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NOTATION 

The following notation will be used: 

1[ 

e 

exp(x) 

ln x 

8 .. 
fJ 

In 
A: pxq 

a:pxl 

a-· or [A)•· fJ !J 

ai or [a]i 
A-1 

IAI 
tr A 

Diag(A) 

vec A 

vecs A 

0 

J .. 
!J 

J 
A@B 

E(y): px 1 

: constant, 7f = 3.14159 ... 

: Euler's constant, e = 2.71828 ... 

: ex; - oo < x < oo 

: natural logarithm of the real number x, x ~ 0 

: Kronecker's delta, 8 ii = 1 if i = j, 0 otherwise 

: an identity matrix of order n x n 

: a matrix of order p x q 

: a column vector of order p x 1 

: the element in the i-th row and j-th column of the matrix A 

: the i-th element of the vector a 

: the inverse of the matrix A 

: the determinant of the matrix A 

: the trace of the matrix A 

: a diagonal matrix formed from the diagonal elements of A 

: the pq x 1 vector formed from the q columns of the p x q matrix A 

: the ½p(p + 1) x 1 vector of nonduplicated elements of the pxp 

symmetric matrix A 

: a null matrix, that is, [O]ij = 0 for all i and j 

: a matrix with all elements equal to zero with the exception of the 

element in the i-th row and j-th column, which is equal to 1 

: a column vector with all elements equal to one 

: the right direct product or Kronecker product of matrices 

A and B as defined by: 

a11 B a12B a1qB 

A@B= 
a21B a22B a2qB 

aP1B aP2B apqB 

: the expected value of the random vector y with typical element E(y)i 

Cov(y,y): p x p : the covariance matrix of the random vector y with typical element 

E(yi - E(yi))(Yi - E(yi))' 
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Multilevel analysis allows characteristics of different groups to be included in models of 

individual behaviour. Most analyses of social sciences data entail the analysis of data 

with built-in hierarchies, usually obtained as a consequence of complex sampling 

methods. The formulation of such models and estimation procedures may be seen as an 

effort to develop a new family of analytical tools that correspond to the classical 

experimental designs. 

The purpose of this dissertation is to investigate the efficient analysis of level-3 models, 

which includes the estimation of the unknown parameters and statistical inference. Use 

is made of the Expected Maximization algorithm and the Iterative Generalized Least 

Squares algorithm. As most data sets from the social sciences are quite large, the 

feasibility of analysing large data sets efficiently is investigated. Attention is given to 

the problem of developing a computer program that is easy to use as a standard 

statistical package. 

Theoretical results required for the estimation of the unknown parameters are extended 

to a general level-3 model, allowing for complex variance structures on all levels of the 

hierarchy. Since it often happens that there may be more than one response variable of 

interest, for example in a personality test with a number of items, the analysis of 

models with two or more continuous response variables is also considered. 
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Survey data in the social sciences are usually of a categorical nature. It is shown how 

data with a categorical response variable can be analysed within the general framework 

developed. The theory is extended to accommodate the simultaneous analysis of more 

than one categorical response variable. Suggestions for further research are given, 

including guidelines for the handling of non-linear multilevel models. 

Most of the theory derived in this study is illustrated with examples based on real data 

and has been implemented in FORTRA~ programs. 
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Meerpeil modelle fasiliteer die insluiting van karakteristieke van verskillende groepe in 

die modellering van individuele gedrag. Die analise van geesteswetenskaplike data 

behels dikwels die ontleding van data met 'n inherente hierargiese struktuur, wat 

gewoonlik verkry word as 'n gevolg van die gebruik van komplekse 

steekproefnemingsmetodes. Die formulering van sodanige modelle kan gesien word as 'n 

poging tot die ontwikkeling van nuwe analitiese hulpmiddels wat ooreenstem met die 

klassieke eksperimentele ontwerpe. 

Die doel van hierdie verhandeling 1s om wyses waarop 3-peil modelle doeltreffend 

ontleed kan word, te ondersoek. Hierdie ondersoek sluit die beraming van die onbekende 

parameters en die uitvoer van statistiese in:ferensie in. Daar word gebruik gemaak van 

die maksimering van voorwaardelike verwagtingswaardes en van iteratiewe 

veralgemeende kleinste kwadrate. Aangesien data a:fkomstig vanuit geesteswetenskaplike 

navorsing gewoonlik omvangryk is, word klem gele op die doeltreffende analise van 

groot datastelle. Aandag word ook geskenk aan die wyse waarop 'n gebruikersvriendelike 

rekenaarprogram ontwikkel kan word. 

Die teoretiese resultate benodig vir die beraming van die onbekende parameters word 

uitgebrei om 'n algemene 3-peil model daar te stel wat voorsiening maak vir die 

bantering van komplekse variansie strukture op elke peil van die hierargie. Aangesien 

daar dikwels meer as een a.fbanklike veranderlike betrokke is in 'n navorsingsondersoek, 
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soos byvoorbeeld in 'n persoonlikheidstoets, word die aualise van modelle met twee of 

meer kontinue afbanklike veranderlikes ook beskou. 

Opname data is gewoonlik van 'n kategoriese aard en daar word aangetoon hoe data 

met 'n kategoriese afbanklike veranderlike binne die algemene raamwerk ontleed kan 

word. Die teorie word uitgebrei om voorsiening te maak vir die gelyktydige ontleding 

van meer as een kategoriese afbanklike veranderlike. V oorstelle vir verdere navorsing, 

insluitende riglyne vir die hantering van nie-lineere meerpeil modelle, word gegee. 

Meeste van die teorie wat afgelei is, word met voorbeelde gebaseer op werklike data 

toegelig. Rekenaarprogramme is geskryf om hierdie voorbeelde te ontleed. 
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CHAPTER 1 

INTRODUCTION 

Multilevel models deal with the analysis of data where observations are nested within 

groups. Social, behavioural and even economic data often have a hierarchical structure. 

A frequently cited example is in education, where students are grouped in classes. 

Classes are grouped in schools, schools in education departments and so on. We thus 

have variables describing individuals, but the individuals may be grouped into larger or 

higher order units. 

Traditionally, fixed parameter linear regression models are used for the analysis of such 

data, and statistical inference is based on the assumptions of linearity, normality, 

homoscedascity and independence. Ideally, only the first of these assumptions should be 

used. It has been shown by Aitkin and Longford (1986), that the aggregation of 

variables over individual observations may lead to misleading results. Both the 

aggregation of individual variables to a higher level of observation and the 

disaggregation of higher order variables to an individual level have been somewhat 

discredited (Bryk & Raudenbush, 1992). It has also been pointed out by Holt, Scott and 

Ewings (1980), that serious inferential errors may result from the analysis of complex 

survey data if it is assumed that the data have been obtained under a simple random 

sampling scheme. 

Random regression models have been developed to model continuous data 

(Bock, 1983), and also dichotomous repeated measurement data (Gibbons & Bock, 

1987), where certain characteristics of the data preclude the use of traditional ANOV A 

models. In random regression models, however, there is still no possibility of including 

higher level variables. In order to accommodate both random coefficients and higher 

order variables, multilevel models should be used. 

Multilevel analysis allows characteristics of different groups to be included in models of 

individual behaviour. Most analyses of social sciences data entail the analysis of data 

with built-in hierarchies, usually obtained as a consequence of complex sampling 

methods. Thus, the scope for application of multilevel models is very wide. The 

formulation of such models and estimation procedures may be seen as an effort to 

Page 1.1 
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develop a new family of analytical tools that correspond to the classical experimental 

designs. These models are much more flexible in that they are capable of handling 

unbalanced data, the analysis of variance-covariance components and the analyis of 

both continuous and discrete response variables. As the characteristics of individual 

groups are incorporated into the multilevel model, the hierarchical structure of the data 

is taken into account and correct estimates of standard errors are obtained. The 

exploration of variation between groups, which may be of interest in its own right, is 

facilitated. Va.lid tests and confidence intervals can also be constructed and 

stratification variables used in the sample design can be incorporated into the model. 

The use of multilevel models has been hampered in the past by the fact that closed 

form mathematical formulas to estimate the variance and covariance components have 

only been available for perfectly balanced designs. Iterative numerical procedures must 

be used to obtain efficient estimates for unbalanced designs. Among the procedures 

suggested are the full maximum likelihood (Goldstein, 1986 and Longford, 1987), and 

the restricted maximum likelihood as proposed by Mason et al (1983) and Bryk & 

Raudenbush (1986). Another approach is the procedure of Bayes estimation (Dempster 

et al, 1981 ). Some other procedures include the use of Iteratively Reweighted 

Generalized Least Squares ( Goldstein, 1986), and a Fisher scoring algorithm (Longford, 

1987). Owing to the sizes of matrices involved in the iterative procedure and the 

computer storage space required during estimation, the implementation of such a 

procedure is not straightforward. 

The purpose of this dissertation 1s to investigate level-3 multilevel models and the 

estimation of the unknown parameters. Use is made of the Expected Maximization 

(EM) algorithm and the Iterative Generalized Least Squares (IGLS) algorithm. In 

particular, attention is given to the efficient computer implementation of estimation 

procedures for the estimation of the unknown parameters. As most data sets from the 

social sciences are quite large, the feasibility of analysing large data sets efficiently is 

also investigated. Attention is also given to the problem of developing a computer 

program that is easy to use as a standard statistical package in order to make multilevel 

model analysis readily accessible for the social science researcher who will benefit most 

from using it. 

Page 1.2 
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In Chapter 2 the concept of multileYel modelling is introduced. The standard fixed 

parameter linear regression model and the disadvantages of such an approach to the 

analysis of hierarchically structured data are discussed. This is followed by the 

definition and subsequent discussion of a level-2 hierarchical model. The advantages of a 

multilevel modelling approach is considered. A brief overYiew of estimation procedures 

that may be used for the analysis of unbalanced hierarchical data is given and the use of 

the IGLS algorithm is considered for a level-2 model. Computer programs for the 

analysis of multilevel data are briefly discussed and the difficulties concerning the 

implementation of algorithms noted. 

Chapter 3 contains the extension of the level-2 model discussed in Chapter 2 to allow 

for the model coefficients to be random across a third level of the hierarchy. Theoretical 

results required for the estimation of the unknown parameters in the level-3 model are 

given, based on the EM optimization algorithm. The estimation procedure is illustrated 

with a practical application. 

The E1f algorithm is a fast, robust method for obtaining maximum likelihood estimates 

of the unknown parameters. In certain cases, however, a large number of iterations may 

be required for the procedure to converge. A more serious disadvantage of the EM 

algorithm is that standard errors of the estimators cannot be obtained. The EM 

algorithm also does not facilitate statistical inference such as hypothesis and contrast 

testing. 

In Chapter 4 the estimation of the unknown parameters in a level-3 model using an 

IGLS algorithm is discussed. Although the mathematical equations on which this 

procedure is based appear to be straightforward, simplification of these equations is 

necessary to ensure that the optimization algorithm is computationally efficient. Some 

of the shortcomings of the EM algorithm used in Chapter 3 are addressed. To illustrate 

the theoretical principles involved, two practical applications are given. The level-3 

model discussed in this chapter is, however, still limited as complex level-1 structures 

cannot be accommodated. It is also not possible to use different sets of predictors in the 

fixed and stochastic parts of the model. 

Page 1.3 
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A general level-3 model, allowing for complex variance structures on all levels of the 

hierarchy, is introduced in Chapter 5. Cases where no coefficients are random a.t a 

specific level are considered. Three examples are given. The examples range from a case 

which is similar in structure to the cases discussed in the previous chapters, to an 

example of a level-3 model with complex variance structures on all levels of the 

hierarchy. Note that the estimation procedure discussed in this chapter is 

computationally less efficient than the procedures discussed in previous chapters. Its 

chief advantage lies in its ability to handle a wide variety of models, as provision is also 

made for the situation where there are no random coefficients on a particular level of 

the model. 

It often happens that there may be more than one response variable of interest, for 

example in a personality test with a number of items. The analysis of models with two 

or more continuous response variables is considered in Chapter 6 by the introduction of 

a multivariate multilevel model for the analysis of continuous response variables. The 

mathematical implications of missing data are discussed. Two practical examples are 

given. 

Survey data in the social sciences are usually of a categorical nature. Most of the 

questions answered by respondents concern a respondent's attitude to a particular 

matter. Possible outcomes are normally either of the 'yes/no/don't know' type or are 

based on a scale, where '1' may indicate strong agreement and '5' strong disagreement 

with a statement. Data sets are frequently of a hierarchical nature, for instance single 

respondents are nested within households which may be nested within suburbs, which 

may in turn be nested in metropolitan and non-metropolitan areas. In Chapter 7 the 

analysis of data with categorical response Variables is considered. The theory is also 

extended to accommodate the simultaneous analysis of more than one categorical 

response variable. The theory is implemented in a number of practical examples. 

Finally, in Chapter 8 suggestions for further research are given, including guidelines for 

the handling of non-linear multilevel models in the theoretical framework of the 

preceding chapters. 
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All the data sets used in the practical applications gh·en in Chapters 3 to 7 are from 

large sample surveys. Estimated parameters are, therefore, considered to be 

approximately distributed as multivariate normal variates. This large-sample property 

of the estimators is used in the calculation of standard errors and p-values. 

Most of the theory discussed in this study has been implemented in FORTRAN 

programs. For illustrative purposes the program MULTVAR, used for the practical 

applications in Chapter 6, is included on the accompanying diskette. The Appendix 

contains installation information. 

Page 1.5 
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and 

Yii = 

Example 7.3.1 

Yij,1 

Yij,2 

Y ij,c-1 

l 
fij,1 

n­
fij. 

l 
fij,2 

n­
l;j. 

(7.3.2) 

Consider a data set in v;,·hich the response variable has c = 3 categories and the 

predictors are GENDER (MALE, FEMALE) and AREA (URBAN, SEMI-URBAN and 

RURAL). The level-2 units are 30 districts. There is no semi-urban area in District 2 

and hence there are s2 = 4 subpopulations, these being (MALE, URBAN), (MALE, 

RURAL), (FEMALE, URBAN) and (FEMALE, RURAL). 

A schematic representation of the data for District 2 is as follows: 

Level-2: 

Level-I: 

District 2 

Y 21,1 Y 21,2 Y 22,1 Y 22,2 Y 2S,1 Y 2S,2 Y 24,1 Y 24,2 

Y21 

(M; U) 
Y22 

(M; R) 
Y2s 

(F; U) 
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CHAPTER 2 

INTRODUCTION TO MULTILEVEL MODELS 

2.1 INTRODUCTION 

Social and behavioural data usually have a hierarchical structure. A frequently cited 

example is in education, where students are grouped in classes. Classes are grouped in 

schools, schools in education departments and so on. Vv e thus have variables describing 

individuals, but the individuals may be grouped into larger or higher order units. In 

economics there is the problem of relating the micro and macro levels. 

Traditionally, the analysis of such data was done by using fixed parameter linear 

regression models with either aggregation or disaggregation of variables available for 

respondents or higher order units. Both these procedures, however, have been somewhat 

discredited (Prosser, Ras bash & Goldstein, 1991 ). In Section 2.2 a fixed parameter 

linear regression model will be discussed and illustrated with a small example. Attention 

will be given to the disadvantages associated with such an approach. 

In Section 2.3 the concept of multilevel modelling will be introduced and a definition of 

a multilevel model will be given. A level-2 multilevel model will be considered. The 

data used in Section 2.2 will be re-analysed as a simple level-2 model. Advantages of a 

multilevel approach to the analysis of complex survey data will be given. 

Estimation procedures and various algorithms which may be used for estimation will be 

discussed in Section 2.4. Problems with the implementation of algorithms for the 

estimation of the unknown parameters in · a multilevel model will be considered. In 

Section 2.5 conclusions will be given. 

2.2 FIXED PARAMETER LINEAR REGRESSION MODELS 

In this section a fixed parameter linear regression model with the aggregation of 

individual variables to a higher level is illustrated. 

Page 2.1 
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Example 2.2.1 

Consider the dental measurement data set first analyzed by Potthoff and Roy (1964). 

The data set contains the dental measurements of 11 girls and 16 boys at each of the 

ages 8, 10, 12 and 14 years. Each measurement is the distance in millimetres between 

the center of the pituitary and the pterygomaxillary fissure. 

Suppose ,ye wish to investigate the relationship between the measurements 

y ii, j = 1, 2, 3, 4 for child i and the ages at which the measurement were taken. Denote 

these ages for individual i by xi1 , xi2 , xis and xi4 • 

Traditionally a single linear equation may be estimated by pooling all 27 cases. The 

measurement may then be expressed as a linear function of the ages at which 

measurements are taken and could be written as 

(2.2.1) 

Let 

X~- = [ 1 X··] tJ IJ 

and 

From (2.2.1 ), the measurement for individual i can be rewritten as 

y ii = Xji fJ + eii , i = 1, 2, . . . , N ; j = 1, 2, 3, 4. 

where N = 27 denotes the total number of children for which measurements were 

available. 

Page 2.2 
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Using matrix notation, the set of regression equations giYen above may be written as 

(2.2.2) 

which can be rewritten as 

y=XfJ+e, 

where 

It is assumed that e11 , e12 , ••• are uncorrelated with mean zero and constant variance 

a 2
• Thus, 

E(e) = 0 (2.2.3) 

and 

Cov(e,e') = a 2 I. (2.2.4) 

Under the assumptions given by (2.2.3) and (2.2.4), the ordinary least squares estimator 

p of fJ is obtained as 

where 

E(,8) = fJ 

and 

Page 2.3 

 
 
 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2022 

If, howeYer, a separate linear function is fitted for each child. 27 regression models of 

the form given in (2.2.2) will be obtained. Figures 2.2.1 and 2.2.2 are graphical 

representations of these fitted regression lines. In Figure 2.2.1 the regression lines for 

girls are given and the regression line for all the children pooled together. Figure 2.2.2 is 

a similar representation for the male group. 
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Figure 2.2.1: OLS regression lines of measurements on age for girls 
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From Figure 2.2.1 it can be seen that the intercepts and slopes for individual girls vary 

considerably. Most of the OLS regression lines for girls are below the OLS regression 

line for the combined group. In the case of the boys, the intercepts and slopes also vary 

considerably. Most of the O LS regression lines for the boys are above the regression line 

for the total group. 

The large differences betv,;een lines cannot be ascribed to measurement error only, as 

measurement equipment for this type of measurement is usually fairly accurate. The 

error variance for the total group is 6.5609 mm2. It would thus seem likely that each 

individual may have his or her own intercept and slope. □ 

This example illustrates some of the dangers inherent in ignoring the hierarchical 

structure of data. By aggregating higher order variables to an individual level, for 

instance assigning teacher, class and school characteristics to an individual, we know 

that students in the same class will have the same value on each of the class variables. 

The assumption of independence of observation that is basic for the classical statistical 

techniques cannot be used in such a situation (Bryk & Raudenbush, 1992). 

On the other hand, individual level variables may be aggregated to a higher level and 

an analysis done on a higher level. This will in effect discard all the within-group 

information, which may account for a considerable part of the total variation. 

Consequently, relations between aggregated variables may be stronger and certainly 

very different from the relation between non-aggregated variables. Aitkin and Longford 

(1986), in describing the analysis of educational data, with students nested within 

schools, show that it is misleading to aggregate student variables to form school means 

for a "means on means" analysis. The same· conclusion is reached when the hierarchical 

structure of the data is ignored. The effect can be seen in high collinearity among 

predictors and as large standard errors for estimates. 

In addition, standard fixed parameter regression models do not allow for the exploration 

of variation between groups, which may be of interest in its own right. Examples 

include the variation between schools or, in the case of the previous example, between 

individuals. Correlations induced by the hierarchy will also be ignored, thereby biasing 

the standard errors estimated (Rasbash, 1993). 

Page 2.6 

 
 
 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2022 

In the situation where different groups or individuals each has a different regression 

model, one can assume that the intercepts and slopes are a random sample from a 

population or group of individual intercepts and slopes. This will give a random 

coefficient regression model. 

It is still not possible, however, to include variables from a higher level of the hierarchy. 

To facilitate this, multilevel models can be used. 

2.3 MULTILEVEL MODELS 

The term multilevel refers to a hierarchical or nested relationship among units in a 

system. Multilevel analysis allows characteristics of different groups to be incorporated 

into models of individual behaviour. Returning to the field of education, students may 

for instance be regarded as level-1 units in a hierarchy, nested within schools (level-2 

units) in turn nested within educational departments (level-3). Each of the levels in this 

structure is formally represented by its own submodel. These submodels express 

relationships among variables within a given level. They also specify how variables at 

one level may influence relations occurring at another, as reported by Bryk and 

Raudenbush (1992). 

Example 2.3.1 

Consider the data set consisting of dental measurements at different ages as discussed in 

Section 2.2. In this case the individual children are the level-2 units and the dental 

measurements at different ages the level-1 units. There are four level-1 units nested 

within each level-2 unit and there are 27 level-2 units. 

From du Toit (1993), it follows that the assumption that the regression coefficients /3 
vary from one individual to another, may be accommodated by regarding the unknown 

regression parameters as random variables with mean /3 and covariance matrix+. 

The model for the 27 level-2 units can then be defined as 

i = 1, 2, ... , 27 (2.3.1) 
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where the 4 x 2 matrix X is given by 

[ 
1 8 l 1 10 

X = 1 12 
1 14 

with the first column denoting the intercept term and the second column giving the 

ages at ,vhich measurements were made. 

It is assumed that b1 , b2 , •. , b27 are a random sample from a multivariate normal 

distribution with 

and 

The vectors e1 , e2 , • . • , e27 are assumed to be independently and identically 

distributed as N(O,a2 I) independent of b1 , b2 , ••• , b27 • Under these assumptions it 

follows that 

(2.3.2) 

and 

(2.3.3) 

If, however, the gender of an individual is to be taken into account, (2.3.1) can be 

rewritten as 

Y. = X b- + e• 
I I I ' 
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,vhere 

(2.3.4) 

so that 

(2.3.5) 

The matrix Xm is the design matrix for the fixed part of the model. If gender is coded 

'1' for boys and ' - 1' for girls, the matrix Xm , in the case of a female, is given by 

1 8 -1 

1 10 -1 
Xm= 1 12 -1 

1 14 -1 

The Yector bi, as given by (2.3.4), defines a model with intercept and slope coefficients 

which are allowed to vary over the units. A fixed gender effect is also included. The 

vector fJ as given in (2.3.5) contains coefficients for the fixed part of the model, while 

the vector u; contains those coefficients allowed to vary over level-2 units. 

The matrix Xr2J is the random parameter matrix on level-2 of the model and is given by 

Let 

1 8 

1 10 
1 12 

1 14 
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and 

while e1 , e2 , .•• , e27 are assumed to be identically and independently N(O,a 2 I). Then 

(cf. (2.3.2) and (2.3.3)) 

(2.3.6) 

and 

(2.3.7) 

Fitting of this model using the program ML3E (Prosser, Rasbash & Goldstein, 1991) 

gives the following computer output: 

( i) Fixed part of the model: 

PARAMETER 

CONS 

SLOPE 

GENDER 

p 
16.560 

0.660 

1.073 

(ii) Random part of the model: 

Level-2: 

PARAMETER 

CONS/CONS 

SLOPE/CONS 

SLOPE/SLOPE 

Level-1: 

CONS/CONS 

ii 

7.0030 

-0.4325 

0.0462 

1.7160 

STD. ERR 

0.8151 

0.0699 

0.3644 

STD. ERR 

5.2860 

0.4366 

0.0395 

0.3303 
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Z-VALUE 

20.3165 

9.4421 

2.9446 

Z-VALUE 

1.3248 

-0.9906 

1.1696 

5.1953 

PR>IZI 

0.0000 

0.0000 

0.0032 

PR>IZI 
0.1852 

0.3219 

0.2422 

0.0000 
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From the fixed part of the output it can be seen that all the estimates of the fixed 

parameters are highly significant at a 5 % level of significance. From the random part of 

the output it follows that the estimates on level-2 of the model are not significant at a 

5 % level of significance. It can howeYer, not be concluded that there is no stochastic 

component at this leYel, as the number of level-2 units is only 27. The estimated error 

variance (level-1) is 1.7160. This estimate of error variance is considerably lower than 

the estimated error variance of 6.5609 obtained in Section 2.2 through use of a fixed 

parameter linear model. □ 

According to Goldstein (1991 ), "multilevel models not only provide more efficient 

estimates than traditional approaches, they also allow the exploration of variation 

between clusters which may be of interest in its own right". The output obtained for 

this example seems to be in concurrence with this statement. 

It has also been pointed out by Holt, Scott and Ewings (1980), that, if complex survey 

data are analysed under the assumption that the data were obtained from a simple 

random sampling scheme, serious inferential errors may be made. Stratification 

variables from a complex sample design can be incorporated into a multilevel model as 

fixed explanatory variables. Thus their additive and interactive effects may be studied 

( Goldstein, 1991 ). 

When the dependence among individual responses within the same unit is disregarded, 

incorrectly estimated standard errors may occur. This problem is resolved by including 

a unique random effect for each unit in the statistical model, which is the case with a 

multilevel model. The variability in these random effects is taken into account in 

estimating standard errors. According to Bryk and Raudenbush (1992), "these standard 

error estimates adjust for the intraclass correlation ( or related to it, the design effect) 

that occurs as a result of cluster sampling". 

In the User's Guide to ML3E (Prosser, Rasbash & Goldstein, 1991) the following 

advantages of multilevel modelling are given. Firstly, coefficients at one level of the 

hierarchy can be viewed as variables that are functions of characteristics of units at 

another level. Secondly, the coefficients of within-unit relations among variables may be 

estimated more accurately than in the case of the same coefficients in a single-level 
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analysis for each group. Thirdly, the more appropriate model specification helps to 

resolve the problem of incorrectly estimated precision which occurs in the single level 

analysis of data with a hierarchical structure. Finally, the variances and covariances of 

coefficients may be of interest in their own right. 

In conclusion it is noted that multileYel models may obviate the necessity of creating 

large numbers of dummy variables, a procedure which may make the interpretation of 

results rather difficult. Multilevel models have the capability to handle unbalanced data 

and missing responses. They allow for covariance components on different levels of the 

hierarchy and both discrete and continuous outcomes may be studied successfully. 

Given that discrete or continuous covariates may also be included at the different levels 

of the analysis, it is clear that multilevel modelling provides a flexible alternative to the 

classical analysis of variance. 

2.4 PARAMETER ESTIMATION FOR MULTILEVEL MODELS 

In a multilevel model it is possible to estimate fixed effects, random coefficients on the 

different levels of the hierarchy and Yariance-covariance components. Closed form 

mathematical formulas to estimate the variance and covariance components are only 

available for perfectly balanced designs. Numerical procedures must be used to obtain 

efficient estimates for unbalanced designs. 

A number of approaches to the problem of obtaining estimates for unbalanced data 

have been developed in recent years (Bryk & Raudenbush, 1992). Among these are the 

full maximum likelihood approach (Goldstein, 1986 and Longford, 1987), restricted 

maximum likelihood approach (Mason et al, 1983 and Raudenbush & Bryk, 1986), and 

the EM algorithm developed by Dempster, Laird and Rubin (1977). Other numerical 

approaches include the use of IGLS algorithm (Goldstein, 1986), and the use of a Fisher 

scoring algorithm (Longford, 1987). A number of these algorithms have been 

implemented in computer programs. Some of these programs will be discussed at the 

end of this section. 
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The use of the EM algorithm for the estimation of unknown coefficients will be 

discussed in detail in Chapter 3. The Iterative Generalized Least Squares procedure, of 

which a description is given below, will be used in Chapters 4 to 7. 

The general level-2 model can be rewritten ( du Toit, 1993), as 

Yi= Xi f3 + Zi et · (2.4.1) 

The vector f3 is a vector of fixed coefficients, while et is a vector of variables allowed to 

vary over level-1 and level-2 of the hierarchy. The matrices Xi and Zi denote the fixed 

and random parameter design matrices respectively. 

Let XrJJi = Xi and let 

(2.4.2) 

where X(£Ji and X(J)i are the level-2 and level-1 random parameter design matrices. Also 

let 

where ui and ei denote the vectors of random parameters on level-2 and level-1 of the 

model. The model (cf. (2.3.5)) 

is therefore equivalent to (2.4.1 ). 

It is assumed that u1 , u2 , .•• , uN are a random sample from a N(O, ~(2;) random 

variable and that e1 , e2 , ••• , eNare an independent random sample of a N(0,~(1J) 

random variable. 

Page 2.13 

 
 
 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2022 

Under the distributional assumptions giwn above, it follo\\'S that Cov(yi,yD, hereafter 

denoted by :Ei, is given by 

Let Vi be a consistent estimator of :Ei and consider the quadratic function 

N 
Q 13 = ~ [Yi - Xmi ,B]' vi- 1 [Yi - XrJJi ,B] . 

i=l 

(2.4.3) 

(2.4.4) 

If it is assumed that Vi is known, the generalized least squares estimator p of ,8 is 

obtained as the minimum of (2.4.4) and is given by 

(2.4.5) 

with 

,.._ ,.._ N 
Cov(,8, ,8') = [ I: X' (f)i vi- 1 

X(f)i] -
1 

• 
i=l 

Suppose further that ,8 is known and let 

Then 

E(Yr) = :Ei (2.4.6) 

and from (2.4.3) and (2.4.2) 

(2.4. 7) 

Using the result (see for example Browne, 1974) 

vec( C A C') = C @ C vec A , 
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it follov1·s that the vector of elements of Vi is given by ( cf. (2.4.7)) 

(2.4.8) 

There is an unique matrix (see for example Browne, 1974) Gm: m2 x½ m(m+l) such 

that 

vec A= Gm vecs A 

with A a symmetric m x m matrix. 

There is a non-unique matrix HP : ½ p (p+ 1) x p2 such that 

vecs A = HP vec A . 

By using (2.4.9) and (2.4.10), (2.4.8) can be rewritten as 

n­

' where n'[ = L nii. Let 
j=l 

and 

_ [vecs 4> (2)] 
T- ' 

vecs 4.>(1} 

then ( 2.4.11) can be written as 

vecs Vi = Xf T . 
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Let 

y* = vecs Y* (2.4.13) 

so that ( cf. (2.4.6)) 

E(y*) = vecs E (2.4.14) 

where E denotes the true population covariance matrix. 

Furthermore, let W denote the covariance matrix of vecs !! . It can be shown ( du Toit, 

1993) that 

(2.4.15) 

is a consistent estimator of Cov(y;',y:'). 

Now consider the quadratic form 

N 

QT=~ {(Yi - xr r)' wi- l(yf - Xt r)}. 
i=l 

(2.4.16) 

Minimization of Qr with respect to T yields 

N N 
r = [ L X;' wi- 1 x: ] - 1 

[ L X;' w i- 1 y: ] (2.4.17) 
i=l i=l 

where y* = vecs Y* ( cf. (2.4.13) ). 

The estimate of fJ (cf. ( 2.4.5)) is based on the assumption that V is known. Note that 

the estimation of r ( cf. (2.4.17)) is based on the assumption that W is a consistent 

estimator of the covariance of vecs (Y*) and that fJ is known, since fJ is required to 

evaluate y*. 

To obtain the IGLS estimates of the unknown parameters, the following iterative 

procedure is followed: 
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(i) Set Vi= I in (2.4.5). 

(ii) Calculate an estimator ,8 of p. 
(iii) Calculate Was given by (2.4.15). 

(iv) Calculate r using (2.4.17). 

(v) Obtain a revised estimate of V using (2.4.11). 

Steps (ii) to (v) are repeated until convergence is obtained, for example until 

lrk+1 - 1\I < E; IPk+1 - ,Bkl < E, with €1 = 10- 6, where Ek is a typical element of E (du 

Toit, 1993). Approximate standard errors of the elements of ,8 are obtained as the 
N 

square roots of the diagonal elements of the matrix [ L x(J)i vi- l x(J)i ] - 1• Likewise, 

standard errors of the elements of f are obtained as l1.ie square roots of the diagonal 
N 

elements of the matrix [I:Xr' wi- 1 Xt ]- 1
• 

i=l 

This algorithm is known as IGLS (see for example Goldstein, 1986). Under the 

assumption of multivariate normality, the IGLS estimates are equivalent to the 

Maximum Likelihood estimates of the corresponding unknown parameters ,8 and r ( see 

for example Browne and du Toit, 1992). 

As mentioned earlier, a number of the available algorithms for the estimation of 

unknown parameters in hierarchical linear models have been implemented in computer 

programs. The names of a selection of the available programs and the algorithms they 

used for estimation are given in a table below, extracted from a review of multilevel 

programs by Kreft, de Leeuw and van der Leeden (1994). 
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Authors of program Program name Algorithms used 

Jennrich and Schluster B~IDP-5V N ewton-Raphson 

Fisher scoring 

Generalized EM 

Hermalin and Anderson GE:\fMOD Restricted ML / EM 

Bryk, Raudenbush and Congdon HLM EM/ ML 

Prosser, Ras bash and Goldstein ~1L3E IGLS 

Longford VARCL Fisher scoring / ML 

Most of the programs listed are capable of analysing a level-2 hierarchical model. The 

program ML3E is capable of handling three-level hierarchical data. The size of data sets 

which can be analysed with the program ML3E, however, is somewhat limited (Kreft, 

de Leeuw and van der Leeden, 1994). The authors nevertheless recommended ML3E as 

the most appropriate program for people doing research in multilevel analysis. Since 

this article was published, the SAS Institute have also included a multilevel program 

called MIXED in their statistical analysis package. From this information the 

conclusion can be drawn that there is a need for a computationally efficient stand-alone 

procedure for level-3 models which can handle large data sets, as commonly occurs in 

the social sciences. 

In order to implement the IGLS algorithm in a program, the size of matrices to be used 

in the procedure must be taken into account, as this affects both the storage space and 

computational time required. From (2.4.5) we see that the estimator p of fJ is a function 

of both the fixed parameter design matrix X(f)i and the inverse of the covariance matrix 

Vi . The covariance matrix is of the order nix ni where ni is the number of units or 

respondents within the i-th level-2 unit. If ni = 500, the estimation of fJ will entail the 

inversion of a 500 x 500 matrix which requires 5003 operations. The storage space 

required to store this inverse matrix in memory is also large. 

From (2.4.11) it follows that, in order to obtain an estimator T of T, the Kronecker 

products Xr2Ji @ Xr2Ji and X{1Ji @ X{1Ji must be calculated. The order of the level-2 
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random parameter design matrix X(2Ji is nix m, where m indicates the number of 

random coefficients on level-2. The Kronecker product is thus of the order nf x m2
, 

which, for ni = 500 and m = 5, gives a matrix with 5002 x 52 elements. 

It is clear that, in order to implement the IGLS algorithm in a computer program, 

expressions containing matrices or submatrices of lower order are needed if the program 

is to be computationally efficient. ,v ays must be found to minimize the storage 

requirements of such a program. Ideally, a program should also be capable of handling 

large data sets and facilitating complex variation on all levels of the model. 

In Chapters 3 to 7 the simplification of expressions needed for the successful 

implementation of both the EM algorithm and the IGLS algorithm are proposed. 

Results will be incorporated in computer programs. Applications will be given in order 

to illustrate the estimation and data size capabilities of the programs. 

2.5 SUMMARY 

In this chapter the concept of multilevel modelling was introduced. In Section 2.2 the 

standard fixed parameter linear regression model and the disadvantages of such an 

approach to the analysis of hierarchically structured data were discussed. This was 

followed in Section 2.3 with a definition and discussion of a level-2 hierarchical model. 

The.advantages of a multilevel modelling approach were considered. 

Section 2.4 provided a brief overview of estimation procedures that may be used for the 

analysis of unbalanced hierarchical data. The IGLS algorithm was considered for a level-

2 model. Computer programs for the analysis of multilevel data were briefly discussed 

and the difficulties concerning the implementation of algorithms noted. 

In the next chapter a level-3 model will be defined and the EM algorithm, used for the 

estimation of the unknown parameters, will be derived. 
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CHAPTER3 

THE EM ALGORITHM FOR PARAMETER ESTIMATION OF LEVEL-3 MODELS 

3.1 INTRODUCTION 

In many fields of application, such as psychology, sociology, medicine and economics, 

data commonly have a nested structure which may contain more than two levels. 

Examples of this type of data are 

(i) comparison of the wages of factory employees in nine provinces, where 

provinces are the level-3 units, factories the level-2 units and employees 

the level-1 units; and 

(ii) the matriculation results of pupils in private and public schools falling under 

the various education departments. In this case the education departments 

are the level-3 units, the schools the level-2 units and the pupils the level-1 

units. 

In Section 2.3 of Chapter 2 properties of level-2 models were reviewed. The more 

complex structures of a level-3 model are considered in detail in this chapter. In Section 

3.2 the level-3 model is defined and distributional assumptions given. 

Section 3.3 contains relevant concepts of the Bayesian approach to statistical inference. 

The development of the EM algorithm by Dempster, Laird and Rubin (1977), provided 

a feasible approach to the estimation of variance and covariance components. The 

applicability of this approach to hierarchical structures was demonstrated by Dempster 

et al (1981 ). The Expected Maximization algorithm used to obtain estimates of the 

unknown parameters is discussed in Section 3.4. A practical application of the EM 

algorithm for the level-3 model is given in Section 3.5. 

3.2 EXTENSION OF A LEVEL-2 TO A LEVEL-3 MODEL 

Consider data collected from N schools, each of which contains ni students. Suppose 

that the relationship between an individual's achievement (y) and his or her intelligence 

quotient ( x) is to be investigated. A linear relationship between these variables for the 

i-th school is given by (see for example du Toit, 1993), 
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(3.2.1) 

In (3.2.1) Yii and xii denote the achievement and IQ respectiYely for student j in school 

i. (Note: the students are regarded as level-1 units and the schools as level-2 units). 

The term eij is a random variable assumed to have a mean of zero, while the terms b0i 

and b1i are treated as random variables at level-2 since, in general, they can vary across 

schools. 

In the notation of Goldstein and MacDonald (1988), b0i and b1i can be expressed m 

terms of fixed and random components as 

(3.2.2) 

and 

(3.2.3) 

From (3.2.2) and (3.2.3), expression (3.2.1) can be written in matrix notation as follows: 

where 

X-= i 

1 
1 

1 

b- = [ boi] 
I b ' 

lj 

(3.2.4) 

(3.2.5) 

(3.2.6) 

and where the nix 1 vector of responses Yi has typical element Yii and the vector ei has 

typical element eij • 
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The following distributional assumptions are usually made: 

1. X; is a matrix of fixed inputs while fJ = [ i~] is a non-random parameter 

vector w·ith elements that have to be estimated 

4. Cov(ei, u/) = 0 

Under these assumptions it follows that 

If students at schools belonging to different departments of education are to be 

considered, the level-2 model defined by (3.2.4) to (3.2.6) may be extended. In this case 

the departments of education will be referred to as level-3 units, the schools as level-2 

units and the students as level-1 units. 

To accommodate variation of the random coefficients over level-2 and level-3 of the 

hierarchy, the following model is considered: 

where 

Yij : nii x 1 is a vector of responses with typical element Yiik , 

Xii: nii x m is a design matrix for the ( i,j)-th unit and 

bii : m x 1 is a vector of random coefficients. 

To allow for variation across level-3 units, let 
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where Si : m x q is a design matrix for the i-th unit at the third level and ci : q x 1 is a 

vector of random coefficients varying across level-3. It is assumed that 

(3.2.9) 

where /3 is a vector of fixed coefficients. It is assumed that e11 , el!z, ... , eNnN are 

independently distributed; u 11 , u 12 , ..• , uNn are a random sample of the random 
N 

variate u and v 1 , v 2 , ... , vN are a random sample of the random variate v. 

In addition, it is assumed that 

and that 

ei - N(O, 4>(iJ In) 
u N(O, +r2J) 

V - N(O' •rs)) 

Cov( ei, u') = 0 

Cov( ei, v') = 0 

Cov(u, v') = 0 . 

From (3.2.8) and (3.2.9), it follows that (3.2. 7) can be expressed as 

where 
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with 

and 

(3.2.14) 

Using the distributional assumptions giYen in (3.2.10), it follows that 

X!.fJ 
JJ 

- XrsJii fJ (3.2.15) 

and 

E-- = Cov( Y·· .,,.,,__) 
I) I)' , iJ 

(3.2.16) 

Example 3.2.1 

Suppose that five pupils are selected randomly from school 1 falling under education 

department 1. The response variable (y) is the pupil's knowledge with regard to the 

transmission of AIDS through proven means. As a possible linear predictor ( x) the age 

of the pupils is used. In addition, it is also known that 0. 75 hours is spent weekly on sex 

education at schools falling under this department. In general, let sii denote the time 

spent weekly on sex education at school j falling under education department i. 
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From (3.2.7) it follows that the Yector of responses can be written as 

Y11,1 1 X11,1 

Y11,2 1 X11,2 

Y11,s 1 X11,S 
[ b11,o] + 

Y11,4 1 X11,4 
b11,1 

Y 11,5 1 X11,5 

The vector bi; (cf. (3.2.8)) can be expressed as 

[
b11,o] [ 1 
h11,1 0 

Q S11 Q ] 
1 0 s11 

while ci (cf. (3.2.9)) can be expressed as 

C 1,0 ao V1,0 

C1,1 f3o 
+ 

V 1,1 
-

C1,2 0'.1 V 1,2 

C1,S /31 V1,S 

C 1,0 

C1,1 

C1,2 

C1,s 

e11,1 

e11,2 

eu,s 

e11,4 

eu,5 

The parameters a 0 and /3 0 represent the average value of y given x = 0 and the time s 

spent on sex education. The parameters a 1 and /3 1 represent the increase or decrease in 

y for a unit increase in x. 

If, for example, the vector of response y11 and the design matrix X 11 are given by 

74 1 16 

71 1 13 

Y11 - 65 and X 11 = 1 13 

81 1 15 

91 1 17 
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the matrix X; 1 is calculated as (cf. (3.2.12)) 

1 16 

1 13 

[ o.~s] 1 0 0.75 
x;1 1 13 

0 1 0 
1 15 

1 17 

1 16 0.75 12.00 

1 13 0.75 9.75 

- 1 13 0.75 9.75 

1 15 0.75 11.25 

1 17 0.75 12.75 

and (cf. (3.2.13)) 

Z'\1 - [ x;1 X11 I ] . 

3.3 PRINCIPLES OF BAYESIAN ANALYSIS 

A short review of standard results normally employed in Bayesian analysis ( see for 

example Degroot, 1970), is given in this section. These results are required for the 

derivation of the EM-algorithm discussed in the next section. 

Let /(Yi, ci) denote a joint probability density function consisting of an nix 1 vector Yi 

of random observations and of a q x 1 vector ci of random parameters. The joint 

probability density function can be written as 

f (Yi, ci) = f (Yi I ci) 9i ( c) 

= P (cilYi) h (Yi) 

(3.3.1) 

(3.3.2) 

where h(yi) is the marginal distribution of Yi, 9i (c) is the probability density function of 
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From equations (3.3.1) and (3.3.2), it follows that 

(3.3.3) 

Using standard results on conditional distributions, the marginal distribution of Yi can 

be expressed as 

j f (Yi lei) 9; (c) de, (3.3.4) 
C 

where j denotesc
1 

__ J _ 
00 

J ... J 
C C2=-oo C1=-oo 

The posterior density function (pd£), which is used in the Bayesian approach to make 

inferences about parameters, is given by p ( cd yJ The pdf 9i ( c) is known as the prior 

pd£ of c;. The posterior pd£ p ( cd Yi) contains the sample information in the likelihood 

function f (Yi I ci) and the prior information in the pd£ 9i ( c). 

Consider the multilevel model ( cf. Section 3.2) 

Yil Xr2Ji1 h;1 eil 

Yii Xr2Jii h;i + 
e--y-= IJ 

I (3.3.5) 

Yin-
I Xr2Jin; bini ein-

I 

where Yii is an nii x 1 vector with typical element Yiik and Xii is an nii x m design matrix 

for the ( i,j)-th unit. 

From Section 3.2 ( cf. (3.2.8)) 

b-- = S-c- + U·· V I I V ' 
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where ( cf. (3.2.9)) 

The elements of the mx 1 vector bij are considered to be random, varying across the 

level-2 and level-3 units. 

Under the assumptions given in Section 3.2, it follows that 

where 

(3.3.6) 

and Ai is a diagonal matrix with typical element 

Since ( cf. (3.2.9), Section 3.2) 

the joint distribution of Yi and ci is given by 

Using standard results on conditional distributions, the covariance of ci, given Yi, is 

given by 
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After applying the result (see, for example, du Toit, 1993) 

( ') - 1 + X' A - 1 X ) - 1 = 4> - 1 - 4> - 1 X' ( A + X ') X' ) - 1 X ') ( 3. 3. 7) 

Cov( ci I Yi) can be written as 

(3.3.8) 

where 

(3.3.9) 

(see Appendix 3.1 for further simplification of this term). 

Using the result ( du Toit, 1993), 

(3.3.10) 

the expected value of ci, given Yi, may be expressed as 

(3.3.11) 

where 

(3.3.12) 

(see Appendix 3.1 for further simplification of this term) 
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The vector Yi can be ,vritten as 

so that 

It further follows that the covariance matrix of Yi and b\ ( cf. (3.2.8)) can be written as 

where 
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Under the distributional assumptions given m the previous section, the joint 

distribution of Yi and bii , where 

and 

is given by (see for example Morrison (1991)) 

l 
with 

The covariance of bij , given Yi , is 

Using results (3.3. 7) and (3.3.10) the covariance of bij , given Yi , can be expressed as 

C .. A.-:- l x(lll)" s. Cov(c·I Y·) s~ + s. Cov(c•I Y·) s~ - c .. A - 1 c .. 
lJ lJ ~ l 1 1 l l l l l l lJ ij lJ" 

(3.3.13) 
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From (3.3.9), 

X' A- 1 X - A {2)ij ij (2)ij - ij 

so that 

(3.3.14) 

The expected value of bij, giYen Yi , is giYen by 

Therefore 

n- n-

~(2} Aij Si Cov( Ci I Yi) s~ { t Aij SJJ - t bij} · 
J=l J=l 

(3.3.15) 
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3.4 PARAMETER ESTIMATION USING EXPECTED MAXIMIZATION 

In this section a number of key results will be given in terms of five propositions. It will 

then be shown that these results may be used in an iterative procedure to obtain 

Maximum Likelihood (ML) estimates of the unknown parameters in the level-3 model 

( cf. (3.2.11) and (3.3.5) ). This optimization algorithm is known as the EM algorithm. 

PROPOSITION 3.4.1 

Consider a row of independent random Yectors y 1 , y 2 , ••• , y N and a random sample 

d1 , d2 , ... , dN of the random vector d which are independently distributed from the 

Yi . Let I denote the unknown parameters in the pdf of y 1 , y 2 , .•• , YN and r the 

unknown parameters in the pd£ of d . Then 

= ~ E ( a In 9i (d)) 
,?.- dly- 8TK' 
i=1 i 

(3.4.1) 

and 

a Zn L = t E ( a Zn f (yd d)) 
a,K i=i dlyi a,K (3.4.2) 

where L denotes the likelihood function of y 1 , y 2 , •.. , YN · 

Proof 

From (3.3.4) it follows that 

ft f J (y, \ d) g.(d) dd 
i=1 d 

Hence, 

In L = t ln f f(y;J d) 9; (d) dd 
t=l d 
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and 

Since 

it follows that ( cf. (3.3.3)) 

a ln L = ~ J { a ln gd d)} P ( d I Y·) dd 
OTJ( ~ OTK l ' 

,_1 d 

and, therefore, 

a ln L = ~ E ( 8 ln 9i ( Yi ) ) . 
OTJ( ~ dly• OTK' 

i=l 1 

Similarly, it can be shown that 

PROPOSfflON 3.4.2 

The maximum likelihood estimator fJ of f3 can be expressed as 

with E(cdyi) defined by (3.3.11). 
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Proof 

Denote the prior distribution of ci by 9; ( c) where 

The maximum likelihood estimator P of fJ is obtained as the solution of 

8 ln L _ o afJ - . 

Using Proposition 3.4.1 it follows that 

where 

Thus, 

Therefore (cf. (3.4.5) and (3.4.6)) 

so that 
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PROPOSITION 3.4.3 

The maximum likelihood estimator i (SJ of cJ.> (sJ can be expressed as 

(3.4.8) 

with Cov( c; I Yi) defined in (3.3.8) and E( ci I Yi) defined in (3.3.11 ). 

Proof 

From Proposition 3.4.1 it follows that 

Equation (3.4. 7) may be written as 

(3.4.9) 

where 

(3.4.10) 

Using the result (Browne and du Toit, 1992) 

where 
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and 

it follows that 

8 Zn 9i ( c) _ 1 t ~ _ 1 (G ~ ) ~ - 1 {)~(SJ 
{)<I> - 2 f ~ ( 3) C - ~ ( 3) ~ ( 3) {Jq> 
~~ ~n 

smce 

and 

Let 

fq,ln L = t E I y { iJ z; 9; ( c)} = 0, r, s = 1, 2, ... ' q. 
{S)rs i=J Ci i {) {S)rs 

Then i(sJ is obtained as 

where 

...... 1 N ...... 

~(SJ= NL E C·IY· Ge 
i=J I I 

EcilYiGc=EcilYi [(ci - E(cilYi))+(E(cilYi) - .fl)] x 

[ ( Ci - E( Ci I y i)) + ( E( Ci I y i) - p ) ] ' 
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Thus, cl> (s) ma.y be expressed as 

PROPOSITION 3.4.4 

The maximum likelihood estimator ~ (1) of <P (1) is given by 

n­
t 

D 

(3.4.12) 

where ~ = "'"""'n-• with n-• the number of units of the i-th level-3 and J-
0 

th level-2 unit. L IJ JJ 
j=l 

Proof 

The conditional pd£ of Yi, given 

b il 

b; = h ·· • t} 

h in-
' 

IS 
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where 

Xr2Ji1 b;1 

Xr2Ji2 bi2 

The natural logarithm of the conditional pd£ f (Yi I b) is 

where 

From Proposition 3.4.1 it follows that 

The derivative of ln f (Yi I bi) with respect to~ (1) 1s 

a ln f (Yi I bi) = _ _E_ + + tr G . 
a<P (1J 2<P r1J 2<P r1J y 

Setting ~Jn L equal to zero, ~ (1 J may be calculated as 
(1) 

,.. l N 
<Pr1J= N~LEb-1 _trGY 

i=l r Yi 

where 
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and, therefore, 

n-
1. 

= E tr [ Yij - x(2)ij E(bij I Yi) + x(2)ij E(bij I Yi) - x(2)ij bij ]' X 
;=1 

n-

E b-lY· tr Gy = t {E b--1 . tr (Yij - x(2)ijE(bijlYi))' X 
t i j=J 1; Ya 

n-

- I: {(Yij - Xr2Jii E(bij I Yi)) (Yij - Xr2Jii E(bij I Yi))' + 
j=1 

Equation (3.4.13) can then be written as 

PROPOSITION 3.4.5 

The maximum likelihood estimator i(2) of •r2J can be expressed as 

□ 

(3.4.14) 
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with CoY(bij I Yi) defined in (3.3.13). 

Proof 

The prior distribution of bi can be written as 

mni ni ni 

== (2,r)--2-1 cJ.>b I - 2 exp - ½ ~ ( b,j - Si {3)' <Pb 1 
( b,j - S; /3) 

;=l (3.4.15) 

where 

From (3.4.15) it follows that 

where 

n­
i 

Gb == ...L ~ ( b-- - S- R) ( b-- - s. R)' . n. ~ i; i ,_, i; i ,_, • 

i t j=l 

Using (3.4.11) it follows that 

0 ln 9 (bi) == ni tr [ c) - 1 ( G ._ c) ) c) - 1 0 <)b ] 

f)q> (2}rs 2 b bi b b f)<p {2)rs 

== :i (2 - <\s)[ (> b 1 
( Gb. - <)b) c) b 1 

]rs , 
- t 

since ( cf. (3.4.16)) 
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and 

tr A J rs == [ A Lr • 

Sett.1·ng 8 ln L I t 1 •J t· t ~ f...... . bt . d 
aA;. equa o zero, r, s == , -, ... , m,, an es 1ma or vb o vb 1s o .a1ne as 

'J! (2)rs 
follows: 

Using (3.4.16), i(2) may be written as 

(3.4.17) 

where 

and i(s) is given by (3.4.8). 

l N ,. 
The expression - ~ Eb G can then be written as 

N ~ ijlY; b 

..!. f Eb G = ..!...!. f t { Cov(h;;IY;) + 
N i=I ii I Yi b N ni i=I J=I 

so that ( 3.4.1 7) can be written as 

□ 
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EM estimators of the unknown parameters may be obtained recursively from equations 

(3.3.8), (3.3.11), (3.4.3), (3.4.8), (3.3.14), (3.3.15), (3.4.14) and (3.4.12) which, for the 

purpose of clarity, are repeated below, ,,·ith Aii defined by (3.3.9). 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

n­
i 

Cov( ci I Yi) = ( if\-;/ + Si ~ (Aij) Sd - 1 

J=l 
n- n• 

i i -- --

E( c; I Yi)= Cov(cilYi) { Si L bii - Si Z:(Aii) SifJ} + /3 
j=l j=l 

.- 1 N 
/3 =NL E(cdyi) 

i=l 

i{9) = i{ f, {cov(c;Jy;) + (E(c;Jy;) - ,8) (E(c;Jy;) _ ,8) 1
} 

i=l 

(vi) E(bii I Yi) = Si E( c; I Yi) + i r2J (bii - Aii Si /3) + 

i(tJ A;; S; Cov(c;Jy,) Si { t A;; S, .fl - t h;;} 
j=l J=l 

.- 1 N l ni { ( ..- ) 
(vii) ()(2) = N ~ ni ~ Cov(bii I Yi) + E(bii I Yi) - Si fJ x 

i=l J=l 

(E(b;;I Y;) - S; .8) I} - 1 t s, i(9) s: 
i=l 

(viii) i(1) = JN' t { t {( Y;; - x(2)ij E_(h;;IY,)) ( Y;; - x(£)ij E(b;;IY;))' + 

tr X(2Jii x(2)ii Cov(b;; I Y;) } } 

The following steps are used: 

Step 1: SetfJ=O, <I>r1J=l, c)<2f=O, c)rsf=O. 
Step 2: Evaluate expressions (i) to (viii) successively. 

Step 3: Repeat Step 2, starting from (i) to (viii), until the procedure converges. 
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Let 

tk= 

/3 

vecs cJl (SJ 

vecs cJl (2) 

where tk denotes the k-th approximation to the estimator 1' of 1 . A possible 

convergence criterion is to require that 

where c is an arbitrary small number, for example c = 10- 5. 

The optimization algorithm described above is known as the EM algorithm. Iterations 

based on (iii), (iv), (vii) and (viii) proYide a rapid, robust method for obtaining close 

approximations to the marginal maximum likelihood estimates of the parameters. 

At level-3 the Bayes estimator P /3 of /3 for a normal prior g(c) is given by E( ci I Yi), 

defined by (ii). Since /3, ~(sJ, ~(2) and ~{1) are unknown and have to be estimated from 

the data, E( ci I Yi) yields a so-called empirical Bayes estimate of /3 for experimental unit 

i, i = 1, 2, ... , N. 

3.5 PRACTICAL APPLICATION 

In this section the results given in Sections 3.2 to 3.4 are illustrated. A comparison of 

the empirical Bayes estimates obtained and the OLS estimates for the same level-3 

units is also given. 
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Example 3.5.1 

In this example the analysis of a data set obtained from a survey undertaken by the 

South African Department of National Health and Population Development is 

considered. As education is currently the only viable strategy to combat the spread of 

AIDS, the Department developed a comprehensive AIDS and life skills education 

package for secondary schools. 

The data set used contains information on the knowledge and perception of AIDS and 

related issues of 1702 pupils at secondary schools and can be schematically represented 

as follows: 

Level-3: School l School i School 10 

Level-2: 

age 14 ... age 16 age 14 age 15 age 16 age 14 age 16 

Level-1: I 
pupil 1 pupilnij 

The level-3 units are the 10 schools, the level-2 units are the different age groups and 

the level-1 units are the individual pupils. 

The response variable, y, is the total score of each pupil's perception of HIV/ AIDS 

susceptibility. The total score of each pupil's knowledge, x, of transmission of AIDS 

through proven means, together with the gender of the pupil, are used as explanatory 

variables. 

The items used to calculate the total scores used as response and explanatory variables 

are given in Tables 3.5.1 and 3.5.2 respectively. Note that the possible outcome of each 

item is either 'yes' or 'no' and that these categories are coded '1' for positive responses 

and 'O' for negative responses prior to the calculation of the total score. 
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Table 3.5.1: Items used to calculate a total score for a pupil's perception 

of HIV/ AIDS susceptability. 

Description of Item Possible outcomes 

Can teenagers (people under 20 years old) Yes/No 

get AIDS? 

Is AIDS/HIV a disease from which mainly your Yes/No 

own population group suffers? 

Is AIDS /HIV a disease from which mainly other Yes/No 

population groups suffer? 

Do you think that all people can get AIDS /HIV? Yes/No 

Do you think that AIDS /HIV is mainly a "gay Yes/No 

disease / homosexual disease"? 

Do you think it is possible that even your best Yes/No 

friend could get AIDS /HIV? 

I Maximum score: 61 
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Table 3.5.2: Items used to calculate a total score for a pupil's knowledge of the 

transmission of AIDS /HN by proven means. 

Description of Item Possible outcomes 

One cannot get AIDS /HIV by having sex with Yes/No 

someone who has AIDS/HIV. 

A pregnant woman can pass AIDS/HIV on to her Yes/No 

unborn baby. 

One can get AIDS /HIV by receiving blood that was Yes/No 

donated by a person who has AIDS/HIV. 

A man can get AIDS/HIV by having sex with Yes/No 

another man who has AIDS/HIV. 

AIDS /HIV is caused by a virus / germ Yes/No 

The body of a person with AIDS/HIV cannot defend Yes/No 

itself against other diseases. 

AIDS /HIV cannot be spread when two uninfected Yes/No 

people have sex. 

A woman cannot get AIDS /HIV by having sex with Yes/No 

another woman who has AIDS/HIV. 

AIDS /HIV cannot be transmitted by semen. Yes/No 

AIDS/HIV can be transmitted by Yaginal fluids. Yes/No 

AIDS /HIV can only be transmitted by a person who Yes/No 

is infected with AIDS/HIV. 

Is it true that someone who suffers from· sexually Yes/No 

transmitted disease is more likely to get AIDS /HIV? 

One can get AIDS/HIV by receiving blood that was Yes/No 

donated by a person who has AIDS/HIV. 

I Maximum score: 13 I 
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The following linear model ( cf. (3.2. 7), ( 3.2.8) and (3.2.9)) is fitted to the data: 

Y .. = X--b··+ e .. I) I) I) I) (3.5.1) 

where 

b-·= c-+ U·· 1) i I) (3.5.2) 

and 

Ci= /j + Vi. (3.5.3) 

A typical element of Y;j is Yijk which denotes the total score with regard to HIV/ AIDS 

susceptability of pupil k being of age j from school i. Similarly, a typical element of the 

n·· x 1 vector X-· b-· is x.. b-· where tJ tJ tJ iJk tJ 

knovdedgeijk gender ijk) 

and 

[ 

interceptij l 
bij = regression coefficient for knowledgeij , 

regression coefficient for gender ij 

where bij is a vector of stochastic coefficients for age group j and school i. The vector ci 

( cf. (3.5.3)) is a vector of stochastic coefficients for school i. Note that for the model 

considered above, the matrix Si ( cf. (3.2.8)) is taken as the identity matrix. This implies 

that the covariance of (bij, b~) ( cf. Section 3.3) reduces to 

(3.5.4) 

From the distributional assumptions given in Section 3.2, it also follows that 

(3.5.5) 
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and 

(3.5.6) 

A computer program :ML3_E:M was written in FORTRAN to implement the 

theoretical results given in Sections 3.2 to 3.4. Part of the computer output of ML3_EM 

is given below: 

( i) Fixed part of the model: 

PARAMETER p 
INTERCEPT 2.4864 

SCORE 0.1848 

GENDER -0.0610 

(ii) Random part of the model: 

INTERCEPT 

INTERCEPT 0.1682 

SCORE -0.0135 

GENDER 0.0090 

INTERCEPT 

INTERCEPT 0.1238 

SCORE 

GENDER 

-0.0082 

-0.0066 

ESTIMATE OF ~(s) 

SCORE 

0.0014 

-0.0010 

ESTIMATE OF ~(2) 

SCORE 

0.0006 

0.0004 

ESTIMATE OF 4> (J J 

1.4644 

GENDER 

0.0028 

GENDER 

0.0044 
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(iii) Convergence details: 

Convergence (EI\1-algorithm in 11 iterations) 

From part (i) of the output it can be seen that the estimate of the intercept is 2.4864, 

which may be interpreted as the expected value of y, assuming no score or gender effect. 

The score coefficient indicates that, on average, an increase of 5 in the predictor score is 

required to accomplish an increase of 1, that is 16. 7 %, in the response score. The 

gender score of - 0.0610 implies a total gender effect of 0.1220. In the case of boys 

( coded ' - 1 ') this leads to a positive effect of 0.0610, and for girls ( coded '1 ') a negative 

effect of - 0.0610, showing that boys generally obtained a slightly higher score than 

girls. 

,vhen considering part (ii) of the output, a comparison of the elements of 4>(3) and 4>(2) 

indicates slightly greater variation on level-3 (schools) than on level-2 ( age groups). The 

value of 1.4644 obtained for ~ (J) ( cf. (3.5.6)) can be interpreted as the variation in 

observation errors. 

From (3.2.9) and (3.2.10) it follows that 

(3.5.7) 

A 95 % tolerance interval for a typical element of ci, say [cih, is therefore given by 

Since /3k and <P(s)k,k are unknown and have to be estimated from the data, an 

approximate 95 % tolerance interval for [cih is given by 

(3.5.8) 

Note that c1 , c2 , .•• , cN are identically and independently distributed, so that the 

same tolerance intervals apply irrespective of the subscript of these random coefficient 

vectors. Approximate 95 % tolerance intervals for the level-3 random coefficients can be 
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constructed using (3.5.8). The 95 % tolerance interval for the intercept is given by 

that is, 

(1.6662 ; 3.3066) . 

The 95 % tolerance intervals for the score and gender coefficients are given by 

(0.1094 ; 0.2602) and ( - 0.1674 ; 0.0454) respectively. 

On the second level of the hierarchy it follows from (3.5.4) that 

and hence 95 % tolerance intervals for [biih are given by 

~ k ± 2 ~~ (3)k,k + ~ {2}k,k , k = 1, 2, ... , m. (3.5.9) 

The 95 % tolerance interval for the intercept is given by 

(1.4057 ; 3.5675) . 

Similar intervals for the score and gender coefficients are given by (0.0958 ; 0.2738) and 

( - 0.2306 ; 0.1086) respectively. Note that the 95 % tolerance interval for gender on 

level-2 is much wider than on level-3. This ·may be caused by the aggregation over age 

groups on level-3. 

Since the calculation of the standard errors of the coefficients does not form part of the 

EM algorithm, it is not possible to determine which of the estimated coefficients are 

significant. It would seem, however, from the small gender effect that gender is not a 

significant predictor of the response score. 

Page 3.32 

 
 
 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2022 

The empirical Bayes estimators E( C; I Y;) of the coefficients ci for school i, and 

corresponding estimated standard deYiations (cf. (3.3.8)) can, however, be obtained 

from the computer output. Table 3.5.3 is a comparison of the empirical Bayes estimates 

with the Ordinary Least Squares estimates of the regression coefficients for each of the 

10 schools. 

Table 3.5.3: Comparison of Bayes estimates and estimated regression coefficients. 

School no. Multilevel model Linear regression model 

E(ci I Yi) Std. dev. Regr. coeff. Std. error 

1 2.2760 0.2452 2.2313* 0.2609 

0.1780 0.0233 0.1768* 0.0291 

-0.0471 0.0411 -0.0456 0.0720 

2 2.0950 0.2770 1.6196* 0.3805 

0.2252 0.0285 0.2795* 0.0451 

-0.0949 0.0454 -0.1249 0.1016 

3 2.2300 0.2841 2.2579* 0.4156 

0.1816 0.0281 0.1641 * 0.0468 

-0.0674 0.0455 -0.1367 0.1122 

4 2.4810 0.2848 2.5477* 0.3844 

0.1914 0.0273 0.1870* 0.0403 

-0.0836 0.0446 -0.1715 0.0970 

5 2.2880 0.3012 1.8358* 0.4690 

0.2213 0.0288 0.2762* 0.0481 

-0.0902 0.0459 -0.0923 0.1167 

6 2.9760 0.3445 4.3070* 0.6890 

0.1574 0.0319 0.0455* 0.0647 

-0.0397 0.0469 -0.0488 0.1081 

7 2.7520 0.3376 3.2851 * 0.6095 

0.1752 0.0304 0.1314* 0.0560 

-0.0604 0.0459 -0.0969 0.0988 
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8 2.5350 0.2920 2.5110* 0.3700 

0.1689 0.0286 0.1635* 0.0392 

-0.0278 0.0460 0.1135 0.0975 

9 2.3930 0.2982 2.2516* 0.4166 

0.1978 0.0291 0.2159* 0.0442 

-0.0758 0.0452 -0.1152 0.0923 

10 2.8450 0.3265 3.5915* 0.4410 

0.1497 0.0303 0.0806 0.0428 

-0.0243 0.0455 0.0230 0.0710 

* Significant at 5 % level of significance 

From Table 3.5.3, columns 2, 4 and 5, it can be seen that none of the regression 

coefficients for gender are significant at a 5 % level of significance, confirming the 

conclusion based on the results of the multilevel model. Standard errors of significant 

regression coefficients are, in general, larger than the estimated standard deviations for 

the estimates obtained through using the multilevel model. There is a considerable 

variation in the regression coefficients over schools. In the case of the regression 

coefficient for the intercept, a value of 1.8358 is obtained for school 5, compared to a 

value of 4.3070 for school 6. Figure 3.5.1 gives a graphical presentation of the predicted 

response scores plotted against the knowledge scores, x, for the 10 schools, given gender 

= 1, that is, females. In the figure FACTOR D denotes the response variable and 

FACTOR A denotes the predictor variable. 
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Figure 3.5.1: Predicted regression lines for 10 schools, given gender= 1. 
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The differences between schools is further illustrated in Figures 3.5.2 and 3.5.3 which 

are plots of predicted scores against x and 95 <Jc. confidence limits for the mean against x. 

giYen gender = 1. 

Fa.ct.or D 
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4.3 
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.. •·· 
.. ··· 

..... •············· 3."?' 
.. 

.. .. 
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... •····· . •· .. 
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Fa.ct.or A 

Fig. 3.5.2: Predicted scores and confidence limits for school 1. 
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Fig. 3.5.3: Predicted scores and confidence limits for school 6. 
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3.6 SUMMARY 

In this chapter the level-2 model considered in Section 2.3 was extended to allow for the 

model coefficients to be random across a third level of the hierarchy. Theoretical results 

required for estimation of the unknm-Yn parameters in the level-3 model were given in 

Sections 3.2 to 3.4. The optimization algorithm used to estimate the unknown 

parameters is known as the EM algorithm. 

The estimation procedure in Section 3.4 was implemented in the FORTRAN program 

ML3_EM and a practical application was given in Section 3.5. 

The EM algorithm is a fast, robust method for obtaining maximum likelihood estimates 

of the unknown parameters. In certain cases, however, a larger number of iterations 

may be required for the procedure to converge. A more serious disadvantage of the 

EM algorithm is that standard errors of the estimators cannot be obtained. The 

EM procedure also does not facilitate statistical inference such as hypothesis and 

contrast testing. 

In the next chapter the so-called IGLS procedure will be introduced to address the 

problems and shortcomings associated with the EM algorithm. 
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APPENDIX 3.1 

The terms A;j and bij can be simplified as follows: 

(i) 

- 1 R'X' X - X-- . . (2) .. (2)i. 
'i! ( l) IJ iJ J 

- 1 R' X' y 
- ip(l) ij (2)ij ij 

where 

and 

A - 1 l I 1 X ( ~ - 1 + X' 4> - 1 X ) - 1 X' 
ij = ~ - 4>2 (2)ij (2) (2)ij (1) (2)ij (2)ij • 

(1) (1) 

Expression (i) can be derived as follows: 

xr2Jij Ai-; 
1 

Xr2Jij = xr2Jij { 4> 
1
<
1
J - 4>1 Xr2Jij ( ~ r-;/ + xr2Jii 4> r-;/ Xr2Jii ) -

1
Xr2J) Xr2Jij 

(1) . 

= q,~
1
J { 1 - q,~lJ X(2Jij Xr2Jij ( 'Pr-;/ + X(2Ji; 4'r7/ Xr2Jij )-

1
} x 

- 1 R'X' X - ~ ij (2)ij (2)ij • 
(1) 
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Expression (ii) can be simplified as 

= x<2Jij { g/ - <I>i Xr2Jij ( 'Pr-;/ + x<2Jii <I> r-;/ Xr2Jij ) -
1 

x<2Jij } Yij 
(1) (1) 

= <I> ;1J { I - <I> ~
1
J x<2Jii Xr2Jij ( 'Pr-;/ + x<2Jij <I> r-;/ Xr2Jij) -

1
} xr2Jii Yii 

1 R' X' = <I> (l) ii (2Jii Yii · 
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CHAPTER4 

THE IGLS ALGORITHM FOR PARAMETER ESTIMATION OF LEVEL-3 MODELS 

4.1 INTRODUCTION 

In this chapter attention ,vill be given to the estimation of the unknown parameters of a 

level-3 model (see Section 3.2), using an IGLS algorithm. Advantages of using an IGLS 

procedure are that, in most instances, convergence is reached in a small number of 

iterations and that standard errors of the unknown parameters may be obtained. 

Statistical inference is also facilitated. It has also been shown (Goldstein, 1987 and 

Browne and du Toit, 1992), that under the assumption of multivariate normality, the 

IGLS estimation procedure is equivalent to normal Maximum Likelihood. 

The IGLS procedure is discussed in Section 4.2. Simplified expressions of the terms 

involved are given in Section 4.3. Simplification of these terms ensure that the 

optimization algorithm is computationally efficient and that storage space requirements 

are greatly reduced. Statistical inference is discussed in Section 4.4 while a practical 

application is given in Section 4.5 and conclusions are given in Section 4.6. 

4.2 PARAMETER ESTIMATION USING ITERATIVE GENERALIZED LEAST 

SQUARES 

Let X(2Jii denote the nii x m design matrix of the i-th level-3 and j-th level-2 

experimental unit. The level-3 model ( cf. Section 3.2) can be expressed in terms of the 

nix 1 vector Yi as 

Yil 

Yi= Yii 

Yin-
' 
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where 

and where it is assumed that ui1 , u;2 , ... , uin- are identically and independently 
I 

distributed ·with mean O and covariance matrix ~ (2). Si is an m x q level-3 design matrix 

(cf. Section 3.2 and Example 3.2.1). 

It is further assumed (cf. (3.2.9)) that 

where v 1 , v 2 , ... , vN are identically and independently distributed with mean O and 

covariance matrix ~(s)· Under the distributional assumptions (cf. (3.2.10)) it follows 

that 

( 4.2.2) 

where 

( 4.2.3) 

and 

( 4.2.4) 
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It also follows that 

( 4.2.5) 

where 

Ail 0 0 

0 Ai2 

A-z 

0 

0 

and where 

(4.2.6) 

A number of results which form the basis of the IGLS algorithm follow as Propositions 

4.2.1 to 4.2.3. In order to implement these results in an efficient computer program 

further simplification of the mathematical expressions involved is required. This issue 

will dealt with in the next section. 

REMARK 4.2.1 

In the following propositions, new notation is introduced which reqmres some 

explanation. Let r be a q"' x 1 vector with components the non-duplicated elements of 

cI>(sJ, cl>r2; and <I>0 ;, where q"' = ½ q(q + 1) + ½ m(m + 1) + 1. That is, 

[

vecs cf>(s)j 
r = vecs cl> (2) • 

<I>(1) 

(4.2.7) 
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Suppose that rk is the k-th approximation to the IGLS estimator f of r, then it follows 

from ( 4.2.5) and ( 4.2.6) that Ei ( rk) is the k-th approximation to the estimator Ei of Ei . 

In what follows it will be convenient to denote Ei ( rk) by Vi . Similarly, the notation Pk 

is used to denote the k-th approximation to the IGLS estimator P of the vector of fixed 

parameters p. □ 

PROPOSITION 4.2.1 

The k-th approximation Pk of the iterative generalized least square estimator '/J of Pis 

obtained from 

(4.2.8) 

Proof 

Let 

and y Yi 

YN 

with XrsJi , i = 1, 2, ... , N and Yi , i = 1, 2, ... , N defined by ( 4.2.3) and ( 4.2.1) 

respectively. 

It follows that 

E(y) XrsJ /3 
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and that ( cf. Remark 4.2.1) 

V= 

0 

0 

0 

Y.v 

is the k-th approximation to the estimator :E of Cov(y , y') . 

Consider the quadratic form 

The k-th approximation to the estimator 'jj of /3 is obtained as the solution to the 

equations 
aQ/3 
a{J = 0, and hence 

□ 

PROPOSITION 4.2.2 

Let 

Z* = [ Z (2)i1 

where ( cf. ( 4.2.4)) 

Z' - [ O' (2)ij - O' ] (4.2.9) 
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and 

0 

0 

Then 

vec Z* (>* Z*' 

Proof 

Using the result (see for example Browne, 1974) 

vec A B C = C' ® A vec B 

it follows that 

n• t ( z(2)ij ® z(2)ij ) vec •. 
j=l 
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PROPOSITION 4.2.3 

Let 

Yi = vecs (Yi ) , 

and (cf. Remark 4.2.1) 

T 

vecs ~(3) 

vecs ~(2) 

vecs <I> (1) 

( 4.2.12) 

( 4.2.13) 

Suppose that Wi is a consistent estimator of the covariance matrix of vecs ("¥7). The 

k-th approximation rk to the estimator r of r ( cf. ( 4.2. 7)) is obtained from 

N N 
Tk - LE xrwi-l xn-l [I: xrwi-l y:J (4.2.14) 

i=l i=l 

where 

n• ( t Zr2Jii ® Zr2Jii) Gm vec I] 
j=l 

(4.2.15) 

with Zr2Jii defined by ( 4.2.9) and where 

w.- 1 = 1 G' ( v.- 1 ® v.- 1 ) G . 
t 2 ni i I ni ( 4.2.16) 

n-

ln ( 4.2.15), Hn~ : ½ n7( nf + 1) x n72 with nf = i nii is a non-unique matrix (Browne, 
i ;=1 

1974) such that 

vecs A H * vec A n-

' 
(4.2.17) 
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,,vhere A is symmetric \Yhile in ( 4.2.16) Gm : m 2 x ½ m( m + 1) 1s an unique matrix such 

that 

vec A (4.2.18) 

Proof 

From ( 4.2.12) it follows that 

where ( cf. ( 4.2.5)) 

( 4.2.19) 

Use of ( 4.2.11) and Proposition 4.2.2 gives 

n-

vec Ei = ( x(S)i @ x(S)i) vec 4>(s) + t ( z(2)ij @ z(2)ij) vec 4>(2} + 
j=l 

and therefore, 

where x; is defined by ( 4.2.15). The covariance matrix of y; can, under the assumption 

of multivariate normality, be expressed as ( du Toit, 1993) 

Cov( y~, y~') = -
2
1 G' ( E.- 1 

@ E-- 1 
) Gn . . 

t t ni t I I 
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W .- 1 = l G' ( V .- 1 0 V .- 1 ) G 
t 2 ni t I ni 

is a consistent estimator of Cov( y;, y;'). 

Let 

X* -

X* 1 

X* 
2 

X* N 

then it follmvs that 

E( y*) = X* T 

and 

Cov(y*, y*') = W 

where 

W-

0 

and y* 

Consider the following quadratic form: 

0 

QT = [ y* - X* T ]' w- l [ y* - X* T] 
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Then 

0 

yields 

N N 
= [L xrwi-1 x:1-1 [L xrwi-1 y:J. 

i=l i=l 

General comments 

( 4.2.20) 

□ 

The IGLS estimators p of fJ and f of r can be obtained as follows from Propositions 

4.2.1 and 4.2.3 respectively : 

(i) Set ~(1) = 1 ; i(2) = 0, i(S) = 0 so that (cf. Remark 4.2.1) vi 
(ii) Calculate fJk ( cf. (4.2.8)) 

(iii) Calculate Yi = ( Yi - x(S)i fJd ( Yi - x(S)i fJd' 
(iv) Calculate rk (cf. (4.2.14)) 

(v) Vpdate Vi (cf. Proposition 4.2.1) 

Repeat Steps (ii) to (v) until convergence is obtained. The algorithm described above is 

known as IGLS. 

Although the IGLS algorithm described above appears to be straightforward, its actual 

implementation in a computer program is not. The first problem encountered is that 

the amount of storage space required for the matrices Vi ( cf. Proposition 4.2.1) and Wi 

(cf. (4.2.16)) may exceed the total RAM (Random Access Memory) of the computer. 
n­

i 

Note that Vi is an n: x n: matrix where n: = ~ nii . In practical applications it is not 

uncommon to find situations where n; is large. ;=l 

For example, a sample of ni = 20 schools may have been drawn from a given education 

department. From each of these schools, a simple random sample of size ni; = 50, 

j = 1, 2, ... , 20, pupils are drawn. Therefore n; = 1000. Hence the storage space 
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required for Vi is 8 l\1egabytes (8 bytes for each of the 10002 elements). Wi is a k*x k* 

matrix where k* = ½ n; (n; + 1). For n; = 1000, Wi is (500 x 1001) x (500 x 1001). 

Presently, most personal computers haYe a maximum of 4 Megabytes RAM available 

when executing programs. 

An eYen more serious problem is that of the computation time required for matrix 

inversion. In general, n3 operations are required to invert a matrix of order n (Press et 

al, 1988). See, for example, ( 4.2.8) and ( 4.2.14) for expressions involving matrix 
. . 
1nvers1on. 

4.3 COMPUTER IMPLEMENTATION OF THE IGLS ALGORITHM 

In this section the problems discussed above will be addressed. It will be shown that the 

order of matrices to be inverted may be reduced to order m and q ,,·here m and q denote 

the number of variables random at level-2 and level-3 respectively. Furthermore, all the 

terms required to calculate the IGLS estimators are written in the form X' X, X' y or 

y' y, that is, matrices of squares and cross products of the data. 

Before simplification of the terms of X*' w- 1 X* and X*' w- 1 y* respectively, note 

that X;' wi- 1 x; can be written as follows (cf. (4.2.15) and (4.2.16)) : 

(vec I)' 

Page 4.11 
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4.3.1: SIMPLIFICATION OF THE COMPONENTS OF THE WEIGHT MATRIX 

Symbolically, ( 4.3.1) can be ,vritten as 

T (3,3) T(2,3) T(l,3} 

2 x~' w.- 1 x~ 
t t t T (2,3) T (2,2} T(l,2} 

T (1,3J T (1,2J T (1,1J 

Computationally efficient expressions for each of the submatrices T (3,3), T r2,3), • • • 

T(J,l) are given in Propositions 4.3.1 to 4.3.6 of this section. The results derived in these 

propositions are subsequently summarized in Theorem 4.3.1. 

PROPOSITION 4.3.1 (Submatrix T(3,3) 

( 4.3.2) 

where 

n-
t 

Q; = S~ ~ A--S-
• t L lJ I 

(4.3.3) 
j=l 

and 

A--ii ( 4.3.4) 

Proof 

Using the result (Magnus & Neudecker, 1988) 

( 4.3.5) 
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( 4.3.2) can be rewritten as follmvs: 

( 4.3.6) 

From the result (Graham, 1981) 

(A' @ B') ( C @ C ) (A @ B) A' CA@ B' CB (4.3.7) 

( 4.3.6) can be rewritten as 

(4.3.8) 

From ( 4.2.5) it follows that 

A - 1 A- 1 X C X' A- 1 
- i - i ( .9 Ji i ( .9 Ji i (4.3.9) 

where ( cf. (3.3.8)) 

(4.3.10) 

This follows from a general result for matrix inversion 

( A + B C B' ) - 1 = A - 1 - A - 1 B ( C - 1 + B' A - 1 B ) - 1 B' A - 1 • 

(4.3.11) 

Thus x{.9Ji Ei- 1 x{S}i may be written ( cf. ( 4.3.9)) as 

x{S}i Ei- 1 x{S)i = x(S}i Ai 1 x(S}i - x(S)i Ail XrsJi Ci x(S)i Ai 1 
XrsJi 

( 4.3.12) 
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,Yhere (cf. (4.3.3)) 

(4.3.13) 

so that (cf. (4.3.12)) 

which, with :Ei replaced by Vi , concludes the proof. □ 

PROPOSITION 4.3.2 (Submatrix T (2,s;) 

( 4.3.14) 

Proof 

From (4.3.5) and (4.3.7) it follows that 

(4.3.15) 
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Z' r2Jii vi- 1 Xr3Ji may be written as ( cf. ( 4.3.9)) 

Zr2Jij vi- 1 
Xr3Ji = zr2Jij Ai-

1 
XrsJi - zr2Jij A-: 1 

Xr3Ji ci x(3Ji A-; 1 Xr3Ji 

( 4.3.16) 

where 

- A--S-,; I (4.3.17) 

and (cf. (4.3.13)) 

( 4.3.18) 

Substitution of ( 4.3.17) and ( 4.3.18) in ( 4.3.16) gives 

which concludes the proof. □ 

PROPOSITION 4.3.3 (Submatrix T (2,2;) 

ni ni 

T r2,2J = G~ ( ~1 Zr2Jii ® Z(2Jii ) H:t G:i (Vi- 1 ® vi- 1) Gni Hn; ( += Z~2Ji/' ® Z~2Jii* ) Gm 
}- . J =1 

ni ni 

= G~ L L (Aij [ 8jj* I - Si C; s~ Aij*] ® Aij [ 8jj* I - Si C; s~ Aij*] Gm . 
j=l i"'=l 

( 4.3.19) 

Proof 

Using results (4.3.5) and (4.3.7), it follows that 
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( 4.3.20) 

But Zr2Jii vi- 1 Z(2Ji/' can be written as ( cf. ( 4.3.9)) 

Zr2Jii vi- 1 
zr2Ji/' = z<2Jij A-: 1 

zr2Jii"' - z<2Jij A-: 1 
XrsJi Ci XrsJi A-: 1 

Zr2Jij* 

where 

with 

8 ··* 1 if j = j* 
JJ 

8 .. ,,, Xr2J .. A~ 1 X'r2J .. JJ tJ 2J tJ 

8 .. ,,, Ai
1
· 

JJ 

0 if j is not equal to j* 

Also, from ( 4.3.17) 

Substitution of ( 4.3.22) and ( 4.3.23) in ( 4.3.21) gives 

which concludes the proof. 
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PROPOSITION 4.3.4 (Submatrix T(J,sJ) 

( 4.3.24) 

Proof 

Using (4.3.5) and (4.3.7) it follows that 

( 4.3.25) 

Using (4.3.5) and (4.2.11), (4.3.25) can be rewritten as 

( 4.3.26) 

From ( 4.3.9) it follows that 

X' v- 1 X' A- 1 X' A- 1 x c x A- 1 
{S)i i = (S)i i - {S)i i {S)i i {S)i i 

which, using ( 4.3.13), reduces to 

Let 

E-- = X'r2J·· A-:. i A-:. i Xr2J·· 1) JJ 1J 1J IJ 
( 4.3.27) 

(for further simplification of Eii see Appendix 4.1.) 
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From ( 4.3.26) it then follows that 

Substitution of ( 4.3.28) in ( 4.3.26) concludes the proof. 

PROPOSITION 4.3.5 (Submatrix T (i, 2) 

Proof 

n­r 

= """' [ G' vec { E-- ( I - S- C- S~ A--) -~ m IJ I 1 1 2J 

j=l 
n­

i 

Aij Si Ci Si ( Eij - ( L Eij ) Si Ci Si Aij )} ]' . 
j=l 

From ( 4.2.11 ), ( 4.3.5) and ( 4.3.7), it follows that 

where Z' v- 1 v- 1 Z can be rewritten (cf. (4.3.9)) as {2)ij i i {2)ij 

Z' V - 1 V - 1 Z Z' A- 1 A- 1 Z {2)ij i i {2)ij = {2)ij i i {2)ij -
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( 4.3.31) 

From ( 4.3.17), where 

and from ( 4.3.27), where 

it follows that ( 4.3.31) can be written as 

ni 

A .. s. C. s~ ( E-. - ( """" E-. ) s. C. s~ A-. ) 
!J l l l lJ ~ lJ l l l lJ ' 

j=l 

( 4.3.32) 

Substitution of ( 4.3.32) in ( 4.3.30) concludes the proof. □ 

PROPOSITION 4.3.6 (Submatrix T(l,i;) 

n-{ t s~ x(2)ij x(2)ij R~i R~i Si Ci} 
j=l 

( 4.3.33) 
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where (cf. Appendix 3.1) 

( 4.3.34) 

and Ci is given by (4.3.10). 

Proof 

Let 

( 4.3.35) 

From ( 4.3.9) it follows that vi- 1 vi- 1 may be written as 

V .- 1 V .- 1 = ( A-:- 1 - M~ C- M- ) ( A-:- 1 - M~ C · M · ) 
I I l I I l l l I I 

= A-:- 1 A-:- 1 - A -:- 1 M~ C · M · - M~ C · M · A-:- 1 + 
l l I l l l I S S I 

M~ C- M- M~ C- M-
i l l l l l 

so that 

( 4.3.36) 

After simplification, the respective terms of ( 4.3.36) can be rewritten as ( cf. Appendix 

3.1) 

( 4.3.37) 

( 4.3.38) 
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and 

n-

tr { Ci Mi Mi Ci Mi M~ } = <P~ tr { t s: X(2Jii Xr2Jii R~i R~i Si Ci } x 
(1) ;=1 

( 4.3.39) 

Substitution of ( 4.3.37), ( 4.3.38) and ( 4.3.39) in ( 4.3.36) concludes the proof. D 

THEOREM 4.3.1 

Let 

vec I] 

and 

2W- = G' ( v.- 1 
@ v.- 1 ) G 

i n- i i n-
i t 

as defined by ( 4.2.15) and ( 4.2.16) respectively. 

The matrix X7' wi- 1 X7 can be written as 

T {S,S} T(2,S) T(l,S) 

2 x~' w.- 1 x~ 
i i i T (2,S} T(2,2J T(l,2) 

T{I,S) T(~,2J T (1,1J 

where the respective terms are 

( 4.3.40) 

( 4.3.41) 
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T (1,1J == 

n• 
l 

A-- S- C- s~ ( E-- - ( ~ E--) S- c. s~ A--)}]' 
lJ l l t 2J ~ tJ t l l tJ 

j=l 

'Tl,·· - m ni 

'
1 

2 tr { L R~i R~i} -
<I> (1) j=J 

n• 

<I>2; tr { t S~ Xr2Jii Xr2Jii R~i R~i R~i Si Ci } + 
(1) J=l 

n-

<I>~ { t s~ xr2Jij x<2Jij R~i R~j si ci } x 
(1) i=l 
n­

t 

{ ~ s~ x(2)ij x(2)ij R~j R~j Si Ci } 
J=l 

( 4.3.43) 

( 4.3.44) 

( 4.3.45) 

and where Aij, Qi, Ci, Eii and Rii are given by ( 4.3.4), ( 4.3.3), ( 4.3.10), ( 4.3.27) and 

( 4.3.34) respectively. 

Proof 

The proof follows directly from Propositions 4.3.1 to 4.3.6. □ 

In this section expressions required to efficiently compute the matrix X:' wi- 1 x: were 

derived. To calculate r (cf. (4.2.14) and (4.2.20)) and hence i(s), i(2) and ~(1) it is also 

necessary to find a computationally efficient way to calculate X:' wi- 1 y: . This 

matter will be dealt with in the next section. 
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4.3.2 SIMPLIFICATION OF THE COMPONENTS OF THE COEFFICIENT VECTOR 

From ( 4.2.15) and ( 4.2.16) it follmvs that X;' wi- 1 yf can be written as 

2 X~' w.- 1 y~ 
I l l 

( vec I)' 

( 4.3.46) 

Symbolically, ( 4.3.46) can be written as 

Computationally efficient expressions for each of the subYectors q(s), q(2) and q(J) are 

given in Propositions 4.3. 7 to 4.3.9. These results are summarized in Theorem 4.3.2. 

PROPOSITION 4.3.7 (subvector q(s) 

( 4.3.47) 

where ( cf. (3.3.12)) 

( 4.3.48) 

and Qi is given by ( 4.3.3). (For further simplification of bij see Appendix 4.1.) 

Page 4.23 

 
 
 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2022 

Proof 

From (-!.3.5) and ( 4.3. 7) it follows that 

( 4.3.49) 

\Vith the use of (4.2.11), (4.2.13) and (4.2.18) equation (4.3.49) can be written as 

( 4.3.50) 

where Yi is given by ( 4.2.12). 

Let 

( 4.3.51) 

with 

V - 1 A- 1 A- 1 x C X' A- 1 . = . - . (o)· . ( )" . t t t ..,, t St t 

as defined by ( 4.3.9). 

Then x{S)i vi- l Yi can be written as 

( 4.3.52) 
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where 

n• 
I 

X I A - 1 " X' A - 1 
(s)i i Yi = ~ (sJij ii Yij 

J=l 
n-

1 

= S~ " X'r J .. A-:-: 1 
Y·· I L__ 2 I) I) I) 

i=l 
n-

t 

= S~" b--i L__ IJ 
i=J 

with h;i defined by ( 4.3.48). 

Also, ( cf. ( 4.3.3)) 

Substitution of ( 4.3.53) and ( 4.3.54) in ( 4.3.52) gives 

The second term of a; , x(S)i vi- J X(s)i {J , can be written as 

which, using result ( 4.3.54), giYes 

Substitution of ( 4.3.55) and ( 4.3.56) in ( 4.3.51) gives 
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with ai given by ( 4.3.57). 

PROPOSITION 4.3.8 (subvector q(2;) 

Proof 

n­, 
= G~ vec ( { bij - Aij Si [ ,8 + Cd s~ L bij - Qi ,8 )]} X 

j=l 

ni 

{ h;j - Ai; si [ ,8 + Cd s~ L hij - Qi ,8 )]}') . 
j=l 

From ( 4.3.5), ( 4.3. 7) and ( 4.2.18) it follows that 

Let 

Using (4.3.9), the first term of (4.3.60) can be written as 

Z' v- 1 Z' A- 1 Z' A- 1 X C X' A- 1 
(2}ij i Yi = {2)ij i Yi - {2)ij i (S}i i (S}i i Yi 
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with (cf. (4.3.48), (4.3.17) and (4.3.53)) 

and 

so that 

n-
t 

X I A- 1 S' ~ b 
( .9 Ji i y i = i L- ii 

i=1 

ni 

Z'r2J:;· v:- l Y: = b-- - A-- S- c. s~ ~ b--• • • tJ t) I I t L- t) • 

j=l 

The second term of (4.3.60) can be written as (cf. (4.3.10) and (4.3.9)) 

( 4.3.61) 

zr2Jij vi- 1 
XrsJi P = zr2Jii A-; 1 

XrsJi P - zr2Jii A-; 1 
XrsJi ci XrsJi A-; 1 

XrsJi P 
( 4.3.62) 

with ( cf. ( 4.3.17)) 

( 4.3.63) 

and ( cf. ( 4.3.56)) 

( 4.3.64) 

Thus, 

( 4.3.65) 

Substitution of ( 4.3.61) and ( 4.3.65) in ( 4.3.60) gives 

( 4.3.66) 
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G' vec ( d • d~ ) m l l 

with di given by ( 4.3.66). □ 

PROPOSITION 4.3.9 ( q{l;) 

n• 
t 

= ~ ( 4>1 ii Yii - 4>'1 ii Xr2Jii ( • r-;/ + xr2Jii 4> r-;,/ Xr2Jii ) -
1 

xr2Jii Yii 
;=1 (1) (1) 

where 

+ 4>~ ii Xr2Jii ( • r-;/ + xr2Jii 4> r-;,/ Xr2Jij ) -
1 

xr2Jii Xr2Jii 
(1) 

n­
t 

+ f. ( '°' E-- ) f. t L..,, I) t 

i=l 

n- n-
t I 

f · = S. 1-l + S · C · S~ { '°' b- · - ( '°' A-· ) S- a } l I f' I t l L..,, l) L..,, ZJ l f' ' 

i=l j=l 

F X' A- 1 A- 1 
ii = (2Jii ii ii Yii 

and Eii is given by ( 4.3.27). (For further simplification of Fii see Appendix 4.1.) 

Proof 

From (4.3.5) and (4.2.11) 

( vec I )' H' • G' ( V .- 1 @ V .- 1 ) G y~ 
ni ni s s ni s 
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(4.3.70) 

Let (cf. (4.3.9)) 

( 4.3.71) 

Using ( 4.3.10) and ( 4.3.17), 

where fi is given by ( 4.3.68). 

Thus, 

.,.,,A- 1 A- 1 x £ ·f X' A- 1 A- 1 
Ji i i { 2 Ji i - i ( 2 )ij i i y i • ( 4.3. 72) 

But ( cf. ( 4.3.27)) 

E-- = X' A - 1 A - 1 X 
ZJ {2)ij ij ij {2)ij 
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and (cf. (4.3.69)) 

F X I A-1 A-1 .. = ( J.. .. .. Y·· 
I) 2 I) I) I) fJ 

so that 

ni ni ni 

i gi = Y; A i l A i l Yi + ~ CE Eij ) fi - CL F ij ) 
1 fi - ~ CE F ij ) 

j=l j=l j=l 
( 4.3.73) 

with 

Using ( 4.3.11 ), it follows that 

so that 

A -1 ( 1 1 1 x (J..-1+x' ;f,.-1x )-ix, )-1 
j" = ~ 71 •• - ;f;.2 (2}ij ';l" (2) (2)ij 'i.' (1) (2)ij {2}ii 
} (1) l) 'J.' (1) 

4>! Yii Xr2Jii ( 4> r-;/ + xr2Jii 4> r-;/ Xr2Jii ) -
1 

x 
(1) 

xr2Jij Xr2Jii ( 4> r-;/ + xr2Jij 4> r-;/ Xr2Jij ) -
1 

x 

(4.3.74) 

Substitution of ( 4.3. 73) and ( 4.3. 7 4) in ( 4.3. 72) gives 

n-

g~ gi = :E { 4>1 
ti Yii - q>; Yi; Xr2Jij x 

j=l (1) (1) 
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1 ' X ( 4> - i + X' <I> - i X ) - i <I>4 Yij {2)ij (2) (2)ij (1) {2)ij X 
(1) 

xr2Jij Xr2Jij ( 4> r;J 
1 + xr2Jij <I> r-;_J 

1 
Xr2Jij ) -

1
Xr2Jij Yi } + 

n- n- n-
t I t 

f (""'"" E .. ) f. - (""'"" F .. )' f. - f (""'"" F .. ) 
a~IJ t ~IJ t l~IJ" 

j=l j=l j=l 

Note that 

This concludes the proof. □ 

THEOREM 4.3.2 

Let 

vec I] , 

and 

y; vecs Yi , 

with 

as defined by ( 4.2.15), ( 4.2.16), ( 4.2.13) and ( 4.2.12) respectively. 

The vector X;' W i- 1 y; can be writ ten as 

2 X!' w.- 1 y! 
I I I 

[ 

4(s) l 
= 4(2) 

4(1) 
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where the respective terms are 

n­
i 

{ h;j - Aij si [ fJ + ci ( s~ I: bij - Qi fJ )]}') 
j=l 

ni 

4r1J = ~ ( 4>1 fj Yii - q>~ fj Xr2Jii ( ~ r-;/ + xr2Jii q> r-;/ Xr2Jij ) -
1 

xr2Jii Yij 
;=1 {1} (1) 

+ q>~ fi Xr2Jij ( ~ r-;/ + Xr2Jij 4> r-;/ Xr2Jij ) -
1 

x<2Jij Xr2Jij 
(1) 

with Qi, Ci, bij, Aij, fi, Fii and Eii given by (4.3.3), (4.3.10), (4.3.48), (4.3.4), (4.3.68), 

( 4.3.69) and ( 4.3.27) respectively. 

Proof 

The proof follows directly from Propositions 4.3. 7 to 4.3.9. □ 

Simplification of the components of ( 4.2.14) is not sufficient to ensure computational 

efficiency. The terms X(f)i vi- 1 V(f)i and X(f)i vi- 1 Yi (cf. (4.2.8)) needed for the 

calculation of p must also be simplified. For a detailed discussion of the required 

simplification of these terms see Section 5.2.3. 

4.4 STATISTICAL INFERENCE 

In Section 4.4.1 results are given which are required for the calculation of the standard 

errors of the estimated parameters. Hypotheses of the form c 1 /3 1 + c 2 /3 2 + ... c q /3 q = k 
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about the elements of the fixed parameter vector fJ are be considered in Section 4.4.2. 

Section 4.4.3 deals with the calculation of residuals, while likelihood ratio tests are 

discussed in Section 4.4.4. This section is based closely on that in du Toit ( 1993). 

4.4.1 STANDARD ERRORS 

Consider the general 3-level model 

where 

with 

and 

i = 1, 2, ... , N 

Xr1Ji11 

x'(J )il 2 

x'(J)in -n • • 
i tJ 

(4.4.1) 

The set of models described by ( 4.4.1) can be combined into a single model by means of 

column stacking. Thus, 

y = Xm fJ + Z* e* ( 4.4.2) 
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,vhere 

Y1 X(JJ1 

Y2 Xr1J2 

y = ' Xm = 

and 

Z* = Diag ( Z1 , Z2 , ••• , Z.v) . 

From ( 4.4.2) it follows that 

where 

and 

and where 

Cov(e~ e~') = 
I ' l 

~(S} 0 0 

0 ~(2) 0 

0 0 q>(l) 

From ( 4.2.8) it follows that the covariance matrix of Pis given by 
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In practice, :E; is unknown and is replaced by maximum likelihood estimator :Ei (f) = Vi 

(cf. Remark 4.2.1). Hence, a consistent estimate of the coYariance matrix of pis given 

by 

Cov(P, P') [X *' V - 1 X * ] - 1 
(f) (!) . (4.4.5) 

Similarly, it can be shown that a consistent estimator of the covariance matrix of r 
(cf. (4.2.20)) is given by 

N 
Cov(r , r') [LX:' w;-1 x; 1-1 . 

i=l 

The diagonal elements of the covariance matrix ( 4.4.4) may be used to obtain large­

sample estimates of the standard errors for the fixed parameter estimates. For large 

samples P and f haYe approximate multivariate normal distributions. See for example 

Malinvaud (1970), for general results on the distribution of least squares estimators. 

4.4.2 CONTRASTS 

The construction of contrasts or linear functions of the parameters is a useful statistical 

analysis tool and enables the researcher to perform hypothesis testing concerning the 

equality of subsets of parameters. In this section (see also du Toit, 1993), a summary of 

the results required for contrast testing is given. 

A p x q contrast matrix C, where p denotes the number of contrasts, can be used to 

formulate a complex hypothesis about several elements of /3 . The hypothesis is written 

in the form C /3 = k , where k is a known p x 1 vector. 

Consider as example the case where q = 3 and the following hypothesis is to be tested: 

f3s - /32 = 0 • 
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The null hypothesis can be formulated as 

For large samples it can be shovm that the vector variate C P will be approximately 

distributed as N(C /3 , C (XrJJ v- 1 Xw)- 1C'). 

Therefore, if HO is true, 

( 4.4.6) 

has an approximate x2-square distribution with p degrees of freedom. 

Let c' denote the i-th row of C and x\0 the critical value of the x2
- distribution with 

q degrees of freedom. A set of 100 (1 - o) % simultaneous confidence intervals for the 

p elements of C fJ is given by the p intervals 

I fJ...... { I (X' v ...... - 1 X )- 1 2 } 0.5 
Ci ± Ci (f) (f) Ci X q,Q' ' p < q . ( 4.4.7) 

The null hypothesis H0 : ~j, j =1, 2, ... , q = 0 is tested by using the test statistic 

which, for large samples, has an approximate N(0,1) distribution if H 0 is true. (See 

Section 4.5 for a practical illustration.) 

4.4.3 RESIDUALS 

The residuals vi, iii and ei (cf. Section 4.4.1) may be estimated as follows: 
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Let 

then, from ( 4.4.1 ), 

Under the assumption of multivariate normality it follows that Yi ,..., N(O , :E), 

V; ~ N(O , cT>r9;) and hence the joint distribution of [ ~•] is 

( 4.4.8) 

From standard results on conditional distributions (see for example Morrison, 1991) it 

follov,:s that 

& X' ~-1 ,..., = ';l" {SJ (S)i LJi Yi • 

Thus, the empirical Bayes estimate (see Chapter 3) of Vi is 

( 4.4.9) 

Similarly, 

( 4.4.10) 
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and 

(4.4.11) 

4.4.4 LIKELIHOOD RA TIO TESTS 

Finally, likelihood ratio tests are considered. Tests of a null hypothesis against a 

restricted alternative hypothesis can be constructed, provided that two conditions are 

met. Firstly, the models under H 0 and H 1 should be estimable and secondly, the 

parameter space 0 0 for H0 must be a subset of the parameter space O of H1 • 

Use is made of the likelihood ratio test statistic 

( 4.4.12) 

where L 0 and L 1 respectively denote the likelihood functions under H 0 and H 1 • For N 

large ( see for example Anderson, 1984), - 2 ln ,\ has an approximate x2
( v) distribution 

where the number of degrees of freedom v is the difference in the number of parameters 

estimated under H 1 and the number of parameters estimated under H 0 • 

Example 4.4.1 

Consider the null hypothesis 

as opposed to the alternative hypothesis 

Let 
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For N large, - 2 Zn,\ = - 2 ( Zn L0 - Zn L1) has an approximate x2
( v) distribution with 

the number of degrees of freedom, v = ½ q( q + I), which is the number of non­

duplicated elements of cf, (s) . Note that Zn L is the log-likelihood function 

N 

Zn L = - ½ ~ { ni Zn ( 21r) + Zn I E; I + 
i=1 

with X~ fJ and Ei respectively the expected value and covariance of Yi . 

4.5 PRACTICAL APPLICATIONS 

Example 4.5.1 

As part of a test battery developed by the HSRC, Grade 1 to Standard 1 pupils are 

tested with regard to their ability to understand and carry out verbal instructions. In 

this example the test results of 5022 pupils from 139 schools belonging to 13 education 

departments are considered. The education departments are the level-3 units, the 

schools are the level-2 units and the pupils tested are the level-1 units. 

The maximum possible score for the test, which is used as the response variable y, is 35. 

Four variables are included as predictors, namely an intercept, the gender, the reading 

ability and the mathematical ability of a pupil. The gender variable was coded '1' and 

' - 1 ', where '1' denotes males and ' - 1' females. The reading and mathematical abilities 

of each pupil are measured on a scale from 1 to 5, where '1' indicates the minimum 

score and '5' the maximum score. The ages of pupils tested ranged from 6 to 10 years. 

The following linear model ( cf. ( 4.2.1)) is fitted to the data: 

Y .. = X-- b-- + e--ii SJ SJ lJ (4.5.1) 

where 

b--= c-+ u--r; l lJ 
(4.5.2) 
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and 

(4.5.3) 

A typical element of Yij is Yijk which denotes the test score with regard to understanding 

of verbal instructions of pupil k from school j from education department i. Likewise. a 

typical element of the nii x 1 vector Xii bii is ~jk bii where 

and 

~jk = (1 , genderijk, readijl-, mathsijk) 

b-- -tJ 

intercept ii 

regression coefficient for gender ii 

regression coefficient for readingij 

regression coefficient for mathsij 

Note that bij is a vector of stochastic coefficients for school j and education department 

i. The vector ci is a vector of stochastic coefficients for education department i. Note 

that for the model above, the matrix Si ( cf. ( 4.2.3)) is taken as the identity matrix, 

which implies that 

From the distributional assumptions given in Section 3.2, it also follows that 

and 

n­s 

( 4.5.4) 

(4.5.5) 

(4.5.6) 

where nt = E nii . The computer program IGLS was written in FORTRAN to 
·-1 

implement th~- theoretical results given in Sections 4.2 to 4.4. Part of the computer 

output of IGLS is given below: 
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( i) Fixed part of the model: 

PARAMETER p STD.ERR Z-VALUE PR>IZI 

INTERCEPT 19.42720 0.59354 32.73089 0.00000 

GENDER 0.23911 0.07861 3.04161 0.00235 

READ 0.61737 0.08883 6.94964 0.00000 

MATHS 0.66975 0.14264 4.69547 0.00000 

(ii) Random part of the model: 

Level-3: 

PARAMETER r STD.ERR Z-VALUE PR>IZI 

INTER./INTER. 3.03389 1.75459 1.72911 0.08379 

INTERCEPT/GENDER -0.24654 0.17968 -1.37207 0.17004 

GENDER/GENDER 0.03097 0.02945 1.05153 0.29301 

INTERCEPT /READ - 0.14142 0.18717 0.75558 0.44990 

GENDER/READ 0.01084 0.02366 0.45844 0.64663 

READ/READ 0.00672 0.03409 0.19711 0.84375 

INTERCEPT /MATHS 0.31953 0.29822 1.07143 0.28397 

GENDER/MATHS - 0.02669 0.03961 -0.67389 0.50038 

READ/MATHS - 0.01361 0.04520 - 0.30119 0.76327 

MATHS/MATHS 0.16761 0.09997 1.67661 0.09362 

Level-2: 

INTER./INTER. 5.94295 1.43615 4.13810 0.00004 

INTERCEPT/GENDER 0.16771 0.19482 0.86084 0.38933 

GENDER/GENDER 0.00496 0.05217 0.09510 0.92423 

INTERCEPT /READ 0.23658 0.29521 0.80138 0.42291 

GENDER/READ 0.04356 0.05616 0.77558 0.43800 

READ/READ 11.72362 0.11758 99.71007 0.00000 

INTERCEPT /MATHS - 0. 75881 0.32808 - 2.31286 0.02073 

GENDER/MATHS -0.05195 0.05538 -0.93798 0.34826 

READ/MATHS -0.18644 0.09636 -1.93484 0.05301 

MATHS/MATHS 15.90603 0.11742 135.46414 0.00000 
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Level-I: 

INTER./INTER. 14.24395 0.29941 47.57350 

CORRELATION MATRIX: Level-3 

INTERCEPT GENDER READ 

INTERCEPT 1.0000 

GENDER - 0.8043 1.0000 

READ - 0.9905 0.7518 1.0000 

MATHS 0.4481 - 0.3705 - 0.4056 

CORRELATION MATRIX: Level-2 

INTERCEPT 

GENDER 

READ 

MATHS 

INTERCEPT GENDER 

1.0000 

0.9767 

0.0283 

- 0.0780 

1.0000 

0.1806 

- 0.1849 

(iii) Convergence details: 

Convergence (IGLS-algorithm in 10 iterations) 

READ 

1.0000 

- 0.0137 

0.00000 

MATHS 

1.0000 

MATHS 

1.0000 

From Part (i) of the output it can be seen that the estimate of the intercept is 19.42720, 

which may be interpreted as the expected value of y, assuming no gender, reading 

ability or mathematical ability effect. The ·gender score of 0.23911 indicates a total 

gender effect of 0.4 7822. In the case of boys ( coded '1 ') this leads to a positive effect of 

0.23911 and for girls ( coded '-1 ') a negative effect of - 0.23911, showing that boys 

generally obtained a slightly higher test result than girls. All the coefficients are highly 

significant. 

The second part of the output contains information on the random parameters and the 

correlation matrices on level-3 and leYel-2 of the model. The covariances of the 

coefficients on level-3 are the elements of •rs). The largest variation on level-3, that is 
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over education departments, is for the intercept. This variation is significant at a 10 % 

level of significance. 

From the level-3 correlation matrix it can be seen that the intercept is highly correlated 

vlith both gender and reading ability. On level-2 there is only one large correlation 

coefficient, namely the correlation between the intercept and gender. 

Approximate 95 % tolerance intervals for the elements of ci ( cf. (3.5. 7) and (3.5.8)) can 

be constructed using the standard deviations of the intercept, gender, reading ability 

and mathematical ability coefficients as obtained from i {SJ. The approximate 95 % 

tolerance interval for the intercept is given by 

that is, (17.6854; 21.1690). 

The approximate 95 % tolerance intervals for the gender and for reading 

and mathematical abilities are given by (0.0631; 0.2446), (0.5354; 0.6993) and 

(0.2603; 1.0792) respectively. 

On level-2, the approximate 95 % tolerance interval for the intercept can be written as 

( cf. (3.5.9)) 

which gives (16.4311; 22.4233). Similar intervals for the coefficients for gender and for 

reading and mathematical abilities are given by (0.0496; 0.4288), ( - 2.8076; 4.0424) and 

( -3.3394; 4.6790) respectively. Note that the approximate 95 % tolerance intervals for 

the coefficients are wider on level-2 than on level-3. 

Example 4.5.2 

The testing of contrasts is an important component of statistical inference. In Section 

4.4.2 the theoretical aspects of contrast testing in a multilevel context were discussed. 
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To illustrate these concepts, the data set described in Example 4.5.1 is used in this 

example. As in Example 4.5.1, the education departments, schools and pupils are the 

level-3, level-2 and level-1 units respectiwly. 

The same response variable ( ability to interpret verbal instructions) is used, but 5 

dummy variables, denoting 5 socio-economic categories, and the reading and 

mathematical abilities of a pupil are used as predictors. The dummy variables are coded 

as follo,,·s: 

SOCI0-1 SOCI0-2 SOCI0-3 SOCI0-4 SOCI0-5 

Socio-economic category 1: 1 0 0 0 0 

Socio-economic category 2: 0 1 0 0 0 

Socio-economic category 3: 0 0 1 0 0 

Socio-economic category 4: 0 0 0 1 0 

Socio-economic category 5: 0 0 0 0 1 

Note that an intercept term is not included m the model to ensure that the design 

matrix is of full rank. 

Part of the computer output obtained by using the FORTRAN program IGLS is given 

below: 

( i) Fixed part of the model: 

PARAMETER p STD.ERR Z-VALUE PR>IZI 

SOCI0-1 20.54575 0.70565 29.11608 0.00000 

SOCI0-2 20.57563 0.59140 34.79148 0.00000 

SOCI0-3 19.42454 0.48797 39.80650 0.00000 

SOCIO-4 19.59274 0.57014 34.36473 0.00000 

SOCIO-5 19.29114 0.64313 29.99589 0.00000 

READ 0.55773 0.20188 2.76273 0.00573 

MATHS 0.64862 0.27405 2.36678 0.01794 
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(ii) Random part of the model: 

ESTIMATE OF 4>(s) 

SOCIO-1 SOCI0-2 SOCIO-3 

SOCI0-1 5.10055 

SOCI0-2 3.41276 2.41390 

SOCIO-3 3.03821 1.76983 3.01754 

SOCI0-4 3.03943 1.76644 1.69916 

SOCI0-5 3.94914 2.49372 1.94700 

READ 0.00822 0.01836 0.00891 

MATHS 0.40510 0.16390 0.20618 

READ MATHS 

READ 0.01009 

MATHS -0.01527 2.16769 

ESTIMATE OF 4> (2) 

SOCIO-1 

SOCI0-2 

SOCI0-3 

SOCIO-4 

SOCI0-5 

READ 

MATHS 

READ 

MATHS 

SOCI0-1 SOCIO-2 SOCIO-3 

6.98216 

6.54765 7.09487 

4.79667 5.61434 5.49784 

2.54706 4.91440 5.15002 

1.83658 4.30411 4.46511 

-0.09995 0.06470 0.26399 

-0.39335 -0.73882 -0. 70333 

READ MATHS 

0.11960 

-0.15285 0.40827 
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(iii) Contrast testing: 

Contrast tested 

SOCI0-1 - SOCIO-2 = 0 

SOCI0-1 - SOCIO-3 = 0 

SOCIO- I - SOCI0-4 = 0 

SOCIO-1 - SOCIO-5 = 0 

SOCI0-2 - SOCIO-3 = 0 

SOCI0-2 - SOCI0-4 = 0 

SOCI0-2 - SOCI0-5 = 0 

SOCIO-3 - SOCIO-4 = 0 

SOCIO-3 - SOCI0-5 = 0 

SOCIO-4 - SOCIO-5 = 0 

ESTIMATE OF <I, (I} 

13.9908 

x.!-value 

0.016 

11.550 

26.679 

46.522 

11.977 

13.075 

21.990 

0.195 

0.131 

4.618 

From Part (i) of the output it follows that all the elements of pare significant. The first 

five diagonal elements of i (s) and i (2) exhibit a tendency to increase with diminishing 

socio-economic status, where SOCI0-5 denotes the lowest socio-economic category. This 

implies that a larger variation in the response scores can be expected as socio-economic 

status declines. 

All possible pairs of contrasts with regard to socio-economic status were tested. Each 

contrast tested can be written in the form ( cf. Section 4.4.2) 

c' fJ = 0. 

For example, to test the contrast SOCI0-2 - SOCI0-5 = 0, c' = (0 1 0 0 -1 0 0). To 

ensure an overall level of significance of 5 %, the x2-values are compared with x~. 005 

( degrees of freedom = 1). From Part (iii) of the output it can be seen that the largest 

x2-value occurs for the contrast SOCI0-1-SOCI0-5 = 0. It can also be concluded that, 
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although there is no significant difference behYeen the SOCI0-1 and SOCI0-2 effects, 

both these effects differ significantly from the remaining effects. 

4.6 SUMMARY 

The estimation of the unknown parameters in multileYel models using Iterative 

Generalized Least Squares was discussed in this chapter. Although the mathematical 

equations on which this procedure was based appear to be straightforward, 

simplification of these equations was necessary to ensure that the optimization 

algorithm is computationally efficient. 

The equations implemented in the FORTRAN program IGLS are based on the sums of 

squares and cross products of the data and are of the form X' X , X' y and y' y which 

results in a substantial reduction in computation time, especially when the number of 

columns (predictors) of the design matrix is substantially smaller than the number of 

rows (observations). 

Some of the shortcomings of the EM algorithm used in Chapter 3 were addressed. Two 

practical applications were given to illustrate the theoretical principles involved. 

The level-3 model discussed in this chapter was, however, still limited as complex level-

1 structures could not be accommodated. It is also not possible to use different sets of 

predictors in the fixed and stochastic parts of the model. These issues will be addressed 

in the next chapter. 
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APPENDIX 4.1 

The terms bij, Eij and Fij can be simplified as follows: 

(i) 

1 R' X' = <I> (1) ii (2Jii Y,i 

(ii) E-- = X'r J .. A.-:- 1 A.-:- 1 Xr2J .. t} 2 t] t] t] t] 

=-1- A--R--<I> t] t] 
(1) 

(iii) F X I A-1 A-1 .. = ( ).. .. .. Y·· 
f] 2 f] t] t] t] 

where 

and 

A -1 1 1 1 x (n..-1+x' n..-1x )-1x, 
ij = <I>( ) - <I>2 (2)ij ~ (2) {2)ij ~ (1) {2)ij {2)ij . 

1 (1) 

Expression (i) can be derived as follows: 

= xr2Jij { i I - <I>} Xr2Jij ( ~ ;-;/ + xr2Jii <I> r"7/ Xr2Jii) -
1 

xr2Jij } Yij 
(1) (1) 

= <I>:1} { I - <I>~l} X(2;;; Xr2;;; ( .. r7z/ + X(tJ;i ,Pr-;/ x(tJ;j )-
1

} X(tJij Y;; 

- 1 R'X' - r- ·· (2;·· Yi;· · 
'j! (1) f) " I] 
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Expression (ii) can be simplified as 

X I A - 1 A - 1 X { 1 X' 1 X' X 
(2)ij ij ij (2)ij = ~ (2)ij - <l>2 (2)ij (2)ij X 

(1) (1) 

( q, r-;/ + xr2Jij <I> r-;/ Xr2Jii ) -
1 

xr2Jii } x 

{ <I> 
1 

x<2Jij - <I>1 x<2Jij x 
(1) (1) 

( q, r-;/ + Xr2Jii <I> r-;/ Xr2Jii) -
1 

Xr2Jii Xr2Jii } 

- <I>1 { I - i xr2Jij x<2Jij x 
(1) (1) 

( q, r-;/ + Xr2Jij <I><-;/ Xr2Jij) -
1

} xr2Jij X<2Jij -

<I>~ { I - <I> i xr2Jij Xr2Jij x 
(1) (1) 

( ff!r-;/ + xr2Jij <I> r-;/ Xr2Jij )-
1

} xr2Jii Xr2Jij 

- <I>~ R:; x<2Jij x<2Jij - <I>~ R~j xr2Jij x<2Jij x 
(1) (1) 

( q,-;;_/ + xr2Jij <I><-;/ x<2Jij) -
1

} xr2Jij X<2Jij 

<I>1 R~j Xr2Jij Xr2Jij { 1 - <I>
1
< J xr2Jij X<2Jij x 

(1) 1 

( ff!-;;_/ + xr2Jii <I> r-;/ X<2Jii) -
1

} xr2Jij X<2Jij } 
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Expression (iii) can be written as 

X'r J .. A.-:- i A.-:- i Y·· = 1 X'r2J:1· Yi1· -2 tJ IJ IJ IJ ,T,. 2 • 
'¥ (1) 

( J,.- 1 X' ,T,.- 1 X )- 1 X' 
':t' (2J + (2Jii '¥ (1) (2Jii (2Jii Yii -

<I>1 xr2Jij Xr2Jij ( ~ r-;/ + xr2Jij <I> (1/ Xr2Jij ) -
1 

x 
(1) 

xr2Jij Yij + <I>~ xr2Jij Xr2Jii x 
(1) 

( g, r-;/ + xr2Jij <I> r-;/ Xr2Jij) - 1 xr2Jii Xr2Jii x 

= <I>1 { I - <I>1 xr2Jij Xr2Jij x 
(1) (1) 

( g, -;;/ + xr2Jij <I> r-;/ Xr2Jij) -
1

} xr2Jij Yij -

+ xr2Jij Xr2Jij ( g, r-;/ + xr2Jij <I> r-;/ Xr2Jij ) -
1 

x 
q>(l) 

{ I - q,~iJ X(2;;; X(2N ( 4>(-;_/ +X(2;;; 4>~/ X(2N)-
1

} 

1 R' R' X' = q,2 ii ii (2Jii Yii · 
(1) 
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CHAPTERS 

ANALYSIS OF GENERAL LEVEL-3 MODELS 

5.1 INTRODUCTION 

In the previous chapters a level-3 model was considered which was limited in a number 

of ways: the model made no allowance for a complex level-1 structure, the only 

assumption made being that level-1 error variates are uncorrelated and haYe constant 

variance <P (1). Also, variables random on level-3 were a subset or functions of variables 

random on level-2. ( cf. (3.2.12), Section 3.2). 

In this chapter attention will be given to the situation where any subset of p predictors 

may be random on any of the three levels of the model, thus allowing for complex 

level-1 error structures. Provision will also be made for the situation where there are no 

random variables on a particular level. 

The extended general level-3 model will be discussed in detail in Section 5.2. Section 5.3 

will deal with cases where, for a specific level, no random variables are present. 

Practical applications will be given in Section 5.4 and conclusions will be drawn in 

Section 5.5. 

5.2 THE GENERAL LEVEL-3 MODEL 

Consider the situation where a response variable y depends on a set of p predictors 

The general 3-level model is defined as 

where 

i = 1, 2, ... , N denotes level-3 units (for example education departments), 

j = 1, 2, ... , ni denotes level-2 units (for example schools) and 

k = 1, 2, ... , nii denotes level-1 units (for example pupils). 
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x(f)ijk : 1 x s is a typical row of the design matrix of the fixed part of the model, the 

elements being a subset of the p predictors. x(S)ijk : 1 x q, x(2)ijk : 1 x m and x(J)ijk : 1 x r 

are typical rows of the design ma.trices for the random part of the model on levels 3, 2 

and 1 respectively. The elements of these vectors are also subsets of the p predictors. 

fJ : s x 1 is a vector of fixed, but unknown, parameters to be estimated. 

It is assumed that v 1 , v 2 , ... , vN are independently and identically distributed with 

mean O and covariance matrix cl>(s)· It is further assumed that uil, ui2 , ... , uini are 

i.i.d. with mean O and covariance matrix cl> (2) , while eijJ, eij2 , ••• , eijnij are i.i.d. with 

mean O and covariance matrix cJ.>(1) • Finally it is assumed that vi, uij and eijk are 

independent. 

Let 

Y -i-

Yi1 

Yi2 

where Yii denotes the nij x 1 vector of responses for the i-th level-3 unit and the j-th 

level-2 unit. 

Note that the nij x 1 vector y ij can be expressed as 
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where 

I 
X(J)ijl 

I 
X(S)ijl 

I 
x(f)ij2 ~3)ij2 

x!(S)ijn-• 
iJ 

and 

~2)ijl 
I 

x(2Jij2 

The model can be written as 

n• n• 

Yi = x(J)i fJ + x(S)i vi + :t z(2)ij uij + t 
j=l j=l 

(5.2.1) 

(5.2.2) 

0 

(5.2.3) 

0 
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O' 

Jr!(J)ijk (5.2.4) 

O' 

and where vi , uij and eij denote the random parameter vectors on level-3, level-2 and 

level-1 of the model. It will be convenient to replace the double subscript jk with the 

subscript l where l = 1, 2, ... , n7 and 

Thus, (5.2.1) can be rewritten as 

"' 
Yi= x(S)i V; + t z(£)ij U;; + t u (l)il e,,. 

j=1 1=1 
(5.2.5) 

Under the distributional assumptions given above, it follows that 

where 

(5.2.6) 

It also follows that 

Cov(yi, Yi)= Ei 

n-

X(S)i 4-(s) x(3)i + t z(2)ij 4-(2) z(2)ij + 
j=1 
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or, alternatively, as 

where 

Ai1 

0 

A-I 

0 

with 

and where 

)..ij1 

0 
n .. -t) 

0 

with 

* n, 

t u(J)il~(J)u(l)il 
l=l 

0 0 

Ai2 

0 

0 Ain-
t 

0 0 

).. .. 2 
tJ 

0 

0 ).. .. 
i;n,j 

(5.2.7) 

(5.2.8) 

(5.2.9) 

(5.2.10) 

Suppose that i(sJ, i(2) and i 0 ) are consistent estimators of ~(sJ, ~(2) and ~{1) 

respectively so that 
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is a consistent estimator of E7• 

The generalized least squares estimator P of /3 is obtained as the mm1mum of the 

quadratic function (see also Section 4.2) 

with solution 

(5.2.11) 

In order to estimate .P(s), .Pr2; and .P(i) let (cf. (4.2.13)) 

then 

Using the result (Browne, 1974) on vector operations (cf. (4.2.11)), namely 

vec ( C A C' ) = ( C 0 C ) vec A , 

it follows that 

There exists an unique matrix ( see Browne, 197 4 or McCulloch, 1982) 

GP : p2 x 1 p( p + 1) such that 

vec A= GP vecs A (5.2.12) 
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with A a symmetric p x p matrix. There is also a non-unique matrix HP : i p (p + 1) x p2 

so that 

vecs A = H vec A. p (5.2.13) 

The vector vecs Ei, consisting of the non-duplicated elements of Ei, can then be written 

as 

=X~ T 
2 

where 

and 

T 

[

vecs c) ( 3 Jj 
vecs c)(2) . 

vecs c) (JJ 

Now consider the quadratic form 

N 
Qr = L { [ yf - x: T ] 

1 W i- 1 
[ yf - x: T ] } 

i=1 

(5.2.15) 

where Wi is a consistent estimator of the covariance of y; (see Proposition 4.2.3). 
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It has, for example, been shovm by Brmn1e (1974) and Goldstein (1989) that if 

( 5.2.16) 

then Wi is a consistent estimator of the covariance of y: . 

Minimization of Qr with respect to T yields 

N JV 

r = [ I: x;, wi- 1 xn - 1 
[ I: xr wi- 1 yr]. (5.2.17) 

i=l i=l 

In order to ensure computational efficiency, the components of f must be further 

simplified. Under the distributional assumptions given in the previous chapter, these 

components could be expressed in terms of matrices of sums of squares and cross 

products. For more complex error structures these results no longer hold. Although the 

simplifications given in this section follow a similar pattern to those in Chapter 4, the 

end results are quite different. For the purpose of clarity, certain basic results given in 

Chapter 4 are, therefore, repeated. 

In Section 5.2.1 the simplification of X7' wi- 1 Xf will be considered while 

simplification of the terms of X7' wi- 1 yf will be dealt with in Section 5.2.1. Finally, 

the simplification of the fixed part of the model will be discussed in Section 5.2.3. 

5.2.1 SIMPLIFICATION OF THE COMPONENTS OF THE WEIGHT MATRJX 

It follows from (5.2.14) and (5.2.16) that 
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n, "' n, 
l l 

x [(XrsJi @ XrsJi )Gq ( L z(2}ij @ z(2}ij )Gm (LU (l}il @ U (J)il )Gr] 
j=J 1=1 

T(S,S} T{2,S} T{l,S} 

- T(2,S} Tr2,2J T(1,2J (5.2.18) 

T (1,3J To,2J T (1,1J 

T-i 

where, for example, the subscript (2,3) denotes the product obtained if a level-2 term is 

multiplied with a level-3 term. If, for example, there is no random term on level-1, the 

matrix Ti reduces to 

T; = [ 
T (J,S) T(2,S} l . T (2,3) Tr2,2J 

The submatrices T (l,l) to T (s, 3) are given by 
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Using the results (Magnus & Neudecker, 1988) 

and (Graham, 1981) 

( A' @ B' ) ( C @ C ) ( A @ B ) = A' C A @ B' C B 

the submatrices T (l,l) to T (s,sJ can be written as 

(5.2.19) 

(5.2.20) 

ni ni 

T (2,2) = G~ ( ~ L { z(2)ij vi- 1 z(2)ij"' ® z(2)ij vi- 1 z(2)i/' } ) Gm 
J=1 i"'=1 (5.2.21) 

(5.2.22) 

(5.2.23) 

(5.2.24) 

Page 5.10 

 
 
 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2022 

Computationally efficient expressions for each of the submatrices T (3,3), T (2,3), •.. 

T {l,l) are given in Propositions 5.2.1 to 5.2.3 and Propositions 5.2. 7 to 5.2.9. The results 

derived in these propositions are subsequently summarized in Theorem 5.2.1. 

PROPOSITION 5.2.1 (Submatrix T(s,s) 

= G' { A- [ I - C- A- ] /0, A- [ I - C · A- ] } G q i ' i '¢I i i i q (5.2.25) 

where 

(5.2.26) 

and 

(5.2.27) 

Proof 

Using (4.3.11), it follows that vi- i can be written as 

with 

Then 

V - 1 A- 1 A- 1 x C X' A- 1 
i = i - i ( s Ji i ( s Ji i (5.2.28) 

x{SJi vi- 1 XrsJi = x{SJi Ai- 1 XrsJi - x{SJi Ai- 1 XrsJi C; x{3Ji Ai- 1 x{3Ji. 
(5.2.29) 
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Let 

Subsequently, (5.2.29) can be rewritten as 

Substitution of (5.2.30) in (5.2.29) concludes the proof. 

PROPOSITION 5.2.2 (Submatrix T(2,s;) 

n­
t 

= G' ( ~ { B .. [ I - C- A- ] Iv, B- · [ I - C · A- ] } G m L..J tJ l l 'Cl SJ t I q 
i=l 

where 

and Ai and Ci are given by (5.2.26) and (5.2.27) respectively. 

Proof 

Using (5.2.28), it follows that 

where (cf. (5.2.26)) 
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and 

[ O' O' ] X 

Ai-; i 0 0 

0 A -1 
i'2 • 

0 

Let 

Bij = xr2Jij Ai-; 1 XrsJij, (5.2.34) 

then 

(5.2.35) 

which concludes the proof. □ 

PROPOSITION 5.2.3 (Submatrix T r2,2) 

with 

(5.2.37) 
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and B;i as given by (5.2.34), Proposition 5.2.2. 

Proof 

From ( 5.2.21) it follows that 

Using (5.2.28), Zr2Jii vi- 1 Z<2Jii* can be written as 

zr2Jij vi-
1 

zr2Jij* = zr2Jij Ai-
1 

zr2Jij* - zr2Jij Ai-
1 

XrsJi ci xrsJi Ai-
1 

zr2Ji/' 

(5.2.38) 

where (cf. (5.2.32)) 

and 

Let 

Z, A- 1 x X' A- 1 x 
(2)ij i {3)i = {2)ij ij (3)ij 

X' A - 1 Z X' A - 1 X 
(3)i i (2)ij* - (3)ij IJ (2)ij* 

= B~-*' 1J 

0 otherwise. 

K1· X'r )"" A.-: 1 x(2)"" • 2 ZJ tJ lJ • 
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Using (5.2.37), and substituting (5.2.39) and (5.2.40) in (5.2.38), giYes 

which concludes the proof. □ 

PROPOSITION 5.2.4 

Suppose X0 is an n x r matrix with all rows O' except the a-th row, that is 

O' 

O' 

Xa - x'a 
O' 

O' 

and A is an nx n symmetric matrix with typical row a!, , , = 1, 2, ... , n. Then 

(5.2.41) 

Proof 

since all other terms are equal to zero. A typical element of the matrix X~ A X/3 is 
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Thus, 

x~ A x 13 □ 

PROPOSITION 5.2.5 

(5.5.42) 

where £; denotes the k-th row of F = A;; 1 Xr2Jii . 

Proof 

Let ( cf. ( 5.2.4)) 

0 

0 

U (l)ijk y .. k 
I) 

( 5.2.43) 

0 

0 

where each matrix in the partitioning of U (l)ik is a nio: x r null matrix, o: = 1, 2, .. , ni ; 

o: = j, except the nii x r matrix Viik where 

Page 5.16 

 
 
 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2022 

O' 

O' 

Vijk = ~J)ijk • 

O' 

O' 

From (5.2.3) and (5.2.8) it follows that 

= v~-k A.-:- i Xr2J·· tJ IJ fJ 

[ 0 . . . 0 X(J)ijk O . . . 0 ] 

which concludes the proof. 

PROPOSITION 5.2.6 

where g k denotes the k-th row of G = Aii 1 
X(s)ii. 

Proof 

The proof follows directly from ( 5.2.4) and Proposition 5.2.5. 
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PROPOSITION 5.2.7 (Submatrix To,s) 

ni nij 

= G~ ( L L { x(J)iik g~ [I - Ci Ai] ® x(J)ijk g'k [ I - Ci Ai]}) Gq 
j=l k=l (5.2.46) 

where ( cf. (5.2.27) and (5.2.26)) 

(5.2.4 7) 

(5.2.48) 

and gk is as defined in Proposition 5.2.4. 

Proof 

From ( 5.2.28) it follows that 

(5.2.49) 

Also (cf. (5.2.26)) 

(5.2.50) 

and ( cf. (5.2.45), Proposition 5.2.6) 

U' A - l X 1 

(l}ijk i (S}i = X(l}ijk gk · (5.2.51) 
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Substitution of ( 5.2.50) and ( 5.2.51) in ( 5.2.49) gives 

which concludes the proof. □ 

PROPOSITION 5.2.8 (Submatrix T(1,2)) 

Proof 

From (5.2.28) it follows that 

(5.2.53) 

where ( cf. Proposition 5.2.5 and Proposition 5.2.6) 

X' A- 1 z X' A- 1 x· 
(S)i i (2)ij* = {S)ij ij (2)ij* 

and 
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Thus, ( 5.2.53) can be rewritten as 

which concludes the proof. □ 

PROPOSITION 5.2.9 (Submatrix T(i,i)) 

(5.2.54) 

Proof 

From (5.2.28) it follows that 

with 

(5.2.55) 
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It also follows ( cf. Proposition 5.2.6) that 

U' A - 1 u [ A - 1 ] I • ·,i, 

(l)il i (l}il"' = ij kk"' x(J)ijk x(J)ij"'k"' , J = J 

= 0, j:f=j"' (5.2.56) 

so that 

which concludes the proof. □ 

THEOREM 5.2.1 

T(3,3J T(2,3J T(1,3J 

2 x~' w.- 1 x~ 
i t t T (2,3J T (2,2J T(1,2J 

Tr1,3J T (1,2J T (1,1J 

(5.2.57) 

(5.2.58) 

ni nij 

T (l, 3) = G~ ( L L { x(J)iik t [ I - Ci Ai] © x(J)iik t [ I - Ci Ai]}) Gq 
j=l k=l 

(5.2.60) 
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(5.2.62) 

with ( cf. (5.2.26), (5.2.27), (5.2.32) and (5.2.37)) 

B-- = Xr2J--' A.-:- 1 Xr3J-· 1J fJ tJ tJ ' 

and g and £I as defined in Propositions 5.2.4 and 5.2.5 respectively. 

Proof 

The proof follows directly from Propositions 5.2.1 to 5.2.9. □ 

In this subsection expressions required for the efficient computation of the weight 

matrix X;' wi- 1 X7 were derived. To calculate r ( cf. ( 5.2.15) and ( 5.2.17)) and hence 

i(S)' i(2) and i(J) it is also necessary to find a computationally efficient way to 

calculate the coefficient vector X;' wi- 1 y:. This matter will be dealt with in the next 

section. 

5.2.2 SIMPLIFICATION OF THE COMPONENTS OF THE COEFFICIENT VECTOR 

It follows from (5.2.14) and (5.2.16) that the vector X;' wi-, y: can be written as 
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2 X~' w.- 1 y~ 
' i i 

(5.2.63) 

where the subscripts (3), (2) and (1) denote the level-3, level-2 and level-1 terms 

respectively. The vectors 4(s), 4(2) and 4t1J are given by 

and 

Using result (4.3.5) and (cf. (4.3.7)) 

( A' ® B' ) ( C @ C ) ( A 0 B ) = A' C A ® B' C B , 

the vectors q(l) to 4(s) can be expressed as 
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and 

Note that 

(5.2.64) 

and 

y; = vecs (Yi). 

Using (5.2.12), the vectors 4(i) to 4(s) can then be simplified as follows: 

and 

Finally, use of (4.2.11) gives 

(5.2.65) 

(5.2.66) 

and 

(5.2.67) 

Computationally efficient expressions for each of the subvectors 4(s), 4(2) and 4(1) are 

given in Propositions 5.2.10 to 5.2.13. These results are summarized in Theorem 5.2.2. 
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PROPOSITION 5.2.10 (Subvector q(s) 

= G' vec ( a- a~ ) q I I 
(5.2.68) 

where 

a-= [I - A-C-] h• t I I I 
(5.2.69) 

with 

(5.2. 70) 

Proof 

Let 

where 

(5.2.71) 

Then ai vi- i ei can be written as (cf. (5.2.28)) 

X I A- 1 X' A- 1 X C X' A- 1 
ai = (s)i i ei - (S)i i (S)i i (s)i i ei 

(5.2. 72) 

with Ai as defined in ( 5.2.26) and 

(5.2.73) 
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From (5.2.73), (5.2.72) can be rewritten as 

a-= [ I - A- C-] h-i i i l 

which concludes the proof. 

PROPOSITION 5.2.11 (Subvector q(2)) 

with 

where 

n-
1 

= G' vec ~ ( b • · b~. ) 
m ~ IJ IJ 

i=l 

b-- = k-- - B-- C- h-,; !J IJ t t 

and Bii, Ci and hi are given by (5.2.34), (5.2.27) and (5.2.73) respectively. 

Proof 

Let 

with ei given by (5.2.71). From (5.2.28) it follows that 
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with (cf. (5.2.33) and (5.2.70)) 

and 

Z' A- 1 x -x' A- 1 x (2)ij i (S}i - (2)ij ij (S)ij 

= B--
1; ' 

Z' A- 1 X' A- 1 
(2)ii i ei = {2)ii ii e;; · 

Using (5.2.76), (5.2.77) can be written as 

b-- = k-- - B-- C- h-,; IJ IJ t t 

which concludes the proof. 

PROPOSffiON 5.2.12 (Subvector q(l) 

with 

□ 

(5.2.78) 

(5.2.79) 

and t, Ci and hi as given by (5.2.45), (5.2.27) and (5.2. 73) respectively. The subscript l 

is as given in (5.2.5). 

Proof 

Let 

U' y-1 
Cil = {l)il i ei 
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with ei given by ( 5.2. 71). From ( 5.2.28) it follows that 

U, v- 1 U' A- 1 
(J)il i ei = (J)il i ei -

(5.2.80) 

where (cf. (5.2.51) and (5.2.70)) 

U' A - J X 1 

(J)il i (S)i = X(J)ijk gk, 

and 

It also follows that (cf. (5.2.8) and (5.2.43)) 

A -1 
il eil 

A -1 
i2 ei2 

U, A- 1 U' 
(J)il i ei = (l)il 

= [ o' . . . o' v~jk o' ... ] 
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From ( 5.2.44) it follows that 

so that (5.2.80) can be ,vritten as 

which concludes the proof. □ 

THEOREM 5.2.2 

Let 

2 X~' w.- 1 y~ 
t t t 

where 

and 

with 

a• - [ I - A- C-] h-
• - I I t ' 

b-· = [ k-- - B-- C- h-] 
tJ IJ IJ I I 
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and 

and ,vhere 

and ~ as defined in Proposition 5.2.6. 

Proof 

The proof follows directly from Propositions 5.2.10 to 5.2.12. 

5.2.3 SIMPLIFICATION OF THE WEIGHT MATRIX AND COEFFICIENT VECTOR 

(FIXED PART OF THE MODEL) 

□ 

Simplification of (5.2.18) and (5.2.63) is not sufficient to ensure optimal use of computer 

storage and program execution time. To achieve this, the terms X(J)i vi- 1 X(f)i and 

X(J)i vi- i Yi (cf. (5.2.11)) must also be written in terms of computationally efficient 

equations. These two matrix expressions will now be considered briefly. 

The first of these terms can be written as 

xr,Ji vi- 1 
Xmi = xr,Ji Ai-

1 
Xmi - xrJJi Ai-

1 
XrsJi ci xrsJi Ai-

1 
Xmi 

(5.2.81) 
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where 

and 

Let 

ni ni 

Li = ~ Lij = ~ x(J)ij Aij l x(f)ij 
J=l J=l 

(5.2.82) 

and 

n-

M- = ~ M--
i ~ IJ (5.2.83) 

j=l 

Then ( 5.2.81) can be re·written as 

(5.2.84) 

Similarly, X(f)i V (I)/ Yi can be written as 

(5.2.85) 

where 

and 
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Let 

X I A-1 n-· = (f)"" .. Y·· t) 1) I) I) ( 5.2.86) 

and 

X I A-1 
Pij = (S)ij ij Y;j. (5.2.87) 

Using (5.2.85) and (5.2.86), expression (5.2.84) can be rewritten as 

ni ni 

x(J)i vi- l Yi = ~ nij - M; Ci ~ Pij 
;=1 ;=1 

(5.2.88) 

which concludes the derivation of terms needed to calculate tJ . 

5.3 SPECIAL CASES OF THE GENERAL LEVEL-3 MODEL 

In this section four special cases of the general level-3 model defined in the previous 

sections of this chapter v,:ill be discussed. The absence of random components on 

different levels of the model and the implication thereof on the weight matrix and 

random coefficient vector will be investigated. 

Case 1: Random components at level-2 and level-3 only 

\Vith no random component on level-1, the model (cf. (5.2.1)) can be written as 

where 
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and where 

0 0 

0 
A-i 

0 

0 0 

In this case the matrix T~ = 2 x•; W;- 1 x; (cf. (5.2.18)) reduces to 

with the expressions for the submatrices T (3,3), T r2,3) and T (2, 2) as given in Theorem 

5.2.1, Section 5.2 and 

The vector 2 X:' W;- 1 y; is given by (cf. (5.2.63)) 

with expressions for vectors 4(3) and 4(2) as given in Theorem 5.2.2. 

Case 2 : Random components at level-1 and level-3 only 

\Vith no random component on level-2, the model (cf. (5.2.1)) becomes 

n- nij 

Yi = x(J)i fJ + Xrs)i vi+ t L u (l)ijk eijk 
i=I k=l 
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,,,.here 

In this case 

Dil 0 0 

0 Di2 

A-i 
0 

0 0 Din-
i 

where 

Aijl 0 0 

0 A··2 
') 

D--IJ 

0 0 Aiin• 
' 

and 

Aijk = ~1Jijk c)(lJ X(1Jijk • 

The weight matrix Ti= 2 Xt wi- J x: (cf. (5.2.18)) reduces to 

Ti= [ T(S,3) 

T (1,S) 

with expressions for the submatrices Trs,sJ, T(l,s) and T(l,i) as given in Theorem 5.2.1, 

Section 5.2 and Aii 1 = Dii 1 where Dii is given above. 

Page 5.34 

 
 
 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2022 

The coefficient vector qi = 2 X:' wi- 1 yf is given by 

with q(s) and q(2) as given in Theorem 5.2.2. 

Case 3: Random components at level-1 and level-2 only (level-2 model) 

When no level-3 random component is specified, one of the following situations apply : 

(i) No level-3 information is available or 

(ii) Information on level-3 units is available but it is assumed that these units 

are homogeneous with respect to the characteristic being studied. 

Thus, instead of considering the vectors of responses y 1 , y 2 , ... YN, information on all 

the level-2 units is summarized in a single vector y 1 • Therefore, if N = 1, a level-2 

model is obtained as a special case of the level-3 model. 

The model (cf. (5.2.1)) becomes 

n 1 n 1 n Jj 

Y1=Xm1f3+ L Z(2)1jll1j+ L Lu(J)Jjkeljk 
j=l j=l k=l 

where 

0 

0 

0 

and 
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where 

)..ljl Q 0 

0 )..Jj2 

D-· tJ 

0 

0 

and 

In this case the matrix Ti= 2 X;' w1-
1 x; (cf. (5.2.18)) is given by 

[ 

T (2,2J 
T1= 

T (1,2J 

where (cf. (5.2.21), (5.2.23) and (5.2.24)) 

and 

From Propositions 5.2.3, 5.2.8 and 5.2.9 it follows that the submatrices T (2,2), T r2,1) and 

T (t,l) reduce to 
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and 

The vector 4 1 = 2 X;' w1-
1 y; (cf. (5.2.63)) is given by 

where (cf. (5.2.66) and (5.2.67)) 

nl 

4(2) = G~ vec ( ~ z(2}1j Al- 1 
Y1 Al- 1 

z(2)1j) 
;=1 

and 

From Propositions 5.2.11 and 5.2.12 it follows that 4(2) and 4(1) can be rewritten as 

n­
t 

4(2) = G~ L vec (b 1; h~;) 
i=l 

and 

with ( cf. (5.2. 75)) 
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and ( cf. ( 5.2.79)) 

,vhere l denotes the double subscript jk, j = 1, 2, ... , n1 and k = 1, 2, ... , n1i . 

Case 4: Random component at level-1 only (level-1 model) 

The leYel-1 model is another special case of the level-3 model and is obtained by 

assuming that there is only one level-3 unit (N = 1) and one level-2 unit (n1 = 1) . 

The model (cf. (5.2.1)) is given by 

where 

with 

0 

0 

0 

The matrix T1 = 2 x;' wl- l x; (cf. (5.2.18)) is then 

where ( cf. Proposition 5.2.9) 

n11 n11 

T{l,1) = G~ ( L Lu(1}11k D~l u(1)11k* ® u(1}11k n;; l u(1}11k*) Gr 
k=l k~l 

n11 n11 

= G~ ( L L A1~/ x{1}11k x'(1)11k* ® A1~/ X(1)11k ~1)11k*) Gr 
k=l k~l 
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From (5.2.63) it follows that q1 = 2 X:' wi- 1 y; is giYen by 

where (cf. (5.2.67)) 

From Proposition 5.2.12 it follows that 4i can be written as 

where (cf. (5.2.79)) 

5.4 PRACTICAL APPLICATIONS 

Three practical applications are given in this section. All applications are based on the 

same data set, which is described below. 

During 1993, the Transvaal Provincial Administration (TPA) conducted a survey in 

anticipation of majority rule, using their employees as respondents. The questions asked 

dealt mainly with perceptions regarding the implementation of affirmative action 

programs, discrimination in the workplace and criteria to be used for the selection, 

training and promotion of employees. Respondents were required to indicate their 

responses to statements relating to the above-mentioned issues on a 5-point scale, where 

a score of '1' indicated strong disagreement, '2' disagreement, '3' do not know, '4' 

agreement and '5' strong agreement with the particular statement. Biographical 

variables included gender, age, qualification, home language and job level within the 

organization. 

In the case of questions with a 5-point scale response, the 5-point scale was recoded so 

as to consist of three categories, that is 'Negative', 'Do not know' and 'Positive'. 
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Optimal scaling ( du Toit & Strasheim, 1987), was used to assign numerical values to 

the three categories. A factor analysis with VARnfAX rotation (SAS/STAT, 1990), 

was done with respect to the scaled items in order to find subgroups of mutually 

correlated items. Total scores were then calculated for the different subgroups. In this 

example, the total scores pertaining to the criteria. for affirmative-action recruiting in 

the work place and to discrimination are used as dependent and predictor variables 

respectively. The items and scaled values used for the construction of these two 

variables, which will be referred to as FACTORl and FACTOR3 respectively, are given 

in Tables 5.4.1 and 5.4.2. 

Table 5.4.1 : F ACTORl - Affirmative-action recruitment criteria 

Description of item Scaled values 

Disagree Do not know Agree 

Priority should be given to the recruit- 3 1.6176 0 

ment of staff from groups that are cur-

rently under-represented in the TP A. 

Recruitment advertisements should be 3 1.6535 0 

formulated in such a way that all groups 

will have an equal opportunity to apply. 

During the selection process, preference 3 1.5933 0 

should be given to applicants from under-

represented groups. 
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In order to obtain a more representatiYe 

work force, 

appointments should be ma.de additional 

to the establishment, and 

offers should be ma.de to worthy persons 

outside the TP A. 

Unions and Sta.ff Associations should be 

involved in the implementation of the 

Equal Job-opportunities Program. 

How do you feel a.bout the Equal Job-

opportunity Program? 

Alpha coefficient (Kuder-Richardson's 

K20 coefficient of reliability, Huynh (1986)) 

Mean of Total 

Standard deviation 

Minimum value 

Maximum value 

3 

3 

3 

3 

1.6017 

1.7926 

1.6406 

1.6775 

0.6689 

7.5010 

5.0023 

0 

21 

0 

0 

0 

0 

A total score close to 21 would thus indicate strong agreement with the statements as 

given in Table 5.4.1, while a total score close to 0 would indicate strong disagreement 

with these statements. 
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Table 5.4.2: F ACTOR3 - Discrimination in the TP A 

Description of item 

In the section where you ,·~wrk, 

is there discrimination against 

staff on the following grounds: 

Religion 

Gender 

Race 

Age 

li\lpha coefficient (Kuder Richardson's 

K20 coefficient of reliability) 

Mean of total 

Standard deviation 

Minimum Yalue 

Maximum value 

Disagree 

0.9710 

0.9553 

0.7287 

1.0764 

Scaled values 

Do not know 

3 

3 

3 

3 

0.6528 

3.6841 

2.1718 

0 

12 

Agree 

0 

0 

0 

0 

The maximum value that can be obtained for FACTOR3 is 12, indicating no opinion 

with regard to the presence of discrimination. A score close to O indicates agreement 

with the statements as given in Table 5.4.2. A respondent disagreeing with all four 

statements will obtain a score of 3. 7314. 

The TPA can be divided into five units, namely Road Construction and Maintenance, 

Community Development, Financial Management and Operations, General Provincial 

Services and Health Services. Each of these units can be subdivided into branches. In 

these examples, the data for the Health Services unit are used. The sample from this 

unit consists of 37 branches with a total number of 5207 employees. The number of 
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employees per branch and in each of the eight job categories differs dramatically, as can 

be seen from an excerpt of a frequency table for occupation by branch. 

Table 5.4.3: Excerpt from frequency table for occupation category by branch number 

Occupation Branch 

Description Category 3 51 

Medical ( eg doctor) 1 4 4 

Supplementary health 

services ( eg radiologist) 2 16 0 

Nursing ( eg matron) 3 267 6 

General Assistant 4 2 0 

Administrative 5 147 0 

Technical ( eg electrician) 6 0 0 

Professional ( eg engineer) 7 15 1 

Other 8 7 0 

Total 458 11 

The data can be schematically represented as follows: 

Level-3: Branch 1 Branch 3 Branch 37 

Level-2: 

Occ.l ... Occ.8 Occ.l. .. Occ.5 ... Occ.8 Occ. l ... Occ.8 

Level-1: 

Employee no 1 Employee no 14 7 

The 37 branches represent the level-3 units while the eight occupation categories 

represents the level-2 units. Note that in the case of branch 3, given in the schematical 

representation above, there are employees in all eight occupation categories. In the case 
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of branch 51 (see Table 5.4.3) there are employees in categories 1, 3 and 7 only, 

indicating the presence of only 3 level-2 units for this branch. The level-1 units are the 

total scores for F ACTORl for each of the employees in a particular level-2 unit. 

To investigate the structural relationships between variables, several models were fitted 

to the data. In each case a data set was created. Three of the data sets and the models 

fitted will now be considered. 

Example 5.4.1 

In this example a model without random coefficients at level-3 and with a simple level-1 

variance structure is considered. This type of model is commonly referred to as a level-2 

model, the level-2 units in this case being the (branch 1, occupation 1 ), (branch 1, 

occupation 3) ... (branch 37, occupation 8) subgroups. There are 233 level-2 units and 

5 207 level-1 units. 

Consider the first 10 rows of the following data set: 

ID3 ID21Dl F.1 CONSSl Ql Q2 Ll L2 F.3 CONSQl Q2 Gl G2 G3 G4 Ll L2 F.3 

2 3 1 0.00 1 -1 -1 -1 -1 -1 3.97 1 -1 -1 -1 0 0 1 -1 -1 3.97 

2 3 1 6.00 1 1 0 1 1 0 3.73 1 0 1 1 1 0 0 1 0 3.73 

2 5 1 4.62 1 1 0 1 1 0 0.97 1 0 1 1 1 0 0 1 0 0.97 

3 5 1 0.00 1 -1 -1 -1 -1 -1 3.97 1 -1 -1 -1 0 0 1 -1 -1 3.97 

3 5 1 1.79 1 1 0 1 -1 -1 3.00 1 0 1 1 1 0 0 -1 -1 3.00 

3 5 1 6.00 1 -1 0 1 0 1 6.97 1 0 1 1 0 0 1 0 1 6.97 

3 5 1 9.00 1 1 0 1 -1 -1 3.73 1 0 1 1 1 0 0 -1 -1 3.73 

3 5 1 6.27 1 -1 0 1 1 0 3.73 1 0 1 1 0 0 1 1 0 3.73 

3 5 1 6.45 1 1 0 1 -1 -1 3.73 1 0 1 1 1 0 0 -1 -1 3.73 

3 5 1 0.00 1 1 0 1 -1 -1 12.00 1 0 1 1 1 0 0 -1 -1 12.00 

Identification (y) Predictors for fixed part of the Predictors for random part of the model : 

variables model X(f) Level-1 Level-2 Level-3 
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The combination of the variables ID3 and ID2 denote the branch-occupation subgroups. 

The first row, for instance, belongs to the subgroup (branch 2, occupation 3) while the 

third row belongs to the subgroup (branch 2, occupation 5). F ACTORl is the 

dependent or response variable. 

The predictors for the fixed part of the model are the variables CONS, Sl, Ql, 11, 12 

and FACTOR3. The inclusion of an intercept term (COXS) allows for the estimation of 

a general constant effect, given that the values of the remaining coefficients are 0. The 

gender of a respondent is given by the variable Sl, where a value of '1' indicates a male 

respondent, and a value of '-1' a female respondent. The coding used to create the 

dummy variables Ql and Q2, pertaining to the qualification of a respondent, is given 

below. 

Qualification Value of Ql Value of Q2 

1mver than Std 10 1 0 

Std 10 plus 1-2 years 0 1 

of tertiary education 

Std 10 plus 3 years or -1 -1 

more tertiary education 

The coding for the dummy variables indicating a respondent's home language, that is 

11 and 12, is done in a similar way. In this case the variable 11 assumes a value of '1' if 

the respondent is Afrikaans-speaking, ~o' if English-speaking and ' - 1' in all other cases. 

The coefficient of each dummy variable, that is Sl, Ql, Q2, 11, and 12 is a measure of 

the additional effect, over and above the effect attributed to the intercept term. 

Together with the total score for perception of discrimination given by F ACTOR3, 

these variables form the columns of the fixed parameter design matrix Xw (cf. (5.2.1)). 
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On the first level of the hierarchy, only the coefficient of the variable CONS is allowed 

to vary randomly across respondents. The coefficients of the variables Gl to G4, 

indicating the gender and type of appointment held by an employee, are allowed to be 

random on level-2. Coding for these variables is as follows: 

Gender Type of appointment Value of 

Gl G2 G3 G4 

Male Permanent 1 0 0 0 

Male Temporary 0 1 0 0 

Female Permanent 0 0 1 0 

Female Temporary 0 0 0 1 

The four columns representing the variables Gl, G2, G3, and G4 are the columns of the 

random parameter design matrix X(2) • The covariance of Yii is thus given by 

Since the gender by type of appointment groups form 4 independent subpopulations, no 

allowance is made for association between the coefficients of the associated dummy 

variables. Hence, the corresponding elements of • (2) are constrained to be 0. See Section 

7.5, Chapter 7 for more information on constraints. 

The following computer output is obtained: 

( i) Fixed part of the model: 

PARAMETER p STD.ERR. Z-VALUE PR>IZI 

CONS 6.7920 0.1646 41.2637 0.0000 

S1 -0.1969 0.1119 -1.7596 0.0785 

Ql -0.3098 0.0996 -3.1104 0.0019 

Q2 0.0392 0.1024 0.3828 0.7019 
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11 

12 

FACTOR3 

1. 7580 

0.5474 

0.1796 

(ii) Random part of the model: 

Level-2: 

PARAMETER r 
Gl/Gl 2.420 

G2/G2 3.645 

G3/G3 1.424 

G4/G4 1.442 

Level-1: 

CONS/CONS 19.110 

(iii) Likelihood function: 

- 2 ln 1 = 30397.1 

0.1002 

0.1502 

0.0287 

STD.ERR 

0.7322 

1.5200 

0.3271 

0.5921 

0.3889 

17.5449 

3.6445 

6.2578 

Z-VA1UE 

3.3051 

2.3980 

4.3534 

2.4354 

49.1386 

0.0000 

0.0027 

0.0000 

PR>IZI 

0.0009 

0.0165 

0.0000 

0.0149 

0.0000 

From Part (i) of the output it can be seen that the estimate of the intercept is 6. 7920. 

This estimate may be interpreted as the expected value of the response variable 

F ACTORl, assuming no gender, qualification, language or F ACTOR3 effect. The 

coefficient for gender, given by S1, is significant at a 10 % level of significance and 

indicates a total gender effect of 0.3938. In the case of the male employees ( coded '1 '), 

this gives a negative effect of - 0.1969 and for female employees ( coded '-1 ') a positive 

effect of 0.1969. This indicates that female employees generally obtained a slightly 

higher score than male employees. 

The expected value of the response variable for different levels of education, given that 

there is no gender, language or FACTOR3 effect, can be written as 

y = 6. 7920 - 0.3098 Ql + 0.0392 Q2 . 
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The expected F ACTORl score for an employee with an educational level lower than 

Standard 10 is then obtained as 

"J <IO= 6.7920 - 0.3098 = 6.4822. 

The expected F ACTORl score for the employees with Standard 10 and up to two years 

of tertiary education is 6.8312, while the expected score for employees with 3 years or 

more of tertiary education is 7.0626. There is a positive relationship between employees' 

level of education and expected F ACTORl scores. 

In the case of home language, the expected value of FACTORl, given no effect bar that 

of home language, can be expressed as 

y = 6.7920 + 1.7580 11 + 0.5474 12 

which leads to the following expected scores: 8.5500 for Afrikaans-speaking employees, 

7.3394 for English-speaking employees and 4.4866 for employees with other home 

languages. The Afrikaans-speaking group thus has, on average, a higher expected 

F ACTORl score, indicating a stronger tendency to agree with the statements given in 

Table 5.4.1. The third language group, which includes Black languages, appears to 

disagree with the suggested criteria for affirmative action recruitment. 

Finally, the estimate of 0.1796 for the coefficient of F ACTOR3 indicates an increase of 

0.1796 (1.5 %) in the expected value of FACTORl for each unit increase in the 

FACTOR3 score. 

From Part (ii) of the output it follows that all the estimates are significant at a 5 % 
level of significance. The largest coefficient, that is 3.645, is obtained for G2/G2, 

indicating that the largest variation on level-2 of the hierarchy is for the temporary­

employed males subgroup. The variation over employees, that is on level-1, is quite high 

and highly significant. This variation indicates a large amount of variation in the data 

still unexplained by this model. 

Page 5.48 

 
 
 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2022 

Example 5.4.2 

In this example the model discussed in Example 5.4.1 is extended to include a random 

component on a third level of the hierarchy. The dummy variables for language, that is 

11 and 12, and the F ACTOR3 score are allowed to be random at level-3, that is on the 

branch level. The first 10 rows of the data set are given below: 

ID3 ID2 IDl F.1 CONS Sl Ql Q2 Ll L2 F.3 CONS Gl G2 G3 G4 Ll L2 F.3 

2 3 1 0.00 1 -1 -1 -1 -1 -1 3.97 1 -1 0 0 1 -1 -1 3.97 

2 3 1 6.00 1 1 0 1 1 0 3.73 1 1 1 0 0 1 0 3.73 

2 5 1 4.62 1 1 0 1 1 0 0.97 1 1 1 0 0 1 0 0.97 

3 5 1 0.00 1 -1 -1 -1 -1 -1 3.97 1 -1 0 0 1 -1 -1 3.97 

3 5 1 1.79 1 1 0 1 -1 -1 3.00 1 1 1 0 0 -1 -1 3.00 

3 5 1 6.00 1 -1 0 1 0 1 6.97 1 1 0 0 1 0 1 6.97 

3 5 1 9.00 1 1 0 1 -1 -1 3.73 1 1 1 0 0 -1 -1 3.73 

3 5 1 6.27 1 -1 0 1 1 0 3.73 1 1 0 0 1 1 0 3.73 

3 5 1 6.45 1 1 0 1 -1 -1 3.73 1 1 1 0 0 -1 -1 3.73 

3 5 1 0.00 1 1 0 1 -1 -1 12.00 1 1 1 0 0 -1 -1 12.00 

Identification (y) Predictors for fixed part of the Predictors for random part of model 

variables model X(f) L-1 L-2 L-3 

In all cases the coding used for the creation of dummy variables is identical to that 

discussed in Example 5.4.1. The last three columns of the data as given above, form the 

random parameter design matrix X(s) (cf. (5.2.3)) and the covariance of Yii 1s 

The existence of two or more random coefficients at the same level is referred to as 

complex variation. In this model complex variation exists on level-2 and level-3 of the 

model. 

Since the different language groups form independent subpopulations, the corresponding 

elements of 4-(s) were constrained to be 0. Thus, no allowance was made for an 

association between the coefficients of the dummy variables 11 and 12. 
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The computer output obtained for this model is as follm:,;;s: 

( i) Fixed part of the model: 

PARAMETER p STD.ERR. Z-VALUE PR>IZI 
CONS 6.6160 0.1604 63.3716 0.0000 

S1 -0.1686 0.1044 -1.6149 0.1063 

Ql -0.3810 0.1002 -3.8024 0.0001 

Q2 0.1101 0.1012 1.0879 0.2766 

11 1.7060 0.1588 10.i431 0.0000 

12 0.5535 0.1479 3.7424 0.0002 

FACTOR3 0.2055 0.0374 5.4947 0.0000 

(ii) Random part of the model: 

Level-3: 

PARAMETER r STD.ERR. Z-VALUE PR>IZI 

11/11 0.4826 0.1767 2.7312 0.0063 

12/12 0.0190 0.1110 0.1712 0.8641 

FACTOR3/Ll 0.0156 0.0264 0.5909 0.5546 

FACTOR3/12 -0.0339 0.0223 1.5202 0.1285 

F ACTOR3/F ACTOR3 0.0164 0.0071 2.3099 0.0209 

Level-2: 

Gl/Gl 1.7880 0.6421 2.7846 0.0054 

G2/G2 2.5560 1.2570 2.0334 0.0420 

G3/G3 0.9640 0.2710 3.5572 0.0004 

G4/G4 1.0900 0.5348 2.0381 0.0415 

Level-1: 

CONS/CONS 18. 7800 0.3822 49.0084 0.0000 
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(iii) Likelihood function: 

- 2 ln L = 30325.5 

As far as the fixed part of the model is concerned, it can be seen that the estimates, 

their significance and interpretation are much the same as described in the previous 

example. The intercept term and the dummy variable 11 have the largest z-values in 

both models. 

From the output for the random part of the model, it follows that only the coefficients 

for 11/11 and F ACTOR3/F ACTOR3 are significant at a 5 % level of significance. The 

largest variation on level-3 is for the subgroup of Afrikaans-speaking employees, denoted 

by 11. 

\Vhen the random coefficients on level-2 of this model are compared with those obtained 

in the previous example, it is seen that the inclusion of a component on level-3 had 

caused an overall drop in variation on level-2, that is over occupation categories. The 

largest variation on level-2 is still the variation of the temporary-employed males 

subgroup. All coefficients on level-2 are significant at a 5 % level of significance. 

From the intercept coefficient on level-1, it can be deduced that there is still a large 

amount of variation unexplained by this model. 

Example 5.4.3 

From the results of the previous example, it can be seen that the fitting of a level-3 

model with complex variance structures on level-3 and level-2 of the model still left a 

large amount of the variation in the data unexplained. We now extend the model by 

allowing the coefficients of the dummy variables Ql and Q2 to vary randomly over 

respondents, thus obtaining a level-3 model with different random components on all 

levels of the hierarchy. 
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The first 10 rows of the data set are giYen below. 

ID3 ID2ID1 F.1 CONS Sl Ql Q2 L1 12 F.3 CONS Ql Q2 Gl G2 G3 G4 11 12 F.3 

2 3 1 0.00 1 -1 -1 -1 -1 -1 3.97 1 -1 -1 -1 0 0 1 -1 -1 3.97 

2 3 1 6.00 1 1 0 1 1 0 3.73 1 0 1 1 1 0 0 1 0 3.73 

2 5 1 4.62 1 1 0 1 1 0 0.97 1 0 1 1 1 0 0 1 0 0.97 

3 5 1 0.00 1 -1 -1 -1 -1 -1 3.97 1 -1 -1 -1 0 0 1 -1 -1 3.97 

3 5 1 1.79 1 1 0 1 -1 -1 3.00 1 0 1 1 1 0 0 -1 -1 3.00 

3 5 1 6.00 1 -1 0 1 0 1 6.97 1 0 1 1 0 0 1 0 1 6.97 

3 5 1 9.00 1 1 0 1 -1 -1 3.73 1 0 1 1 1 0 0 -1 -1 3.73 

3 5 1 6.27 1 -1 0 1 1 0 3.73 1 0 1 1 0 0 1 1 0 3.73 

3 5 1 6.45 1 1 0 1 -1 -1 3.73 1 0 1 1 1 0 0 -1 -1 3.73 

3 5 1 0.00 1 1 0 1 -1 -1 12.00 1 0 1 1 1 0 0 -1 -1 12.00 

Identification (y) Predictors for fixed part of the Predictors for random part of the model : 

variables model X(f) Level-I Level-2 Level-3 

The coding of the dummy variables is the same as that discussed in Example 5.4.1. The 

columns representing the predictors for the random part of the model, as given above, 

form the random parameter design matrices X(J), Xr2J and XrsJ . The covariance of Yii 

can be expressed as: 

Note that the level-1 covariance matrix ~(1) can be written as the symmetric matrix 

containing six non-duplicated elements. The variance on level-1 1s given by the 

expression 

Page 5.52 

 
 
 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2022 

2 (Q2) ~(1)13 + 2 (Ql)(Q2) ~{1}2S. 

The variance assumes three distinct values, as shm,·n below: 

Value of Ql Value of Q2 Value of var(J) 

1 0 (~(1)11 + ~(1)22) + 2 ~(1)12 

0 1 (~(1)11 + ~(l}ss) + 2 ~(1)1s 

-1 -1 (~(1)11 + ~(1}22 + ~(l}SS) + 2 ~(1)12 -

2 ~ {1)1S + 2 ~ (1)23 

To obtain an unique solution for these variance components, ~ (1)22 , ~ {l)33 and ~ (1)23 

are set equal to 0. Constraints on the elements of~ (2) and ~ (s) are as given in Example 

5.4.2. 

Fitting of the model as described above produces the following computer output: 

( i) Fixed part of the model: 

PARAMETER p STD.ERR. Z-VALUE PR>IZI 

CONS 6.6280 0.1607 41.2446 0.0000 

S1 -0.1651 0.1046 -1.5784 0.1145 

Ql -0.3794 0.1005 -3. 7751 0.0002 

Q2 0.1124 0.1031 1.0902 0.2756 

11 1.7000 0.1588 10.7053 0.0000 

12 0.5674 0.1458 3.8916 0.0001 

FACTOR3 0.2045 0.0377 5.4244 0.0000 
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(ii) Random part of the model: 

Level-3: 

PARAMETER 

Ll/Ll 

L2/L2 

FACTOR3/Ll 

FACTOR3/L2 

F ACTOR3/FACTOR3 

Level-2: 

Gl/Gl 

G2/G2 

G3/G3 

G4/G4 

Level-1: 

CONS/CONS 

QI/CONS 

Q2/CONS 

(iii) Likelihood function: 

- 2 ln L = 30318.8 

r 
0.4862 

0.0139 

0.0145 

-0.0323 

0.0169 

1.8460 

2.5170 

0.9605 

1.1730 

18.8500 

-0.0289 

0.6563 

STD.ERR 

0.1768 

0.1086 

0.0267 

0.0225 

0.0072 

0.6532 

1.2510 

0.2706 

0.5535 

0.3951 

0.2589 

0.3035 

Z-VALUE 

2.7500 

0.1280 

0.5431 

-1.4356 

2.3472 

2.8261 

2.0120 

3.5495 

2.1192 

47.7094 

0.1116 

2.1624 

PR>IZI 
0.0060 

0.8982 

0.5871 

0.1511 

0.0189 

0.0047 

0.0442 

0.0004 

0.0341 

0.0000 

0.9111 

0.0306 

From Part (i) of the output it follows that the coefficients for the intercept (CONS) and 

the dummy variables for language group, 11 and 12, will have the largest influence on 

the expected FACTORl score, given no other effect is present. From the coefficient for 

the dummy variables 11 and 12 it follows that the expected FACTORl score for 

Afrikaans-speaking employees is 8.328. For English-speaking employees the expected 

value of the response variable is 7.1954 and for employees with other home languages it 

is 4.3606. The Afrikaans-speaking employee is thus more likely to agree with the 

statements as given in Table 5.4.1. 
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The highest variation in the random component on leYel-3 of the model is for the 

dummy variable 11. The only coefficients significant at a 5 % level of significance are 

the coefficients for 11/11 and FACTOR3/F ACTOR3. 

All coefficients on level-2 are significant at a 5 % level of significance, indicating 

significant variation for all four gender by appointment type subgroups over the 

occupational categories. 

From Part (iii) of the output it follows that a discrepancy function value ( - 2 ln 1) of 

30 318.8 is obtained as opposed to the discrepancy function value of 30 325.5 reported 

for the previous model. 

It follows from Section 4.4.4 that the difference of 6. 7 between the discrepancy function 

values may be regarded as an observation from a x2
- distribution with 2 degrees of 

freedom. It can therefore be concluded that the addition of the two additional random 

coefficients on level-I of the hierarchy is statistically justified (5 % level of significance). 

5.5 SUMMARY 

A general level-3 model, allmving for complex variance structures on all levels of the 

hierarchy, was introduced in this chapter. Cases where no coefficients were random at a 

specific level were considered. A FORTRAN program GENIGLS had been written to 

implement the theoretical results. 

Three examples were given. The examples ranged from a case which was similar in 

structure to the cases discussed in the previous chapters, to an example of a level-3 

model with complex variance structures on all levels of the hierarchy. 

Note that the estimation procedure discussed in this chapter yields estimation results 

which was computationally less efficient than the procedures discussed in the previous 

chapters. The chief advantage of the procedure discussed in this chapter, however, is the 

ability to handle a wide variety of models, as provision is also made for the situation 

where there are no random coefficients on a particular level of the model. In the next 

Page 5.55 

 
 
 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2022 

chapter attention will be given to a computationally efficient estimation procedure for 

analysing multivariate multilevel models with continuous response variables. 
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6.1 INTRODUCTION 

CHAPTER6 

MULTIVARIATE MULTILEVEL MODELS 

In this chapter a multivariate multileYel model will be considered, that is where the 

outcomes of two or more correlated continuous response variables are assumed to 

depend on the same set of predictors. An example of such a model was given by 

Cresswell (1991), who examined educational achievement across schools, with each pupil 

having two response scores. A level-3 hierarchy was assumed, with the scores at level-1, 

pupils at level-2 and schools at level-3. 

\Vhile it may be easier to analyse different responses via separate models, there are the 

following advantages in doing one multivariate analysis (Prosser, Rasbash & Goldstein, 

1991 ): 

(i) This approach is particularly suited to the analysis of data with missing 

or incomplete responses. 

(ii) This type of analysis allmvs for random coefficients on the various levels of the 

hierarchy, thus enabling one to quantify the amount of between-unit-variation 

at a specific level. 

(iii) Direct comparison of the way in which measurements relate to the explanatory 

variables are facilitated. 

(iv) By taking the hierarchical structure of the data into account, the responses may 

be estimated more efficiently. 

A general level-3 model will be defined in Section 6.2. In Section 6.3 the estimation of 

the unknown parameters will be discussed while simplification of the terms needed for 

parameter estimation in the case of complete data will be given in Section 6.4. The 

handling of missing data will be considered in Section 6.5 and two practical applications 

given in Section 6.6. 
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6.2 THE MULTIV ARlATE MULTILEVEL MODEL 

A multivariate multileYel model is a model in which there are two or more response 

variables. An example, which will be discussed in detail in Example 6.6.1, is multiple 

electricity consumption measurements per day for a number of days ( the level-2 units) 

for a given household ( the level-3 unit). The consumption measurements may then be 

regarded as level-1 units nested within a particular day. 

Suppose that there are q response variables and let Yiik denote the k-th response for the 

( i,j)-th unit. 

The model to be considered in this section is defined by 

(6.2.1) 

where 

i = 1, 2, . . . , N ; j = 1, 2, . . , ni ; k E { 1, 2, . . . , q}. 

Assume that the qx 1 random vectors v 1 , v 2 , •.. , vN are independently and identically 

distributed with mean O and covariance matrix ~(SJ, independently distributed of the 

qx 1 i.i.d random vectors uil, ui2 , ... , uin- which have mean O and covariance matrix 
l 

~f)iik : 1 x s is a typical row of the design matrix of the fixed part of the model, the 

elements being values of the s predictors. The elements of vi and u;i make provision for 

variation of responses over level-3 and level-2 units respectively. 

Note that no allowance is made for level-1 variation, the reason for this being twofold. 

Firstly, the model as formulated in ( 6.2.1) does not make provision for the unique 

identification of level-2 and level-1 variance components. Secondly, there are no true 

experimental units below level-2. 
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The set of equations given in ( 6.2.1) can be written in matrix notation as 

where X(f)i has typical row x(f)iik , 

n• 
t 

s .. 
fJ 

Zr2Jii is a ( L nij) x m matrix partitioned as 
j=J 

0 

0 
s .. 

t) 

0 

0 

(6.2.2) 

(6.2.3) 

and Sii is a selection matrix consisting of a subset of the rows of the q x q identity matrix 

Iq where the rows of Sii correspond to the response measurements available for the ( i,j)­

th unit. 

As an example of how the Sii matrices are constructed, consider the measurement of 

peak-hour electricity consumption where responses were measured at 7h00, 8h00, 9h00, 

19h00, 20h00 and 21h00 respectively. For the case where all six response measurements 

are available, Sij = 16 • If, however, only the 8h00 and 19h00 measurements are available, 
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6.3 PARAMETER ESTIMATION 

Under the distributional assumptions giYen in Section 6.2, it follows that 

and 

(6.3.1) 

with XrJJi' x(SJi and z(2Jij as defined by (6.2.2) and (6.2.3). 

It is supposed that i(sJ and i(2J are consistent estimators of ~(sJ and ~(2J respectively 

so that 

n-
-. ' --

vi= X(sJi ~(SJ x(SJi + ~ z(2Jij ~(2J z(2Jij 
1=1 

(6.3.2) 

is a consistent estimator of :Ei. 

The generalized least squares estimator fl of /J is obtained as the mm1mum of the 

quadratic function 
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with solution 

(6.3.3) 

In order to estimate ~ (s) and ~ r2; , let 

(6.3.4) 

then 

E(y:) = vecs Ei. (6.3.5) 

Using the result (cf. (4.2.11)) 

vec ( A B C') = C' 0 A vec B , (6.3.6) 

it follows that 

(6.3.7) 

There exists an unique matrix (cf. (5.2.12)) GP: p2 x½ p(p + 1) so that 

vec A= GP vecs A 

with A a symmetric p x p matrix. There 1s also ( cf. ( 5.2.13)) a non-umque matrix 

HP :i p ( p + 1) x p2 so that 

vecs A = HP vec A . (6.3.8) 
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Vecs Vi can therefore be written as 

= X~ T 
i 

where 

and 

7 
= [ vecs ~ ( 9) ] • 

vecs ~(2) 

N'ow consider the quadratic form 

N 
QT = L (y: - x: r)' wi- l (y: - x: r) 

i=l 

where (cf. (5.2.16)) 

Minimization of QT with respect to r yields 

N N 
:; = [ L X;' wi- 1 x;] - 1 

[ L X;' wi- 1 y;] . 
i=l i=l 

To obtain the IGLS estimates of the unknown parameters proceed as follows: 

( i) Set Vi = I . 

(ii) Calculate P, y; and r using expressions (6.3.3), (6.3.4) and (6.3.12). 

(iii) 0 btain a revised estimate of Vi . 

Repeat steps (ii) and (iii) until convergence is obtained. 
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Approximate standard errors of the elements of p are obtained as the square roots of 
N 

the diagonal elements of the matrix [ ~ X<JJi vi- 1 X(JJi ] - 1 
• Likewise, approximate 

standard errors of the elements of r are1 obtained as the square roots of the diagonal 
N 

elements of the matrix [I:X;' wi- 1 x; ]- 1
• 

i=l 

6.4 COMPUTATIONAL CONSIDERATIONS 

As has been pointed out in Chapters 4 and 5, matrix expressions such as (6.3.3) and 

(6.3.12) require further analytical evaluation prior to their implementation in a 

computer program. In this section computationally efficient expressions will be derived 

for each of a number of submatrices. It is assumed that observations on each of the 

response variables are available. The handling of missing responses is considered in 

Section 6.5. 

6.4.1 SIMPLIFICATION OF THE COMPONENTS OF THE WEIGHT MATRIX 

In this section it is assumed that, for a given ( i,j)-combination, where i denotes a level-

3 and j a level-2 unit, observations were made on each of the q response variables. Thus 

(cf. (6.2.2)), Sij = Iq, i = 1, 2, ... , N; j = l, 2, ... , ni. Expressions for the simplified 

terms of X!' w.- 1 X! in the presence of missing data will be derived in Section 6.5.1. 
I I I 

It follows from (6.3.10) and (5.2.16) that the matrix X;' wi- 1 x; can be written as 

2 X!' w.- 1 X! = 
i i i 

T(S,S) T(2,S} 
(6.4.1) 

T (2,S} T (2,2J 
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where 

and 

n­
t 

T {2,2) = G~ ( ~ z(2)ij ® z(2)i)H:r a:i (vi- 1 ® vi- 1) Gni Hn; X 
;=1 . 

n-
t 

(~= Z(2Ji/' ® Z(2Ji/') Gm · 
i"'=1 

Using the results (l\fagnus & Neudecker, 1988) 

and (Graham, 1981) 

(A' ® B')(C ® C)(A ® B) = A' CA ® B' CB, 

the submatrices T(s,sJ, Tr2,s) and Tr2,2) can be expressed as 

and 
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Computationally efficient expressions for each of the submatrices in Ti are given in 

Propositions 6.4.1 to 6.4.3. The results of these propositions are summarized in Theorem 

6.4.1. 

PROPOSITION 6.4.1 (Submatrix T (s,sJ) 

= G' {A- [ I - C- A-] '°' A- [ I - C- A-]} G q I t I VY I I I q (6.4.7) 

where 

(6.4.8) 

and 

(6.4.9) 

Proof 

Let ( cf. ( 5.2.26)) 

(6.4.10) 

Using (6.2.2), it follows that (6.4.10) can be written as 

(6.4.11) 

For the case considered in this section Si;= 19 , so that (6.4.11) reduces to (cf. (6.2.3)) 

n­
t 

A- = ~ A.-: 1 
I L IJ 

j=l 
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n­, 
= ~ S-- ~<-J1 S~-~ IJ 2 IJ 

j=l 

Using the matrix identity (see for example Browne, 1991) 

( A + B C B') - 1 = A - 1 - A - 1 B ( C - 1 + B' A - 1 B ) - 1 B' A - 1 

it follows that 

(6.4.12) 

(6.4.13) 

x(S)i vi- l x(S)i = x(S}i Ai- l x(S}i - x(3)i Ai- l X(s)i Ci x(3)i Ai- l x(3)i 

(6.4.14) 

with 

(6.4.15) 

Using (6.4.12), (6.4.14) can be written as 

with (cf. (6.4.15)) 

which concludes the proof. □ 

PROPOSITION 6.4.2 (Submatrix T (2,s)) 

(6.4.16) 
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with A; and Ci defined by ( 6.4.8) and ( 6.4. 9) respectively. 

Proof 

From (6.3.2) and (6.4.13) it follows that 

(6.4.17) 

where (cf. (6.4.8)) 

X I A-1 X ;F...-1 
(3Ji i (3Ji = ni 'J!' (2) (6.4.18) 

and 

Z' A - 1 X - S' A - 1 X 
( 4>)"" · (o)· - ·· ·· (o)·· ;,:, tJ I v l fJ IJ v IJ 

= s~- A.--: 1 S-· fJ IJ IJ 

;F...-1 
- 'J!'(2) (6.4.19) 

Substitution of (6.4.18) and (6.4.19) in (6.4.17) gives 

so that 
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PROPOSITION 6.4.3 (Submatrix T (2,2} 

= ni G~{(4>r-;/ - Bi)@ (4>r-;/ - Bi)+ ni (ni - l)(Bi@ Bi )}Gm 
(6.4.20) 

where 

( 6.4.21) 

and Ci defined by (6.4.9). 

Proof 

From (6.3.2) and (6.4.13) it follows that 

zr2Jij vi- 1 
zr2Jii"' = zr2Jij Ai-

1 
zr2Jii* - zr2Jij Ai-

1 
XrsJi ci x<sJi Ai-

1 
zr2Jij* , 

(6.4.22) 

where (cf. (6.4.19)) 

Z, A-1 X .;F,,.-1 
{2)ij i {3 Ji = '.t! (2) ( 6.4.23) 

and thus 

X I A-1 Z .;F..-1 
( 3 Ji i ( 2 )ii* = '.t! ( 2) . (6.4.24) 

The term Z<2JiiAi- 1 Zr2Jii* can be written as (cf. (6.2.3)) 

Z' A - 1 Z .;F,. - 1 "f . '* {2)ij i (2)ij* = '.t! (2) l J = J 

= 0 otherwise . (6.4.25) 
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Substitution of (6.4.23) to (6.4.25) in (6.4.22) gives (cf. (6.4.21)) 

ZI y-1 z _ £ rt>.-1 rt>.-1 C rt>.-1 
{2)ij i (2)i/' - V jj* '.I.' (2) - '.I.' (2) i '.I.' (2) 

(6.4.26) 

The term T (2,2) can then be written as 

which concludes the proof. □ 

THEOREM 6.4.1 

Tr2,2J 

where 

with (cf. (6.4.8), (6.4.9) and (6.4.21)) 
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and 

Proof 

The proof follows directly from Propositions 6.4.1 to 6.4.3. □ 

6.4.2 SIMPLIFICATION OF THE COMPONENTS OF THE COEFFICIENT VECTOR 

To calculate f ( cf. ( 6.3.11) and ( 6.3.12)) it is also necessary to find a computationally 

efficient way to calculate X;' wi- 1 y;. In this subsection, expressions for the efficient 

computation of X;' wi- 1 y; in the case of complete data are derived. Derivation of 

simplified expressions of X;' wi- 1 y; in the case of missing data will be given in 

Section 6.5.2. 

The vector X;' wi- 1 y; is given by 

2 X~' w.- 1 y~ 
z z J 

=qi. (6.4.27) 

Using the results (6.4.2) and (6.4.3), the vectors q(s) and q(2) can be written as 
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and 

Let 

(6.4.28) 

then 

y; = vecs (Y;) . ( 6.4.29) 

From (6.3.8) and (6.4.2) it follows that 

and 

(6.4.30) 

Using (6.3.6), the vectors 4(s) and 4(£) can be expressed as 

(6.4.31) 

and 

( 6.4.32) 

Computationally efficient expressions for each of the subvectors m 4i are given m 

Propositions 6.4.5 and 6.4.6. The results of these propositions are summarized m 

Theorem 6.4.2. 
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PROPOSITION 6.4.5 (Subvector q(s;) 

(6.4.33) 

where 

( 6.4.34) 

with 

(6.4.35) 

and Ai and Ci as defined by (6.4.8) and (6.4.9) respectively. 

Proof 

Let 

X I y-1 
ai = {S)i i ei (6.4.36) 

with eii defined by (6.4.35). Using (6.3.2) and (6.4.13), (6.4.36) can be written as 

X I A- 1 X1 A- 1 X C X1 A- 1 
ai = (S)i i ei - (S)i i {S)i i {S)i i ei 

where (cf. (6.4.8)) 

and (cf. (6.2.2)) 

n­
i 

= ~ S~- A.-: 1 e-· L IJ lJ lJ 
i=l 
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as 

(6.4.38) 

Substitution of (6.4.37) and (6.4.38) in (6.4.36) concludes the proof. □ 

PROPOSITION 6.4.6 (Subvector q(2J) 

(6.4.39) 

where 

(6.4.40) 

with eii defined by (6.4.35). 

Proof 

From (6.4.32) 

Let 

(6.4.41) 

Using (6.3.2) and (6.4.13), (6.4.41) can be written as 

( 6.4.42) 

where ( cf. (6.4.19)) 

Z' A-1 X ~-1 
(2)ij i (S)i = ~ (2) ( 6.4.43) 
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and (cf. (6.2.3)) 

Z'r2J .. A.- 1 e- = S~- A.-: 1 e-• 
I) l f f) I) I) 

( 6.4.44) 

Finally, 

(6.4.45) 

Substitution of (6.4.43) to (6.4.45) in (6.4.42) gives 

which concludes the proof. □ 

THEOREM 6.4.2 

where 

with 

ni 

a-=[1-C-A-] ~- 1 {'°'e-•} 
t t t ( 2) ~ t) , 

J=l 
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and Ai, Ci and eij as defined by (6.4.8), (6.4.9) and (6.4.35) respectively. 

Proof 

The proof follov,.rs directly from Propositions 6.4.5 and 6.4.6. 

6.4.3 SIMPLIFICATION OF THE WEIGHT MATRIX AND COEFFICIENT VECTOR 

(FIXED PART OF THE MODEL) 

□ 

Finally, the terms X(!Ji vi- 1 X(f)i and X<JJi vi- 1 Yi , required for the calculation of /J 
(cf. (6.3.3)), are simplified. 

Using (6.3.2) and (6.4.13), the matrix X<JJi vi- 1 X(f)i can be written as 

( 6.4.46) 

where 

(6.4.4 7) 

under the assumption that 

Sii = Iq, i = 1, 2 , ... , N; j = 1, 2, ... , n;. 

Also, 
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Substitution of (6.4.47) and (6.4.48) in (6.4.46) gives (cf. (6.4.21)) 

The vector X(f)i vi-J Yi can be written (cf. (6.3.2) and (6.4.13)) as 

X, V - 1 X' A - 1 X' A- 1 X C X' A - 1 
(J)i i Yi = (f)i i Yi - (!Ji i (s)i i {3)i i Yi 

where (cf. (6.4.48)) 

and 

n-
1 ~X' ,;,r..-1. 

!-- (f)ii '¼' (2J Yii 
J=l 

n-
1 

= ~ S~- A.-: i Y·· L,_ IJ IJ IJ 
j=l 
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Substitution of (6.4.50) to (6.4.52) in (6.-1.49) gives 

ni ni n; 

x<JJi vi- 1 
Yi = ~x<JJij ~r-;/ Yij - { ~x<JJij} if!r-;/ ci if!r-;/ { ~Yij} 

;=1 ;=1 ;=1 

with Bi and Ci defined in (6.4.21) and (6.4.9) respectively. 

This concludes the simplification of all terms for the situation where no data on the 

response variables are missing. In the following section, the situation where response 

variable observations are missing will be considered. 

6.5 MISSING MEASUREMENTS 

Consider the situation where, for some ( ij)-combina.tions, measurements on one or 

more of the response variables are incomplete. Let w 1 denote the set of m: ( i,j)­
combinations for which Sii = Iq and w 2 denote the set of ni - m: ( i,j)-combinations for 

which each Sii consists of a subset of the rows of Iq corresponding to the measurements 

available for that particular ( i,j)-combination. Also, let if! r2Jii denote a matrix obtained 

by deleting rows and corresponding columns of «)(2) as a result of the matrix product 

Sii il!r2J S~i . For example, suppose that only the first and second measurements of the q 

response variables are available, then 

1 0 0 ] S- = [ tJ 0 1 0 0 

and hence 

S;i •I'{tJ s;i = [ «) 11 4>a ]= ~(tN· (6.5.1) 
«)21 4>22 
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6.5.1 SIMPLIFICATION OF THE COMPONENTS OF THE WEIGHT MATRIX 

Derivation of modified expressions for the matrix Ti (cf. (6.4.1)) in the case of missing 

data is now considered. 

PROPOSITION 6.5.1 (Subma.trix T (s,s;) 

= G' {A! [ I - C! A! ] 0 A! [ I - C! A! ] } G q I I S f S I q (6.5.2) 

where 

(6.5.3) 

and 

(6.5.4) 

Proof 

From (6.4.7) it follows that 

with (cf. (6.4.10)) 

which (cf. (6.4.11)) can be written as 
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Let 

A~= ~A-+ ~ A-
1 L_- 2 L_- l 

(6.5.5) 
jEW 1 jEW2 

vvhere i.J.,'i denotes the set of ( i,j)-combinations for which complete data is available and 

w2 denotes the ( i,j)-combinations for ,Yhich some response-variable measurements are 

missing. In the case of complete data, S;j = Iq and ( cf. ( 6.4.12)) 

When dealing vrith the case of missing data, Sii f. Iq and 

~A-= ~S~-A.-:-- 1 S--L- I L_- t) tJ fJ 
jEW 2 jEW2 

which (cf. (6.5.1)) reduces to 

Substitution of (6.5.6) and (6.5. 7) in (6.5.5) gives 

which concludes the proof. 

PROPOSffiON 6.5.2 (Submatrix T (2,s)) 

n­

' = G' ~ {B~- [I - c~ A~] ® B~- [I - c~ A~]} Gq 
m L_- IJ I t tJ I t 

j=J 
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B~- = m~ q,(-J1 + ~ S~- q,r-J1 S--IJ f 2 L,_,; 1} 2 IJ 
jf.W2 

( 6.5.9) 

and A: and c: as defined by (6.5.3) and (6.5.4). 

Proof 

From (6.4.17) it follows that z(2)ij vi- 1 
x(S)i can be written as 

z(2)ij vi- J x(S)i = z(2)ij Ai- J x(S}i - z(2}ij Ai- J x(S)i Ci x(S}i Ai- J X(s)i • 

(6.5.10) 

From (6.5.3) and (6.5.5) it follows that 

(6.5.11) 

Let 

(6.5.12) 

The first term of (6.5.12) reduces to 

(6.5.13) 
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The second term of (6.5.12) can be ,vritten as 

( 6.5.14) 

Substitution of (6.5.13) and (6.5.14) in (6.5.12) gives 

(6.5.15) 

Using (6.5.11 ), (6.5.10) can be written as 

which concludes the proof. □ 

PROPOSITION 6.5.3 (Submatrix T (2,2;) 

with 

8 ..• = 1 if j = l 
)) 

= 0 otherwise 

and Bii and c: as defined in (6.5.9) and (6.5.4). 
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Proof 

From (6.4.22) 

z<2Jijvi-
1 

zr2Ji/ = z<2Jij Ai-
1 

zr2Ji/' - z<2Jij Ai-
1 

XrsJi ci x<sJi A;-
1 

zr2Ji/' 
( 6.5.17) 

with (cf. (6.5.12)) 

and 

Z'r ) · · A.- J z( ) . ·• = s~ · A.-: J S · · if j = j* 2 tJ t 2 tJ tJ tJ 1) 

= 0 otherwise . (6.5.18) 

But (cf. (6.5.13)) 

(6.5.19) 

so that (cf. (6.5.12), (6.5.18) and (6.5.19)) equation (6.5.18) can be rewritten as 

= B~- [cS ..• I _:_ C~ B~~.] 
tJ JJ l tJ 

which concludes the proof. □ 
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THEOREM 6.5.1 

In the case of missing measurements on the q dependent Yariables 

where 

and 

with 

and 

B"' "' J,. - i + S' J,. - i S 
ij = mi ~ (2) ii ~ (2Jii ii • 

Proof 

The proof follows directly from Propositions 6 .. 5.1 to 6.5.3. □ 
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6.5.2: SIMPLIFICATION OF THE COMPONENTS OF THE COEFFICIENT VECTOR 

Modified expressions for the vectors q(s) and q(2) ( cf. ( 6.4.27)) for the situation in which 

some response-variable measurements are missing, are given in Propositions 6.5.4 and 

6.5.5. Results are summarized in Theorem 6.5.2. 

PROPOSITION 6.5.4 (Subvector q(sJ) 

= G' vec (a~ a~') q I I 
(6.5.20) 

where 

(6.5.21) 

with 

(6.5.22) 

and Yi is given by (6.4.28). 

Proof 

Let 

(6.5.23) 

with eij defined by (6.4.35). From (6.3.2) and (6.4.13) it follows that 

a~ = X' A- 1 e X' A - 1 X C X' A- 1 e ' ( s Ji i i - ( s Ji i ( s Ji i ( s Ji i i (6.5.24) 
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where (cf. (6.5.3) and (6.5.5)) 

(6.5.25) 

and 

X I A - 1 - L S' A - 1 + L S' A - 1 
( o). . e; - . . . . e · · . . . . e • • . 

oJ t t • 2) I) t) 2) IJ IJ 
jf.W 1 jf.W2 

(6.5.26) 

The first term of (6.5.26) reduces to 

(6.5.27) 

The second term of ( 6.5.26) can be written as 

(6.5.28) 

Substitution of (6.5.27) and (6.5.28) in (6.5.26) gives 

(6.5.29) 

with 

d &-1 
ii = ";l'(2J eii if Jf.W 1 

S' ~-1 = ii (2Jii eii (6.5.30) 
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Let 

n-
1 

d- = ~ d--
i L...., I) 

j=J 

then ( 6.5.24) can be rewritten as ( cf. ( 6.5.25) and ( 6.5.31)) 

a~ = d- - A~ C~ d-z I I i I 

= [ I - A~ C~] d-
2 I I 

which concludes the proof. 

PROPOSITION 6.5.5 (Subvector qr2;) 

,,·here 

and dij and di are defined by (6.5.30) and (6.5.31) respectively. 

Proof 

From (6.4.32) 

Let 

b* Z' y-1 .. = (2;·· . e-i1 2J I I 

with eii defined by (6.4.35). 
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From (6.3.2) and (6.4.13) it follows that Z<2Jii vi- 1 
e; can be written as 

(6.5.36) 

with ( cf. ( 6.5.12)) 

(6.5.37) 

and, in the case of complete data, 

Z1 A-1 
{2)ii i ei 

(6.5.38) 

since S;j = Iq. \Vhen some of the response measurements are missing, Sii -:p Iq and 

Z1 A - 1 S1 { S if,. - 1 S1 } - 1 
(2)ii i ei = ii ii '.I." (2) ii eii 

SI ;J..-1 = ii '.I." (2)ii eii · 

Z(
2
)ii Ai- t ei can then be written as (cf. (6.5.38) and (6.5.39)) 

Z1 A-1 if,.-1 
(2)ij i ei = '.I." (2) eij 

SI ;J..- J = ij '.I." (2Jii ei; 

= d-· I) 

so that (cf. (6.5.31)), (6.5.36) can be rewritten as 

which concludes the proof. 
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THEOREM 6.5.2 

where 

and 

with 

a~ = [ I - A~ C~] d- , t t t 2 

h~- = d-- - B~- C~ d-,1 t) fJ t t 

and 

The matrices A:, Bij and c: are defined in (6.5.3), (6.5.15) and (6.5.4) respectively. 

Proof 

The proof follows directly from Propositions 6.5.4 and 6.5.5. 

6.5.3 SIMPLIFICATION OF THE WEIGHT MATRIX AND COEFFICIENT VECTOR 

(FIXED PART OF THE MODEL) 

□ 

In this section attention is focused on the calculation of P m the case of m1ssmg 

response variable measurements. 
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From ( 6.3.2) and ( 6.4.13) it follows that X<JJi vi- 1 XrJJi can be written as 

x<JJi vi- 1 XrJJi = x<JJi Ai- 1 Xmi - x<JJi Ai- 1 x(3Ji ci x<sJi Ai- 1 Xmi 
(6.5.40) 

where 

It further follows that 

if ]€W 1 

if J€W2. (6.5.41) 

Similarly, 

from which it follows that 

X I A-1 X X' ~-1 
(J)ij ij (S}ij = (f)ij ~ {2} 

(6.5.42) 

Let 

(6.5.43) 

and 

F~-. 
lJ 

(6.5.44) 
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Also let 

and 

X I J..- 1 
(f}t; 'J."(2) 

- X 1 J.. - l S 1·£ J .c 1 • 'n - (J)ij 'J." (2)ij ij c ...... ~ 

n­

' G;=I: 
j=l 

G~-. 
t) 

Equation (6.5.40) can then be written as (cf. (6.5.41) to (6.5.46)) 

X 1
(f)' v.- l x(f)' = F~ - G! c~ G~. f f f f I I I 

(6.5.45) 

(6.5.46) 

( 6.5.4 7) 

Finally, the simplification of the term X(J)i vi- J Yi is considered (cf. (6.3.3)). Using 
(6.3.2) and (6.4.13), it follows that 

X I v- 1 x1 A- 1 X1 A- 1 X C X1 A-[ (J)i i Yi = (J)i i Yi - (J)i i (s)i i (3Ji i Yi (6.5.48) 

with ( cf. ( 6.5.46)) 

and 

(6.5.49) 

where 

X1 A - 1 X1 4' - 1 
(J)ii ii Yii = (J)ii (2) Yii 

X I J..-1 = (JJii'J."(2JiiYii (6.5.50) 
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Let 

and 

h~- = X' A - 1 
lJ (f}ij ij y ij 

n­
t 

h~ = '°' h~- . 
I L IJ 

j=l 

It also follows that 

where 

Let 

and 

n­
i 

= 'S~- A-~ 1 Y·· L IJ IJ tJ 
j=l 

S' A - 1 9- 1 
ii ii Yii = (2J Yii 

S' 9- 1 = ii (2)ii Yii 

k"' X' A- 1 ·· = (oJ·· ·· Y·· IJ .;, IJ 2J 2J 

n­
t 

k~ = '°' k~- . 
t L IJ 

j=l 

Using (6.5.46) and (6.5.49) to (6.5.56), (6.5.48) can be written as 

X I v- l h* G* C* k"' 
(J) . . Y· = . - . . .. 

I I I I I I I 
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6.6 PRACTICAL APPLICATIONS 

In this section two examples are given. The first example is concerned ,vith the analysis 

of electricity consumption patterns. In the second example the data described in 

Example 3.5.1 is examined in the context of a multivariate level-3 model. 

Example 6.6.1 

In this example the analysis of a large data set from an Electricity Supply Commission 

survey of 293 black households in Xaledi, Soweto is considered (with the kind 

permission of Rob Surtees, Load Research, ESKOM, South Africa). The sample is 

schematically represented as follows: 

Level-3: Household 1 Household i Household N 

Level-2: 

Day 1 ... Day 30 Day 1 .. Day j Day 30 Day 1 Day 30 

I 
Level-1: 

Kwhl Kwh2 Kwh3 Kwh4 Kwh5 Kwh6 

The 293 households represent the level-3 units. The level-2 units are the days on which 

the measurements were taken, while the level-1 units are the hourly K wh readings, 

taken at 7h00, 8h00, 9h00, 19h00, 20h00 and 21h00 respectively. Clusters of level-1 

units are present within each level-2 unit and clusters of level-2 units are present within 

each level-3 unit. Thus, a maximum of 6 x 30 x 293 = 52 7 40 units are included. 

Additional information available includes information on the electrical appliances 

utilized by each household and, as the exact dates during June 1993 on which 

measurements were taken are available, it is also known which measurements refer to 

weekdays and which to weekend days. 
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The purpose of the analysis is to estimate the variation in peak-hour electricity 

consumption over households. Estimation is based on the type of appliance utilized and 

whether a particular response measurement vrns made on a weekday or a weekend day . 

.A multivariate multilevel model approach is adopted to accommodate the hierarchical 

structure of the data which is evident from the schematic representation giYen above. 

The FORTRAN program MULTV AR was used for the analysis. The diskette which 

accompanies the dissertation contains the program MULTVAR. Also included on the 

diskette is an ASCII file named 'READ~-IE.DOC'. This file contains information on how 

to run the examples. See Chapter 10 for additional information on this program. 

To estimate the variation in peak-hour electricity consumption at 7h00, 8h00, 9h00, 

19h00, 20h00 and 21h00 respectively the following predictors were included as dummy 

variables: 

(i) Utilization of stove (STOVEK,Vk) 

(ii) Utilization of geyser or urn (GURXK,Vk) 

(iii) Utilization of hotplate (HPLATKW'k) 

(iv) Utilization of heater (HEATRK\Vk) 

(v) Utilization of freezer (FREEZK\Vk) 

(vi) Day of week on which measurement ,vas made (DAYWEKWk) 

Note that a value of '1' is assigned to STOVEKWk, k==l, 2, ... , 6, provided that the 

electricity consumption measurement was made on occasion k and a stove was utilized. 

Otherwise, a value of 'O' is assigned. Coding for variables (ii) to (v) is similar. The 

predictor DAYWEKWk, k=l, 2, ... , 6, assumes a value of '1' if the k-th measurement 

was made on a weekday and 'O' otherwise. 

Part of the computer output is given below and is briefly discussed with regard to the 

fixed and random parts of the model respectively. 
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( i) Fixed part of the model: 

PARAMETER p STD. ERR. Z-VALUE PR> IZI 
STOVEK\Vl 0.5476 0.1188 4.6110 0.0000 

STOVEKW2 0.7631 0.1326 5.7532 0.0000 

STOVEKW3 0.7810 0.1281 6.0986 0.0000 

STOVEKW4 1.1489 0.1613 7.1238 0.0000 

STOVEKW5 1.2927 0.1745 7.4067 0.0000 

STOVEKW6 1.2555 0.1676 7.4916 0.0000 

GURNKWl 0.0834 0.1170 0.7125 0.4761 

GURNKW2 0.1756 0.1309 1.3420 0.1796 

GURNKW3 0.3166 0.1263 2.5063 0.0122 

GURNKW4 0.5561 0.1591 3.4959 0.0005 

GURNKW5 0.4354 0.1723 2.5272 0.0115 

GURNKW6 0.4168 0.1655 2.5191 0.0118 

HPLATKWl 0.2229 0.0880 2.5344 0.0113 

HPLATKW'2 0.2827 0.0981 2.8818 0.0040 

HPLATKW3 0.4370 0.0947 4.6136 0.0000 

HPLATKW4 0.7324 0.1193 6.1380 0.0000 

HPLATKW5 0.5833 0.1290 4.5230 0.0000 

HPLATKW6 0.5349 0.1238 4.3206 0.0000 

HEATRKWl 0.2450 0.0856 2.8613 0.0042 

HEATRKW2 0.2782 ·o.0958 2.9034 0.0037 

HEATRKW3 0.2163 0.0925 2.3383 0.0194 

HEATRKW4 0.6080 0.1165 5.2211 0.0000 

HEATRKW5 0.7940 0.1262 6.2911 0.0000 

HEATRK\\76 0.7153 0.1212 5.9019 0.0000 

FREEZKWl - 0.0818 0.0859 -0.9532 0.3405 

FREEZKW2 -0.0244 0.0960 -0.2542 0.7993 

FREEZKW3 0.1140 0.0927 1.2304 0.2185 
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FREEZKW4 0.1726 0.1167 1.4791 0.1391 

FREEZKW5 0.0913 0.1264 0.7223 0.4701 

FREEZKW6 0.0496 0.1214 0.4085 0.6829 

DAYWEKWl 0.5811 0.0252 23.0661 0.0000 

DAYWEKW2 0.4295 0.0253 16.9778 0.0000 
• 

DAYWEKW3 -0.0443 0.0247 - 1.7981 0.0722 

DAYWEKW4 0.0449 0.0323 1.3932 0.1635 

DAYWEKW5 0.1993 0.0312 6.3795 0.0000 

DAYWEKW6 0.1275 0.0292 4.3747 0.0000 

(ii) Random pa.rt of the model: 

PARAMETER r STD.ERR. Z-VALUE PR> IZI 
KWI,1(3) 0.4697 0.0297 15.8193 0.0000 

KW2,1(3) 0.4320 0.0297 14.5572 0.0000 

KW2,2(3) 0.5971 0.0372 16.0577 0.0000 

KW3,1(3) 0.3507 0.0269 13.0207 0.0000 

KW3,2(3) 0.5234 0.0336 15.5659 0.0000 

KW3,3(3) 0.5559 0.0346 16.0490 0.0000 

KW4,1(3) 0.3900 0.0328 11.8955 0,0000 

KW4,2(3) 0.4878 0.0378 12.9214 0.0000 

KW4,3(3) 0.4913 0.0369 13.2984 0.0000 

KW4,4(3) 0.8756 0.0549 15.9458 0.0000 

KW5,1(3) 0.4260 0.0356 11.9545 0.0000 

KW5,2(3) 0.5327 0.0411 12.9700 0.0000 

KW5,3(3) 0.4945 0.0392 12.6109 0.0000 

KW5,4(3) 0.8806 0.0558 15.7780 0.0000 

KW5,5(3) 1.0433 0.0645 16.1762 0.0000 

KW6,1(3) 0.4244 0.0345 12.2848 0.0000 

KW6,2(3) 0.5222 0.0397 13.1644 0.0000 

KW6,3(3) 0.4950 0.0381 12.9971 0.0000 

KW6,4(3) 0.8215 0.0531 15.4773 0.0000 

KW6,5(3) 0.9661 0.0598 16.1665 0.0000 
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KW6,6(3) 0.9660 0.0595 16.2376 0.0000 

KWl,1(2) 0.8585 0.0105 81.9444 0.0000 

KW2,1(2) 0.1432 0.0076 18.8183 0.0000 

KW2,2(2) 0.8825 0.0108 81.9498 0.0000 

KW3,1(2) 0.0181 0.0073 2.4935 0.0127 

KW3,2(2) 0.2234 0.0076 29.2990 0.0000 

KW3,3(2) 0.8284 0.0101 81.9457 0.0000 

KW4,1(2) - 0.0012 0.0096 - 0.1213 0.9034 

KW4,2(2) - 0.0241 0.0098 - 2.466.5 0.0136 

KW4,3(2) 0.0206 0.0095 2.1761 0.0295 

KW4,4(2) 1.4532 0.0177 81.9507 0.0000 

KW5,1(2) 0.0390 0.0094 4.1635 0.0000 

KW5,2(2) 0.0387 0.0095 4.0769 0.0000 

KW5,3(2) 0.0472 0.0092 5.1342 0.0000 

KW5,4(2) 0.1318 0.0122 10.7830 0.0000 

KW5,5(2) 1.3700 0.0167 81.9550 0.0000 

K\l\76,1(2) 0.0389 0.0087 4.4936 0.0000 

K\V6,2(2) 0.0236 0.0088 2.6966 0.0070 

K\lV6,3(2) 0.0237 0.0085 2.7881 0.0053 

KW6,4(2) 0.2421 0.0114 21.1597 0.0000 

KW6,5(2) 0.3811 0.0114 33.4098 0.0000 

KW6,6(2) 1.1697 0.0143 81.9493 0.0000 

HOUSEHOLD LEVEL: ESTIMATE OF 4>(s) 

KW1-LEV3 KW2-LEV3 KW3-LEV3 KW4-LEV3 KW5-LEV3 KW6-LEV3 

KW1-LEV3 0.4697 

KW2-LEV3 0.4320 0.5971 

KW3-LEV3 0.3507 0.5234 0.5559 

KW4-LEV3 0.3900 0,4878 0.4913 0.8756 

KW5-LEV3 0.4260 0.5327 0.4945 0.8806 1.0433 

KW6-LEV3 0.4244 0.5222 0.4950 0.8215 0.9661 0.9660 
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HOUSEHOLD LEVEL: CORRELATION MATRIX 

KW1-LEV3 K\V2-LEV3 KW3-LEV3 KW4-LEV3 KW5-LEV3 KW6-LEV3 

KW1-LEV3 1.0000 

KW2-LEV3 0.8158 1.0000 

KW3-LEV3 0.6862 0.9084 1.0000 

KW4-LEV3 0.6082 0.6747 0.7042 1.0000 

KW5-LEV3 0.6086 0.6749 0.6493 0.9214 1.0000 

K\\T6-LEV3 0.6300 0.6876 0.6755 0.8932 0.9624 1.0000 

DAY LEVEL: ESTIMATE OF ~(2) 

KW1-LEV2 KW2-LEV2 KW3-LEV2 KW4-LEV2 KW5-LEV2 KW6-LEV2 

KW1-LEV2 0.8585 

KW2-LEV2 0.1432 0.8825 

K\V3-LEV2 0.0181 0.2234 0.8284 

KW4-LEV2 -0.0012 -0.0241 0.0206 1.4532 

KW5-LEV2 0.0390 0.0387 0.0472 0.1318 1.3700 

KW6-LEV2 0.0389 0.0236 0.0237 0.2421 0.3811 1.1697 

DAY LEVEL: CORRELATION MATRIX 

KW1-LEV2 KW2-LEV2 KW3-LEV2 KW4-LEV2 KW5-LEV2 KW6-LEV2 

KW1-LEV2 1.0000 

KW2-LEV2 0.1646 1.0000 

KW3-LEV2 0.0215 0.2613 1.0000 

KW4-LEV2 -0.0010 0.0213 0.0188 1.0000 

KW5-LEV2 0.0359 0.0352 0.0443 0.0934 1.0000 

KW6-LEV2 0,0388 0.0233 0.0241 0.1857 0.3011 1.0000 

(iii) Convergence details: 

Convergence (IGLS -Algorithm) in 3 iterations 

Page 6.41 

 
 
 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2022 

From the fixed part of the model it follmYs that the majority of coefficients, with the 

exception of the regression coefficients of the dummy variables FREEZK\Vl to 

FREEZK\V6, are highly significant. STOVEK\Vl to STOVEK\V6 haYe the largest 

coefficients. There are significant differences between ,veekday and weekend electricity 

consumption, except at 9h00 and 19h00. A study of the appliance coefficients indicate a 

peak demand for electricity at 19h00 (K\V4). 

From the random part of the model it follows that, on level-3, there is highly significant 

variation in domestic demand for electricity and high correlations between the variables 

K\Vl-LEV3 to K\V6-LEV3. Households which have a high demand for electricity at any 

given hour tend to also have a high demand on the other hours. 

On a daily level (level-2) there is an even larger variation in electricity consumption. 

Correlations between the variables K\Vl-LEV2 to K\\/6-LEV2 are relatively small, 

indicating that the amount of electricity used on, for example, a Monday morning is not 

correlated with the amount of electricity used on a \Vednesday evening. 

The variances of the level-3 and level-2 matrices can be used to construct 95 % 
confidence intervals for the average electricity consumption during any of the peak 

hours. 

Example 6.6.2 

In this example the analysis of a data set obtained from a survey undertaken by the 

South African Department of National Health and Population Development is 

considered. The data set used contains information on the knowledge and perceptions of 

AIDS and related issues of 1702 pupils at 10 secondary schools and can be schematically 

represented as follows: 
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Level-3: School 1 School i School 10 

Level-2: 

1 . . . . . . . . n1 pupil 1 pupil j pupil ni 1. · · · · · · · • ll10 

Level-1: I 
F ACTORl score F ACTOR2 score F ACTOR3 score 

The 10 schools represent the level-3 units. The level-2 units are the pupils, while the 

level-1 units are the scores obtained by a pupil for F ACTORl, FACTOR2 and 

F ACTOR3. F ACTORl indicates a pupil's knowledge of proven means by which AIDS 

can be transmitted, F ACTOR2 indicates a pupil's perception of HIV/ AIDS 

susceptibility and FACTOR3 indicates a pupil's knowledge regarding the transmission 

of AIDS through casual contact. 

The majority of questions answered by pupils were of a categorical nature with possible 

outcomes 'Yes' and 'No' with assigned values '1' and 'O' respectively. \Vhere a third 

category 'Do not know' was present, optimal scaling (Du Toit & Strasheim, 1987), was 

used to assign numerical values to the three categories. Subsequently a factor analysis 

(SAS/STAT, 1990), with VARIMAX rotation was done with respect to the scaled items 

in order to find subgroups of mutually correlated items. Tables 6.6.1 to 6.6.3 below give 

the items and corresponding factor loadings belonging to each of the three factors. 

Page 6.43 

 
 
 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2022 

Table 6.6.1 FACTORl: Knowledge of transmission of HIV /AIDS by proven means 

Description of item 

1. One cannot get AIDS /HIV by having sex with 

someone who has AIDS/HIV. 

2. A pregnant woman can pass AIDS /HIV on to 

her unborn baby. 

3. One can get AIDS /HIV by using the same 

injection needles that other persons have used 

when injecting yourself ,,,.ith drugs. 

4. One can get AIDS /HIV by receiving blood 

that was donated by a person who has AIDS/HIV. 

5. A man can get AIDS/HIV by having sex with 

another man who has AIDS/HIV. 

6. AIDS/HIV is caused by a virus/germ. 

7. The body of a person with AIDS/HIV cannot 

defend itself against other diseases. 

8. AIDS/HIV cannot be spread when two uninfected 

people have sex. 

9. A woman cannot get AIDS/HIV by having sex 

with another woman who has AIDS /HIV . 

10. AIDS/HIV cannot be transmitted by semen. 

11. AIDS /HIV can be transmitted by vaginal fluids. 

12. AIDS /HIV can be transmitted by a person who 

is infected with AIDS/HIV. 

13. Is it true that someone who suffers from a sexually 

transmitted disease is more likely to get AIDS /HIV? 

Minimum value = 0 

Maximum value = 13 
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0,2184 

0,2885 

0,1861 

0,1568 

0,3442 

0,2409 

0,4547 

0.2377 

0,3109 

0,3928 

0,4225 

0,2071 

0,1688 
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Table 6.6.2 F ACTOR2: Perceptions of HIV/ AIDS susceptibility 

Description of item 

1. Can teenagers get AIDS? 

2. Is AIDS /HIV a disease from which mainly your 

population group suffers? 

3. Is AIDS /HIV a disease from which mainly other 

population groups suffer? 

4. Do you think that all people get AIDS/HIV? 

5. Do you think that AIDS /HIV is mainly a 

"gay disease/ homosexual disease"? 

6. Do you think it is possible that even your best 

friend could get AIDS /HIV? 

Minimum Yalue = 0 

Maximum Yalue = 8 

Factor loading 

0,3057 

0,2961 

0,2246 

0,3002 

0,2038 

0,1878 

Table 6.6.3 F ACTOR.3 : Knowledge of HIV/ AIDS transmission via casual contact 

Description of item Factor loading 

1. One can get AIDS /HIV when someone who has 0,6408 

AIDS/HIV coughs or sneezes on you. 

2. One can get AIDS /HIV by coming into contact 0,5831 

with the perspiration of a person who has AIDS/HIV. 

3. One cannot get AIDS/HIV by swimming in the same 0,5583 

swimming pool with someone who has AIDS/HIV. 

4. One can get AIDS/HIV by sharing food with someone 0,5420 
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who has AIDS/HIV. 

5. One cannot get AIDS /HIV from ,,·earing clothes worn 

by a person ,vho has AIDS/HIV. 

6. One cannot get AIDS /HIV by sitting on a toilet seat 

that has been used by a person who has AIDS/HIV. 

7. One can get AIDS/HIV by touching someone ,vho has 

AIDS/HIV. 

8. One can get AIDS/HIV from mosquitoes that can pass 

it from one person to another. 

Minimum value == 0 

Maximum value == 8 

0,5528 

0,4394 

0,3448 

0,3121 

Additional information available includes the gender and standard or grade of each 

pupil. 

The purpose of the analysis was to estimate the variation in factor scores over pupils 

and to determine the extent to which schools vary with respect to the response variable 

( this is particularly important since schools were selected to represent different 

segments of the South African population). It was also required to predict mean factor 

scores for the different standard gender combinations and to determine the significance 

of gender and standard with respect to the different factors. 

Part of the computer output of the FORTRAN program MULTVAR is given below. 

( i) Fixed part of the model: 

PARAMETER p STD.ERR lrVALUE PR> IZI 
CONS_FAl -3.3184 1.4967 -2.2172 0.0266 

CONS_FA2 1.2740 0.7797 1.6338 0.1023 

CONS_FA3 -2.4094 1.4096 -1.7092 0.0874 

FAl_ SEX -0.6338 0.1095 -5.7867 0.0000 
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FA2_ SEX -0.1592 0.0624 -2.5531 0.0107 

FA3_ SEX -0.1962 0.1031 -1.9027 0.0571 

FAl_ STD 1.3991 0.2057 6.8020 0.0000 

FA2_ STD 0.4267 0.1083 3.9397 0.0001 

FA3_ STD 1.0355 0.1940 5.3377 0.0000 

(ii) Random part of the model: 

PARAMETER r STD.ERR Z-VALUE PR> IZI 
FAl/1(3) 1.1359 0.5219 2.1764 0.0295 

FA2/1(3) 0.4067 0.1896 2.1454 0.0319 

FA2/2(3) 0.1524 0.0726 2.0994 0.0358 

F A3/1(3) 0.9521 0.4557 2.0894 0.0367 

FA3/2(3) 0.3610 0.1712 2.1086 0.0350 

FA3/3(3) 0.9586 0.4410 2.1734 0.0298 

FAl/1(2) 5.0074 0.1722 29.0861 0.0000 

FA2/1(2) 0.8718 0.0727 11.9948 0.0000 

FA2/2(2) 1.6332 0.0561 29.0875 0.0000 

FA3/1(2) 1.5817 0.1209 13.0824 0.0000 

FA3/2(2) 0.5994 0.0671 8.9376 0.0000 

FA3/3(2) 4.4396 0.1526 29.0861 0.0000 

SCHOOL LEVEL: ESTIMATE OF ~(s) 

CONS_FAl CO~S_FA2 CONS_FA3 

CONS_FAl 1.1359 

CONS_FA2 0.4067 0.1524 

CONS_FA3 0.9521 0.3610 0.9586 
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SCHOOL LEVEL: CORRELATION MATRIX 

CONS_FAl CONS_FA2 CO:'\S_FA3 

CONS_F Al 1.0000 

CONS_FA2 

CONS_FA3 

0.9776 

0.9124 

1.0000 

0.9447 1.0000 

PUPIL LEVEL: ESTIMATE OF '1>(2) 

CONS_FAl CONS_FA2 CONS_FA3 

CONS_FAl 5.0074 

CONS_FA2 

CO~S_FA3 

0.8718 

1.5817 

1.6332 

0.5994 4.4396 

PUPIL LEVEL: CORRELATION MATRIX 

CONS_FAl CONS_FA2 COXS_FA3 

CONS_F Al 1.0000 

CO~S_FA2 

CONS_FA3 

0.3048 

0.3355 

1.0000 

0.2226 1.0000 

From the fixed part of the output it follows that, with the exception of the coefficients 

of FA3_SEX and of the dummy variables CONS_FA2 and CONS_FA3, all coefficients 

are significant. From the coefficients of the variables F Al_SEX and F A2_SEX it can 

be seen that boys ( coded 'O') have an average higher score than girls ( coded '1 '). 

The expected F ACTORl score for a male pupil in Standard 7 is calculated as 

fal = - 3.3184 - 0.6338(0) + 1.3391(7) = 6.4753 

while for a female pupil in Standard 7 

fal = - 3.3184 - 0.6338(1) + 1.3391(7) = 5.8415 
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which illustrates both the difference between the hrn sexes and a lack of knowledge 

with regard to the transmission of AIDS/HIV through proYen means. From Table 6.6.1 

the maximum score for FACTOR! is 13. 

The coefficients of FAl_STD, FA2_STD and FA3_STD are all positive, implying a 

higher level of knowledge with respect to any of the factors for a pupil in a higher 

standard. 

As far as the random part of the output is concerned, it can be seen that all random 

coefficients are significant at the 5 % level of significance. The significant variation over 

schools (level-3) was anticipated, as schools were selected a.t the sampling stage to 

represent different segments of the South African population. Variation over pupils 

(level-2) is larger than in the case of schools (level-3). The high variation over pupils 

shows a varying level of knowledge over pupils, indicating the need for further education 

with respect to AIDS/HIV related issues. 

From the level-3 correlation matrix COl\'S_FAl, CONS_FA2 and CONS_FA3 are 

highly correlated. If a school has a high Factor 1 score, it would thus also have a high 

score on the other factors. Correlations between the variables CONS_F Al, CONS_F A2 

and CONS_FA3 on a pupil level are fairly low, underlining gaps in their knowledge of 

AIDS/HIV. 

6.7 SUMMARY 

The analysis of models with two or more continuous response variables were considered 

in this chapter by the introduction of a multivariate multilevel model. The 

mathematical implications of missing data were illustrated. The theoretical results 

derived were implemented m the FORTRAN program MULTVAR included on the 

accompanying diskette. 

Two practical examples were given. In these examples the coefficients of variables 

included in the fixed part of the model were not allowed to vary across the levels of the 

hierarchy. If models with complex variance structures were to be fitted to the data, the 

general model discussed in Chapter 5 could be used. Note, however, that the estimation 
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procedure given m Chapter 5 ,vas computationally less efficient than the procedure 

described in Chapter 6. 
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CHAPTER 7 

MULTILEVEL MODELS FOR CATEGORICAL RESPONSE VARIABLES 

7.1 INTRODUCTION 

In the last few decades a wide variety of methods for the analysis of categorical data 

have been proposed. Many of these are generalizations of continuous data analysis 

methods (see for example Bishop, Fienberg & Holland, 1975, and Agresti, 1990) . 

Analysis of variance (ANOV A) refers to the analysis of means and the partitioning of 

variation into various sources. In the analysis of categorical data, using the continuous 

data analysis approach, 'analysis of variance' is used to denote the analysis of response 

functions and the partitioning of variation among those functions into various sources 

(see Introduction to PROC CATMOD, SAS/STAT, 1990). 

The response functions may be functions of the marginal probabilities, cumulative logits 

(see McCullagh, 1980), or other functions that incorporate the essential information 

from the dependent variables. 

In this chapter it will be assumed that the response functions are the natural logarithms 

of the ratio of cell frequencies in a contingency table. The derived results, however, may 

be extended to include the analysis of categorical data with ordered categories. See for 

example Goodman (1979) and Stoker (1982) for a review of methods for the analysis of 

ordinal categorical data. 

In the preceding chapters the analysis of data with a continuous response variable was 

considered. A general level-3 model which allowed for complex variation on all three 

levels of the hierarchy was discussed in Chapter 5. The theoretical framework developed 

in Chapter 5 facilitates the analysis of hierarchical data with categorical response 

variables. 

In this chapter the multilevel analysis of categorical response variables will be discussed. 

A review of logit modelling will be given in Section 7.2, while a level-2 logit model will 

be introduced in Section 7.3. In Section 7.4 a level-3 logit model will be introduced and 

Page 7.1 

 
 
 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2022 

a multivariate multilevel model for handling more that one categorical response variable 

,vill be developed in Section 7.5. 

Three practical applications will be giwn in Section 7.6 ,vith conclusions in Section 7. 7. 

7.2 THE LOGIT MODEL 

7.2.1 DEFINITION OF THE LOGIT MODEL 

Consider the following two-way table in which the response variable has 'yes' and 'no' 

categories and where the i-th row of the table contains the number of 'yes' and the 

number of 'no' responses of respondents from subpopulation i, i = 1, 2, ... , s. 

Subpopulation Response Total 

yes no 

1 !1,1 !1,2 Ii. 
2 !2,1 !2,2 !2. 

s fs,1 fs,2 fs. 

For each subpopulation i the probability 1r ii of the j-th response (j = 1, 2) occurring is 

estimated by P;; = 1:; . These estimates are used to obtain the elements of the response 

vector y, where the Jlements of y are assumed to be a function of the Pi/s. It is assumed 

(see for example du Toit & Lamprecht, 1986) that the response vector y can be 

expressed in the form 

(7.2.1) 

where the elements of X depend on whether provision is made for the inclusion of an 

intercept or constant effect and on the way in which subpopulations are formed. 
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Example 7.2.1 illustrates the creation of such a matrix for a given set of p predictors. 

The elements of the vector f3 are fixed, but unknown, parameters to be estimated. 

The theoretical cell probabilities are giYen by 

Subpopulation Response Total 

yes 

1 7r 11 

2 7r 21 

s 7r sl 

and satisfy the condition 

2 

"'7r··= 1 ~ I) 

j=l 

no 

7r 12 7r 1. 

7r 22 7r 2. 

7r s2 7r s. 

i = 1, 2, ... , n ; j = 1, 2 . 

Denote the (2s x 1) vector of cell probabilities by 1r, where 

1r = 

(7.2.2) 

(7.2.3) 

The elements of the corresponding estimator p of 1r are based on the sample proportions 
/ii dh . . b Pii = l , an ence p 1s given y 
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p= 

f2, 1 

!2. 
!2,2 
!2. 

(7.2.4) 

p., 

Under the assumption that the underlying distribution is product multinomial ( Agresti, 

1990), it follows that 

i = 1,2, ... , s; j = 1, 2 

[ 
J,. ·] Var ..!.!l. = 1r • -( 1 - 1r --) / '· f- I} I} Js. 

z. 
i = 1, 2, ... , s; j = 1, 2 

[
/,-· J,.k] 

Cov ..!.!l. ~ = - 7r·· 7r·k/l. f- ' f- 1) I Ji. z. z. 
i = 1, 2, ... , s ; j = 1, 2 

C [ 
fi,j f1,k]- Q 

ov f- ' f -
i. I. 

i = 1, 2, ... , s ; j = 1, 2 

l = 1, 2, ... , s; k = 1, 2 

ifd;j/k. 
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From the above it follows that 

i = 1, 2, ... , s (7.2.5) 

and 

Cov(pi, PD= J (Diag(1ri -1ri1ri) 
Z• 

(7.2.6) 

Thus, 

V1 0 0 

Cov(p, p') = 0 V2 
=V 

0 
(7.2.7) 

0 0 vn 

with V; defined above. 

For the logit model, the vector of responses is 

y= (7.2.8) 

with 

E(y) = X fJ, 
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where Xis as x k design matrix and /3 a kx 1 parameter Yector. 

Example 7.2.1 

Residents of Johannesburg ,,~ere asked whether they were satisfied with the public 

transportation system in the city. The responses for subpopulations of residents are 

given below. 

Subpopulation Response Total 

yes no 

Male inner-city 59 47 106 

residents 

Male suburban 43 63 106 

residents 

Female inner-city 71 75 146 

residents 

Female suburban 47 89 136 

residents 

Suppose that the expected value of a typical element Yi= In~:~ of the response vector y 

can be expressed as 

E(yi) = (3/NTERCEPT + f3GENDER GENDER+ (3AREA AREA (7.2.9) 

where GENDER= '1' if the respondent is male and GENDER= '-1' if the respondent 

is female. If a respondent lives in the inner-city, a value of '1' is assigned to the variable 

AREA. For a suburban resident AREA = ' - 1 '. 

The expected value of y is given by 

E(y) = X /3 
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where 

and 

X= 

1 1 1 

1 1 -1 

1 -1 1 

1 -1 -1 

{J = f3GENDER · 
[ 

/311\'TERCEPT l 
/3 AREA 

□ 

The generalized least squares estimator P of fJ is obtained by minimizing the quadratic 

function 

(7.2.10) 

where 

E = Cov(y, y') . (7.2.11) 

An approximate expression for E is obtained through use of the following first order 

Taylor expansion of y evaluated in the neighbourhood of 1r 

y ~ f(1r) + J(p - 1r) (7.2.12) 

where 

J : s X cs = z, I p = 7f ' (7.2.13) 

and c is the number of categories of the response variable. 
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The covariance of y , to the first order of approximation, can be written as 

E = J Cov(p, p') J' 

=JV J'. (7.2.14) 

In general it can be shown that, if the c-th category of the response variable is used as 

the reference category, E has the following form 

0 

E= (7.2.15) 
0 

0 o --J-w ss 
n. 

If there are h~:o response categories ( eg. 'yes' and 'no'), W ii for the i-th subpopulation is 

given by 

'I! .. _ (-1 + _1 ) 
u - 7ri1 7ri2 (7.2.16) 

where 1ri1 and 1ri2 denote the cell probabilities of the first and second category 

respectively. 

In the case of three response categories (for example 'yes', 'no' and 'don't know') the 

following expression for \Ji ii is obtained if · the third category is used as a reference 

category: 

(7.2.17) 
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Finally, the case with four response categories is considered. If the fourth category is 

used as reference category, JV J' for the i-th population is given by 

\JI .. = n 

1 
7r i4 

In general, for a c category response variable 

(7.2.18) 

(7.2.19) 

where 1ric is the probability that respondents in the i-th subpopulation will select the 

c-th category of the response variable. 

By using the above results, the logit model can be written as 

y=X,B+De (7.2.20) 

where 

E(e) = 0, 

'1111 0 o· 

0 '1122 
Cov(e, e') = (7.2.21) 

0 

0 0 '11.ss 

Page 7.9 

 
 
 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2022 

and 

0 

D : nx n = (7.2.22) 
0 

0 0 1 R lc-1 
s. 

where Ic-J denotes an identity matrix of order c-1 and n = s x ( c-1 ). The expected 

value of y is given by 

E(y) = X {J 

with (cf. (7.2.14)) 

Cov(y, y') = D Cov( e, e') D' :::'. E . 

7.2.2 ESTIMATION OF THE UNKNOWN PARAMETERS 

The IGLS estimator fJ of fJ is obtained as the minimum of (7.2.10), with solution 

(7.2.23) 

Since E is unknown, it is initially calculated through the substitution of the population 

probabilities 1rii ( cf. (7.2.3)) with their corresponding sample probabilities Pi; ( cf. 

(7.2.4)). A first estimate fJ of fJ is subsequently obtained. 

Estimators n- ii of 7r ii are calculated from the elements of fl. These estimators are used to 

obtain a revised estimator E of ~ where E = E( n-i;)- This procedure is repeated until 

convergence is obtained. 
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From (7.2.9), Example 7.2.1 it follows that 

Zn (!ii)= k 
7r i2 

(7.2.24) 

where 

k == P1NTERCEPT + PcENDER GENDER+ PAREA AREA. 

Since ffi2 == 1-ffi1, it follows from (7.2.24) that 

If the response variable has c categories, c - 1 equations of the form 

j = 1, 2, ... , c-1 

are obtained with solution 

__ exp(k;) 
7r ij == c-1 • 

1+ ~exp(kj) 
;=1 

(7.2.25) 

In this section an overnew of the standard logit model and the estimation of the 

unknown parameters was given. This logit model can be regarded as a level-1 model 

with n == s x ( c-1) units and can be ,,Titten in the form 

where Xm == X (cf. (7.2.20)) and the random parameter design matrix on level-1 is X(JJ, 

which is equal to D ( cf. (7.2.22) ). In the following sections this logit model will be 

extended to allow for hierarchically structured data. 
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7.3 LEVEL-2 LOGIT MODELS 

In this section an overview 1s given of level-2 logit models (Prosser, Rasbash & 

Goldstein, 1991 and du Toit, 1993). 

Suppose that there are N level-2 units and that for the i-th level-2 unit si subpopulations 

are formed by the categories of p predictor variables. Suppose further that the response 

variable under consideration has c categories and that the variation in frequency of 

responses can be adequately described by a logit model. The contingency table for the i­

th level-2 unit is as follows: 

Subpopulation no Response category Total 

1 2 ... C 

1 h1,1 li1,2 ... fil,c ft1. 

2 h2,1 fi2,2 ... h2,c /;2. 

. . . 

. . . 

. . . 
s lisi,1 lisi,2 ... fisi,c hsi. 

For each subpopulation j , j = 1, 2, ... , si , the probability 1rijk of the k-th response 

being selected is estimated by Pijk = ';,:' . These estimates are used to obtain the 
tJ. 

elements of the response vector Yi, i = 1, 2 , ... , N, where 

Yi1 

Y·= I Yii (7.3.1) 

Yisi 
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Note that the number of subpopulations. si , may vary from one level-2 unit to another. 

In this case, si varies between 1 and 6. The dimension of Yi is ( c - 1) si and may thus 

vary from 2 to 12 for this particular example. The model for the i-th level-2 model is 

given by 

(7.3.3) 

where ( cf. (7.2.22)) 

1 0 0 ~.t:- lc-1 
t1. 

0 1 
..JZ;.Ic-1 

Di= 
,2. (7.3.4) 

0 

0 0 1 
~Ic.1 

fisi. 

Suppose that the first element of the coefficient vector bi denotes the intercept, while 

the remaining k- 1 coefficients are subpopulation effects. Random variation over the 

level-2 units may be allowed for by defining bi , for example, as 

i = 1, 2, ... , N. (7.3.5) 

In general, bi = /3 + ui , and it is assumed that u 1 , u2 , ... , uN are identically and 

independently distributed with mean O and variance ~ (2). 
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The model given by (7.3.3) can then be rewritten as 

(7.3.6) 

where (cf. (7.3.4)) 

(7.3. 7) 

and Xr2Ji : ( c - 1) six 1 is a vector with all elements equal to 1, that is, 

(7.3.8) 

Under the assumption that E(ei) = 0 and Cov(ei, eD = ~(1), it follows that 

(7.3.9) 

(7.3.10) 

where (cf. (7.2.15) to (7.2.18)) 

~ (1)11 0 0 

0 ~ 

~(1)= 
(lJ22 

(7.3.11) 
0 

0. 0 ~(l)s-a. 
l l 

and ~ (l )ii , j = 1, 2, ... , si are positive definite matrices of order ( c - 1). 

Example 7 .3.2 

Suppose the survey regarding public transportation mentioned in Example 7.2.1 is 

extended to include 15 other cities. A schematic representation of the data is given by 
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Level-2: 

Level-I: 

City 1 

(Tokyo) 

~I 

City i 

( Johannesburg) 

I 

Yi1,1 Yi2,1 Yis,1 Yi4,1 

I I I I 
(M,LC) (M, S) (F,LC) (F,S) 

City 16 

(N"ew York) 

~I 
Y16 1 1 • • · • Y 16 s 1 ' 16' 

where (M, I_ C), for example, indicates the response of male inner-city respondents. For 

the i-th level-2 unit, that is Johannesburg, it follows from Example 7.2.1 that 

( cf. (7.3.3) and (7.3.6)) 

with 

Yi= 

1 1 1 1 

1 1 1-1 
Xr2Ji = 1 Xmi = 

1 -1 1 

1 1 -1-1 

1 0 0 0 w 
0 1 0 0 

x(1Ji= w 
0 0 1 0 ffl 

0 0 0 1 

'189 
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and 

/3 INTERCEPT 

{j = f3GENDER 

j3AREA 
□ 

In this section the logit model was generalized to accommodate random variation across 

level-2 units. In the next section this theory will be extended to allow for random 

variation on a third level of the hierarchy. 

7.4 LEVEL-3 LOGIT MODELS 

7.4.1 INTRODUCTION 

If there exists a third leYel to the hierarchy m the data to be modelled, the model 

discussed in Section 7.3 can be extended. 

Suppose s subpopulations are formed from the set of predictors available. For example, 

given the predictors GENDER (2 categories), MARITAL_STATUS (5 categories) and 

INC0~1E ( 4 categories) it is possible to form 40 subpopulations. Let subpopulation ijk 

refer to the k-th subpopulation from the j-th level-2 unit, j = 1, 2, ... , ni and i-th 

level-3 unit, i = 1, 2, ... , N. An example of such a subpopulation is married males in 

the middle income group from district j (level-2) in province i (level-3). 

In the case of a level-3 hierarchy the contingency table for the j-th level-2 unit from the 

i-th level-3 unit is given by 
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Subpopulation Response category Total 

1 2 C 

1 fijl,1 hj1,2 fijl,c hj1. 

2 hj2,1 fij2,2 hj2,c hj2. 

S· fijsj, J hjsi,2 .. his-,c fijsi" J 
J 

The cell frequencies for the response categories for the k-th subpopulation of the j-th 

level-2 and i-th level-3 unit are denoted by hik,J , hjk, 2 , •••• , fijk,c . The row total fijk. is 

the sample size for the subpopulation. 

For each level-3 unit a number of tables such as the one given above may be 

constructed. The number of tables constructed for a given level-3 unit will be equal to 

the number of level-2 units contained within that specific level-3 unit. 

The vector of responses for the j-th level-2 unit from the i-th level-3 unit is given by 

Yii = 

l fijJ ,c-1 n--
fijJ,c 

(7.4.1) 
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The model for the ij-th unit is given by ( cf. (7.3.3)) 

with 

Y .. = X--h--+ D--e•• I) I) I) t) I) 

D--= t) 

0 

0 

0 

0 

and the parameter vector bij includes the components 

(7.4.2) 

(7.4.3) 

(7.4.4) 

S(s) is a t x q ( q ~ t) matrix formed by the selection of columns from the identity matrix 

of order t. These columns correspond with the elements of bij allowed to be random on 

level-3. Likewise, Sr2J: tx mis a selection of m columns from I: tx t. 

If, for example, t = 4 and only the first and fourth coefficients are allowed to vary 

randomly on level-2, then 

1 0 

0 0 

0 0 

0 1 

The vectors vi and uij represent the coefficients of variables allowed to be random on 

level-3 and level-2 of the model respectively. The vector fJ denotes the fixed parameter 

vector. 
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Using (7.4.2) to (7.4.4), the model can be written as 

(7.4.5) 

where x(J)ij is the fixed parameter design matrix and x(J)ij = D;j . The matrices x(S)ij ' 

Xr2Jij and X(J)ii denote the random parameter design ma.trices for level-3, level-2 and 

level-1 respectively. The columns of X(s)ij and Xr2Jij are usually subsets of the columns 

of X(J)ii , that is 

(7.4.6) 

and 

(7.4. 7) 

v 1 , v 2 , .•• are assumed to be i.i.d. with mean O and covariance matrix ~(s) while u 11 , 

u 12 , ... are assumed to be i.i.d with mean O and covariance matrix ~(2). The eijk's are 

similarly assumed to be i.i.d with mean O and covariance matrix ~(JJ, where ~(1) is 

defined by (7.3.11 ). It is further assumed that the vectors of random coefficients vi , U;j 

and eijk are uncorrelated. 

Under the distributional assumptions given above, it follows that 

(7.4.8) 

and 
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0 0 

0 

0 

0 0 

Example 7.4.1 

A suryey was undertaken in a large company. Data was collected on employees' 

attitudes to changes in company policy. Biographical information available included the 

gender and home language of the respondents. 

Consider the following level-3 hierarchical structure: 

Level-3: Department 1 ..... Department i. . . . . . Department N 

Level-2: 
.....----------1 _ I _____._I _ 

Div. 1 .. Div. n1 Div. 1 .. Div. j . . Div. ni Div. 1 .. Div. nN 

I 
Level-1: Subpopulation Response Total 

Yes No Don't know 

Male, English f-·1 1 IJ ' 
J,--1 2. 

IJ ' f-1 S IJ ' fijl. 

Male, Other l,··2 1 r; ' l,··2 2 r; ' l,··2 S IJ ' hj2. 

Female, English l,··s 1 IJ ' f ·s 2 IJ ' J,- ·s s IJ ' fijS. 

Female, Other fijl,,1 f ·1, 2 IJ ' fij.4,3 fijJ,. 

Suppose that there are only 2 divisions, namely clothing and sanitary ware, in the 10-th 

department. Employees' responses to a question regarding the advisability of more 

stringent safety measures in the workplace are given in the following contingency table: 
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Division Subpopulation Response Total 

Yes Xo Don't know 

1 l\fale, English 26 39 24 89 

Male, Other 39 8 21 68 

Female, English 32 24 37 93 

Female, Other 22 13 45 80 

2 Male, English 23 33 46 102 

Male, Other 22 24 15 61 

Female, English - - - -

Female, Other 44 25 8 77 

The vector of observed responses Yi for the 10-th department is then given by 

Zn 26 
24 0.0800 

Zn 39 
24 0.4855 

Zn 39 
21 0.6190 

Zn fi - 0.9651 

Zn 32 
37 - 0.1452 
24 Zn 31 - 0.4329 

Zn 22 - 0.7156 
Yi= 

45 

Zn 13 -1.2417 45 

Zn 23 
46 - 0.6931 

ln 33 
46 - 0.3321 

Zn 22 
15 0.3830 

z 24 n Ts 0.4700 

Zn 44 
8 1.7047 

Zn 25 
8 1.1394 
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The design matrix for the fixed part of the model is 

1 1 1 0 0 0 

1 1 -1 0 0 0 

1 1 1 0 0 0 

1 1 -1 0 0 0 

1 -1 1 0 0 0 

1 -1 -1 0 0 0 

1 -1 1 0 0 0 
Xrf)i= 

1 -1 -1 0 0 0 

0 0 0 1 1 1 

0 0 0 1 1 -1 

0 0 0 1 1 1 

0 0 0 1 1 -1 

0 0 0 1 -1 1 

0 0 0 1 -1 -1 

and the fixed parameter vector fJ is giYen by 

/3= 

/3 INTERCEPT, l'ES 

/3 GENDER, YES 

/3 LANGUAGE, YES 

/3 INTERCEPT,NO 

/3 GENDER,NO 

/3 LANG UA GE,NO 

If only the intercept terms are allowed to vary randomly over the level-2 units, the 

matrix Xr2Ji is given by 
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1 0 

1 0 

1 0 

1 0 

1 0 

1 0 

1 0 
Xr2Ji = 1 0 

0 1 

0 1 

0 1 

0 1 

0 1 

0 1 

where the first column corresponds to the constant term for the modelling of the log­

odds ratio 'yes/don't know', while the second column corresponds to the constant term 
of the log-odds ratio 'no/don't know'. 

The vector uii is given by 

uij, YES 

Uij,NO 
] . 

If the variable GENDER is allowed to vary across level-3 units, the vector vi and 

random parameter design matrix X(s)i are respectively given by 

[ 

vi,MALE ] 

Vi = V i,FEMALE 
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and 

1 0 

1 0 

1 0 

1 0 

-1 0 

-1 0 

-1 0 
X(S)i = □ -1 0 

0 1 

0 1 

0 1 

0 1 

0 -1 

0 -1 

In this section the level-3 logit model was considered. It may, however, be desirable to 

simultaneously analyse more than one response variable. In Section 7.5 a multivariate 

multilevel logit model will be discussed. 

7.4.2 ESTIMATION CONSIDERATIONS 

In this section it is shown that parameter estimation of a level-3 logit model is achieved 

by fitting a general level-3 model with random coefficients on level-3 and level-2 of the 

hierarchy. 

Let 

Yijk,1 

Yijk,2 
Yijk = 

Y ijk, c-1 
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denote a set of c - 1 responses from subpopulation k, k = 1, 2, ... , sj , from the j-th 

level-2 and i-th level-3 unit. 

It follows from (7.4.5) that 

Yijk,1 = X(f)ijk,1 {J + "Xrs)ijk,1 Vi+ X(2)ijk,1 uij + X(l)ijk,1 eijk 

Yijk,2 = "Xrf)ijk,2 {J + X(3)ijk,2 Vi+ X(2)ijk,2 Uij + "JC(l)ijk,2 eijk 

Yijk,c-1 = X(f)ijk,c-1 {J + X(3)ij'J:,c-1 V; + Xr2Jijk,c-J Uij + X(J)ijk,c-1 eijk · (7.4.9) 

Under the assumption of a multinomial level-1 error structure ( cf. Section 7.2) it follows 

that the elements of eijk are correlated. 

In previous chapters the assumption was made that the error vectors on level-1 of the 

hierarchy are independently and identically distributed. A multilevel analysis of logit 

models requires that 

(i) eijk , k = 1, 2, ... , sj are independently distributed and that 

(ii) Cov(eijk, eijk) = •r1Jkk (cf. (7.2.19)) 

which implies that c - 1 consecutive error terms are allowed to be correlated. 

It will now be shown that the level-3 logit model can be expressed as a model with 

random components on level-3 and level-2 of the hierarchy. 

Let x(f)ijk ' x(3)ijk ' x(2)ijk and x(l)ij'J: have typical rows (cf. (7.4.9)) x(J)ijk,1' XrsJijk,1' 

x(2)ijk,1 and x(l)ijk,1, l = 1, 2, ... ' c-1, respectively. 

From (7.4.9) it follows that 

Yijk = x(f)ijk fJ + x(3)ijk V; + x(2)ijk Uij + x(J)ijk eijk ' k = 1, 2, ... ' s. 

(7.4.10) 
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The set of regression equations given by ( 7.4.10) can be ,vritten as 

where 

and 

X ,,, -
{2)ij -

U·· tJ 

0 

0 

where s is the maximum number of subpopulations. 

Note that 

where ( cf. (7.4.3)) 

Page 7.27 

0 

0 

(7.4.11) 

 
 
 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2022 

Also note that when si < s , where s indicates the maximum number of subpopulations, 

Xr2Jii has ( c - 1) x si ro,11.rs, but the number of columns remain m + ( c -1) x s, which is 

the dimension of the random coefficient Yector u0 . 

The covariance of u& can then be written as 

ip{2) 0 0 

0 ip 

cp* C r( * *') 
(1)11 

(2) = ,o, uii' uij = 
0 

0 0 ip(l) 
ss 

Suppose that the number of random coefficients on level-2, denoted by m, is equal to 4, 

that the number of categories, denoted by c, is also equal to 4 and that the number of 

subpopulations, s, is equal to 10. 

In this case the dimension of the matrix <Pr2J is 34 x 34. Since <Pr2J is a 4 x 4 matrix and 

<P(l)u , .. , <P(l)ssare 3 x 3 matrices, the number of non-duplicated zero elements of '1!(2) is 

equal to ½(34)(35)-½(4)(5)-10(½(3)(4)) = 525. 

Since (cf. (5.2.15)), 

-[vecs <P(s)J 
T- ' 

vecs <P(2) 

it follows that in the solution of ( cf. ( 5.2.17)) 

(7.4.12) 

a large numbers of rows and corresponding columns of X*'W- 1X* and rows of X*'W- 1 y"' 

need not be calculated. This is best illustrated by means of the following example. 
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Example 7.4.2 

Consider the set of equations 

au X1 + a12 X2 + a1s Xs + a14 X4 = b1 

a21 X1 + a22 X2 + a2s Xs + a24 X4 = b2 

as1 x 1 + as2 X2 + ass Xs + as4 X4 = b s 

a41 x 1 + a4 2 x 2 + a 4s x s + a 44 x 4 = b 4 , 

or Ax= b, that is, x = A - 1 b, which is similar in form to (7.4.12). 

If x 2 and x4 are constrained to be equal to 0, elimination of rows 2 and 4 and columns 2 

and 4 from the coefficient matrix A giYes 

au x 1 + a1 s X9 = b 1 

as1 x 1 + ass Xs = b s · 

If, on the other hand, we constrain x 2 to be equal to x 9 , then 

au X1 + (a12 + a1s) X2 + a14 X4 = b1 

(a21 + as1) X1 + (a22 + a2s + as2 + ass) X2 + (a24 + as4) X4 = b2 + bs 

a41 X1 + (a42 + a4s) X2 + a44 X4 = b4 · □ 

Constraining elements of r to be zero thus involves the elimination of rows and 

corresponding columns from the weight matrix X*' w- 1 X* and rows from the 

coefficient vector X*' w- 1 y* . Constraining elements of r to be equal involves the 

addition of rows and corresponding columns of X*'W- 1 X* and the addition of rows of 

X*' w- 1 y*. 

7.5 MULTIVARIATE LEVEL-3 LOGIT MODELS 

Survey data usually consist of a mixture of biographical, geographical and response or 

attitude variables. Quite often these response variables are categorical in nature. 
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In dealing with continuous response Yariables, researchers will most likely use a 

multivariate analysis (MA.NOVA) approach to model structural relationships between 

the dependent variables and the predictors. "\Vhen the dependent variables are of a 

categorical nature, data analysts tend to resort to a one-at-a-time loglinear modelling 

approach. 

In this section an approach to the analysis of multivariate level-3 logit models 1s 

proposed. 

Let fiikl,m denote the number of respondents from the ( ijk)-th subpopulation who 

selected category m when answering question l, l = 1, 2, ... , p and m = 1, 2, ... , c. 

The table below gives the frequency counts for the i-th level-3 and the j-th level-2 unit. 

Subpopulation Response Response category Total 

variable 1 2 C 

1 1 fijll,1 fijJJ,2 Au,c hj11. 

p hjlp,1 fijlp,2 A1p,c hjlp. 

k 1 fijkl, 1 fijkl,2 A1c1,c Akt. 

l Akl,1 fijk/,2 Akl,c fijkl. 

p A1.p,l Jijkp:2 fijkp,c fijkp. 

S· 1 fijs -1 J fijs-1 2 fijs .J C fiisj1, J 
1 ' 1 ' 1 ' . . . . . . . . . . . . ... . . . . . . 

S· p h;sjp,1 fijsjp,2 his-p,c fijsjp. 1 
J 
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Let Yijk be a p ( c-1) vector defined as follows: 

Yijk = 

l hj1:1,1 n--
hjkJ,c 

l hjkJ,2 n--
hjkt,c 

Zn hi1.1 ,c-1 
h;k1 ,c 

l h;kl,1 n--
h;kl,c 

l fijkl,2 n--
hikl,c 

l hjkl,c-1 n--
fijkl,c 

Zn fijkp, c-1 

hjkp,c 

Suppose that the following model provides an adequate description of the data: 

(7.5.1) 

Yijk = x(J)ijk fJ + x(!J)ijk vi + x(2}ijk Ujj + x(J)ijk eijk ' k = l, 2, ... ' sj' 

(7.5.2) 

where si is the number of subpopulations for the ( i,j)-th unit and the columns of X(tJ)iik 

and Xr2Jiik are subsets of the columns of X(J)iik (cf. (7.4.6) and (7.4.7)). The fixed 

parameter design matrix can be written as (see Example 7.6.3) 

(7.5.3) 
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Example 7.5.1 

The data described m Example 7.4.1, concerning employees' attitudes to company 

policy, shows that the fixed-parameter design matrix for the i-th unit has columns 

containing the dummy variables for the intercept term, gender and language. Assuming 

that two questions concerning safety measures are to be analysed simultaneously, each 

with three possible outcomes, it follo-ws that the fixed-parameter design matrix will 

have pairs of dummy variables for each of the response variables. For the first response 

variable the dummy variables created are CONSl_l, CONS1_2, GENDERl_l, 

GENDER1_2, LANGl_l and LANG1_2. The construction of dummy variables for the 

second response variable will be similar to those of the first, giving 12 dummy variables 

in total. 

For the third subpopulation from the j-th division the matrix X(f)iik, k = 3, is given by 

or 

1 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 1 

1 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 1 

-1 0 0 0 

0 -1 0 0 

0 0-1 0 

0 0 0-1 

The vector of response for the ( i,j)-th unit can be written as 

Yijl 

Yij = Yijk ' 

Yiis 
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,vhere 

Yii1 

Yijk = = Zn 

Y ijc-1 

and fiik denotes the number of respondents in subpopulation ( i,j) who selected category 

k of the response variable, k = 1, 2, ... , c . 

From (7.5.4) it follows that 

where 

C·· = tJ 

and (cf. (7.4.3)) 

0 

(7.5.5) 

0 

(7.5.6) 
0 

0 
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Suppose that for a given ( i,j)-combination the number of subpopulations is sj , ,,rith 

sj < s. The s ( c - 1) x 1 vector of responses y ii then becomes a sj ( c - 1) x 1 vector through 

the omission of the rows pertaining to those subpopulations which are not present. 

Corresponding rows ( cf. Section 7.4.2) are also omitted from the design matrices X(f)ii , 

x(S)ij , x(2)ij and x(l)ij . 

It is assumed that the ( c-1) x 1 dimensional vectors eiil , eii2 , . , eiis are 

independently distributed with covariance matrices ~(l}ll , ~(1) 22 , ••• , ~(l)ss 

respectively. 

From (7.5.5) it follows that 

and 

where 

~ 
(1)11 0 0 

0 ~ 

~(1) = 
<1>22 

(7.5. 7) 
0 

0 0 ~(I)ss 

To estimate the unknown parameters, model (7.5.5) is rewritten as {cf. Section 7.4) 
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where 

and 

[U··] ut, = 'J • 
e--i1 

(7.5.8) 

From (7.5.8) it follows that 

~(2) 0 0 

0 ~ 

Cov( u'!'. u~~) = 
(1)11 

(7.5.9) tJ' fJ 

0 

0 0 ~(1) 
ss 

Suppose that the number of response variables is equal to two. For the first response 

variable the multinomial covariance structure for the level-1 error terms is of the form 

'11 11 ,kk, as given in (7.2.17). The covariance structure for the second response variable 

similarly has the form '1122 . 
'kk 

By allowing for correlation between these response variables, the following error 

structure is obtained 

where '11 12 denotes the covariances between the elements of the (c-1) x 1 error vector 
'kk 

belonging to the first response variable and the ( c - 1) x 1 error vector of the second 

response variable. From (7.5.7) it follows that i(J)kk is an estimator of Wu (cf. (7.2.17)). 
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The covanance matrix given m (7.5.9) once a.gain contains a large number of zero 

elements. In Section 7.4.2 it was shm~;n how constraints on these elements may be 

handled. 

7.6 PRACTICAL APPLICATIONS 

In this section three practical applications are given. The data set used for these 

examples is the TPA survey described in Section 5.4. The focus in the following 

examples is on employees' perceptions regarding the existence of discrimination against 

individuals in the TP A. The questions dealing with the issue of discrimination on the 

basis of gender and race are used as response variables in the examples that follow. 

There are five possible outcomes in both cases. A score of '1' indicated strong 

disagreement, '2' disagreement, '3' do not know, '4' agreement and '5' strong agreement 

with a particular statement. 

Example 7.6.1 

The first example is a level-3 model with the perception of discrimination on the basis 

of gender as response variable. The five possible outcomes for this question were recoded 

to the following two categories: negative responses (scores 1 and 2) and positive or 

uncertain responses (scores 3 to 5). 

The level-3 units are the 37 branches in the Health Services unit of the TP A. Within 

each level-3 unit, two occupational groups are formed, that is medical personnel and 

other personnel. These occupational groups are the level-2 units. There are, therefore, a 

maximum of two level-2 units within each level-3 unit. 

\Vithin each level-2 unit, a maximum of six subpopulations are formed according to the 

gender and education level of employees, as shown below for the ( i,j)-th unit : 
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Gender Educational level N um her of responses Total 

Negative Don't know/yes 

Male Lower than Std 10 h;1,1 h;1,2 hj1. 

Male Std 10 plus 1-2 years tertiary education hj2, 1 hj2,2 fij2. 

l\fale Std 10 plus 3 years or more of tertiary fij3,1 hjs,2 hjs. 

education 

Female Lower than Std 10 hj4,1 hj4,2 fij4. 

Female Std 10 plus 1-2 years tertiary education h;s,1 hjs,2 As. 

Female Std 10 plus 3 years or more of tertiary h;6,1 hj6,2 hj6. 

education 

The frequencies h;k,J and fijk, 2 denote the number of negative and don't know /positive 

responses respectively. The frequency fijk. is the total number of responses for the k-th 

subpopulation from the ( i,j)-th unit. 

The vector of responses for the ( i,j)-th unit is formed by using the second category as 

reference category and is given by 

Yii = 

l 
fijl,1 

n-­
f·1 2 tJ ' 

l !ij2, 1 n--
i-·22 tJ ' 

l 
fij6,1 

n--
f "6 2 tJ ' 

The model thus obtained is a level-3 logit model where each ( i,j) combination has a 

maximum of six values of the form Yijk = Zn ~ijk,I • To avoid the occurrence of undefined 
Jijk,2 

Yijk-values, a value of 0.25 is added to each observed frequency (Fienberg, 1980). 
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The gender of an employee ( Yariable GENDER) and the level of education ( variables 

QUALl and QUAL2) are used as predictors in this model. The predictor GENDER is 

coded ~1' for males and '-1' for females. In the case of educational level, the variables 

QUALl and QUAL2 are constructed as shown below: 

Level of education Value of QUALl Value of QUAL2 

Lower than Std 10. 1 0 

Std 10 plus 1 to 2 years of tertiary 0 1 
education. 

Std 10 plus 3 years or more of -1 -1 
tertiary education. 

The level-3 model can then be written as (cf. (7.4.5)) 

where X(f)ij denotes the fixed parameter design matrix for the ( i,j)-th unit and consists 

of columns representing a constant term (CONS) and the variables GEXDER, QUALl 

and QUAL2. If all subpopulations are present within the ( ij)-th unit, then 

1 1 1 0 

1 1 0 1 
1 1 -1 -1 

x(f)ij = 
1 -1 1 0 

1 -1 0 1 

1 -1 -1 -1 

From (7.4.6) it follows that 
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In the model fitted, the constant term CO~S and GENDER are a1lmYed to vary 

randomly across level-3 of the model. Thus X(s)ij contains the follo,ving subset of 

columns of XrJJij : 

1 1 

1 1 

1 1 
XrsJij = 1 -1 

1 -1 

1 -1 

The variables QUALl and QUAL2 are allowed to vary randomly over the level-2 of the 

hierarchy. The matrix Xr2)ii , ,~thich is the random-parameter design matrix on level-2 , 

contains a subset of the columns of X(f)ii (cf. (7.4.7)) 

1 0 

0 1 

-1 -1 
Xr2Jij = 1 0 

0 1 

-1 -1 

Since c = 2, it follows from (7.2.22) that the matrix X(I)ij can be written as 

1 0 0 0- 0 0 
~f-•1 tJ • 

0 1 0 0 0 0 
~ . 

0 0 1 0 0 0 
~f-•s 

Xr1Jij = t) • 

1 0 0 0 
~f-•4 

0 0 
tJ • 

0 0 0 0 1 0 
~f-•s tJ • 

0 0 0 0 0 1 

~ . 
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The columns of X(lJij are denoted by the variables \VEIGHTl, \VEIGHT2 to \VEIGHT6 

respectively. 

Using the following constraints on elements of the covariance matrix <P(l) of the level-I 

coefficients, namely 

q> 
(1)11 0 0 0 0 0 

0 q> 
( 1J22 

0 0 0 0 

0 0 q> 0 0 0 
cp(l) = 

(1)33 

0 0 0 q> 0 0 
(1)44 

0 0 0 0 q> 
(1)55 0 

0 0 0 0 0 q> 
(l)66 

it follows that the level-1 error structure X(l} cp(JJ X(l)ii is equivalent to the covariance 

structure of a logit model under the multinomial assumption as given by (7.2.15), with 

<I>(l)kk an estimate of (cf. (7.2.17)) Wu, k ~ 1, 2, ... , 6. 

The vector of fixed parameters, /3, can be written as 

/3 = 

/3coNSTANT 

f3GENDER 

f3QUAL1 

f3QUAL2 

while the vector of random coefficients for level-3 of the hierarchy is given by 

[ 

vi,CONS ] 

vi= vi,GENDER . 
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Finally, uij can be ,,·ritten as 

.. = [Uij,QUALI] Uy . 

U;j,QUAL2 

No allowance is made for association between the coefficients of the variables CONS and 

GENDER on level-3 of the model. 

The following computer output is obtained: 

( i) Fixed part of the model: 

PARAMETER p STD.ERR Z-VALUE PR>IZI 

GENDER -0.1962 0.0536 -3.6604 0.0002 

QUALl -0.0871 0.0789 -1.1039 0.2696 

QUAL2 -0.1802 0.0794 -2.2695 0.0232 

CONS 0.8483 0.0576 14.7274 0.0000 

(ii) Random part of the model: 

Level-3: 

PARAMETER f- STD.ERR Z-VALUE PR>IZI 

GENDER/GENDER 0.0746 0.0312 2.3910 0.0168 

CONS/CONS 0.0805 0.0354 2.2740 0.0229 

Level-2: 

QUALl/QUALl 0.3759 0.0996 3.7742 0.0002 

QUAL2/QUAL1 -0.2898 0.0814 -3.5602 0.0004 

QUAL2/QUAL2 0.3409 0.1021 3.3389 0.0008 

Level-1: 

\\TEJGHTl/WEIGHTl 4.755 1.012 4.699 0.0000 

WEIGHT2/WEIGHT2 4.631 0.951 4.870 0.0000 

WEIGHT3/WEIGHT3 5.496 1.015 5.415 0.0000 
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VVE1GHT4/WEIGHT4 6.190 

WE1GHT5/WE1GHT5 6.311 

VVE1GHT6/WEIGHT6 9.934 

1.171 

1.128 

1.657 

5.286 

5.595 

5.995 

0.0000 

0.0000 

0.0000 

From Part (i) of the output it follows that the estimate of the intercept is 0.8483. This 

estimate may be interpreted as the expected value of the response variable y, assuming 

no gender or qualification effect. The coefficient of - 0.1962 for GENDER indicates a 

total gender effect of 0.3924. A negative effect of - 0.1962 is obtained for male 

employees and a positive effect of 0.1962 is obtained for female employees. This 

indicates a slightly higher value of the response variable for females. 

The expected value of the response variable for different levels of education, given that 

there is no gender effect, can be written as 

ln ~;;k,i = 0.8483 - 0.0871 QUALl - 0.1802 QUAL2 
f..k 2 

t) ' 

(k = 1, 2, 3, 4) . 

Similarly, the expected value of the response variable for an employee with an 

education level lower than Std 10 is then obtained as 

ln ~ijk,J = 0.8483 - 0.0871 = 0. 7612 . 
f..k 2 

l) ' 

Since 

f .. k 1 f .. k 1 _t_) _, l), 

lijk,2 hjk. - lijk,1 

it follows that 

= 0.6816 hjk. 
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and 

7ijk,2 = 0.3184 hjk . . 

It also follov1·s from the above that, in the case of employees with the lm'rest level of 

education, 68 % of the responses are expected to occur in the first category, that is 

negative response with respect to the presence of gender discrimination in the 

workplace. 

All the estimates of the fixed coefficients, ,vith the exception of the coefficient for 

QUALl, are significant at a 5 % level of significance. 

From Part (ii) of the output it can be seen that the estimates of the 

variances/ covariances are significant at a 5 % level of significance. It thus follows that 

the coefficients of GENDER and of CO~S vary significantly over the branches, that is 

the level-3 units. The same conclusion is reached with regard to the variables QUALl 

and QUAL2 on level-2. It can be concluded that the estimated responses obtained 

through fitting of this model ,,·ill be more accurate than those obtained by using an 

aggregated logit model. Furthermore, by allowing for random variation over the 

different levels of the hierarchy, more accurate standard errors of the logit model 

parameters (the elements of fl) are obtained. Values of standard errors and p-values are 

derived under the assumption that P is approximately normally distributed for large 

samples. 

Example 7.6.2 

In this example a level-3 model with the perception of racial discrimination as response 

variable, is considered. The five possible outcomes for this question were recoded to 

three categories. The first recoded category consists of negative outcomes 

(scores 1 and 2), the second category contains the 'don't know' responses and the third 

category includes the positive responses (scores 4 and 5). 

The level-3 units and level-2 units are the 37 branches in the Health Services unit and 

the two occupational groups, as given in Example 7.6.1, respectively. 
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\Vithin each level-2 unit, a maximum of six subpopulations are formed according to the 

gender and age of employees, as shown below for the ( i,j)-th unit. 

Gender Age Number of responses Total 

Negative Don't know Yes 

Male 18 to 29 years A1,1 fijl,2 hj1,s hj1. 

Male 30 to 49 years fij2,1 fij2,2 fij2,3 hj2. 
Male 50 years and older fijS,1 hjs,2 hjs,s hjs. 
Female 18 to 29 years A1,,1 hj4,2 fijl,,3 A4. 
Female 30 to 49 years hjs,1 hjs,2 hjs,s hjs. 
Female 50 years and older A6,1 fij6,2 hj6,s fij6. 

The frequencies fijk,J , fijk, 2 and fijk,s denote the number of negative, don't know and 

positive responses respectively while fijk. is the total number of responses for the k-th 

subpopulation, k = 1, 2, ... , 6. 

The vector of responses is formed by using the third category, that is the number of 

positive responses, as reference category. For each subpopulation, two elements of the 

vector of responses are formed as follows: 

Yii = 

l 
fijl,1 n-­
f-·1 0 tJ ,v 

l 
fijl,2 n--
fij1,s 

l fij6,1 n-­J,- "6 o· tJ ,v 

l fij6,2 n-­
J,--6 0 tJ ,v 
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The model obtained is a level-3 logit model where each ( i~j)-combination has a 
f .. k I 

maximum of 12 values of the form Yijk = ln fi;' , l = 1, 2. A value of 0.25 was added to 
ijk,3 

each frequency in order to avoid the occurrence of undefined Yijk-values (Fienberg, 

1980). 

The gender of employees is used as one of the predictors in this model. Two dummy 

variables, GENDERl and GENDER2 are created, with values as given in the following 

table: 

Gender Response variable Value of GENDER! Value of GENDER2 

Male l fijk,1 n--
fijk,3 

1 0 

Male l fijk,2 n--
fijk,3 

0 1 

Female l fijk,1 n--
fijk,3 

-1 0 

Female ln hjk,2 

Jijk,3 
0 -1 

Two dummy variables for the intercept term are also created, denoted by CONSl and 

CONS2, where CONSl assumes a value of 1 when the response variable is of the form 

Yijk = ln ~~~k,J and O otherwise. The variable CONS2 assumes a value of 1 when the 
i;k,3 J,--k 2 

response variable is of the form y ijk = Zn J,~~ ' and O otherwise. 
i;k,3 

An additional four dummy variables are also formed, indicating the age group to which 

an employee belongs within a particular gender group. Coding for the variables 

AGEl_l , AGE1_2, AGE2_1 and AGE2_2 is as shown below for the (i,j)-th unit for 

the male subpopulations. The variables AGEl_l and AGE1_2 are the dummy 

variables for the first response category while the dummy variables for the second 

response category are AGE2_1 and AGE2_2. The coding of these variables for the 

female subpopulations are similar. 
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Gender Age Response variable AGEl_l AGE1_2 AGE2_1 AGE2_2 

Male 20-29 years l hi1, 1 1 0 0 0 n--
f-"J 3 !J ' 

z fii1 ,2 0 0 1 0 n--
f-·1 3 

!J ' 

Male 30-49 years l fii2,1 0 1 0 0 n--
f-·2 3 !J ' 

l fii2,2 0 0 0 1 n--
J,.·2 3 !J ' 

Male 50 + years l fii3,1 -1 -1 0 0 n--
f-·3 3 tJ ' 

[ fijS,2 0 0 -1 -1 n--
f-·s s lJ ' 

The level-3 model can then be ,,·ritten as (cf. (7.4.5)) 

where X(f)ii denotes the fixed parameter design matrix and the matrices Xrs)ii , Xr2Jii 

and X(J)ij are the random-parameter design matrices on level-3, level-2 and level-1 of the 

hierarchy respectively. The matrix Xrf)ii contains eight columns representing the 

variables CONSl, CONS2, GENDERl, GENDER2 and AGEl_l to AGE2_2. If it is 

assumed that all the subpopulations are present within the ( i,j)-th unit, X(f)ij 1s given 

by 
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1 0 1 0 1 0 0 0 

0 1 0 1 0 0 1 0 

1 0 1 0 0 1 0 0 

0 1 0 1 0 0 0 1 

1 0 1 0 -1 -1 0 0 

0 1 0 1 0 0 -1 -1 
x(f)ij = 

1 0 -1 0 1 0 0 0 

0 1 0 -1 0 0 1 0 

1 0 -1 0 0 1 0 0 

0 1 0 -1 0 0 0 1 

1 0 -1 0 -1 -1 0 0 

0 1 0 -1 0 0 -1 -1 

In this model the intercept terms, denoted by CONS! and CONS2, are allowed to vary 

randomly on level-3. From (7.4.6) it follows that 

1 0 

0 1 

1 0 1 0 

0 1 0 1 

0 0 1 0 

0 0 0 1 
SrsJ = and XrsJij = 0 0 1 0 

0 0 0 1 

0 0 1 0 

0 0 0 1 

1 0 

0 1 

The variables CONS!, CONS2, GE!\DERl and GENDER2 are allowed to vary 

randomly across level-2 of the model. From (7.4. 7) it follows that the selection matrix 

Sr2J and random parameter design matrix Xr2Jij are given by 
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1 0 1 0 

0 1 0 1 

1 0 0 0 1 0 1 0 

0 1 0 0 0 1 0 1 

0 0 1 0 1 0 1 0 

0 0 0 1 0 1 0 1 
Sr2J = and Xr2Jij = 0 0 0 0 1 0 -1 0 

0 0 0 0 0 1 0 -1 

0 0 0 0 1 0 -1 0 

0 0 0 0 0 1 0 -1 

1 0 -1 0 

0 1 0 -1 

Since the number of response categories is three, it follows from (7.2.22) that the matrix 

X(l)ii can be vvTitten as the symmetric matrix 

- 1-12 0 0 0 0 0 
~fijl. 

0 - 1-12 0 0 0 0 
¥ij2. 

0 0 - 1-12 0 0 0 
¥ij3. 

0 0 0 - 1-12 0 0 
~fij4. 

0 0 0 0 - 1-~ 0 
~fij5. 

0 0 0 0 0 - 1-12 
~lij6. 

Each column of X(l)ij is denoted by VvT _K_M, where k denotes the subpopulation and 

m the response category, k = 1, 2, ... , 6 and m = 1, 2. Thus, 12 WT variables are 

formed. From (7.2.21) and (7.2.17) it follows that the following constraints may be 

imposed on the level-1 covariance matrix «)(1): 
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~ 
(1}11 0 0 0 0 0 

0 ~ 
(lJ22 0 0 0 0 

0 0 cp 0 0 0 
«p(l) = 

(1)33 
(7.6.1) 

0 0 0 cp 0 0 
(1)44 

0 0 0 0 cp 
(1)55 

0 

0 0 0 0 0 cp 
(lhe 

where, for example, 

(7.6.2) 

From the above it follows that the leYel-1 error structure X(J)ii «p(J) XriJii is equivalent 

to the covariance structure of a logistic model with three response categories under the 

multinomial assumption as given by (7.2.15), with 4->(l}kk an estimate of Wkk, 

k =1, 2, ... , 6, as given by (7.2.17). 

The vector of fixed parameters, p, is giYen by 

P= 

/3c0Ns1 

/3c0Ns2 

f3aENDER1 

f3GENDER2 

/3 AGEL 1 

/3 AGEL2 

/3 AGE2_ 1 

/3 AGE2_2 
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The Yector of random coefficients for lewl-3 of the model is 

-[ vi,CONS1 ] V·-t 

vi,CONS2 

while the vector of random coefficients on level-2 of the hierarchy can be written as 

U··= t) 

Uij,CONS1 

uij,CONS2 

Uij, GENDER1 

Uij, GENDER2 

No allowance is made for association between the coefficients of the variables CONSl 

. and CONS2 on level-3 of the model. On level-2 of the model, no allowance is made for 

association between the coefficients of CONSl and CONS2, GENDERl and GENDER2, 

GENDERl and CONS2, and GENDER2 and CONSl. 

For this model the following computer output is obtained: 

( i) Fixed part of the model: 

PARAMETER p STD.ERR Z-VALUE PR>IZI 

CONSl -0.6901 0.0678 -10.1744 0.0000 

CONS2 -1.5864 0.0507 -31.2909 0.0000 

GENDER! 0.1467 0.0545 2.6927 0.0071 

GENDER2 0.2256 0.0506 4.4626 0.0000 

AGEl_l 0.0704 0.0590 1.1935 0.2327 

AGE1_2 0.1372 0.0587 2.3359 0.0195 

AGE2_1 0.1402 0.0511 2.7401 0.0061 

AGE2_2 -0.1053 0.0528 -1.9928 0.0463 
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(ii) Random part of the model: 

Level-3: 

PARAMETER f STD.ERR Z-VALUE PR>IZI 
CONSl/CONSl 0.1529 0.0727 2.1035 0.0354 

CONS2/CONS2 0.0037 0.0307 0.1199 0.9045 

Level-2: 

CONSl/CONSl 0.1754 0.0719 2.4399 0.0147 

CONS2/CONS2 0.0666 0.0441 1.5108 0.1308 

GENDERl/CONSl -0.0344 0.0364 -0.9455 0.3444 

GENDERl/GENDERl 0.1000 0.0395 2.5273 0.0115 

GENDER2/CONS2 0.0411 0.0252 1.6352 0.1020 

GENDER2/GENDER2 0.0768 0.0336 2.2889 0.0221 

Level-1: 

WT_l_l/WT_l_l 6.9265 1.2184 5.6850 0.0000 

WT_Ll/WT_l_2 3.7459 0.8848 4.2337 0.0000 

WT_l_2/WT_l_2 5.7470 1.0063 5.7109 0.0000 

WT_2_1/WT_2_1 7.8782 1.2282 6.4142 0.0000 

WT _2_ 1/WT _2_2 4.0118 0.8424 4.7623 0.0000 

WT _2_2/WT _2_2 6.0423 0.9489 6.3673 0.0000 

WT_3_1/WT_3_1 6.3786 1.1059 5. 7678 0.0000 

WT _3_ 1/WT _3_2 3.5482 0.7i71 4.5659 0.0000 

WT _3_2/WT _3_2 4.6148 0.8098 5.6990 0.0000 

WT_4_1/WT_4_1 6.6944 1.0035· 6.6712 0.0000 

WT_4_1/WT_4_2 3.4392 0.7910 4.3482 0.0000 

WT_4_2/WT_4_2 7.8660 1.0743 7.3217 0.0000 

WT _5_1/WT _5_1 8.6822 1.4113 6.1519 0.0000 

WT _5_ 1/WT _5_2 3.1477 1.1323 2.7799 0.0054 

WT _5_2/WT _5_2 13.4097 1.7892 7.4949 0.0000 

WT_6_1/WT_6_1 5.4754 0.8167 6.7038 0.0000 

WT_6_1/WT_6_2 2.5519 0.6155 4.1458 0.0000 

WT _6_2/WT _6_2 5.9221 0.8122 7.2918 0.0000 
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From Part ( i) of the output it can be seen, for example, that the coefficients for 

GENDERl and GENDER2 are 0.1467 and 0.2256 respectfrely. The estimated values of 

the response variable can be written as 

and 

Zn ?iik,i = - 0.6901 + 0.1467 GE~DERl + 0.0704 AGEl_l + 
f .. k S 
')' 0.1372 AGE1_2 (k = 1, 2, ... , 6) 

l fijk,2 _ 
n -----

J .. k o !J ,.J 

- 1.5864 + 0.2256 GENDER2 + 0.1402 AGE2_1 

- 0.1053 AGE2_2 (k = 1, 2, ... , 6) . 

The estimated values of the response variable for the (Female; 30 to 49 years) 

combination can then be obtained as 

and 

so that 

ln ~ii
5

,
1 = - 0.6901 - 0.1467 + 0.1372 = - 0.6996 

J .. 5 0 fJ ,.J 

ln ~ii5
,
2 = - 1.5864 - 0.2256 - 0.1053 = - 1.9173 , 

f ··5"' t) ,.J 

...... ...... - 0 6996 .-
f.-5 1 = f.- 5 o e · = 0.4968 f.- 5 .,, 

!J ' !J ',J !J ,.J 

,_ ,_ - 1.9173 '"'° --. r 

jij5,2 = fij5,S e = 0.14 IO rj5,S · 

From the fact that 

(7.6.3) 

(7.6.4) 

it follows that the following solution to equations (7.6.3) and (7.6.4) is obtained: 

rj5,1 = o.3022 fij 5• , 
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Jij5,2 = 0.0894 fij5. 

and 

rj5,S = 0.6083 fijS. · 

It follows that over 61 % of the respondents in the (Female; 30 to 49 years of age) 

subpopulation are expected to indicate the presence of racial discrimination in their 

work environment, while only 30 % of the respondents are likely to indicate the absence 

of such discrimination in their work enYironment. Estimated response variable values 

for the other subpopulations may be obtained in a similar way. 

From the random part of the model it follows that the coefficient of CONSl on level-3 

of the hierarchy varies significantly oYer the level-3 units. On level-2 of the model the 

coefficients of CONSl/CONSl, GENDERl/GENDERl and GENDER2/GENDER2 are 

significant at a 5 % level of significance. 

All variances and covariances on level-1 of the model are highly significant. The largest 

coefficient on level-1 is obtained for \VT _5_2/WT _5_2. Note that the coefficients 

\VT _l_l/\VT _l_l, \VT _l_l/\VT _1_2 and WT _1_2/\VT _1_2 denote the 

components of the matrix ()(1)
11

• Coefficients for the covariance matrices i)(J)kk are also 

given in the computer output. 

Example 7.6.3 

A multivariate level-3 logit model is considered in this example. Two response variables 

are used, namely the perception of racial and gender discrimination, which are denoted 

by QUESTIONl and QUESTION2 respectively. The recoding of the five possible 

outcomes to these two questions and the level-3 and level-2 units used for this analysis 

are as described in Example 7.6.2. 

\Vithin each level-2 unit, a maximum of six subpopulations are formed as defined in the 

previous example. A frequency table for the ( i,j)-th unit is given below. 
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Gender Age Question Negative Don't know Yes Total 

Male 18 to 29 years Question I hju, 1 fijlJ,2 fijlJ,3 hj11. 

Question2 fij12,1 fijl 2,2 fij12,3 fijl 2. 

Male 30 to 49 years Question I hj21,1 hj21,2 h;21,3 hj21. 

Question2 fij22,1 fij22,2 fij22,S hj22. 

Male 50 years and older Question I hjs1,1 hjs1,2 hjs1,s fij31. 

Question2 h;s2,1 fij32,2 fij32,3 fij32. 

Female 18 to 29 years Question I fij,41, 1 hj41,2 fij,41,3 fij,41. 

Question2 fij42,1 fij,42,2 hj42,s fij42. 

Female 30 to 4 9 years Question I fij51, 1 fij51,2 fij51,3 hj51. 

Question2 hjs2, 1 fij52,2 hjs2,s fij52. 

Female 50 years and older Question I h;61,1 fij61,2 fij61,3 fij61. 

Question2 h;62,1 fij62,2 fij62,3 fij62. 

The frequencies fijkl,J , fijkJ, 2 and fijkJ,s , for example, are the number of negative, don't 

know and positive responses of the k-th subpopulation from the ( i,j)-th unit to 

QUESTIONl. The third response category, that is the number of positive responses, is 

used as reference category. The vector of responses for the k-th subpopulation from the 

( i,j)-th unit is given by 

Yijk = 

l hjkl,1 n--
fijk1,s 

l hjkl,2 n--
fijk1,s 

l hjk2,1 n--
fijk2,s 

l fijk2,2 n--
hjk2,s 

, k = 1, 2, ... , 6. 
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The Yector of responses for the ( ij)-th unit is then given by 

Yii = 

Yijl 

Yij2 

YijS 

Yii4 

Yii5 

Y,j6 

which has a maximum of 24 elements if all six subpopulations are present for the ( i,j)-th 

unit. In this example a value of 0.25 (Fienberg, 1980) is added to each observed 

frequency in order to avoid the occurrence of undefined y,jk/-values. 

For each response variable, two dummy variables for gender are created as described in 

Example 7.6.2. The dummy variables for the first response variable (QUESTIONl) are 

GENDERl_l and GENDER1_2, while the dummy variables GENDER2_1 and 

GENDER2_2 are used to indicate gender for the second response variable, that is 

QUESTION2. The values of these four variables for the fourth subpopulation (Females; 

18 to 29 years) are given below as an illustration. 

Question Response GEN.l_l GEN.1_2 GEN.2_1 GEN.2_2 

QUESTION! [ hj41,1 n--
hj41,s 

-1 0 0 0 

QUESTION! 
z fij41,2 n--

fijl,1,S 
0 -1 0 0 

QUESTION2 z h;42,1 n--
hj1,2,s 

0 0 -1 0 

QUESTION2 z hj42,2 n--
hj42,s 

0 0 0 -1 
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The intercept term is giYen by the variables Cl_l, Cl_2 (for QUESTION!) and C2_1 

and C2_2 (for QUESTION2). The coding of these variables and of the dummy 

variables denoting age for QUESTIO~l, given by AGEl_Ql_l, AGEl_Ql_2, 

AGEl_Q2_1, AGEl_Q2_2 a.re as described in Example 7.6.2. There are t\vo dummy 

variables for age for ea.ch response of the form Zn f/' 1
'm , m = 1, 2. Similarly, four 

JijkJ ,3 
dummy variables are created for QUESTION2. 

The level-3 model can be ·written as (cf. (7.4.11)) 

where X(f)ii is the fixed parameter design matrix which contains 16 columns 

representing the variables Cl_l to C2_2, GENDERl_l to GENDER2_2 and 

AGEl_Ql_l to AGE2_Q2_2. Assuming that all six subpopulations are present in the 

( i,j)-th unit, X(f)ii is given by 

1 1 1 0 

1 1 0 1 

1 1 -1 -1 
x(f)ij = 

1 -1 1 0 
® 14. 

1 -1 0 1 

1 -1 -1 -1 

The intercept term, denoted by Cl_l, Cl_2, C2_2 and C2_2, 1s allowed to vary 

randomly on level-3 of the model, so that 
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and therefore 

1 

1 

1 
X(S)ij = 

1 
014 . 

1 

1 

If the intercept term and gender are allowed to vary randomly across level-2 of the 

model, the random parameter design matrix Xr2Jii is given by 

1 1 

1 1 

1 1 
Xr2Jij = 1 -1 

014 

1 -1 

1 -1 

while the random parameter design matrix X(J)iik is given by 

X(J)ijk = 

_l_l2 
~fijkJ. 

0 

0 

where 12 is an identity matrix of order c - 1 = 2. Each column of X(1Jii is denoted by 

\VT _K_LM, where k denotes the subpopulation, l the response variable and m the 

response category, k = 1, 2, ... , 6; l = 1, 2 and m = 1, 2. The matrix X(2Jij ( cf. 

(7.4.11)) is formed from Xr2Jii and X(JJii where 
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X-·1 !J 0 0 

0 X··2 !J 

x(JJij = (7.5.9) 
0 

0 0 xijs 

Constraints, as given by (7.6.1) and (7.6.2) are imposed on the elements of the level-1 

covariance matrix 4) (1) • In order to illustrate the flexibility of the computer program, 

these additional equality constraints are imposed 

The vector of fixed parameters, /3, is given by 

/3cL1 

/3cL2 

/3 C2_ 1 

f3c2_2 

f3GENDERL1 

/3 GENDER!_ 2 

/3 GENDER2_ 1 

P= /3 GENDER2_ 2 

f3AGELQL1 

f3AGELQL2 

/3 AGEL Q2_ 1 

/3 A GEL Q2_ 2 

/3 A GE2_ QL 1 

/3 AGE2_ QL2 

/3 A GE2_ Q2_ 1 

/3 A GE2_ Q2_ 2 
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while the vector of random coefficients on level-3 of the model can be written as 

V·= t 

vi,CL 1 

vi,CL2 

vi,C2_ 1 

Vi,C2_2 

The vector of random parameters on level-2 of the hierarchy is given by 

U··= tJ 

uij,CLJ 

Uij,CL2 

u,j,C2_ 1 

Uij,C2_2 

uij, GENDER!_ 1 

Uij, GENDER!_ 2 

Uij, GENDER2_ 1 

Uij, GENDER2_ 2 

No allowance is made for association between the coefficients of the variables Cl_l, 

Cl_2, C2_1 and C2_2. Allowance is made, however, for association between the 

coefficients of Cl_l and GENDERl_l, Cl_2 and GENDER1_2, C2_1 and 

GENDER2_1 and C2_2 and GENDER2_2 on level-2 of the hierarchy. 

The following computer output is obtained· when fitting the model described above to 

the data: 

(i) Fixed part of the model: 

PARAMETER 

Cl_l 

Cl_2 

C2_1 

p 
-0.8081 

-1.9958 

-1.8213 

STD. ERR. Z-VALUE 

0.0862 

0.0719 

0.0858 

-9.3759 

-27.7434 

-21.2264 
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C2_2 -2.5609 0.0792 -32.3419 0.0000 

GENDERLl 0.1662 0.0661 2.5138 0.0119 

GENDERL2 0.1798 0.0744 2.4155 0.0157 

GENDER2_1 0.1449 0.0767 1.8893 0.0589 

GE1\'DER2_2 0.1062 0.0658 1.6138 0.1066 

AGEl_QLl 0.1062 0.0762 1.3932 0.1636 

AGEl_QL2 0.2149 0.0796 2.6997 0.0069 

AGEl_Q2_1 0.0435 0.0727 0.5986 0.5495 

AGEl_Q2_2 0.2031 0.0740 2.7429 0.0061 

AGE2_Ql_l 0.1937 0.0637 3.0437 0.0023 

AGE2_Ql_2 -0.0267 0.0668 -0.3999 0.6892 

AGE2_Q2_1 0.2466 0.0606 4.0681 0.0000 

AGE2_Q2_2 -0.0189 0.0619 -0.3050 0.7604 

{ii) Random pa.rt of the model: 

Level-3: 

PARAMETER r STD. ERR. Z-VALUE PR>IZI 

Cl_l/Cl_l 0.2612 0.1033 2.5277 0.0114 

Cl_2/CL2 0.0185 0.0538 0.3438 0.7310 

C2_1/C2_1 -0.0384 0.0967 -0.3972 0.6912 

C2_2/C2-2 0.0502 0.0770 0.6529 0.5138 

Level-2: 

Cl_l/CLl 0.2302 0.1009 2.2821 0.0224 

Cl_2/Cl_2 0.0859 0.0736 · 1.1672 0.2431 

C2_1/C2_1 0.4241 0.1341 3.1630 0.0016 

C2_2/C2_2 0.2423 0.0980 2.4729 0.0134 

Cl_l/GENLl 0.0149 0.0525 0.2842 0.7762 

GENl_l/GENl_l 0.1036 0.0541 1.9153 0.0555 

Cl_2/GEN1_2 0.0003 0.0446 0.0062 0.9951 

GEN1_2/GEN1_2 0.2070 0.0703 2.9425 0.0033 

C2_1/GEN2_1 -0.1024 0.0598 -1.7142 0.0865 

GEN2_ 1/GEN2_ 1 0.2994 0.0782 3.8302 0.0001 
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C2_2/GEN2_2 0.0245 0.0366 0.6709 0.5023 

GEN2_2/GEN2_2 0.1208 0.0521 2.3196 0.0204 

Level-1: 

WT_K_ll/WT_K_ll 10.6453 0.6823 15.6011 0.0000 

WT_K_ll/WT_K_l2 4.7568 0.5227 9.1009 0.0000 

WT_K_l2/WT_K_l2 11.8300 0.74,59 15.8603 0.0000 

WT _K_l 1/WT _K_21 4.2081 0.4817 8.7355 0.0000 

WT_K_l2/WT_K_21 2.3353 0.4761 4.9052 0.0000 

WT _K_21/WT _K_21 9.5360 0.6240 15.2827 0.0000 

WT_K_ll/WT_K_22 1.8528 0.4555 4.0677 0.0000 

WT _K_l2/WT _K_22 4.8164 0.5109 9.4273 0.0000 

WT_K_21/WT_K_22 2.8109 0.4497 6.2502 0.0000 

WT _K_22/WT _K_22 10.0752 0.6445 15.6315 0.0000 

From Part (i) of the output it can be seen that the intercept terms, denoted by the 

variables Cl_l, Cl_2, C2_1 and C2_2 are highly significant. The gender group to 

which a subpopulation belongs is significant in the case of QUESTIONl, that is the 

presence of racial discrimination. It is, surprisingly enough, not significant where gender 

discrimination is concerned. Of the eight coefficients for age, four are significant at a 

5 % level of significance. 

For QUESTIONl, the estimated values of the response variable for the first two 

response categories are given by 

and 

Yiiki, 1 = - 0.8081 + 0.1662 GENDERl_l + 0.1062 AGEl_Ql_l + 
0.1937 AGE2_Ql_l 

Yiiki, 2 = - 1.9958 + 0.1798 GENDER1_2 + 0.2149 AGEl_Ql_2 -

0.0267 AGE2_Ql_2, 
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while the estimated values for QUESTION2 are given by 

and 

Yijk2, 1 = -1.8213 + 0.1449 GENDER2_1 + 0.0435 AGEl_Q2_1 + 
0.2466 AGE2_Q2_1 

Yijk2, 2 = - 2.5609 + 0.1062 GENDER2_2 + 0.2031 AGEl_Q2_2 -

0.0189 AGE2_Q2_2 . 

If, for example, the (Female; 30 to 49 years) subpopulation ( k = 5) is considered, the 

respective estimated values are 

so that 

and 

Zn ~,jsi,i = - 0.8081 - 0.1662 + 0.1937 = - 0. 7806 
f ij51,3 

• Zn ~ijsi,
2 = - 1.9958 - 0.1798 - 0.0267 = - 2.2023 

f ij51,3 

Zn ~ij
52

•
1 = - 1.8213 - 0.1449 + 0.2466 = - 1.7196 

f ij52,3 

Zn ~ij
52

'
2 = - 2.5609 - 0.1062 - 0.0189 = - 2.6860 , 

f ij52,3 

-- -- - 0 7806 --
f ij51, 1 = f,j51,3 e • = 0.4581 fij51,3 

-- _ -- - 2.2023 _ . --
f ijs1,2 - rj51,3 e - 0.1105 fij51,3 

-- -- -1 7196 --
rjs2,1 = fij52,3 e • = 0.1791 fij52,3 

-- ..... - 2 6860 --
rjs2,2 = fij52,3 e . = 0.0682 rj52,S · 
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From the fact that 

and 

it follows that 

7ij51,1 = 0.2920 fij51. ' 

ljs1,2 = 0.0704 ks1. ' 

ljst,s = 0.6375 hist. ' 

Jijs2,1 = 0.1436 hjs2. , 

Jijs2,2 = 0.0541 ks2. , 

and 

Jijs2,s = 0.8017 ks2 . . 

From the above it can be seen that, for QUESTIONl, 64 % of the responses are 

estimated to be positive, compared with SO·% of the responses for QUESTION2. It can 

thus be concluded that, in general, employees regard gender discrimination to be a 

bigger problem than racial discrimination. 29 % of the estimated response to 

QUESTIONl is expected to be negative responses, compared with half that (14 %) in 

the case of QUESTION2. Estimated response values for other subpopulations may be 

calculated in the same way. 

From the random part of the model, it follows that only the coefficient for the intercept 

term Cl_l/Cl_l is significant at a 5 % level of significance. 
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Three of the four coefficients for the intercept term on level-2 of the model are 

significant. The variances of the gender variables are all significant at a 5 % level of 

significance, but none of the covariances are significant. The largest coefficient on this 

level is the covariance on the intercept term C2_1/C2_1. 

All variances and covariances of level-1 coefficients are highly significant. Highly 

significant covariances between the response variables show that these variables a.re 

associated and tha.t incorrect results may therefore be obtained if separate logit models 

a.re fitted for these variables. 

7.7 SUMMARY 

In this chapter the analysis of models with categorical response variables was 

considered. A level-3 logit model was introduced and it vrns shown how this type of 

model may be analysed using the theoretical framework of general level-3 models given 

in Chapter 5. 

A multivariate level-3 logit model for the simultaneous analysis of more than one 

categorical response variable was discussed. It was also shown how equality constraints 

may be used to obtain a specified level-1 error covariance structure. 

The theory was implemented in the FORTRAN program GENIGLS and a number of 

practical applications were given. The importance of simultaneous analysis of associated 

categorical response variables was illustrated in the last of these applications. 
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CHAPTERS 

SUGGESTIONS FOR FURTHER RESEARCH 

The importance of multilevel modelling cannot be underestimated, as is evident from 

the fact that a number of software companies have added multilevel analysis to their 

statistical analysis packages. In the previous chapters an attempt was made to make a 

contribution to the analysis of data with a hierarchical structure from a complex 

sampling design. It stands to reason that there is ample opportunity for further research 

in this regard. There are also a number of problem areas that need to be addressed and 

computational aspects that require improvement. In the remainder of this chapter a 

number of areas will be discussed as possible topics for further research in the field of 

multilevel modelling. 

All the models considered in the previous chapters are so-called linear models. Consider 

for example the following model (cf. (4.2.1)): 

y=Xb+e (8.1) 

where y is the n x 1 vector of responses, X the n x m design matrix, b the m x 1 vector of 

stochastic coefficients and e the n x 1 vector denoting the error terms. From ( 8.1) it 

follows that the i-th response is given by 

y i = Xj b + ei , i = 1, 2, . . . , n. 

An example of the regression function Xj bis the parabola 

where, in this case, 
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In many practical situations it may not be realistic to fit a function that is linear in the 

parameters. This is especially true in the case of time-dependent data, for example the 

height of children at various ages or the reaction time of rats oYer a period of time. This 

data can best be described by means of an asymptotic grovdh function. Research on 

repeated measures data with nonlinear expectation functions has been done by, amongst 

others, Berkey, (1982), Bates and \Vatts, (1988), Bock (1990) and Herbst (1994). 

An example of an asymptotic growth model is the logistic function 

Yi==f(b,tJ+ei, i==l,2, ... ,n (8.2) 

where 

The set of regression equations in (8.2) can be written in vector notation as 

y == f (b, t) + e (8.3) 

where Yi, f(b, ti) and ei denote typical elements of the nx 1 vectors y, f(b, t) and e 

respectively. For data with an unequal number of measurements per experimental unit, 

model (8.3) can be written as 

(8.4) 

where Yi, f (bi, ti), and ei are nix 1 vectors with typical elements y ij, f(bi, ti) and eii 

respectively, withj== 1, 2, ... , ni. 

There are various approaches to the analysis of the nonlinear random coefficient model 

given in (8.4). These approaches include the use of numerical integration techniques (see 

for example du Toit, 1979), Gibbs sampling (see Boraine, 1995), and first order Taylor 

linearisation of the response function ( du Toit, 1979, Lindstrom & Bates, 1990 and 

Davidian and Giltinan, 1995). 
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In order to accommodate the analysis of nonlinear models within the framework 

outlined in previous chapters, the follm•,ing approach is suggested. Consider a first order 

Taylor expansion of f(bi, tJ about the mean /3 of the vector of random coefficients bi, 

,1v·here bi is an m x 1 vector 

(8.5) 

The nix m matrix of first-order derivatives Ji has typical element 

j = 1, 2, . . . , ni ; k = l, 2, . . . , m . 

Note that (8.5) can be rewritten as 

(8.6) 

where 

(8.7) 

(8.8) 

and 

(8.9) 

From (8.9) it follows that 

E(br) = /3* = 0 . 

After each iteration of the EM algorithm or the IGLS algorithm, the vector yt and the 

design matrix Ji ( cf. (8.8)) are updated. A new estimate fJ k+J of fJ, is obtained from 

fJ k+J = fJ le + P\+1 ' k = 0, 1, 2, . . . . (8.10) 

Page 8.3 

 
 
 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2022 

Initially, P* 1s set equal to the ordinary least squares estimator (3 of the unknovm 

parameters (3 assuming a fixed parameter model f ((3, tJ 

Du Toit, 1994 has implemented the aboYe procedure for the analysis of nonlinear level-2 

models. The extension and implementation of this procedure within the framework of 

the theoretical results derived in the previous chapters should proYide sufficient 

material for a research project. 

Another topic for further research is the incorporation of the imposition of constraints 

on the elements of the random coefficient matrices ~(1J, ~(2) and ~(sJ • Examples of 

possible constraints are the following: 

(i) The factor analysis structure 

~r2J = A A' + D1P 

(ii) A time series structure 

10 11 12 . 

11 10 11 12 . 

~(1) = 12 11 10 . 

(iii) An intra-class correlation structure 

1 p p 

p 1 p p 

~(1) = p p 1 p 

p p 1 
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The successful implementation of the constraints mentioned above implies that existing 

time series and factor analysis models can be extended to models for the analysis of 

hierarchically structured data which will provide more efficient and accurate estimates 

of the unknown parameters concerned. 

It has been pointed out by Bryk and Raudenbush (1987) that inferences based directly 

on the estimated variances and covariances may be problematical, as these estimates 

depend heavily on the normality assumption and are also likely to be imprecise in the 

case of small samples. They also noted that more research is needed on the robustness 

of estimates to non-normality and on the sample sizes needed for stable estimation. 

Thus, a further topic for research is an investigation into the small-sample distribution 

of the standard errors. It may be necessary to perform large simulation studies or to use 

the Gibbs sampling methodology (see Boraine, 1995, Van der Merwe & Botha, 1993 and 

Smith & Roberts, 1993) to study the distributional behaviour of the standard errors 

under non-normality distributional assumptions of the random coefficients. 
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APPENDIX 

THE COMPUTER PROGRAM MULTVAR 

10.1 INTRODUCTION 

This appendix consists of two sections. In Section 10.2 the computer program 

~IULTVAR, used in Chapter 6 for the analysis of data with more than one continuous 

response variable, is compared with the program :\113E (Prosser, Ra.sbash and 

Goldstein, 1991 ). Information concerning the installation and running of :MULTV AR is 

given in Section 10.3. The program MGLTVAR was compiled with FORTRAN LAHEY 

F77. 

10.2 COMPARISON OF MULTVAR AND ML3E 

In this section the computer program 1fUL TV AR, used in Chapter 6, is compared ,vith 

the commercially available program l\1L3E (see Section 2.4). Use is made of the data 

sets discussed in Examples 6.5.1 and 6.5.2. The output files produced by these programs 

are given on the accompanying diskette. Also included on the diskette are the input files 

and the data sets used for this comparison. In order to carry out these comparisons it 

was necessary to create separate data sets for ML3E, since this program does not create 

dummy variables automatically. 

As noted in Chapter 2, the size of the data set which can be analysed using ML3E is 

limited. In the case of Example 6.5.1, it is therefore necessary to use a subset of the 

data. The data set used for the comparison has four response variables and consists of 

the first 505 records (the first 18 households) of the data set discussed in Example 6.5.1. 

In the case of Example 6.5.2 the complete data set is used. 

Although the convergence criteria of the two programs differ, the values of the 

estimated parameters and large-sample standard errors are essentially the same. The 

comparison between the programs is thus based on a comparison of the time used per 

iteration. The time (in seconds) required to carry out one iteration of the IGLS 

procedure for each of the two examples are given in Table 10.2.1. 
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Table 10.2.1: Comparison of MULTV AR and ML3E 

Example Multvar ML3E 

Example 6.5.1 2.5 40 

(subset) 

Example 6.5.2 3.0 30 

The times reported in the table above were obtained by running the programs on a 486-

DX33 computer with 4 MB Random Access :Memory. 

In the first example there are 1 702 records and two response variables and in the 

second example 505 records and four response variables. From the table above it can be 

seen that the time used per iteration by the program MUL TV AR is significantly less 

than that required by ML3E. This trend is even more noticeable if, for a given number 

of observations, the number of response variables is increased. 

10.3 INSTALLATION OF MULTVAR 

The file README.DOC on the diskette contains the necessary information to install 

and run the program MUL TV AR. For the sake of completeness, the contents of this file 

is given below: 

Contents of diskette: 

There are three files on the diskette, namely 
README.DOC 
PKUNZIP.EXE 
MUL TVAR. ZIP 
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The file MULTVAR.ZIP contains the following files: 

Type of file Description of contents of file 

Program files: 

RUN386.EXE System file required by MULTVAR.BAT 
MULTVAR.BAT Batch file required to run MULTVAR 
MULTVAR.EXP MULTVAR executable file 

Data sets: 

MULTESK.OBS Data subset (Example 6.5.1) for program MULTVAR 
ML3_ESK.OBS Data subset (Example 6.5.1) for program ML3E 
MUL TAIDS .OBS Complete data (Example 6.5.2) for program MULTVAR 
ML3_AIDS. OBS Complete data (Example 6.5.2) for program ML3E 

Input files: 

MULTESK.IN Input file (Example 6.5.1) for program MULTVAR 
ML3 ESK.COM Input file (Example 6.5.1) for program ML3E 
MULTAIDS. IN Input file (Example 6.5.2) for program MULTVAR 
ML3_AIDS. COM Input file (Example 6.5.2) for program ML3E 

Output files: 

MULTESK.OUT Output file (Example 6.5.1) for program MULTVAR 
ML3_ESK.LOG Output file (Example 6.5.1) for program ML3E 
MUL TAIDS.OUT Output file (Example 6.5.2) for program MULTVAR 
ML3_AIDS. LOG Output file (Example 6.5.2) for program ML3E 

System requirements: 

The minimum system requirements to run the program MULTVAR are: 

(1) a 386 IBM-compatible system or higher with 
(2) a maths coprocessor and 
(3) at least 4 MB Random Access Memory ·(RAM) 

Installation of program: 

In order to run the examples given on the diskette, the following 
installation procedure is suggested: 

(1) Make the directory DEMO on the hard drive by typing the following 
command at the C:> prompt: 
C:> md demo 

(2) Change the path to this new directory by typing at the C:> prompt: 
C:> cd demo 

Page 10.3 

 
 
 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2022 

(3) Copy the three files on the diskette to the hard drive by typing: 
C:\DEMO> copy a:*.* 

(4) Extract the files listed in the table above by typing: 
C:\DEMO> pkunzip multvar.zip 

Running of examples: 

The program can now be run by typing: C:\DEMO> multvar. The name of the 
input file, either MULTESK.IN or MULTAIDS.I~~-- is to be entered as input 
file. Any name may be used for the output file. If no output file is 
specified on the first screen, output will be written to the default 
output file MLEVEL.OUT. To proceed, press the ESC key. 

Note that the raw data files on the diskette contain confidential infor­
mation and may thus only be used for examination purposes. 
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