o) 
1 

is finite 

Let Al have identity. It follows directly by Corollary 4.16 and 

Proposition 4.19 that oAl(u) is finite, since o~(Y ) (Du) is finite by 
u 

Proposition 2.16. 

If m does not have an identity, it follows by Corollary 4.16, Corollary 

4.20 and Proposition 2.16 that oM (u,0) is finite. • 
1 

Lemma 4.22 ([10]), p 660) 

If Al is semi-prime and u e Al ,is a non-zero element such that 

d.im(umu) < oo, there exists an idempotent p e ~ n um such that 

u = pu (resp. u = up). 

Proof 

First we show that every subset of orthogonal idempotents of UAl is finite 

and then make use of Lemma 3.21. 

Let, if possible, {p. : i=l, 2, .•. } be an infinite set of non-zero ortho-
1 

gonal idempotents in uAt. 

with p. = ux .. 
1 1 

Then for each p. e UIT\ we can find x. e Al 
1 1 
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Choose a sequence of distinct scalars 

1 
I Ai I ~ 21 IIX. II 

1 

A. EC 
1 

for all 

such that 

i E IN 

and let x: A.X .• 
1 1 

Then x e Al is well defined, since the series is 

absolute convergent, and 

ux = \
00 

A.ux. = \
00 

4=1 1 1 4=1 
A.p. 

1 1 

We show that j E IN. Suppose there exists an inverse 

00 

Z E Al 

with 1 = (ux-A .l)z = ( _\ A.p.-A.l)z. Then we have the contradiction 
J 4:1 1 1 J 

0 ~ p. = ( 
J 

A.p.p. - A .p.)z = (A .p~ - A .p.)z = o. 
1 J 1 J J J J J J 

Therefore, {Aj:j=l,2, ••• } is an infinite set of aAl(ux) in contradiction 

to the fact that D :Y ---+ .At:y---+ (ux)y(ux) is of finite rank and hence ux ux 

Then by Lemma 3. 21 and the Gram Schmidt orthogonalisation process there 

exists a non-empty set of orthogonal minimal idempotents of u,fl. 

Choose a maximal orthogonal set {p.:i=l,2, ... ,n} of minimal idempotents. 
1 

Then p. e g 1 n um, i=l, ... ,n. 
1 

If we put p· - \ n p it is clear that . - 4:1 i' 
peg n UAI is idempotent. If pu ~ u, then 

(pu-u)Al(pu-u) cu.mu which implies that 

dim[(pu-u).At(pu-u)] ~ dim[u.Atu] < oo. 

Again by Lemma 3.21 there~is a minimal idempotent q e (pu-u)Al c u.m. 

Clearly p.q = 0 for each j=l, ..• ,n. 
J 

If we define w: = q - 4:
1 

qpi, it is clear that we uAI. 

Furthermore, 

wq 
n 

= q 2 
- \ q(p.q) = q ~ O which implies w ~ 0, 

4=1 1 

and w2 = w is minimal, since 

Consequently we g 1 n UAI. 

It can also easily be checked that 

q and each p. 
1 

p.w = wp. = 0 
J J 

are minimal idempotent. 

for each j=l, ... ,n. 
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Hence {p
1

, .•• ,p ,w} c Y: 1 n um is an orthogonal set of minimal idempotents 
n -

in contradiction with the maximality of {p1, ••• ,pn} c v 1 n um. 

Therefore, u = pu. • 

The same result as for one-dimensional elements, mentioned. previous to 

Theorem 3.22, is now proved for finite elements. 

Theorem 4.23 ([10], p 661) 

Let ~ be semi-prime and u e ~ a non-zero element. D 

Then u e g if and only if the wedge operator u.t1u:x • uxu is of a finite 

rank. 

Proof 

Let u = 

Then for 

4:1 u., u. 
1 1 

all X E At 

e g i. 

uAu(x) = uxu = 4n u.xu. 
·-1 1 J ,J-

By using Lemma 4.15 il inmediately follows that uAu is of finite rank. 

Conversely, if uAu 

p e g such that 

u e g. • 

has finite rank, then there exists an idempotent 

u = pu. Since ci: is a bi-ideal it follows that 
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5 . THE TRACE OF FINITE ELEMENTS 

In this section we introduce the notion of a trace of finite elements and 

the results are analogous to that of the classical operator theory. 

The following lemma gives rise to a well defined trace for finite elements. 

Lemma 5.1 ([10], p 662) 

Let ~ be semi-prime and u1, ... ,un e ~, such that \n u. = 0. 
4:1 l. 

n 

Then 4=l tr(ui) = O. 

Proof 

Let A1 , ••• ,A
8 

'be a disjoint decomposition of { 1, •.. , n} induced by 

~ on ~,. For any fixed k e {1, •.• ,s} we get 
n 

Dkx:= \ u.xu. = (\ u. )Y(~ u .) = 0 for all x e ~. 
4. 'eA. l. J 4-1 l. LEA J ,J --k - :J k 

Then by Lemma 4.15 and Definition 2.18 it follows that 

[ \ tr ( u. ) ] 
2 

= \ tr ( u. ) tr ( u . ) = 0 . 
4~ l. 4.,j~ l. J 

Consequently, 

• 

Definition 5.2 
n 

If u = \ u., u. e ~ 1 is any representation of u e ~, the trace of u 
4= 1 l. l. 

is defined by 
n 

tr(u):= \ tr(u.). 
4=1 l. 
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Before proving a few properties concerning the trace on ~, we need a few 

lemmas. 

Definition 5.3 
* Let M be a C -algebra. 

An element a E .m is positive if a is selfadjoint and o.m(a) c [O,oo). 

We write a ~ 0. 

The functional f:.m-+ c is said to be positive if <f,a> ~ 0 for all 

a~ 0. 

Lennna 5.4 ([13], p 17) 
* Let .m be a C -algebra. 

(a) If x e .m is normal , then a .m ( x) c { A e C: I A I ~ llx II} , and 

r .m ( X ) = llx II • 

(b) If x e .m is unitary, then o.m(x) =.. {A E c: jAj = 1}. 

(c) If s e .m is selfadjoint, then o.m(s) =.. ~-

(a) Clearly 

selfadjoint. Therefore, 

= lim 11x2n111 / zn = 
n~ IIXII 

n e IN, since X is normal and 

(cf [4], Theorem 2.38). 

* xx 

* (b) Observe first that if x is an element of a C -algebra, then the 

* * * inequality llxll 2 
: llx XII ~ IIX IIIIXII implies that IIXII ~ IIX II and hence 

* ** llxll = llx 11, since x = x. Let x e .m be unitary. Then 

llxll 2 = 11x*x11 = 1 which implies that 11x*11 = llxll = 1. By (a) we have 
* * -1 o(x ) = o(x) =.. {A e c: IA I ~ 1}. But since x = x we also have 

-1 o(x ) = o(x) and it is clear that o(x-1) 1 = {0 ~ A e c: - e o(x)}. 
A 

Consequently, o(x) ~ {A e c: IA I = 1}. 

( c) ( cf [ 4] , Theorem 4. 27) • D 

Lemma 5.5 ([13], p 7) 

If .m is an algebra with identity, then for any x,y e .m 

0 .m ( xy) u { 0} = 0 ,'1 ( yx) u { 0} • 
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Proof 

Suppose A E o~(xy) u {0}. Then (xy - Al)-l = u exists. 

Since xyu = 1 +Au= uxy, we have 

(yux - l)(yx - Al)= y(l + Au)x - Ayux - yx +Al= (yx - Al)(yux - 1) = Al 

which implies that 
1 1) (yx - Al) 1, 1 
-(yux - = i"(yx - Al)(yux - 1) 
A 

Hence, (yx - Al) is invertible, i.e. A E o.m(yx) u {O}. 

o.m(xy) u {0} = o.m(yx) u {O}. • 

Lenuna. 5.6 ([13], p 23) 
* Let At be a C -algebra. Then 

= 1. 

By synmetry 

a e .m is positive iff there exists a selfadjoint s e .m with a= s 2
• 

Proof 

Let a e .m be any positive element, and consider the closed conmutati ve 

* C -algebra C generated by a. Let the set of multiplicative functionals 
a 

on Ca be denoted by MC . 
a 

Since MC is homeomorphic to o.m(a), 
a 

follows that the Gelfand transfonn r:ca __,. C[MC ] , defined by 
a 

(rx) ( f) = f(x)' X e ca and f e Mc ' 
a 

is a *-isometric algebra isomorphism of Ca onto C[o~(a)] (cf [4], 

Theorem 4 • 30) . 

it 

1 

Let s : = a 2 
• Since o .m (a) ~ [ 0 ,9oo) , the square root function .r is con-

tinuous on o.m(a) i:::: ~ and consequently ./a is well defined. 
a 

Furthermore, since the involution is continuous on .m, we have 

* . - 1· f (0 ) s = s since A= A A e ,oo, 

1 1 

Therefore a= a 2a 2 = s 2 with s e .m selfadjoint. 

a = s 2
, s e .m selfadjoint, it is clear that 

o.m(a) = {A 2 :A e o.m(s)} =. [0,oo), since o.m(s) =. ~. 

On the other hand, if 

a is self adjoint and 

Corollarv 5.7 

If m 
* a: XX. 

* is a C -algebra and a~ 0, 

• 

then there exists x e ,,i such that 
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If v e At, then * vv is positive. 

* First we show that vv = s 2 for some selfadjoint s e At. 

Let P: = {x e At: x is selfadjoint and o Al(x) :_ (0 ,oo)}. 

We prove that P n (-P) = {0}, with -P ={ye At: y = -x, x e P}. 

We first note that if ye -P, then by the spectral mapping theorem 

a_p(y) = a_p(-x) = -[ap(x)]:. (-oo,0]. Therefore, if x e P n (-P) it fol-

lows that aAl(x) = {0}. This implies that rp(x) = 0, i.e. x = 0. 

* * *+ *- . Now, let v e .m and consider vv. Then vv = (vv) - (vv) and since 
* both the positive and negative parts of vv are positive elements of At, 

it follows by Lemma. 5. 6 that we can find self adjoint elements s, t e At 

such that vv* = s 2 - t 2 • It can easily be checked that st= 0, since 
*+ * * *- * * (vv) = ~( lvv I+ vv) and (vv) = ~( lvv I - vv) where 

fvv*I:= [(vv*)(vv*)*l~ = [(vv*) 2 ]~. 

Therefore, 

* * (tv)(tv) = tvv t = (ts)(st) - t 4 = -t 4 e -P (5.1) 

and if we put tv:= k 1 + ik 2 with k 1 ,k 2 e At selfadjoint and making use 

of (5.1) it follows that 

( tv) * ( tv) = ( k 1 ik 2 ) ( k 1 + ik 2 ) + ( k 1 + ik 2 )( k 1 - ik 2 ) - ( tv) ( tv) * 

2 2 * 
= 2k 1 + 2k 2 - (tv)(tv) e P 

But since * * a [ ( tv) ( tv) ] = a [ ( tv) ( tv) ] c [ 0 , oo) by Lemma 5. 5, it follows 

* that (tv)(tv) e P n (-P) = {0} which implies that -t4 = 0. Hence t = 0. 
* Therefore vv = s 2 , with s e At self adjoint. It follows by Lemma 5. 6 

* that vv ~ o. • 

Theorem 5.9 ([10], p 663) 

Let At be a semi-prime Banach algebra. Then the trace has the following 

properties: 

(a) The trace is a linear functional on g. 

(b) If u e g and x e At, then tr(ux) = tr(xu). 

(c) If u e ~ is nilpotent, then tr(u) = 0. 

(d) 

(e) 

If At * is a *-algebra and u e Y, then tr(u) = tr(u). 

If At . * 1 s a C -algebra, then r vv* is a pos i ti ve functional on ,. m 

for al 1 v e 'ff 1 • 
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Proof 

(a) This is obvious, since if v e Y 1 and a e c, then a.v e Y 1 by 

Lemma 3.8. Hence, tr(av)av = a 2 v 2 and atr(v)v = av 2 which implies that 

tr(av) = cxtr(v) if a~ 0. If a= O, everything is trivial. 

Therefore, 
n m 

if U : 4 U., V : '\: V. 
· 1 1 L- 1 J = J= 

with u. , v . e Y 1 and a e C, then 
l. J 

n m 
tr ( u + av) = 4 tr ( u. ) + ~ 

· 1 1 L- 1 = J= 

n m 
tr ( av . ) = \ tr ( u. ) + ' atr ( v . ) 

J 4:1 l. Lj=l J 

= tr(u) + atr(v) 

(b) First we show for v e ~ 1 , x e At that tr(xv) = tr(vx). 

Clearly xv,vx e ~ 1 by Lemma 3.8. Therefore, 

<r ,xh.-v = xvxv = tr(xv)xv and <r ,x>vx = vxvx = tr(vx)vx 
V V 

which implies that tr(xv) = <r ,x> = tr(vx). 
V 

Now it follows for u=\n 
4:1 

u., u. e Y 1 l. l. 
that 

n n 
tr(xu) = \ tr(xu.) ~ \ tr(u.x) = tr(ux). ½=1 l. 4:1 l. 

( c) Let A
1

, •.• ,As have the same meaning as in the proof of Lemma 5 .1. 

For each fixed k, let 

Tiien 

Dkx:= ux(' u.), 
Lj~ J 

n 
u = \ u., 4:1 l. 

n 
(\ u.)x(' u.) = 
4=1 1 Lj~ J 

\ u.xu. 
4,j~ l. J 

X e At 

is a finite rank operator 

by Lemma 4.15 with 

tr (Dk) = \ tr ( u . ) tr ( u . ) = [\ tr ( u . ) ] 
2 

• 

4,j~ 1 
J ,4~ 1 

On the other hand, since u is nilpotent it is obvious that Dk e Y(At) is 

nilpotent. Hence we also have tr(Dk) = 0 by Corollary 2.23. 

Consequently, 

\ tr(u.) = 0 for each fixed k, from which 
½.EA l. 

k 

it follows that 
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(d) We first prove the result for one-dimensional elements. 

If v e Y: 1 , then v* e Y: 1 , since <r ,x*>v = vx*v implies that 
V 

Let 

* * * * <r ,x >v = v xv 
V 

XE At. 

Clearly r * is linear and bounded since 
V 

* - * * * <r *'x + ay>:= <r ,x + a.y > = <r ,x > + a<r ,Y > 
V V V 

V 

= <r *,x> + a<r *,y> 
V V 

and * I <r *, x> I ~ 11r vii llx 11 = III' 11 IIXII 
V 

for all 
V 

III' * II ~ III' VII • 
V 

X E Al which implies 

Furthermore, since v * '# 0 and Al is semi-prime, there exists x O e At 

with 

* * Q '# V X 0 V 

which implies r * '# O. 
V 

Consequently, 

tr(v)v * = 

Now, if fl u = ui, u. 
l. 

and 

* * : (VX.oV) * * = <r ,xo>v 
V 

* * * (tr(v)v) = v v * * = tr(v )v, 

tr(v) * = tr(v ). 

then u* = 1n '* e y: i, u. e g 
·=1 l. 

hence 

tr(u) = * 1n * tr(u.) 
l. 

tr(u.) 
l. 

= tr(u). 
·=1 

( ) Co · d Then O .. vv* e ,;r 1 and f · th e ns1. er any v e g: 1 • r- ,. or any x e At w1. 

* * * * vv xx'# 0 we have vv xx e rg: 1 by Lemma 3.8. 

Therefore, 

* * * * * * * * * * * tr(vv x x)vv xx= (vv x xvv )xx= <r *'x x>vv xx 
vv 
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which implies * * * tr(vv xx)= <r *'xx>. If * * VV XX: 0, there is nothing 
vv 

to prove. 

Now, let a e Al be any positive element. Then by Corollary 5.7 
* .th a: XX wi XE Al. 

. * * and * * ( >* 'f * * 0 d Since vv x e g: 1 xvv x = xv xv e g: 1 i vv x '¢ an 

* * xvv x '¢ 0 by Lemma 3.8, it follows by (b) and Proposition 3.25 that 
* ** ** * * <r *,a>= <r *'xx>= tr(vv xx)= tr(xvv x) = tr(xv(xv) )eoAl[xv(xv) ]. 

vv vv 
* Since (xv)(xv) ~ 0 according to Lemma 5.8, it follows that 

* <r *,a> e oAl[xv(xv) ] =. [O,oo), 
vv 

If VV*x* -- 0 * * 0 . . 1 tha O Th f or xvv x = , it 1s c ear t <r *,a>= . ere ore, 
vv 

<r *,a>~ 0 for all a~ 0. • 
vv 
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6. NUCLEAR ELEMENTS 

The definition of nuclear operators on a Banach space E gave rise to that 

of nuclear elements in a Banach algebra. In Theorem 6.4 we show that the 

definition given by J Puhl [10] implies that of K Vala [14], but even for 
* C -algebras the converse is not true. It will be shown that if the Banach 

algebra fulfils certain conditions, then the trace admits an extension to 

the nuclear elements. Three such cond.i tions are needed in the proofs of 

Theorems 6. 6, 6. 8 and 6.11. It is also shown in Proposition 6. 5 that the 

spectrum of a nuclear element is cotmta.ble at most, which can acctunulate 

only in the origin. 

Definition 6.1 

Let m be a Banach algebra. An element u em is called nuclear if 
00 

U. E 'y 1 l. 
for all i E IN 

and 4=1 llu. 11 < oo, 
l. 

The class of all 

nuclear elements is denoted by N. We define 

v( u) : = inf \ 
00 

4=1 
IIU.11 

l. 

where the infiumm is taken over all nuclear representations. 

Theorem 6.2 ([10], p 664) 

N is a bi-ideal of m with g c N and v is a norm on N such that if 

x,y em, u e N then 

v(xuy) ~ llxllv(u) llyll. 

Moreover, H is complete with respect to this norm. 

Clearly N is a su1::>a.lgebra of m, since for any u - \
00 

u - 4=1 i' 
00 00 

V = ~=1 v. E N we have UV = 4.j:1 u.v. with u.v. E ,- 1 if u.v. ¢ 0 
J l. J l. J l. J 

00 00 00 

by Lemma 3.8 and 4,j=l llu.v.11 ~ <4=1 llu.11) (2 llv .II) < oo, This implies 
l. J l. . 1 J J= 

that uv e N if u. v. ¢ 0 for some i and j. If u. v. = 0 for all 
l. J l. J 

i,j e N, then clearly uv e ~ c N. It is also easy to check that N is a 

linear subspace. 
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We show that v defines a norm on N. 

Let u = \ 
00 

u. be any nuclear representation such that v(u) = 0. Then 
4:1 l. 

llull = II lim \ n u. II < lim \ n 
IM'» 4=1 l. - IM'» 4:1 

from which it follows that llull ~ v(u) = O. 

Hence, u = 0. 

llu.11 
l. 

00 

= \ llu.11 
4:1 l. 

Conversely, if \ 
00 

0 then obviously v( u) ~ 0 which implies u = 4=1 ui = ' 

v(u) = O. 

Clearly, if A e c, u e N then Aue N and v(Au) = (Alv(u). Let 

u = \ 00 

4:1 
Ui, w : '\ 

00 

w. E K, 
Lj=l J 

00 00 

Then 

v(u + w) ~ 4 IIU.11 + °\'. 
· 1 1 L- 1 

llw.11 
J 

for all such representations of u and w. 
= J= 

Fix the representation Then 
00 

v(u+w) ~ v(u) +' 
Lj=l 

Since this is true for each such representation of w, we have 

v(u+w) ~ v(u) + v(w). 

Therefore v is a norm on N. 

llw .II. 
J 

Now, if x,y em, u e N then clearly xuy e N since N is a bi-ideal and 
00 

v(xuy) ~ 4=1 llxuiyll i llxllv(u) llyll. 

Finally we prove that N is complete with respect to v. Let (u.) C N 
l. 

be any v-Cauchy sequence in N. Since II· II ~ v( •), it follows that 

(u.) is a II• II-Cauchy sequence in m. 
l. 

Therefore, there exists u e m such that n llu - u II ----+ O. We show that n oo 

u e N and v ( u - u ) ~ 0. Choose an increasing sequence ( n. ) of n oo K 

natural numbers such that 

v(u - 1 for all n um)<~ n,m ~ ~-
Then for the subsequence 

00 
we have (u~)k=l C N 

v(u - u ) 1 for each k e IN. ~~ 
1\c+l ~ 2 

For each k e N we choose a representation 
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(k) 
V. E $¥' 1 , 

1 

Then for all p elN 

u u = (u - u ) + (u - u ) + ••• + (u 
nk+p ~ ~+p °k+p-1 ~+p-1 nk+p-2 ~+1 

00 00 00 

= \ v~k+p-1) + \ v~k+p-2) + ••• + \ v~k) 
4:1 1 4=1 1 4:1 1 

_ 
2 

k+p-1 

4
00 (j) 

- ( v. ) • 
. k . 1 1 
J= = 

Now let p--+ oo and consider the nonn limit u. Then for each k elN, 

u - u = ll·lllim (u - u ) = \
00 

\
00 

v~j) 
~ P-tOO ~+p 0 k Lj=k 4=1 1 

and 

\ oo \ oo llv ~ j ) II < \ co 1 = 1 [ !_ + !_ + • • • ] < 1 
Lj=k 4:1 1 ~=k 2J+2 tt 2 2 2 3 - ~ 

which implies that ( u - u ) e N. Since N is a linear subspace and 
~ 

u e N for each k e N, it follows that u e N and furthermore 
Ilk 

t>( U - U ) 5 IIV. J II 5 ""T.:"i""'r"+ ___. 0, 2 oo 400 ( . ) 1 k 

~ j=k ·=1 1 21'\.TJ. 00 
Hence, 

u( • ) lim u = u e H. • n n4'0 

Example 6.3 ((10], p 664) 

(a) If ~ = ~(E), then u e N if and only if u e N(E). 

(b) If ~ = eoo, then N = el. 

(a) The result follows directly by Corollary 2.10 which states that u. 
1 

is a one-dimensional element of ~(E) if and only if u. 
1 

is an operator 

of rank one on the Banach space E. 

(b) Let X = \ 
00 

X. , 

4=1 
1 

x. e e one-dimensional with ltx. 11 ( oo, 
1 00 

By Example 3.20 it follows that each one-dimensional element 

is of the fonn 

1 00 

x. 
1 

of t 
00 
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= en if n = i 
x. (n) 

]. 
if n ~ i 

by putting K = IN, and IIX. II 
]. 00 = lai I, i E IN. Therefore, 

which implies that x e e 1 • 

Conversely, let x = (x(n)) e f 1 ct • 
- 00 

00 

Then x = \ x(n)e with 
4-i:1 n 

e = (0, ••• ,0,1,0, ••• ). 
n 

Clearly each x(n)e e e n oo 

Hence, x et is nuclear. 
00 

is one-dimensional and 

a 

Next we show that Theorem 4. 23 for finite elements does not necessarily 

hold for nuclear elements. 

Theorem 6.4 ((10], p 664) 

If u e N, then uAu:x ---. uxu is a nuclear operator, but even for 

* C -algebras, the converse doesn't hold. 

Choose a nuclear representation u = \ 
00 

u
1
. , u

1
. e y: 1 , \ 

00 

4:1 4:1 
for all x e At 

00 00 00 

llu. II < oo, 
l. 

u11u ( x) = 4 u. xu . = 4 <a .. , x>y. . = ( 4 a. . ® y .. ) x with 
. . l. J . l.J l.J l.J l.J ,J=l ,j=l . ,j=l 

Then 

* a .. e Al , y .. e Al. By Lemma 4.15 each operator (a .. ® y .. ) is of rank 
l.J l.J l.J l.J 

one with Ila •• 11 lly .. II < llu. 11 lly . II from which it follows that 
l.J l.J - l. J 

u(w!U) ~ \_ 

00

• Hui II IIU l = [ \_ :_1 Hui II r < ... 
4,J=l 4 
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Hence, \.VlU is a nuclear operator on At. 

If we consider the algebra .m = e 
00 

and the sequence u: = ( .!) ' n 
it 

inmediately follows that u e t , 
00 

but u E t 11 i.e. u EN. However, it 

is clear that the wedge operator on 

x = (x(n)) e t 
00 

we have \.VlU( X) 

e is nuclear, since for any 
00 

00 1 00 1 
= \ - x(n)e =\ (- e ® e )(x) 

4-i=l n2 n 4i:1 n2 n n 

with 1 
11- e lllle II = 

00 1 
\ - < oo. 

4-i=l n 2 
Hence l..V1u is a nuclear operator 

n2 n n 

whereas u is not a nuclear element. D 

Proposition 6.5 ([10], p 665) 

Let .m be a Banach algebra. 

If .m has an identity, then for every u e N, oAl(u) is either finite or 

countable and has no non-zero point of accumulation. If .m doesn't have 

an identity and we consider .m1 =.me c, then the same result is true for 

every nuclear element in .m1 . 

Proof 

Let .m have an identity and consider any nuclear representation 
00 00 

u = t1 u.' 
l. 

U. E ,: 1 , \ IIU.11 ( oo. 
l. ½=1 l. 

Since y 
u 

is a closed subalgebra of .m, D u is a nuclear operator on Y, 
u 

by applying the same argument as in the proof of Theorem 6. 4. By 

Proposition 2.49 o~(Y ) (Du) is at most countable which can accumulate 
u 

only in the origin. The result then follows by Proposition 4.19. • 

We are now going to investigate conditions under which the trace on Y 

admits an extension to the nuclear elements. 

Theorem 6.6 ([10], p 665) 

If .m is a semi-prime Banach algebra, having the approximation property, 

then every u e N has a well defined trace. 
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U. E '!1 1 1 
and llu. II < oo. 

1 
We prove that 

tr(u.) = O. 
1 

Let have the same meaning as in the proof of 

Lemma 5.1. For each fixed k, put 

Dkx: = 4 u.xu. for all x e .m. 
. 'EA. 1 J 
,J --k 

By LeDUDa 4.15 11t is a nuclear operator on At and since At has the 

approximation property, it follows by Definition 2.43 that I\ has a well 

defined trace given by 

tr(D. ) = 4 tr(u. )tr(u.) 
-k . "EA. l. J 

'J -K 

But since 

\

00 

u.)x('\ u.) = 0 
4=1 1 Lj~ J 

it follows that tr(Dk) = 0. 

Therefore, \ tr(u.) = 0 for each fixed k=l, ... ,s which implies that 
L.i.EA 1 

k 

tr(u.) 
l. • 

Another property we are going to investigate is the following. 

Property 6.7 

Let At be a semi-prime Banach algebra such that for each u e '!f and 

e. > 0, there exists x e Y with llxll ~ 1 + e. and xu = u or ux = u. 

Theorem 6.8 ((10], p 665) 

If At posseses Property 6.7, then every u e N has a well defined trace. 

Proof 

We first show that the trace is a continuous linear mapping on ".!. If 

veg; and e. > 0, it follows by Property 6.7 that there exists x e ~ 

with llxll ~ 1 + e. such that xv =, v. Choose a nuclear representation 
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V., V. E 9!' 1 l. l. 
such that 
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IIV. II < v( v) + E.. 
l. -

Then by Lemma 3.8 and Theorem 4.ll(a) it follows that 

ltr(v) I= !tr(xv) I= 1\
0 

tr(x.v) I= 1\
0 

<r ,v>I = 1\
0 

<r ,!im '\k v.>I 
4=1 1 4=1 xi 4=1 xi -P> ½=1 J 

n lim 2 k lim 2 k 4n = j\ k <r ,v.>I = lk tr(x.v.)j 4=1 -P> j=l xi J -P> j:1 ·=1 1 J 

lim k n 
= k-,oo 12j=l tr(4=1 xivj) I 

00 

~ ('\ llv.ll)llxll ~ (v(v) + e.)(1 + e.)--+ v(v) < oo 

Lj=l J 

since e. > 0 is arbitrary. 

Therefore, by Hahn Banach the trace allows a llllique extension to the 

nuclear elements. 

Furthermore, 

if u = \ 
00 

u
1
. , u

1
. e Y 1 with 

½.=1 
II u.11 < oo 

l. 
is any nuclear 

representation, then 

tr(u) = tr( l.Dl u.) = tr(u.) 1· 4n lim 4n 
n-P> ·=l 1 n..,.oo ·=l 1 

Proposition 6.9 ([9], p 131) 

tr(u. ) . 
1 

Let E be a Banach space and At = ~(E). 

* If E or E has the m.a.p., then At satisfies Property 6.7. 

Proof 

Consider any U e 9-"(E) and e. > O. 

• 

Since dim[U(E)] < oo and E has the m.a.p. we can find X e Y:(E) with 

IIXII ~ 1 + e. and Xy = y for all ye U(E) by Lemma 2.39. 

Therefore, 

XUx = Ux for all x e E which implies that XU= U. 

Similarly by assuming E* to have the m.a.p. we can show that 

ux = u. • 
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Finally we are going to investigate the quasi-approximation-property of a 

semi-prime Banach algebra, given below, under which the trace admits an 

extension to N. 

Definition 6. 10 

A semi-prime Banach algebra At is said to have the quasi-approximation­

property (q.a.p.) if for each minimal idempotent q em, the Banach space 

Atq (resp. qAt) has the approximation property. 

Theorem 6.11 ([10], p 667) 

Suppose At has the q.a.p. 

(a) Then every u EN has a well defined trace. 

(b) If u e N is nilpotent, then tr(u) = O. 

Proof 

Without loss of generality we can assume that A1q has t..he approximation 

property for each minimal idemp:::>tent q e ~. 

(a) Consider any u e N and choose a nuclear representation u - \ 
00 

u - ½=1 i 

with llu.11 < oo. 
l. 

Since !tr(u.) I Hu. II = lltr(u. )u.11 = 
l. l. l. l. 

follows that 4:
1 

jtr(ui) I ~ 4:
1 

Consequently, 

00 

II ( u . ) 2 ti < llu . 11 2 for each i e IN, it 
l. - l. 

00 

llu. II < \ 
l. - 4:1 llu. II < oo 

l. 
for each n e IN. 

which implies that \ tr(u.) is absolute convergent. 
4=1 l. 

As in the proof of Theorem 6.6 we show that if 4:
1 

vi= O, v. e Y: 1 with 
l. 

llv. 11 < oo, 
l. 

it follows that tr(v.) = O. 
l. 

As before, let be a disjoint decomposition of h,2, ... 1 

induced by ~ on g: 1 • For each fixed k, choose a minimal idempotent 

such that for each i E ~• Define an element 
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'\::= 4~ vi, ½tx:= l\:x, 

Clearly wk e N and we show that ½t e N(Ak\t)• 

Let x = m'\t for some me At. Then it follows by Lemma 4.15 that for each 

i e Ait 
D m:= v.mqk is an operator of rank one on At with 
vi''\: l. 

IID II < llv. lllla. II and tr(D ) = tr(v. )tr(qk) = tr(v.) since 
vi''\: - l. 4K vi''\: l. l. 

2 

Consequently, 

which implies that 1it is a nuclear operator on Ak\t· Since .mqk has the 

approximation property, it follows by Definition 2.43 that 1it has a well 

defined trace given by 

tr ( L. ) = \ tr ( D ) = \ tr ( v . ) • 
-k 4~ vi''\: 4~ 1 

(6.1) 

On the other hand, for all x e Alqk' 

00 

0 = (\ v.)xwk = \ v.xv. = (\ v.)x(~ v.) = wkxwk. 
4=1 1 4,j~ 1 

J 44:1\ 1 Lj~ J 

Since .m is semi-prime, it follows that wk = 0, hence 1it = 0 which 

implies that tr(½t) = 0. 

Therefore, we have \ tr(v.) = 0 for each fixed k=l, ••• ,s from which 
4EA 1 

k 

it follows that 
00 S 

\ tr ( v. ) = \ ( \ tr ( v. ) ) = 0. 
4=1 l. 4=1 4~ l. 

(b) If u e N is nilpotent, then clearly 1it e H(Ak\t) is a nilpotent 

operator and by Corollary 2.23 we have 

tr(½t) = 0 for each fixed k=l, ... ,s. 
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But if we choose a nuclear representation u = \
00 

u
1
., u

1
. e g 1 , 

4:1 
llu.11 < oo and put 

1 

wk:= 4E.\: ui' 11cx:= WitX, x E .41<:iit• 

it follows by (6.1) that 

tr(L.) = \ tr(u.) for each fixed k. 
K 4_~ 1 

By using (a) we have 
00 S 

tr(u) = \ tr(u.) = \ (\ tr(u.)) 
4:1 1 4:1 4~ 1 

s 

= 4=l tr(½c) = O. • 

Finally we investigate the conditions tmder which an algebra has q.a.p. 

Lenuna 6.12 ([13], p 7) 
* Let ~ be a C -algebra. 

If f:m ~ c is a positive functional on ~, then 

* * <f,y x> = <f,x y> 

Proof 

Consider the following polarisations: 

4y*x = (x+y)*(x+y) + i(x+iy)*(x+iy) - (x-y)*(x-y) - i(x-iy)*(x-iy) 

4x*y = 4(y*x)* = (x+y)*(x+y) - i(x+iy)*(x+iy) - (x-y)*(x-y) + i(x-iy)*(x-y) 

Then by Lemma 5.8 

(x + y)*(x + y) ~ 0 and (x + iy)*(x + iy) ~ 0. 

Consequently, 

0 5 <f,(x + y)*(x + y)> e ~ and O 5 <f,(x + iy)*(x + iy)> e ~ 

and by making use of the polarisations it follows directly that 

* * 4<f,x y> = 4<f,y x>. • 

Lemma 6.13 

Let * .m be a C -algebra. 

If x e .m is selfadjoint, then llxnll = llxlln for all n e IN. 
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Proof 

Clearly llx2nll = llxll 2n, n e N. Therefore, 

IIX II"' = IIX"' II S IIX 3 11 IIX II S IIX II 3 IIX II = IIX II " 

which implies that llx 3 11 = llxll'. 

By continuing in this way, the result follows directly. a 

Theorem 6.14 ([10], p 666) 

(a) Let Al = !f(E). Then 

Al possesses q. a • p.. 1-f and only if E 

property. 

or has the approximation 

(b) 

(c) 

A commutative Banach algebra Al possesses q.a.p. 
* AC -algebra Al has the q.a.p. 

Proof 

(a) Consider any minimal idempotent Q e Al. 

* We show that AQ -e E (resp. QAI .. E ) • 

Clearly Q is a projection of rank one by Gelfand Mazur and Theorem 2.9. 

Put Q(E):= E1. Choose 0 'I! Yoe E1 with lly 0 11 = 1 such that 

E
1 

= span{y 0 }. Define a mapping cf>:AQ --+ E by 

cf>('IQ) := Ty0 , T e .ht. 

Clearly cf> is well defined since for any T,S e ~ with 'IQ= SQ we have 

TQy0 = SQy0 , i.e. Ty0 = Sy0 • cf> is also linear and isometric, since 

sup ( ) sup T ( ) sup I I Ty 
IITQII = IIXIISl IIT Qx II = JAxl Sl II A,?o II = JAxJ~l Ax II oll 

= IITy O II = llcf>( 'IQ) II. 

This implies that cf> is one to one. We still have to show that cf> is 

onto. Let x e E be any fixed element and define a mapping 

Extend T 
X 

linearly to 

and botmded since 

by 

T y 0 := x. 
X 

T (Ay 0 ) = A • 
X X 

Obviously 

sup ( ) sup I I 
IITXII = IA Isl IITX AYo II = IA 1~1 A IIXII = llxll. 

T 
X 

is linear 

By Hahn Banach we can extend T to E, i.e. T e At. Furthennore, 
X X 

cf>(T Q) = T Yo= x. 
X X 
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(b) Let At be a commutative Banach algebra and q E Al minimal 

idempotent. Then Alq is isomorphic to c by Proposition 3.12 and 

consequently has the approximation property. 

( c) * Let At be a C -algebra and q e ~ minimal idempotent. We show that 

Atq is a Hilbert space. Put 
* (x,y):= <r *'Y x>, x,y e Alq. 

qq 

Clearly (x,y) is well defined and we show that it defines an inner 

product on .mq. By Theorem 5. 9 ( e) r * is a positive functional on Al 
qq 

* and by Lemma 5.8 we have (x,x) = <r *'x x> ~ O. By using Lemma 6.12 it 
qq 

follows that (x,y) = (y,x). It is also obvious that 

(Ax+ µy,z) = A(x,z) + µ(y,z). 

l 

We now prove that (x,x) 2 = llxll. Let x = mq, m e At. Then 
* ** * * * * llxqq II 2 

: llqq X xqq II : <r * , X x> llqq II : ( X J X) llqq II : ( X, X) llq II 2 

qq 

and by using Lemma 6.13 we have 

* * * * * ( I <r q' q > I 11q11) 2 = ( 11qq q11) 2 = 11 ( qq q) ( qq q) 11 

* * * : liq qq qq qll 
* = liq qll 3 

: llqll 6
• 

* j<r ,q >I= llqll 2 from which it follows that q 
Hence 

* * * llxqq II 
~ llxqll = 

llxqq qll 
~ 

llxqq II 
llqll * llqll l<r ,q >I q 

i.e. * llxqq II = llxqllllqll, 

Consequently, llxqll 2 llqll 2 

(x,x) = ---- = II (mq)q11 2 = ttxll 2
, hence Atq is an inner 

llqll 2 

product space. Since .mq is complete, it follows by Proposition 2.36 that 

Atq has the approximation property. • 
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THE TRACE OF NUCLEAR ELEMENTS IN BANACH ALGEBRAS 

by 

Anna Maria Jacoba Essmann 

Prof J Swart 

Ma.thematics and Applied Ma.thematics 

MSc 

The classical Ascoli's theorem has proved to be of great interest to many 

mathematicians and has been the object of many modifications and 

generalisations. 

K Vala [14] studied compact and finite elements in a Banach algebra, giving 

a definition which generalises a theorem in operator theory which states 

that the mapping :T _,. ATC on the Banach algebra of operators on a Banach 

space E is compact (of finite rank), if and only if both mappings A and 

C are compact (finite rank) operators on E. In this paper a different 

definition for finite (in particular one-dimensional) elements in a Banach 

algebra, due to J Puhl [10], is given, generalising the following theorems 

in operator theory: 

(i) An operator T ¢ 0 on a Banach space 

if there exists a non-zero functional 

E is of rank one if and only 

rT on the Banach algebra of 

operators on E such that TRT = <rT,R>T for all operators R. 

(ii) T is of finite rank if and only if it can be written as a finite Slllil 

of operators of rank one. It is shown that the two different defi­

nitions for finite elements, given by Vala and Puhl respectively, 

coincide. 

Since most of the results throughout the paper require the Banach algebra 

to be semi-prime, a condition which is equivalent for this concept is 

proved. A well defined trace for one-dimensional elements is introduced, 
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provided the Banach algebra is semi-prime. The trace of finite elements is 

also defined and the results are analogous to those of finite rank 

operators. 

Furthennore, the spectrum of a one-dimensional element is shown to consist 

of exactly two elements and that of a finite element to be finite, by using 

the same result which is proved to be valid for finite rank operators on a 

Banach space E. 

We also prove that if the Banach algebra is semi-prime, the one-dimensional 

elements and the minimal left (right) ideals are in one to one correspon­

dence. Furthennore, the socle of a semi-prime algebra always exists and 

equals the class of all finite elements. 

Nuclear elements are defined in a.natural way and a well defined nuclear 

norm is introduced, which dominates the nonn on the Banach algebra. It is 

shown that if the Banach algebra fulfils certain conditions, the trace can 

be extended to these elements. 

However, it is shown that the definition for nuclear elements, given by 

Vala, implies that of Puhl, but the converse is not necessarily true (even 

in c*-algebras). The spectrum of a nuclear element is shown to be at most 

countable, with zero the only point of acctm1ulation. 
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THE TRACE OF NUCLEAR ELEMENTS IN BANACH ALGEBRAS 

deur 

Anna Maria Jacoba Essmann 

Prof J Swart 

Wiskunde en Toegepaste Wiskunde 

MSc 

SAMEVATTING 

Die klassieke stelling van Ascoli het tot dusver groat belangstelling deur 

baie wiskundiges geniet en was die onderwerp van verskeie wysigings en 

veralgemenings. 

K Vala [ 14] het 'n studie gemaak van kompa.kte en eindige elemente in 'n 

Banach algebra en 'n definisie gegee wat 'n veralgemp..ning is van die 

stelling wat beweer dat die afbeelding :T --. ATC op die Banach algebra 

van operatore op 'n Banach-ruimte E kompa.k (van eindige rang) is, as en 

slegs as beide afbeeldings A en C kompa.kte (eindige rang) operatore op 

E is. In hierdie verhandeling word 'n ander definisie vir eindige (in die 

besonder een-dimensionele) elemente in 'n Banach algebra, geinisieer deur J 

Puhl (10], gegee, en wat veralgemenings is van die volgende stellings: 

( i) 'n Operator O '# T op 'n Ba.nach-ruimte E is van rang een as en 

slegs as daar 'n nie-nul funksionaal r T op die Banach algebra van 

operatore op E bestaan so dat TRT = <rT,R>T vir alle operatore R. 

(ii) T is van eindige rang as en slegs as di t geskryf kan word as 'n 

eind.ige som van operatore van rang een. 

Daar word bewys dat die twee verskillende definisies vir eindige elemente, 

deur Vala en Puhl onderskeidelik gegee, harmonieer. 

Aangesien die oorgrote meerderheid resultate wat in die verhandeling bewys 

word, vereis dat die Banach algebra semi-priem is, word 'n ekwivalente 

voorwaarde vir hierdie begrip bewys. 'n Goed gedefinieerde spoor vir 
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een-d.imensionele elemente word gegee, mi ts die Banach algebra semi-priem 

is. Oak word die spoor van eindige elemente gedefinieer en die resultate 

is analoog aan die van eindige rang operatore. 

Verd.er word aangetoon dat die spektrum van 'n een-dimensionele element uit 

presies twee elemente bestaan en die van 'n eindige element eindig is, deur 

gebruikma.king van dieselfd.e resultaat wat vir eindige rang operatore bewys 

word. 

Ons bewys ook dat as die Banach algebra semi-priem is, daar 'n een-een­

duidige verband bestaan tussen die een-dimensionele elemente en minima.le 

linkse (regse) ideale. Verd.er bestaan die voetstuk van 'n semi-priem 

algebra altyd en is gelyk aan die klas van alle eindige elemente. 

Nukleere elemente word op natuurlike wyse gedefinieer en 'n goed gedefi­

nieerde nukleere norm, wat die norm op die Banach algebra domineer, word 

gegee. Daar word bewys dat as die Banach algebra aan sekere voorwaardes 

voldoen, die spoor uitgebrei kan word na hierdie elemente. 

Daar word egter bewys dat die definisie van Vala vir nukleere elemente die 

van Puhl impliseer, maar dat die omgekeerde nie noodwendig geld nie (selfs 

in c* -algebras) • Ons bewys dat die spektrum van 'n nukleere elemente hoog­

stens aftelbaar is, met nul as enigste verdigtingspt.mt. 
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Anna Maria Jacoba Essmann 

Prof J Swart 

Ma.thematics and Applied Ma.thematics 
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K Vala defined compact (finite) elements in a Banach algebra. A different 

definition for finite elements in a Banach algebra is given in this trea­

tise and we show that the two different definitions coincide. A well 

defined trace for finite elements is introduced, provided the Banach alge­

bra is semi-prime. 'lb.e one-dimensional elements of a semi-prime Banach 

algebra are shown to be in one to one correspondence with the minimal left 

(right) ideals. Furthermore, it is shown that the socle of a semi-prime 

algebra equals the class of all finite elements. 

Nuclear elements are then defined, and if the Banach algebra fulfils cer­

tain conditions, the trace can be extended to these elements. However, for 

nuclear elements, the definition given by Vala implies the latter defini­

tion, but the converse does not necessarily hold. 
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d.eur 

Anna Maria Jacoba Essmann 

Prof J Swart 

Wisktmde en Toegepa.ste Wisktmde 

MSc 

SAMEVATI'ING 

K Vala het kom:pekte ( eindige) elemente in 'n Banach algebra gedefinieer. 

'n Ander definisie vir eindige elemente in 'n Banach algebra word in die 

verhandeling gegee en ens toon aan dat die twee verskillende definisies 

harmonieer. 'n Goed gedefinieerde spoor vir eindige elemente word gegee, 

mi ts die Banach algebra semi-priem is. Daar word aangetocn dat die een­

dimensionele elemente van 'n semi-priem Banach algebra in een-eenduidige 

verband met die minima.le linkse ( regse) id.eale is. Verd.er word aa.ngetoon 

dat die voetstuk van 'n semi-priem algebra gelyk is aan die klas van alle 

eind.ige elemente. 

Nukleere elemente word dan gedefinieer, en as die Banach algebra aan sekere 

voorwaardes voldoen, kan die spoor ui tgebrei word na hierdie elemente. Die 

definisie gegee deur Vala vir nukleere elemente impliseer laasgenoemde 

definisie, maar die omgekeerde is nie noodwendig waar nie. 
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