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Opsomming 

Die ideaal om 'n universele logiese taal en deduksiereels te ontwerp waarin enige 
probleem gestel en opgelos kan word is ten minste so oud soos Leibniz wat 'n 
'characteristica universalis' wou skep: 'n universele taal waarin enige weten­
skaplike feit uitdrukbaar is. Ook is 'n algemene metode ten doel gestel om die 
waarheid al dan nie van enige uitdrukking of formule in die taal te bepaal. 

Die werk van Frege, Russel & Whitehead, Tarski, Godel en andere het gestalte 
gegee aan 'n kandidaat vir so 'n universele taal, naamlik eerste orde logika. 

Die volledigheidsstelling van Godel wat verseker dat alle geldige formules gevolge 
is van die aksiomas en deduksiereels, het die hoop op die universaliteit van die 
taal en metode versterk. 

Volgens Hilbert en sy skool was 'n volledig en konsistente logiese stelsel wat alle 
wiskundige beredenering bevat, die enigste sinvolle grondlegging vir wiskunde. 
Met volledigheid word bedoel dat elke goed gevormde uitdrukking in die taal 
bewysbaar waar of bewysbaar onwaar is. Konsistentheid beteken dat geen goed 
gevormde uitdrukking bewysbaar waar en bewysbaar onwaar is nie. 

In 1935 het Godel bewys dat in enige konsistente logiese stelsel met ten minste 
'n gegewe minimale uitdrukkingsvermoe, daar altyd goed gevormde formules sal 
wees wat nie bewysbaar is nie en waarvan die negering van die formule ook nie 
bewysbaar is nie. Met ander woorde alle sulke logiese stelsels is onvolledig. 'n 
Oop vraag was of daar 'n metode bestaan om sulke formules te identifiseer. 

In 1935 het Church en Turing bewys dat daar geen so 'n metode kan bestaan 
nie en ons noem dan eerste orde logika (rekursief) onoplosbaar, daar is dus geen 
algoritme wat altyd korrek uitspraak kan gee oor of 'n formule uit die aksiomas 
en deduksiereels volg of nie. 

Aangesien die klas van alle eerste orde logika formules onoplosbaar is, kan ons 
vra welke subklasse oplosbaar is en welke nie. 
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Oorspronklik is subklasse onoplosbaar bewys deur te toon dat enige eerste orde 
formule ekwivalent is aan 'n formule in die spesifieke subklas, omdat die hele 
klas formules onoplosbaar is, is die subklas dan ook onoplosbaar. Klasse wat so 
onoplosbaar bewys is, is reduksieklasse genoem. 

In die vroee 1960's het Biichi en Wang gewys dat sekere berekenings of kom­
binatoriese stelsels deur eenvoudige logiese uitdrukkings beskryf kan word. Die 
onoplosbaarheid van die probleme buite logika - die Domino probleem en die 
Halt probleem :. beteken dan dat sekere subklasse van logiese formules onoplos­
baar is. Die klasse is nie reduksie klasse nie en is 'werklike' subklasse van die 
logiese stelsel. Die resultate is baie skerper as die verkry met vroeere metodes. 

Subklasse is onoplosbaar bewys deur verskillende mense met uiteenlopende 
metodes. Die bewyse van onoplosbaarheid is hergiet in 'n homogene vorm deur 
Lewis,(20], waarmee die tesis grotendeels gemoeid is. 

Die ee:rste paar hoofstukke handel oor die onoplosbaarheid van sekere kombi­
natoriese probleme, hierdie resultate word dan in latere hoofstukke gebruik om 
sekere klasse formules van eerste orde logika onoplosbaar te bewys. 
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Summary 

The goal of finding some universal language and method for stating and solving 
arbitrary scientific problems has been an ideal since Leibniz who envisioned a 
"characteristica universalis": a universal language in which any scientific fact 
could be expressed. In addition, a general method for deciding the truth or 
falsity of any statement in the language, was envisioned. 

Through the work of Frege, Russel & Whitehead, Tarski, Godel and others this 
goal of a universal language for formalising mathematical facts, found expression 
in the development of what is now known as first order logic. The Completeness 
Theorem of Godel which states that all valid formulas are deducible, was seen 
as a justification for the ideals for the universality of the language and method. 

According to Hilbert and his school, the only justifiable foundation for the 
practice of mathematics was a logical system encompassing all of mathemat­
ical reasoning which further, was complete and consistent, i.e. all meaning­
ful statements expressible in the language are either provably true or provably 
false(completeness) and no contradiction can arise in the system(consistency). 

In 1931 Godel showed that in any consistent logical system of some minimal 
expressivity there are expressions within the language which are not provably 
true or provably false. An open question was whether there was some method 
of identifying such expressions. 

In 1935 Church and Turing showed that no general method can exist for deciding 
whether or not a formula is deducible and that first order logic is therefore 
undecidable, i.e. there is no algorithmic procedure which can always correctly 
decide whether a formula is valid, i.e. deducible from given axioms and inference 
rules, or not. 

Given that the predicate calculus as a whole is undecidable, one may ask which 
subclasses of the predicate calculus are decidable and which are not. 
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Initially, the method which showed some particular class of formulas of first order 
logic to be undecidable or unsolvable was a presentation of an effective method 
by which any quantificational formula could be reduced to some formula in the 
particular class. Such classes are called reduction classes. The unsolvability 
of the class then follows from the unsolvability of quantificational theory as a 
whole. See Turing,(28). 

In the early 1960's Biichi and Wang showed how simple computational or com­
binatorial systems- Turing Ma chines or Dominoes- could be naturally described 
by simple quantificational formulas. 

The unsolvability of these extralogical problems -the dominoe problem or the 
Halting problem-then implied the unsolvability of certain logical classes, these 
classes not being reduction classes, that is the classes are actual 'subclasses' 
of the class of quantificational formulas. These results are much sharper than 
those obtained by the previous reduction methods. 

This work is concerned with proofs that certain classes are undecidable, the 
results are due to various different people(see chapter 6 for references) but were 
recast in a homogeneous form by Lewis,[20] which is the main source for this 
work. 

The first few chapters are concerned with proving the unsolvability of various 
combinatorial problems, these results are then used in later chapters to prove 
the unsolvability of the classes of formulas. 
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Chapter 1 

Turing machines and tilings 
of the plane 

In this chapter we use the unsolvability of the halting problem for Turing ma­
chines to show that a certain combinatorial problem, the origin- constrained 
tiling problem, is unsolvable. Most of this chapter is taken from Lewis and 
Papadimitriou,[21]. 

1.1 Turing machines 

A Turing machine can be imagined as a device consisting of a finite state control 
unit with a potentially infinite tape serving as input and output medium. A 
single head communicates between the two. 

fig l(from Odifreddi,(23]) 
Tape 

r--r-r--r-r----r--r---~---ir---,----,r---,-----,.----,----,.----,--~-----------
b b a b b 

Cell 

h <IQ 

.llfl" ql Finite State con\roi unit 

~ 
43 

Formally, a Turing machine is a quadruple 

(I<,~, 8, s) 

with 

J{ : A finite set of states with s E I<, the initial state. The halt state h is not 
in I<, 
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E A finite set of symbols, containing the blank symbol#, but not containing 
the symbols L and R, 

8 (the transition function) : A function from J{ x E to (I< Uh) x (EU L, R). 

The transition function is interpreted as follows: 
If 8(q,a) = (p,b) with q E K,a EE, then the machine in state q scanning 

symbol a, will enter state p and 

1. if b E E, rewrite the a as b or 

2. if bis Lor R, move the head one cell left(L) or right(R). 

Since 8 is a function the operation of the machines is deterministic and the 
machine will stop only when it enters the halt-state or attempts to move off the 
left tape-end, with the consequent absence of a symbol scanned. 

A configuration of a Turing machine is a complete recording of the relevant 
information of the computation in a given instant. It takes the form 

KU h x E* x Ex (E*(E - # U e) 

where E* is the set of words over E and e is the empty string. This specifies the 
current state, the contents of the tape and the head position. The definition is 
set up so that the string to the right of the scanned cell does not end with a 
blank. 
Example: 

( q3 , e, a, aba) is the following configuration: 

fig 2 

a b a # I 

h 'lo 

ll4, t 
~ 

We now define the relation yields in one step for configurations: 
Let 1\.1 be a Turing machine and let (qi, w1, a1, u1) and (q2, w2, a2, u2) be 

configurations of M. 
Then 

iff for some 
b E EUL,R 
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and either 

2. b = L, w1 = w2a2, and 

either 

a)u2 = a1 u1, if a1 f= # or u1 f= e, or 

b )u2 = e, if a1 = # and u1 = e; 

or 

3. b = R, w2 = w1a1 and 

either 

a)u1 = a2u2 or 

b )u1 = u2 = e and a2 = #. 

Case 1 corresponds to M writing a symbol (without the head moving). 
Case 2 corresponds to the head moving one cell left, if it moves to the left of 
blank tape then the blank symbol on the cell just scanned is dropped from the 
configuration. 
Case 3 corresponds to the head moving one cell right, if it moves onto blank 
tape then a new blank symbol is added as the new scanned symbol. 
A computation by a Turing machine M is a sequence of configurations 

such that 
Co 1-M C1 ... 1-Af Cn. 

We will use the following well-known result, due to Turing,(28]: 

Theorem 1.1 (Unsolvability of the halting problem) There exists no gen­
eral algorithm which can answer the following class of questions correctly: 

Given a Turing-machine M = (K, :E, 8, s) and an input string w, 
does M halt on input w? 

The result can be strengthened to the case where w is the empty string. This 
is the form of the unsolvability of the halting problem which we will use. 
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1.2 Tiling problems 

Tiling Problems have the following general form: 
We are given: 

1) a set X, the space to be tiled 

2) a finite set T of representative tiles 

3) a spatial relation RC Xk, the sampling configuration, and 

4) a set Q C Tk . 
The tiling problem is the problem of determining, given some tiling system 
P = (X, T, R, Q), whether or not there is a mapping 

such that 
(s1,s2, ... ,sk) ER ⇒ (-rs1,rs2, ... ,rsk) E Q 

Intuitively, whether or not it is possible to tile X with ( an unlimited supply 
of) copies of tiles in T such that all k-tuples of tiles at sampling configurations 
R are in some specified set Q of k-tuples of tiles. 

Mappings or tilings for which this is true are called accepted tilings. The 
term accepted is descriptive of an agent checking to see whether all k-tuples 
in R are in the set Q. If some k-tuple in R is not in Q then the tiling is not 
accepted. 

Note that k-tuples in R are the only sets of points of the space which we 
have access to and that we have no control over the order in which such tuples 
are visited. 

1.3 Tilings of the plane 

The tiling problems we discuss in this section have as space to be tiled the first 
quadrant of the plane-N2 . We imagine the quadrant to be divided into cells, 
one for each coordinate pair ( x, y) with each cell containing a single tile from 
some set D. 
An accepted tiling is one in which the tile at the origin is some fixed tile do E D, 
all pairs of tiles in horizontally adjacent cells are in some given set H C D 2 

and tiles in vertically adjacent cells are in some given set V C D 2 • Because 
of the origin-condition such tiling-systems are called origin-constrained tiling 
problems. 
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Formally: 
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R consists of three parts Ro, RH, Rv with 

l. Ro := (0, 0) 

2. RH:= ((x,y);(x+ l,y);x,yE N 

3. Rv := ((x, y); (x, y + 1); x, y EN. 

Q also consists of three parts: do, H, V with 

4. do ED 

5. H C D 2 

6. VcD 2 • 

V 

u 

t 

Since R is the same for all such tiling systems, we will specify an origin­
constrained tiling system P by the 4-tuple 

P = (D, do, H, V). 

1.4 U nsolvability of the origin-constrained tiling 
problem 

In this section we will show that the tiling problem for origin constrained tiling 
problems is unsolvable. That is, there exists no general algorithm which, given 
an arbitrary origin-constrained tiling system (D, d0 , H, V) can always correctly 
decide whether or not an accepted tiling exists for the system. 

We show that if there were such an algorithm then the halting problem for 
Turing machines would be solvable. 
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1.4.1 Turing machines as tiling systems 

Given a Turing machine M we construct a tiling system PM such that an 
accepted tiling for PM represents an infinite computation by M when started 
on the leftmost square of the blank tape. 

Let 
M=(K,E,8,s) 

then 
PM= (D, do, H, V) 

where D contains the following tiles: 

fig 4 

□ [:J a I ,9:)9 ~(p~b) I 

(a) (b) (c.l) (c.2) 

□ □ 
I (s.#) #I 

□ (d.l) (d.2) (e) (f) 

Tiles of type ( a)(see fig 4) for each a E E. These tiles communicate un­
changed symbols between consecutive configurations. 

Tiles of type (b) for each a E E, q E J{ such that 8(q, a) = (p, b) where 
p E J{, b E E These tiles communicate the head position upwards and change 
the state and scanned symbol appropriately. 

Tiles of type (c.l) for each a E E, q E J{ such that 8(q, a) = (p, R) where 
p E J{ and tiles of type ( c.2) for each b E E. These tiles communicate head 
movement one square from left to right and change the state appropriately. 

Tiles of type (d.1),(d.2) for analogous situations as the above but with 
8 ( q, a) = (p, L). 

A tile of type ( e )( the origin tile). This tile specifies on its vertical edge the 
initial state and the blank symbol. Its right edge can be matched only by the 
left edge of tiles oftype (f), which in turn propogate to the right the information 
that the top edge of every tile in the bottom row is marked with the blank. 

Theorem 1.2 The symbol-sequence between rows k and k + 1 is exactly the 
configuration of M after k - l steps. 

Proof: 
The proof is by induction on the computation step: 
Basis:Computation step 0: 
The last two tiles ensure that the edge between the first and 2nd row of tiles 

correctly gives the starting configuration. 
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Induction step: 
Assume the tiling correctly represents the computation up to step n: Let 

( q, a), a E Li, q E I< U halt 

be the single state-symbol pair in row n. 
If the machine halts at step n then we cannot tile the next row. (No tile 

contains the halt state so there are no tiles with bottom edge (halt, a).) 
If the machine does not halt(q E K) then the state (possibly)changes and 

the machine either overwrites a symbol or moves one cell left or one cell right. 
That is 

8(q,a) = (p,b) or (p,R) or (p,L) 

for some 
p EK, b Er, 

If the first case holds then the pair (p, b) appears above ( q, a) in the next row. 
This follows from the construction of the tile set since the only tile with bottom 
edge (q, a) has (p, b) as top edge. (8 is a function). No other symbol in row n 
changes since only the tile directly above or one of the tiles adjacently above the 
state-symbol tile can change, and the transition function uniquely determines 
which of these is the case. 

If one of the other two cases hold then the only tile with bottom edge ( q, a) 
is a tile of type (c.l) or (d.2), then the only tile allowed to the right(left) of this 
tile is of type (c.2) or (d.l). 

Again no other symbol changes. 
So if it exists, then computation step n + 1 is correctly represented in each 

case. This completes the proof. 

The tiling simulates the computation of M perfectly. If the computation is 
infinite then the whole of the first quadrant is tiled in such a way that the 
conditions do, F and H are satisfied and conversely if the computation halts 
after k steps then we can only tile k + 1 rows. So if the tiling problem were 
solvable then the halting problem would be solvable. 

We therefore have the result: 

The origin constrained tiling problem is algorithmically unsolvable. 

References 
Turing Machines are of course due to Turing,(28]. 
The tiling problems presented here are essentially dominoe-systems which 

are due to Wang,[31]. 
The proof of the unsolvability of the origin-constrained tiling problem pre­

sented here is adapted from Lewis and Papadimitriou,(21]. 
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Chapter 2 

Linear sampling problems 

In this and the next chapter we use the unsolvability of the origin-constrained 
tiling problem to show that another tiling problem, the linear sampling problem, 
is unsolvable. All the results and proofs of this chapter are due to Lewis,(20). 
The structure and sequence(internal or external) of the proofs have sometimes 
been changed to facilitate understanding. 

2.1 Definition 

A linear sampling problem is a tiling problem of the following kind: 
the space X to be tiled by some set of tiles T is 

Z X (1, 2). 

That is, two disjoint copies of the integers which we consider as two numbered 
tapes. 

The configurations of tiles Rg and R1; 0 > 0, 0 E Z we may sample are 
defined by linear equations, hence the name: linear sampling problems. 

These conditions Rg and R 1 are defined as follows. 

1. Local Condition: for i = 1, 2, Rg((n1, i) ... , (n9, i)) iff 

ni+l = nj + l;j = 1, ... , 0 (i.e. we may sample any 0 consecutive tiles on 
either of the two tapes). 

2. Global Condition: R1((n1, 1), (n2, 2), (n3, 1), (n4 , 2)) iff 

n 2 - n 1 = n4 - n3 (i.e. we may sample any two pairs of tiles, a pair on each 
tape, such that the distance between the tiles on the first tape is equal to 
the distance between the tiles on the second). 

Figures 5 and 6 illustrate the forms of the configurations we may sample for 
0 = 4. 
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fig 5 

1•1•1•1•1 I I I I I 
-8 -7 -6 -5 4 -3 -2 -1 0 I 2 3 4 S 6 7 8 9 10 11 

~ ~~ ~ I I l I I I I I 

fig 6 

I •I I I I I I I 
-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 

1•1 I I 

It is crucial to note that Rt and R 1 define the only access we have to the 
tapes, we cannot view any other configurations of tiles. Further, we do not have 
access to coordinates of cells but only to the tuples of tiles at configurations 
defined by Rg and R1. 

An accepted tiling is one in which all tuples in Rg are in some given subset 
of T 9 ( = T x ... x T; 0 times) which we denote by L(for loca0 and all samples 
in R 1 are in some given subset of T 4 which we denote by G(for globa0. 

We will generally denote a linear sampling system by the triple (T, L, G) 
where T is the set of tiles and L and G are the subsets mentioned above. The 
value of 0 will be seperately specified. 

Once again( and this is a crucial point), we have no control over the order in 
which our samples are taken. 

The linear sampling problem is the problem of determining, given some 
linear sampling system, (T, L, G) whether an accepted tiling of the tapes exists 
or not. 

This whole chapter is devoted to showing that the linear sampling problem 
is unsolvable for any given 0 ~ 2. To show this, it suffices to show that the 
problem is unsolvable for 0 = 2 as the following argument shows. 

Theorem 2.1 If the problem is unsolvable for 0 = 2, it is unsolvable for all 
0~2 

Proof: Given some 0 = k, k a natural number, then for each tiling system with 
0 = 2 there is an 'equivalent' tiling system with 0 = k. This is the system with 
the same global condition and local conditions L as follows: L consists of all 
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k-tuples such that all consecutive pairs in the k-tuple are in the local condition 
for the 0 = 2 system. Clearly our systems allow exactly the same tilings. So the 
unsolvability for the 0 = 2 system would imply the unsolvability for all systems 
with 0 2:: 2. 

Theorem 2.2 The unsolvability of any 0 2:: 2 implies the unsolvability for 0 = 
2. 

Proof: Suppose that the problem is unsolvable for some 0 2:: 2. We show that 
this implies the unsolvability for 0 = 2. 

Let T = (T, L, G) be any l-ary tiling system. Let T' = (T', L', G') be the 
following system: T' = T 1 and 

a)((s1, s2, ... , s1), (s1+1, ... , s21)) EL' iff s1+1 = s2, s1+2 = s3 , .... i.e. 
s1+i = si+l for i = 1, ... , l - 1 and (s1, ... , s1), (s1+1, ... , s21) EL, 
b)((s1,s2, ... ,s1), ... (s31+1, ... ,s41)) E G' iff (s1,s1+1,s21+1,s31+1) E G. 
The conditions are defined in such a way that a tiling accepted by T codes 

for a tiling accepted by T' and conversely. Figure 7 shows a correlated pair of 
tilings. 

fig 7 

a) SI 82 8:3 84 S5 

ti t2 t3 t4 t5 

b) sl 821>_i I s25:3s4 j 8:3s4s5 I 8485S11 I S5S5~ I 
I tl t2l3 I t2t3t4 j t:,t4l5 I t4t5t6 I tst6t7 

2.2 Correlating the tapes with the plane 

2.2.1 Coordinate correlation 

vVe want to show that the linear sampling problem is unsolvable by using the 
unsolvability of the origin-constrained tiling problem. We will show the problem 
unsolvable for 0 = 4. To do this we must show that for each origin-constrained 
tiling system there is a corresponding linear-sampling system with 0 = 4 which 
accepts a tiling iff the origin-constrained tiling system accepts some tiling. We 
must therefore correlate coordinates of Z x (1, 2) with coordinates of N 2 • There 
are many ways to do this but our correlation must satisfy some strict conditions 
if we want the correlation to work. Each coordinate of N 2 must be represented 
infinitely often and at bounded intervals along at least one of the tapes. It will 
become clear later why this is a prerequisite. 

10 
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Notation: The Pi-order of a whole number n denoted by Op;, is the highest 
power of Pi which divides n without a remainder. 

When the value of Pi is fixed, we often write O(n) for Op;(n). 
Example: 02(8) = 3 since 23 = 8, while 02(10) = 1. 

Choose two numbers p1 and p2 which are relatively prime and associate the 
coordinate ( i, j) in the first quadrant with all coordinates n on the plane such 
that the Pl -order n is i and p2-order n is j. It is clear why Pl and P2 must be 
relatively prime if we want to represent all tuples ( i, j) E N 2. If we correlate 
coordinates in this way then the stipulations in 2.2.1 are satisfied. 

2.2.2 Conditions on the linear sampling system 

We must now construct conditions on tilings of the tapes which are equivalent 
to the conditions on tilings of the plane in that an accepted tiling of the tapes 
exists iff an accepted tiling of the plane exists. Specifically, the following three 
conditions must be met for a tiling of the tapes to be accepted. 

1. If two cell coordinates have equal p1- and prorders then the cells must 
contain the same tile, since all such coordinates are correlated with a single 
coordinate of N 2. 

2. If a cell coordinate has P1- and P2-orders zero then the cell must contain 
a tile allowed at the origin of N 2 • 

3. If two cell coordinates n1 and n2 have Pl - and P2- orders 

(i,j)&(i,j + 1) 

(i,j)&(i + 1,j); i,j EN, 

then the tiles in the cells must form a pair in V or H respectively. For 
notational convenience we change H, V to A1 , A2. 

The third conditions correspond to conditions V and H on tilings of the plane. 
The idea is that these conditions on tilings of the tapes will be equivalent 

to the conditions on the tilings of the plane and that an accepted tiling of the 
tapes will code for an accepted tiling of the plane and conversely. Note that in 
the origin-constrained tiling problem we knew all samples were horizontally or 
vertically adjacent, in fact these were the only configurations we could sample, 
in the correlation with the linear sampling problem we must first find the cells 
corresponding to adjacent cells on the plane before we can place conditions on 
the tiles in such cells. 

We sketch the idea of the mapping between the plane and the tapes. 

11 
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2.2.3 The idea of the mapping between accepted tilings 

Figure 8 illustrates the mapping between the tapes and the plane which we have 
in mind: 

tapes 

I 
I 

fig 8 

I I I 
I I r t I I 

~ ----r- ----~- ----: ----r----~ -----. 
I t f I I I 
I I I t I t 

,l I I I I I 1 

I:"~----~-----~----~----!----~------
• I I I I t 

plane' 
2 

0 

I I t I I 
I t I I I 
I f I I I 

t:(0,1) t{t,2) t:(2.1· 

t(0,1) t:(1,1) t:(2,1) 

-
f{0,0' 1:(1,0) 1(2,0) 

0 1 2 

----~-----:------
' I 
I I 

----: ---- :------
' 

I 

- - - •y,- - - - - ,. - - - - - -
I I 
I I 
I I 
I I ____ .. ____ ., _____ _ 

~::: .--, .--, -.--,-,--~--,----r---r--r---T-r--..,.....§i.~j>I _,_,---,.----, -.-, --.-, ---.-1: ~ ~ ~ 
n ( OPt (n)=:i; OP2(n)=j) 

~ ~ ~ ~ I Fi.j)I I I I I I I ~ ~ ~ ~ 

Plane to tapes: 
For a given accepted tiling r of the plane, define a tiling r of the tapes as 

follows: 
for all n E Z and for both tapes 

r(n)=r(i,j) 

where i, j are the Pl and P2 orders of n. 
Tapes to plane: 
Given an accepted tiling r of the tapes, define a tiling r of the plane as 

follows 
r(i,j) = r(n) 

where n has p1- and p2- orders i and j, respectively. 
The idea is that accepted tilings of the tapes map to accepted tilings of the 

plane and conversely. If this is the case then the linear sampling problem will 
of course be unsolvable. 

The correlation between the two tiling systems just sketched is in fact a 
laborious task and will occupy the rest of this chapter. 
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2.3 Construction of the conditions 

Implicit in conditions 1-3 of paragraph 2.2.2 is the following. 
The consistency constraint: 
1. 1) Identifying all pairs of cell-coordinates with equal p1- and p2-orders. 
1.2) Forcing all such cells to contain the same tile. 
The origin constraint: 
2.1) Identifying all cell-coordinates with p1- and p2-orders zero. 
2.2) Placing the origin constraint on these cells. 
The adjacency constraint: 
3.1) Identifying pairs of cell coordinates with p1 and p2 orders 

(i,j)&(i,j + 1) 

(i,j)&(i + 1,j); i,j EN. 

(These cells of course correspond to cell-pairs which are horizontally or vertically 
adjacent on the plane.) 

3.2) Placing conditions V and H, respectively, on the tile-pairs in such pairs 
of cells. 

2.3.1 Identifying the cells 

It is important to note that we do not have access to the coordinates at which 
samples are taken, we can therefore not correlate coordinates of cells with the 
tiles appearing in the cells to see for each sample whether 1-3 in 2.2.2 are 
satisfied or not. In order to identify cells 1.1-3.1 in 2.3 therefore, we must 
include within a cell information about the P1- and p2-orders of the coordinate 
of the cell. 

2.3.2 Addressing information 

Since the cells have some fixed finite size, a cell cannot contain its coordinate 
or even its Pl - and p2-orders. We devote the next section to showing that, 
somewhat surprisingly, it is enough for a cell v = (n, c) ; 0 < n; c = l, 2 to 
contain the numbers ,\p 1 (n) and ,\p 2 (n), where 

where rem (l, n) is the remainder of l when divided by n. Note that ,\Pi (0) can 
be any element of {q IO < q < p2; q ::p O(modp)} 

Informally, ,,\Pi ( n ); i = 1, 2 is the result of writing n in p-ary notation, delet­
ing any trailing zeros and taking the last two digits of what is left. 
Example 

For n = l, ... , 120: the sequence ,\10(n); 1 :Sn :S 120 is the following: 

13 

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2022.

 
 
 



01 02 03 04 05 06 07 08 09 01 11 12 13 14 15 16 17 18 19 02 21 22 23 24 25 26 
27 28 29 03 31 32 33 34 35 36 37 38 39 04 41 42 43 44 45 46 47 48 49 05 51 52 
53 54 55 56 57 58 59 06 61 62 63 64 65 66 67 68 69 07 71 72 73 74 75 76 77 78 
79 08 81 82 83 84 85 86 87 88 89 09 91 92 93 94 95 96 97 98 99 01 01 02 03 04 
05 06 07 08 09 11 11 12 13 14 15 16 17 18 19 12 

Nate that for such a tiling A: 
A(n + d) = A(n) whenever O(d) ~ O(n) + 2. 
This is known as the agreement property. 

Example 
For p = 10, A(12) = A(12 + 100) = A(112). 

To enable a cell to contain this information we divide both tapes into 3 channels 
as figure 9 illustrates: 

p1 address channel 

Pz address duumel 

data channel 

p1 address channel 

P:z addttas channel 
data chnnnd 

¼i(~) ¼il-4l )"'1(•J) 

A!>i(•S) A!>i(-4) A!>i(•l) 

-5 -4 -3 

41(-S) ]>.pl(-4) ¼1(·3) 

> .. , (·S: >.,./4 4,(·:\) 

fig 9 

¼il-Z> ¼iH> 

A1>2(•2) ~H) 

-2. -1 

¼1<-Z> J,.pl(-1) 

4.,(·~ ]>~(-1) 

Tape 1 
A<>i(O) ~(1) ~(Z) ~(3} A4>i(4l >-.i<5J 

~(0, ~(l) ~(2) ~(3) ~(~ ~(5) 

0 2 3 4 .s 
4i1~ A111{1) ll.-1(2) >.,if~) ¼1!-') 4i<~ 

4,_(U/ i.o,tl) 4.,(2) ;_.,m 4.,{♦) 4,ts> 

Tapc2 

We imagine that the first and second channel of each cell with coordinate 
( n, c); c = 1, 2 on both tapes contains the numbers Ap 1 ( n) and Ap2 ( n) respec­
tively, i.e. that we have mappings Ai('i'l"i(n, c)) = Ap;(n); i = 1, 2; c = 1, 2 where 
'i'l"i is the projection onto the i-th channel of a tape. We reserve the third chan­
nel for tiles t E T. We will use this information to identify cells satisfying the 
relations in 1.1, 2.1 and 3.1 in 2.3. 

So if the set of tiles for an origin-constrained tiling problem is T, then the 
corresponding set of tiles for the corresponding linear sampling system is: 

where 
Spi := {Ap;(n),n E Z} = {0 < q < p2

: q f:. 0(modpi)}. 

A tiling for which the address channels of cells lli = ( ni, c); c = 1, 2 contain 
Ap;(n); i = 1, 2 in the i-th address channel is called a perfect tiling. We also 

talk of the Pi-address channel being tiled perfectly for p = Pl or P2. This means 
that the p-th address channel contains Ap of the coordinate. Note that a perfect 
tiling does not mention the tiles in the third channel. We will often work in 
a fixed address channel and will write A( n) for Ap; ( n). Through an abuse of 
notation, we also sometimes write ..\(v) for ..\(n) when v = (n, c); c = 1 or 2. 

14 

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2022.

 
 
 



2.3.3 Weakening the conditions 

We can slightly weaken 1.1,2.1 and 3.1 in 2.3 to the following. 
Given Pi, i = 1 or 2, we must identify: 

1. cells with Pi order zero: i = 1 or 2, 

2. cells with equal Pi order, 

3. pairs of cells with Pi order j and j + 1 respectively, j EN. 

We can then combine 1-3 for i = 1 and 2 to identify cells satisfying 1.1, 2.1 and 
3.1 of 2.3 as follows. 
Cells satisfying (1) for i = 1 and 2 are exactly the cells in 1.1 of 2.3. 
Cell pairs satisfying (3) for i = 2 and (2) for i = 1 are exactly the cells with Pi 
-orders ( k, l) & ( k, l + 1), as in 3 .1 of 2. 3. Analogously for pairs with Pi-orders 
(k,/)&(k+l,/). 

2.4 The origin constraint 

Let Z1i E Z x 1, 2. 
Assume the p-address channels are tiled perfectly. 
Given p = P1 or P'!., we define a relation Zp C :Et on local samples of 4-tuples 

(v1, v2, V3, Z14) such that 

iff 

2.4.1 Constructing the relations Zp; 

Given p = Pl or P2· Let Ap be a perfect tiling of address channel p. 
Let (qo, q1, q2, q3) be the entries in the p-address channels of a local sample 

of cells at (n, n + 1, n + 2, n + 3) say, i.e. 

on either of the two tapes. 
Now assume n has p-order zero. Then n = Ap(n) f. O(modp), since the 

p-ary expansion of n has no trailing zeros. Denote ,,\P ( n) by ,,\( n), and Op ( n) by 
O(n). 

Set q = rem(n,p)(= rem(,,\(n),p). There are three possibilities. 
1. If 1::; q ::; p - 3, then q1 = qo + l(modp) and 

,,\(n + 2) = q2 = n + 2 = q + 2(modp). 
2. If q = p - 2, then ,,\(n + 1) = q1 = n + 1 = q + 1 = p - l(modp). 
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3. If q = p - 1, then A(n + 2) = q2 = q + 2 = l(modp). 
So in 1, 2 and 3: q1 = qo + l(modp) or q2 = qo + 2(modp). 

Conversely, if (qo, q1, q2, q3) is a local sample and either q1 = qo + l(modp) 
or q2 = qo + 2(modp), then if we assume that O(n) # 0, that is n = O(modp), 
then A(n + 1) = n + 1 = l(modp) and A(n + 2) = n + 2 = 2(modp) so, by our 
assumption A( n) = 0( modp) which is impossible, since A( n) has last digit non­
zero for any n E Z, by the definition of L. 

2.4.2 Definition of ZPi 

For p = P1,P2 

iff 
and 

Zp(A(v1),A(v2),A(v3),A(v4)) 
( v1 , v2, V3, v 4) E Ro 

or 
A(v1) = A(vo) + l(modp) 

A(v2) = A(vo) + 2(modp). 

So we have a relation on the address channel of consecutive 4-tuples of tiles 
in p-address channels of perfect tilings which is satisfied iff the coordinate of 
the first cell of the tuple has p-order zero. We now use Zp; to place the origin 
condition on tilings of the tapes. 

2.4.3 The origin condition 

If the address channels of a local sample of cells satisfy Zp for p = Pl and P2 

then the first cell of the tuple must have an origin tile in the data channel. 
Formally: given a local sample (s1, s2, s3, s4) of a perfect tiling: 

2.5 Properties of the tilings 

Note from the sequence in section 2.3.2 that the tiles at cells with order 1, are 
only determined modp by the preceding sequence of tiles at cells of order 0, 
that is, tiles in cells of order O are equally close to all tiles in cells of order 1 
which are equal modp. Further, surrounding tiles at coordinates of order Ogive 
us no information about tiles at cells of order 2, that is, tiles in cells of order 0 
are equally close to all tiles in cells of order 2. The following lemma states these 
results formally. 
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Theorem 2.3 (Tiling lemma) Let n1, n2 E Z. 
a) IJO(ni) = O(n2-n1) = O(n2) then ,\(n1)+,\(n2-n1) = ,\(n2)(modp2). 
b)If O(n1) = O(n2 - n1) = O(n2) - 1 then 

,\(n1) + ,\(n2 - n1) = p,\(n2) :p 0(modp2). 
Note that p,\(n2) = 0(modp). 

c)If O(n1) = O(n2 - n1)::; O(n2)- 2 then ,\(n1) + .,\(n2 - n1) = 0(modp2). 

We prove part (c) as an example. If O(n1) = O(n2 - n1) = i, say, then n 2 = 
n;pi+2 for some n; E Z and set n1 = n~l for some n~ :p 0(modp). Then 

,\(ni) + ,\(n2 - n1) = n1p-i + (n2 - n1)P-i = n2p-i = n;p2 = 0(modp2). 
The proofs of (a) and (b) are analogous. 

2.6 The consistency constraint 

Notation: 
Let qi= ,\(Vi);i = 1,2,3,4 and let ni = 7r1(vi);i = 1,2,3,4. Further, for 

v = (n, c), set O(v)=O(n). 
We will define relations Ep,P = P1,P2 on global samples (vi, v2, v3, v4) such 

that if the p-channel is perfectly tiled and 

then 

We will define Ep by placing conditions on a global sample which eliminate 
all possible relations between the p-orders of the cells except Op(vi) equal for 
1::; i ::; 4. 

2.6.1 Constructing the relations EPi 

Set p = Pl or p2. We construct the relation Ep. 
Let ,\ be some perfect p-tiling. 
Take any global sample (q1, q2, q3, q4). 
Now by the definition of,\: ,\(ni) = nip-O(n;)(modp2) 
( we get the right hand side by eliminating all trailing zeros). 
Let 1 ::; /::; 4 be such that n1 has the lowest p-order of n1, n2, n3, n4. 
Set ei = O(ni) - O(n1) for i = 1, 2, 3, 4, note that ei 2:: 0. 
Now, since n2 - n1 = n4 - n3, we have 

So multiplying through by p-O(n,) we obtain 
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This is the equation we will work with. Now we know that whatever global 
sample was taken, it will be the case that ei = 0 for some 1 ~ i ~ 4. 
We want to specify conditions under which ei = 0 for all 1 ~ i ~ 4. This will 
imply that the p-orders of all four cell coordinates are the same. 
We do this by setting up conditions which rule out each case in which ei > 0 
for some i. 

By cases: 

a)If ei > 0 for exactly 3 different i then e1 = 0 by definition and the three terms 
A(ni)Pe;; i # I are all multiples of p, this means that A(nl) = 0(modp), which is 
impossible by the definition of A. It follows that it is impossible for one term of 
a global sample to have p-order lower than all the rest. 

b )If ei > 0 for only one i say ek > 0, I ~ k ~ 4, then it follows that A( n 2) -
A(ni) # A(n4) - A(n3)(modp). 

So to rule out this possibility we require that 
l)A(n2) - A(n1) = A(n4) - A(n3)(modp). 

c)If ei > 0 for exactly two i, then by cases: if e1, e2 > 0 and e3 = e4 = 0 then 
A(n4) - A(n3) = 0(modp). 

To rule out this possibility we require that A( n4) - A( n3) # 0(modp) i.e. 
that 

2)q4 - q3 # 0(modp). 
By the same method as above, to rule out the possibility that any other two 

ei are 0 we require that the following be incongruent to 0 modp: 
3)q3 - q1 ; 4)q1 + q4 ; 5)q2 + q3 ; 6)q4 - q2 ; 7)q2 - q1. 
The inequalities modp are not all independent but are stated thus for clar­

ity. If conditions 1-7 are met then the coordinates of the sampled 4-tuple will 
have the same p- order. 

2.6.2 Definition of EPi 

So, for p = P1 and p2 define: 
Ep(q1,q2,q3,q4) iff 

qi = A(l/i) and (v1, v2, V3, v4) E R1 and: 
q4 - q3 = q2 - q1(modp) 

and the following are incongruent to 0 mod p: 
q2 - q1, q4 - q3, q3 - q1, q1 + q4, q2 + q3, q4 - q2. 

It then follows that if the p-address channel is perfectly tiled, then 

Ep(q1, q2, q3, q4) iff Op(n1) = Op(n2) = Op(n3) = Op(n4). 

The point of setting conditions Ep; is using them to identify cells with equal 
Pl - and p2-orders, in order to force such cells to contain the same tile in the 
data channel. 
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2.6.3 The consistency condition 

Let 7r'i be the projection function onto the i-th channel of a cell. 
Given a global sample (s1, s2, s3, s4) of a perfect tiling. 

If Epi(1ri(s1), 1ri(s2), 1ri(s3), 1ri(s4)) for i = 1 and 2 then 

1r3(s3) = 1r3(s4). 

2.6.4 The consistency condition effectively imposes the 
consistency constraint 

The gist of the following theorem is that if n1, n2 E Z have equal Pi-orders for 
i = 1 and 2, then we can force the cells at coordinates n1 and n2 to contain the 
same tile in the data channels. 

Instead of treating all possible combinations of positions of cells with coor­
dinates n1 and n2 (both on the first tape, both on the 2nd tape, one on each 
tape) seperately, we prove the following theorem. 

Theorem 2.4 (E.2) Given any perfect p1 -tiling A1 and any perfect 
P2-tiling A2 and any given n1, n2 E Z with Op; ( ni) = Op; ( n2) for i = 1, 2. 
There are n, m, m1, m2 E Z such that m1 - m = n1 - n, m2 - m = n2 - n 

and for i = 1, 2; j = 1, 2: 
Ep;(Ai(m, 1), Ai(m;, 2), Ai(n, 1), Ai(nj, 2) and 
Ep;(Ai(mi, 1), Ai(m, 2), Ai(ni, 1), Ai(n, 2). 

In other words the p1- and p2 address channels of the following global sam­
ples: 

l)((m, 1), (m1, 2), (n, 1), (n1, 2)), 2)((m, 1), (m2, 2), (n, 1), (n2, 2)) 
3)((m1, 1), (m, 2), (n1, 1), (n, 2)), 4)((m2, 1), (m, 2), (n2, 1), (n, 2)) 

satisfy Ep 1 and Ep 2 respectively. 
Note that n1 and n2 both appear for both tapes. 
Clearly, if we can force the tuples in 1-4 to have the same tile in the data 

channels then all cell-coordinates with equal Pi orders for i = 1 and 2 will have 
the same tile in the data channel. 
Proof: 

We first find n, m, m1, m2 which satisfy the above conditions. 
Given any n1, n2 with equal Pl and P2 orders say 

Then we want n, m to have the same orders so set 
n = Np~ 1 p;2 , 
m = Mp~ 1 p;2. 
Then set m1 = m - n + n1 and m2 = m - n + n2. 
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In order to deal with congruences modp1 and modp2 we temporarily intro­
duce N1, N2 for N and M1, M2 for M. We require N1 to satisfy the conditions 
modp1 for N, and N2 the conditions modp2 for N. N is then chosen using the 
Chinese Remainder Theorem. We do exactly the same for M. For this purpose 
we take 0 ~ Ni, Mi~ Pi• 

To ensure that the P1- and p2-orders of n, m are e1 and e2 respectively, we 
require that 

l)N1 -:/= 0(modp1), N2 -:/= 0(modp2), 
2)M1 -:/= 0(modp1), M2-:/= 0(modp2). 
To ensure that m1 and m2 have pi-order e1 and p2-order e2 we require that 
3)M1 - N1 + A1(n1)-:/= 0(modp1), M2 - N2 + A2(n1) -:/= 0(modp2), 
4)M1 - N1 + A1(n2)-:/= 0(modp1), M2 - N2 + A2(n2)-:/= 0(modp2). 
For the tuples 1-4 to satisfy Ep 1 and Ep 2 we must have: 
A1(n1) - A1(n) = A1(m1) - A1(m)(modp1), 
A2(n1) - A2(n) = A2(m1) - A2(m)(modp2), 
A1(n2) - A1(n) = A1(m2) - A2(m)(modpi), 
A2(n2) - A2(n) = A2(m2) - A2(m)(modp2). We can write these conditions 

as: 
a)..Xi(nj) - Ai(n) = Ai(mj) - Ai(m)(modpi); i = 1, 2; j = 1, 2. 
This condition follows directly from condition 1 of EPi for i = 1, 2. 
Also each of the following must be incongruent to 0( mod pi). 
For i = 1: 2; j = 1, 2: 
b)..Xi(mj)- Ai(m), c)Ai(nj)- Ai(n), d)Ai(n)- Ai(m), 
e )Ai ( m) + Ai( nj ), f)Ai( n) + Ai( mi), g)Ai( nj) - Ai( mi). 
These conditions follow directly from conditions 2-7 of Ep; for i = 1, 2. 
We must find n, m, m1, m2 which satisfy the above. 
If we can choose N, M by the Chinese Remainder Theorem so that 1-4 are 
satisfied with Ni, Mi replaced by N, M then we will have: 
Opi(n1) = Opi(n2) = Opi(n) = Opi(m) = Opi(m1) = Opi(m2). 
If, further, n is chosen such that 
OPi(n) = OPi(n1 - n) = OPi(n2 - n)[= Opi(m1 - m) = OPi(m2 - m)], 
then by 1-4 and a) of the tiling lemma 
Ai(nj) - Ai(n) = Ai(ni - n) = Ai(mj - m) = Ai(mj) - Ai(m)(modp). 
In other words 
Ai(nj) - Ai(n) = Ai(mj)- Ai(m)(modp), which is condition (a) above. 
To obtain this , we have further requirements on Ni: 
5)Ai(n1) - Ni-:/= 0(modpi), 
6)Ai(n2) - Nii= 0(modpi)-
Which will give 

O(n1 - n) = O(n2 - n) = O(n). 

It will then follow from (a) that 
(b)Ai(mj) - Ai(m) i= 0(modpi), 
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(c).-\i(nj) - .,\i(n)-:/ 0(modpi), 
since they are congruent to Ai ( mi - m) -:/ 0( mod pi) by the definition. 
To satisfy ( d) we require that Ni, M; satisfy: 
7)Ni - Mi -:/ 0(modPi)-
To satisfy ( e) we require that Mi satisfy: 
8) Mi+ .-\i(n1)-:/ 0(modpi), 
9) Mi+ .-\i(n2)-:/ 0(modpi)­
Finally, ( f) and (g) will follow from 

and 

It now remains to show that Ni and Mi can be chosen to satisfy the condi­
tions 1.-9 and to construct N, M from them. 

Conditions 1-9 eliminate at most Pl choices for (N1, Mi) and at most P2 
choices for (N2, M2). Consider conditions 3 and 5 as examples: 

(3) M1 - N1 = -.-\1(n1)(modp1), M2 - N2 = -.-\2(n1)(modp2). At most 
one value for Ni is eliminated for fixed Mi, therefore at most Pi pairs (Ni, Mi). 

(5) Ai(n1) - Ni -:/ 0(modPi)- This eliminates at most one value for Ni, so 
again at most Pi pairs (Ni, Mi)-

In total then, at most 9pi pairs are eliminated for (Ni, Mi). 
We will therefore use Pi ~ 10 which will enable us to choose pairs ( N 1, Mi) 

and (N2, M2) satisfying conditions 1-9. Now given N1 = k(modpi), 0 < k ~ Pl, 
N2 = l(modp2), 0 < l ~ P2, with Pl and P2 relatively prime. Then by the 
Chinese Remainder Theorem we can find an N such that N = k(modp1), 
N = /(modp2). 

Therefore N satisfies conditions 1-9 (replacing N1 and N2 with N). 
Analogously for M. This completes the proof of E.2. 

2. 7 The adjacency constraint 

For the adjacency constraint, we need further relations Ip, for p = P1,P2 such 
that for any perfect p-tiling .-\: 

if Ip(.-\(v1), .-\(v2), .-\(v3), .-\(v4)) for some global sample (v1, v2, v3, v4) then 
Op(v1) = Op(v2) = Op(v3) = Op(v4) - 1, 
i.e. n4 hasp-order one more than n1, n2, n3. 

We will then combine Ep and Ip to identify 'adjacent' cells. 

2. 7 .1 Constructing the relations /Pi 

Let p = P1 or p2, and let the p-channel be perfectly tiled. 
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As in the proof of E1 let n1, 1 ~ / ~ 4 have the lowest p-order amongst 
n1, n2, n3, n4 and let ei = O(ni) - O(n1). We will find conditions under which 

Now n2 - n1 = n4 - n3 so 
q2pO(n2) - q1pO(n1) = q4pO(n.) - q3pO(n3)( mod p ), since qip(n;) = ni( modp ). 
Multiplying through with p-O(n,) we again get 
i)q2pe2 - q1pe1 = q4pe,. - q3pe3(modp). 
If ei > 0 for exactly three i then as before, q1 = 0(modp), which is impossi­

ble. 
To rule out the possibility that exactly two ei are zero we use the same 

conditions as in Ep;, i.e. we require that the following be incongruent to 0( mod 
p): 

l)q2 - qi, 2) q4 - q3, 
3)q3 :_ q1, 4) q1 + q4, 
5)q2 + q3, 6) q4 - q2. 
We want e4 > 0 (specifically e4=l) and we have from (i) that 
q4p4 = q2P2 - q1pel + q3p3(modp), 
we therefore require that 
7)q2 - q1 + q3 = 0(modp) 
(this also rules out the possibility that all four ei = 0). 
We now find conditions on our sample which force the case e1 = e2 = e3 = 0, 

this will mean that e4 > 0. 
It follows from condition (7) above that the following are all incongruent to 

0(modp): q3 - qi, q2 + q3, q2 - q1, since qi f. 0(modp). 
Now if e1 > 0 and e2 = e3 = e4 = 0 then from (i): 
q2 - q4 + q3 = 0(modp), and from (7) 
q1 - q2 - q3 = 0(modp), therefore q1 - q4 = 0(modp). 
To eliminate this possibility we require that 
8) '11 - q4 f. 0(modp). 
If e2 > 0 and e1 = e3 = e4 = 0 then by (i) 
-q1 - q4 + q3 = 0(modp), so also -q2 - q4 = 0(modp), 
since we require that -q2 = -q1 + q3 by (7). 
To avoid this case we require that 
9)q2 + q4 f. 0(modp). 
If e3 > 0 and e1 = e2 = e4 = 0 then from (i): 
q2-q1 -q4 = 0( mod p), so -q3-q4 = 0( mod p) since (7) implies -q3 = q2 - q1(modp). 

To avoid this case we require that 
10)q3 + q4 f. 0(modp). 
So the only remaining possibility is that e1 = e2 = e3 = 0 and e4 > 0. We 

want conditions under which e4 = 1. 
If e1 = e2 = e3 = 0 and e4 2: 2 then O(n1) = O(n2) = O(n3) ~ O(n4) - 2, 

then by ( c) of the tiling lemma: 
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.,\(n3) + .,\(n4 - n3) = 0(modp2), but n4 - n3 = n2 - n1 and 
O(n4 - n3) = O(n3) < O(n4) so 
.,\(n3) + .,\(n4 - n3) = .,\(n3) + .,\(n2 - n1) 
= .,\(n3) + .,\(n2) - .,\(n1) = q3 + q2 - q1(modp2) 
by (a) of the tiling lemma. 
To eliminate this possibility we require that 
q3 + q2 - q1 =/:- 0(modp2). 
This completes the construction. 

2. 7 .2 Definition of !Pi 

For p = Pl and P2, (111,112,113,114) E R1 and qi = .,\(vi) define: 
Ip(q1,q2,q3,q4) iff 

q1 - q2 - q3 = 0(modp), 
q1 - q2 - q3 # 0(modp2) 

and each of the following is incongruent to 0( modp) 
q4 + q1, q4 - q1, 
q4 + q2, q4 - q2, 
q4 + q3, q4 - q3. 

We now combine Ep; and Ip; to set up the adjacency condition. 

2. 7.3 The adjacency condition 

Given a global sample ( s1, s2, s3, s4). 

and 

then 

2. 7.4 The adjacency condition effectively imposes the ad-
jacency constraint 

The gist of the proof of the next theorem is that given any Pi-orders ei, then 
there is some global sample of cells which have equal Pi-orders and the fourth 
cell has P3-i-order one higher than the rest of the cells. 

The adjacency condition will then ensure that any accepted tiling will be 
such that the pair of tiles in the data channels of the third and fourth cells, 
form a pair in A3-i. 

Formally: by Ip: Op;(v3) = Op;(v4) - 1 = ei, and by Ep: 
OP3-i (v3) = OP3-i (114) = e3-i• 
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Hence, by the mapping between the tapes and the plane: ,.\3(v3) = r( e1, e2) 
and ,.\3(v4) = r( e~, e;) where, if i = 1, then e~ = e1 + 1 and e; = e2 and if i = 2, 
then e; = e2 + 1 and e~ = e1. But then by the adjacency condition in 2. 7.2: 
(1r3(s3), 1r3(s4)) E Ai. 

Theorem 2.5 (I.2) We prove the following: 
Let ,.\i;i = 1,2 be perfect Pi-tilings. Take any e1,e2 EN. Then for i = 1,2 

there is some global sample: (v1, v2, v3, V4); Vi E Z x l, 2 
such that 

and 

We do the case i = 1, the case i = 2 is analogous. Let ni = 1r1(vi), then 
n1, n2, n3, n4 will have the following form: 

n.1 = kp1 1 p;2 k f= 0(modpi), 
n2 = lp~ 1 p;2 l f= 0(modpi), 
n3 = mp1 1 p;2 m f= 0(modpi), 
n4 = np?p;2 +1n f= 0(modpi) with 
n = m + (l - k), since n2 - n1 = n4 - n3. 
This will ensure that Op;(v1) = ei. 
We treat the condition lp 2 first. 

We want k, l, m to be such that 

so by the definition of Ip we require that 
l),.\2(ni) - A2(n2) - A2(n3) = 0(modp2), 
2),.\2(n1) - A2(n2) - A2(n3) f= 0(modp~) and 
3) The following be f= 0(modp2): 
A2(n4) ± A2(n1), 
A2(n4) ± A2(n2), 
A2(n4) ± A2(n3), 
Consider condition (1). 
If we can choose k, l, m such that 
i)Op2( n3) = Op2( n4 - n3) = Op2( n4) - 1 then by (b) of the tiling lemma 
A2(n3) + A2(n4 - n3) = 0(modp2), but n4 - n3 = n2 - n1 so if we also can 

get that 
ii)Op2(n2 - n1) = Op2(n1) = Op2(n3) then by (a) of the tiling lemma 
A2(n2 - n1) = A2(n2) - A2(n1)(modpD, so 
A2(n3) + A2(n4 - n3) = A2(n3) + A2(n2 - n1) 
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= A2(n3) + A2(n2) - A2(n1)(modpD. 
This gives 

A2(n3) + A2(n2) - A2(n1) = 0(modp2). 

Consider conditions (i) and (ii). 

We have that n4 - n3 = np~e 2 +1)p! 1 
- mp~ 1 p;2 = (np2 - m)(p~ 1 p; 2

) 

= ([m + I - k]p2 - m)p~ 1 p; 2
• Remember n = m + I- k. 

So for (i) we require that (m - (k - l))P2 - m -:j; 0(modp2), i.e. 
a)(p2 - l)m - (k - l)p2 # 0(modp2). 
For (ii) n2 - n1 = (k - l)p?p;2 so we require that 
b)k - I -:j; 0(modp2). 
Consider condition (2). 
Working backwards with the calculation in (ii) above, we have 
A2(n1)- A2(n2)- A2(n3) = -,\2(n2 - n1)- A2(n3) = -..\2(n3)- ..\2(n4 - n3) 
= -(,\2(n3) + A2(n4 - n3))(modd). 
Now'Op2(n4) = Op2(n3) - 1, so ..\2(n3) + A2(n4 - n3) # O(modp~) which 

gives -(,\2(n3) + -\2(n4 - n3))-:/; O(modp~). 
So if (i) is satisfied then (ii) is also satisfied. 

Condition (3) requires that the following be incongruent to 0(modp2): 
c)( n ± k )p~1, d)( n ± l)p~1, 
e)(n ± m)p! 1

, 

by the form of n1, n2, n.3, n4. 
We now treat the condition Ep 1 • By definition of Ep, we must have that 
l),\1(n4) - A1(n3) = ..\1(n2) - A1(n1)(modp1), 
and that the following are incongruent to 0( modp): 
2),\1(n2) - A1(ni), 
3),\1 ( n4) - ..\1 ( n3), 
·4)..\1 ( n3) - -\1 ( n1 ), 
5),\1 ( n1) + A1 ( n4), 
6)..\1 ( n2) + A1 ( n3), 
7),\1(n4) - A1(n2). 
For (1),(2) and (3) we require that 

..\1(np?p~e2+1))- A1(mp?p;2) = ..\1(lp~ 1 p;2
) - A1(kp?p;2

) # 0(rnodpi). 
By the definition of ..\1(n), to satisfy the above, we require: 

np~e 2 +1) - mp;2 = lp;2 - kp; 2 -:j; 0(modpi). 

We can rewrite this as 
f)(np2 - m)p;2 = (I - k)p;2 # 0(modp1). 
Analogously, ( 4),(5),(6),and (7) reduce to the conditions: 
g)(m - k)p;2 # 0(modp1), 
h)kp; 2 + (m + l - k)p; 2 +1 # 0(modp1), 
i)(l + m)p;2 # 0(modpi), 
j)(m + l - k)p;2 - Ip?# 0(modp1). 
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We have so many conditions now, also depending on the values of p 1 and p2 
that instead of showing that not all possible choices are eliminated as was done 
in E, we give an explicit choice for k, I, m, n for Pl = 10, P2 = 11: 

k = 2, / = 4, m = Pi - 2, n = l, 
in our case i = 2 so m = 9, for i = 1 we have m = 8. 

It is routine to check that these choices satisfy the conditions (a) to (j). 
This completes the proof of h. 

2.8 Accepted tilings of the plane map to ac­
cepted tilings of the tapes and conversely 

Plane to tapes: 

Given an origin constrained tiling system 'D. Let r : N x N --.. D be an 
accepted tiling of N 2. 

We define a tiling of Z x l, 2: 

.,\3(0, 1) = .,\3(0, 2) an arbitrary element of D. 

Define 
.,\(n, c) = (.,\1(n, c), A2(n, c), .,\3(n, c)). 

We show that .,\ is accepted by £v. 
l)If vi, v2, v3, Z14 E Z x l, 2 and Zp(.,\;(v1), .,\i(v2), .,\i(v3), .,\i(v4)) then 
0 p ( l/1) = 0; i = 1, 2 
By the definition of .,\3 and the fact that r(0, 0) E Do we have that .,\3(v1) E Do. 
That is, (2) of 2.2.2 is satisfied, since if any local sample satisfies Zp

1 
and 

Zp 2 then the first cell has pi-order 0 and p2-order 0 by (Z) so by the mapping 
.,\3 the tile in the data channel is a tile in Do. 

Further, (1) of 2.2.2 is satisfied since if any global sample satisfies Ep 1 and 
Ep2 then the P1 - and p2-orders of all the cells are equal so by the mapping .,\3 
they all have the same tile in the data channel. 

Finally, (3) of 2.2.2 is satisfied since if any global sample satisfies Ep 3 _; and 
Ip; then the P3-i-orders of all the cells are equal (specifically those of n3, n4) 
and the Pi-order of n4 is one more than the Pi-order of the rest. 

Then by the mapping .,\3 and the fact that r satisfies V, H we have that the 
pair ( .,\3( v3), >.3( v3)) is in Ai, 

Tapes to plane: 

Suppose £v accepts a tiling /3. Assume that both address-channels are 
perfectly tiled. The next chapter will justify the assumption. 
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Define a tiling of the plane; r : N x N __,. D as follows: 

r(e1, e2) = 1r3(>.(n, c), where Op;(n) = ei for i = 1, 2. 

Note that n is any integer with Pi-order equal to ei; i = 1, 2. 
This is a well defined function by theorem E.1.We show that r is accepted 

byV. 
Origin constraint: the tile at the origin is by the mapping r the same tile as 

appears at any v on the tapes with p1- and p2-orders 0. By Z this tile must be 
in Do, since the tape tiling is accepted. 

Adjacency constraints: let e1, e2 E N and let i = 1 or 2. Then by J.2 there 
is some global sample (v1, v2, v3, v4) such that 

Op,(v1) = ei for j = 1, 2, lp;(>.i(v1), >.i(v2), >.i(v3), >.cv4)) and 
Ep 3 _; (.-\3-i( vi), .-\3_i(v2), .-\3_i(v3), .-\3_i(v4)). 
By Ip: Op;(v3) = Op;(v4)-l = ei and by Ep: Op3 _;(v3) = Op 3 _;(v4) = e3-i• 

Hence >.3(v3) = r(e1, e2) and .-\3(v4) = r(e1, e2) where, if i = 1, then e1 = e1 + 1 
and e2 = e2 and if i = 2, then e2 = e2 + 1 and e1 = e1. But then by the 
adjacency constraint: if i = 1 then A1(r(e1, e2), r(e1 + 1, e2) or if i = 2 then 
.A.2(r(e1, e2), r(e1, e2 + 1). So the adjacency constraint is satisfied. 

Informally: given any coordinate-pair on the plane, then there are cells one 
of which hasp-orders the coordinate-pair and the other having one p-order the 
same and the other p-order one more. This pair of cells is forced by the adjacency 
conditions to have tiles in the daLa-channels such that the pair of data channel 
tiles is a pair in Ai. By the mapping to the plane, the horizontally or vertically 
adjacent pair of tiles, form a pair in Ai. 

References: 
Linear sampling problems are first described by Aanderaa and Lewis,(2], 

deriving from the automata of Aanderaa,[1). 
The 1-systems of Aanderaa and Lewis,[2) are single tape versions of the two 

tape systems of this chapter, which are due to Lewis,(20). 
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Chapter 3 

Less-than-perfect tilings 

3.1 Introduction 

In the previous section we showed the following: if the address channels of a 
tiling are perfectly tiled, then we can identify cells with equal Pi-orders, cells 
with Pi-orders zero and cell pairs with Pi-orders corresponding to vertically or 
horizontally adjacent cells on the plane. We then set up conditions on the data 
channels of local and global samples which satisfy Zp;, Ep; 1 Ip, and found that 
these conditions are equivalent to our conditions on tilings of the plane in that 
a tiling of the plane codes for a tiling of the tapes and conversely. 

Our assumption all along was that the address channels contain the correct 
information, i.e. that the address-channels were perfectly tiled. 

-We have blithely ignored the fact that if a tiling is accepted, then any trans­
late of the tiling will also be accepted, that is, our sampling conditions are not 
sensitive to (independent) movement of the two tapes. This follows directly 
from the sampling conditions, G and L of section 2.1. A translation of a per­
fect tiling throws out our correlation between tilings of the tapes and the plane, 
specifically, the two tapes need no longer have the same entries in cells with the 
same coordinates. 

Figure 10 shows a translation of a perfect tiling, with k, m ~ 0. 

p1 address channel 

p2 address channel 

data channel 

p1 address channel 

p2 address channel 

data channel 

~(m-5) 

~(m-S) 

-5 

~(m-4) 141<m-3) 

Af>i(m..,4) ½(m-3) 

-4 -3 

fig 10 
. 

~(m-2) ~(m-1) ~(m) ~(m+I) ~(m+2) ~(m+3) 

½<m-2) "-Pi(m-1) ~(m) Af>i(m+l) ~(m.+2) ~(m+J) 

-2 -1 0 2 3 
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We have gone to great trouble to set up an internal coordinate system for 
the tapes by 'numbering' the cells, only to find that we cannot keep the tapes 
still! 

Now if a linear sampling system accepts some translate of a perfect tiling 
then it also accepts a perfect tiling, which as was shown, can be mapped to 
an accepted tiling of the plane. But what if 'worse' tilings are accepted than 
translates of perfect tilings i.e. how much can an accepted tiling differ from 
a perfect tiling? This is a crucial question since the constructions in the first 
chapter depend on the address channels being perfectly tiled. 

In this section we will deal mainly with the address channels, and specifically 
with the question: 

To what extent can the address channels of an accepted tiling differ 
from the address channels of a perfect tiling, and can an accepted 
tiling of the tapes in each case be mapped to an accepted tiling of the 
plane? 

If we can no longer assume that address channels are perfectly tiled then the 
only way to try to ensure this is to place conditions on local and global samples 
of entries( tiles) in address channels. 

3.2 Conditions on address channels 

3.2.1 The local condition 

If we examine the example of the perfect tiling of an address channel for 
n = 1, ... , 120 and p = 10 in 2.3.2 then it is apparent that sequences of p - 1 

out of p tiles are consecutive numbers. Every p cells the tiling 'jumps'. For 
cells of order 1 the jump is 'half-predictable' in that the entries in the address­
channels of such cells are determined (modp) by the entry in the address­
channel of the preceding cell , on the other hand, at cells of order 2 or more we 
cannot predict the 'jump' at all from the entry in the address channel of the 
preceding cell. 

Note that the tiling lemma is a direct consequence of this fact generalized 
to arbitrary p-order. 

It would therefore be natural to set up as local condition on an address 
channels, the condition Lp, p = Pl or P2, which we now define. 

Definition of Lp; 

Let p = P1 or P2;p ~ 10. 
Lp contains the following 4-tuples: 

for 0 ~ x ~ p - 1, the tuples 
(xi, x(i + 1), x(i + 2), x(i + 3) ; where 1 ~ i ~ p - 4, 
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for O ~ x < p - 1, the tuples 
(x(p- 3),x(p- 2),x(p- 1),a(x+ 1)) 
(x(p- 2),x(p- 1),a(x + 1),(x+ 1)1) 
(x(p - 1), a(x + 1), (x + 1)1, (x + 1)2) 
(a(x + 1), (x + 1)1, (x + 1)2, (x + 1)3) ; where O ~a~ p - 1, 

for x = p - 1,the tuples 
((p - l)(p- 3), (p - l)(p - 2), (p- l)(p- 1), ab) 
((p - l)(p - 2), (p - l)(p - 1), ab, 01) 
((p - l)(p - 1), ab, 01, 02) 
(ab, 01, 02, 03) ; where O ~ a ~ p - 1, 0 < b ~ p - 1. 

These conditions will ensure that under some translation, cells of order 0 
will be perfectly tiled and cells of order 1 will be correct modp which by the 
discussion above is the best we can do with the local condition. 

To place restrictions on the address channels of cells of p-order 2 or higher, 
we must place restrictions on global samples. 

3.2.2 The global condition 

Let Ap be a perfect tiling of address-channel p: 
Given p = Pl or P2, then the tiling lemma implies the following: 
if n1, nk E Z then Ap(nk - n1) is congruent (modp2) to one of the following: 
l)..X(nk) - ..X(n1) if O(n1) = O(nk - n,) = O(nk) 
2)p..X(nk) - ..X(n1) if O(n1) = O(nk - n1) = O(nk) - 1 
3).A(nk) - p..X(n1) if O(n2) = O(nk - n1) = O(n1) - 1 
4)-t\(nz) if O(n1) = O(nk - n1) ~ O(nk) - 2 
5)..X(nk) if O(n2) = O(nk - n1) = O(n1) - 1 
6)[..X(nk) - ..X(n1)]/p(modp) if O(n1) = O(nk) = O(nk - n1) - 1 

in this case ..X(n1) = ..X(nk)(modp) 
7)ab: a, b arbitrary with O < b < p; 0 ~ a < p 

if O(n1) = O(nk) ~ O(nk - n1) - 2. 
In this case t\(n1) = ..X(nk)(modp2). 

These are the only possible cases since at least two of nk, n1, nk - n1 must 
have the same order and if nk, n1 have the same order then nk - n1 cannot have 
a lower order. 

Now if (q1, q2, q3, q4) is some global sample of address channels of a perfect 
tiling at say n1, n2, n3, n4, then, since qi := ..X(ni) and n2 - n1 = n4 - n3, we 
have that 

t\(n2 - n1) = ..X(n4 - n3). 

Therefore, some term in the set 
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is congruent modp2 to some term in the set: 

or 

and some term in the first set is congruent modp to the term (q4 - q3)/p, 
or 

and some term in the second set is congruent modp to the term (q2 - q1)/p, 
or 

Conversely if for some arbitrary 4-tuple ( q1, q2, q3, q4) we have any of the 
above congruences, then we can always find n1, n2, n3, n4 such that .-\(ni) = qi 
and n2 - n1 = n4 - n3, by adding multiples of p2 to the qi; 1 ::; i::; 4. 

3.2.3 Definition of GPi 

From the above discussion, we can define the global sampling conditions for 
Pi-address channels as follows. 

For p = P1, P2= Gp(q1, q2, q3, q4) iff 
some term in the set { q2 - q1, pq2 - q1, q2 - pq1, -qi, q2} is congruent modp2 

to some term in the set { q4 - q3, pq4 - q3, q4 - pq3, -q3, q4}, or 
q4 = q3(modp) and some term in the first set is congruent modp to the 

term (q4 - q3]/p, or 
q2 = q1(modp) and some term in the 2nd set is congruent modp to the 

term [q2 - q1]/p, or 
q2 = q1(modp2) or q3 = q4(modp2). 

3.3 Accepted imperfect tilings 

Any other tiling of which all the globally sampled 4-tuples of tiles in Pi-address 
channels are in the sets Gp; and local samples are in the set Lp;, will be accepted. 
We of course would like that accepted tilings are at worst, translates of perfect 
tilings. This hope is forlorn. 

We call a tiling of address channels which is not a perfect tiling, an imperfect 
tiling. 

Since we used only the tiling lemma to define condition Gp, any other tiling 
satisfying the tiling lemma will be accepted. In the next section we construct a 
tiling which is accepted but far from perfect. 
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3.3.1 Construction of an imperfect but accepted tiling 

For i = 1 or 2, let O(n) = Op;(n) and ,\(n) = Ap;(n). 
By (a) of the tiling lemma: if O(n1) = O(n2) = O(n2 - n1) then we must 

have that 

1.0.W. 

,\(n2) - ,\(n1) = ,\(n2 - n1)(modp2). 

This will be satisfied if the difference between consecutive cells of the same order 
is the same (modp2). 

Consider the following piece of perfect tiling: 
A1o(n) of n = 1, ... , 140 

01 02 03 04 05 06 07 08 09 01 11 12 13 14 15 16 17 18 19 02 
21 22 23 24 25 26 27 28 29 03 31 32 33 34 35 36 37 38 39 04 
41 42 43 44 45 46 47 48 49 05 51 52 53 54 55 56 57 58 59 06 
61 62 63 64 65 66 67 68 69 07 71 72 73 74 75 76 77 78 79 08 
81 82 83 84 85 86 87 88 89 09 91 92 93 94 95 96 97 98 99 01 
01 02 03 04 05 06 07 08 09 11 11 12 13 14 15 16 17 18 19 12 
21 22 23 24 25 26 27 28 29 13 31 32 33 34 35 36 37 38 39 14 

Digits in bold are in cells of order 1. It is apparent that the entries in cells 
immediately preceding ,\(10) and ,\(110) are the same. The local condition 
cannot force cells of order 1 to be correct modp2 ( we can only force them be 
correct modp), we can therefore replace the digit-pairs in cells of order 1 with 
others which equal them modp. If we just ensure that the entries are such that 
any two consecutive cells of order 1 differ by the same number (modp2), the 
tiling remains accepted but is no longer perfect. 

The first few numbers of order 1 are: 
10,20,30,40 having as values for ,\(n):01 02 03 04. 
We can change 01 to 11 to get the sequence 
11 22 33 44 ... (from 11 22 33 44 ... ), 
or to 21 to get the sequence 
21 42 63 84 ... (from 21 42 63 84 ... ), 
or to 51 to get the sequence 
51 02 53 04 ... (from 51102 153 204 ... ), and so on. 

Each new sequence is the same modp as the original sequence, we have just 
replaced 01 by some kl(O ~ k < p), multiplied all terms of order 1 with kl and 
taken the remainder modp2 to get the new cell entries for cells of order 1. 

Formally we set q(n) = rem((,\(n)(kp + 1)),p2) for all n of order 1. 
Part (b) of the tiling lemma requires that for a cell of order 2, we must have 
that 

,\(a)+ ,\(b - a)= p,\(b)(modp2), whenever O(a) = O(b - a)= 1 = O(b) - 1. 
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This means that when we reach a multiple of kl which is of order 2 namely 
(pkl, 2pkl, .. ), then the digits in the cell of order 2 (with coordinate mpkl; 
m # 0(modp)) must be congruent modp2 to (mp-l)kl+kl, i.e. the 2nd digit 
of the cell must be m. This means that the digits in cells of order 2 of our tiling 
must be the same ( modp) as the digits in cells of order 2 of a perfect tiling for 
our tiling to be accepted. 

Exactly as was done for order 1 we can multiply all digits in Pi-address 
channels of cells of order 2 with some /1 where /1 is in Pi-ary notation. 

We can continue in this way for cells of order 2,3,4 and so on. That is for 
each order i 2: 1 we can multiply all digit-pairs in p-address channels with some 
number /1, 0 ~ / < p. We can choose a different /(0 ~I< p) for each order. In 
this way we construct an imperfect but accepted tiling. 

We call our constructed tiling a normal tiling. 

3.3.2 Normal tilings 

Definition of normal tilings 

Formally we can define normal tilings a( n) as follows: 

a(n) = rem(A(n)(h(O(n))p + 1)),p2
) 

where his a function: h: N - {0} _, {0, 1, .. ,p- 1}, and N - 0 denotes the 
set of natural numbers without 0. 

In the above tiling h( 0( n)) was k and / respectively for orders 1 and 2 re­
spectively. Note that a perfect tiling is a normal tiling with h(i) = 0 for all i. 
In a normal tiling consecutive cells of the same order differ by al(modp2), for 
some 0::; a< p instead of by 0l(modp2) in a perfect tiling. 

Further, as is clear from the definition: a(n) = A(n)(modp), i.e. a normal 
tiling differs from a perfect tiling only on the first digits of the double digit 
numbers in the address-channels of the cells. Note that it follows from the 
definition that normal tilings satisfy the agreement property. 

We now verify that the tiling lemma is satisfied for normal tilings. 

3.3.3 Normal tilings satisfy the tiling lemma 

If n1, n2 E Z and 
l)O(n1) = O(n2 - n1) = O(n2), then a(n1) + a(n2 - n1) = a(n2)(modp2), 
2)O(n1) = O(n2 - n1) = O(n2)- l, then a(n1) + a(n2 - n1) = pa(n2)( modp2), 
3)O(ni) = O(n2 - n1) ::; O(n2) - 2, then a(n1) + a(n2 - n1) = 0(modp2). 

These relations are easily checked using the tiling lemma for perfect tilings 
and the definition of a( n). 
We prove (2) as an example: 

a(n1) + a(n2 - n1) = A(n1)(kp + 1) + .-\(n2 - n1)(kp + 1) 
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= (kp + l)(,\(n1) + ,\(n2 - n1)) = (kp + l)p,\(n2) = kp2 ,\(n2) + p,\(n2) 
= p,\(n2)(modp2) 
= pa( n2)( modp2

) since ,\( n2 = a( n2)( modp ). 

3.3.4 The sets of global samples of address channels of 
normal tilings and of perfect tilings are the same 

Let n1, n2 E Z, then a(n2 - n1) is congruent modp2 to one of the following: 
1) a(n2) - a(n1) if O(n1) = O(n2 - n1) = O(n2), 
2) pa(n2) - a(n1) if O(n1) = O(n2 - n1) = O(n2) - 1, 
3) a(n2) - pa(n1) if O(n2) = O(n2 - n1) = O(n1) - 1, 
4) -a(n1) if O(n1) = O(n2 - n1) ~ O(n2) - 2, 
5) a(n2) if O(n2) = O(n2 - n1) ~ O(n1) - 2, 
6) [a(n2) - a(n1)]/p if O(n1) = O(n2) = O(n2 - n1) - 1. 
In this case a(n1) = a(n2)(modp). 
7) kl arbitrary, if O(n1) = O(n2) ~ O(n2 - n1) - 2. 
In this case a(n1) = a(n2)(modp2). 

So if two pairs of cells in a normal tiling ( a pair on each tape) are equidistant 
then the same congruences hold as for perfect tilings. 

But if such an equality holds for all global samples then these samples are 
also allowed in a perfect tiling, so all global samples in a normal tiling are also 
global samples in a perfect tiling. 

Conversely, a perfect tiling is a normal tiling with h( 0( n)) = 0 for all n E N. 

So we have that the set of global samples of perfect and normal tilings are 
the same . 

. Hence Gp accepts all normal tilings along with perfect tilings. 

So we have to deal with the fact that not all acceptable tilings are perfect. 

3.3.5 N orinal tilings are not too bad 

If an accepted tiling is normal the correlation between the plane and the tapes 
can still be carried out since our definitions of Zp;, Ep;, Ip; purposely relied only 
on the tiling lemma and the values modp of the entries in the address channels. 

That is, if we replace ,\ with a the constructions of Zp;, Ep;, Ip; are defined 
in exactly the same way with perfect replaced by normal and perfect tilings 
,\ of address-channels by normal tilings a. So for normal tilings the relations 
Zp;, Ep;, Ip; still correctly identify cells with the appropriate order relations and 
E.2 and 1.2 prove that the conditions are effective. 

What if there are accepted tilings which are neither perfect nor normal, nor 
translates of either? 

In the next section we show that normal tilings are nearly as bad as it gets. 
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3.4 Accepted tilings at their worst 

Let us examine an arbitrary accepted tiling: 

Our local condition on the Pi-address channel Lp; forces cells of Pi-order 0 
to be perfectly tiled under some independent translation of both tapes. This is 
clear from the discussion above. 

We will show that given any n E N, that we can shift the tiling so that both 
address channels are normally tiled for all cells of Pi-order smaller than n. By 
induction on nit will follow that we can get accepted tilings with arbitrary long 
normal segments and then Konig's infinity lemma will imply the existence of an 
accepted normal tiling, that is, a tiling for which the address channels are tiled 
normally for all orders. 

The fact that the existence of arbitrarily long accepted stretches of tiling 
by a finite alphabet implies by Konig's lemma that an accepted tiling exists, is 
the re.ason that each coordinate of N 2 must be represented infinitely often and 
at bounded intervals along at least one of the tapes. Indeed, if this were not 
the case for some coordinate n we could collect the segments of tiling between 
representations of the coordinate, and since there is no upper bound in length 
for such segments there would exist by Konig's infinity lemma, an accepted 
tiling with no representation of n at all. 

3.4.1 Aligning the address channels 

Given p = p1 or p2 , we will find a translation under which cells of p-order less 
than i have normally tiled p-address channels. We will then use the Chinese 
Remainder Theorem to show that we can align both address channels on a tape 
by a single shift of the tape. 

Basis for the Induction 

Let /3 be any accepted tiling. 
The address channels of cells of order O are normal(in fact perfect) under 

some translation. This follows from the local condition L. Specifically such 
address channels are correct ( modp) under some translation. 

Induction hypothesis 

Formally the induction hypothesis is as follows: 
The tiling /3 is such that there is some normal tiling a and integers t1, t2 

such that 

if O(n) < i then f3(n + tc, c) = a(n) and 
if O(n) = i, then /3(n + tc, c) = a(n)(modp). 

35 

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2022.

 
 
 



That is, the accepted tiling /3 is the same as the normal tiling a for p-order 
less than i and congruent modp to the normal tiling a for p-order i. 

We must then show that there is some normal tiling a' and integers t~, t; 
such that 

if O(n) < i + 1, then /3(n + t~, c) = a'(n) 

and 
if O(n) = i + 1, then /3(n + t~, c) = a'(n)(modp). 

Proof: 
We first prove the following: 

Lemma 3.4.1 For every d E Z there is an s(d); 0 < s(d) < p2; s(d) = A(d)(modp) 
such that 

/3(n + d + tc, c) - /3(n + le, c) = s(d)(modp2); c = 1, 2 

whenever O(n) = O(n + d) = i. 

Since the only non-consecutive 4 tuples we can inspect are at positions of the 
form ((n1, 1); (n2, 2); (n3, 1), (n4, 2)) we prove the following as an intermediary 
step: 

Lemma 3.4.2 If O(d) = i then there is some r(d); 0 < r(d) < p2; r(d) = A(d)(modp) 
such that 

/3(n + d + t2, 2) - /3(n + ti, 1) = r(d)(modp2) 

whenever O(n) = O(n + d) = i. 
Proof of lemma 3.4.2: 

Given m1,m2 such that O(mi) = O(m1 +d) = i = O(m2) = O(m2 +d). 
Let n be any number of order i such that A( n) + A( d) f= 0(modp) (so that 
O(n + d) = i), A(n) - A(m1 ) f= 0(modp), A(n) - A(m2) f= 0(modp), A(n) + 
A(mi) + A(d) f= 0(modp), ✓\(n) + A(m2) + A(d) f= 0(modp). We can choose 
such an n since p > 6. 

Then 

is in Gp since /3 is accepted. 

Since /3(m + tc, c) = A(m)(modp) for all m of order i by the induction hy­
pothesis, it follows from Ep that O(mj + t1) = O(mj + d + t2) = O(n + t1) = 
O(n + d + t2) = O(d + t2 - t1 ). The last equality follows from the fact that if 
O((mj +d+t2)-( mi +t1)) > O(mj +t1) then /3( mi +t1, 1) = /3( n+t1, 1)( mod p) 
which is contradictory. By ( a) of the tiling lemma it follows that 
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/3(mi + d + t2, 2) - /3(mi + t1, 1) = /3(n + d + t2, 2) - /3(n + t1, 1) mod p2 for 
j = 1, 2. It follows that /3(m1 + d + t2, 2) - /3(m1 + t1, 1) = /3(m2 + d + t2, 2) -
/3( m2 + t1, 1 )( modp2). Lemma 1.4.2 follows. 
Proof of lemma 3.4.1 
We have that /3(n + d + t2, 2) - /3(n + t1, 1) = r(d)(modp2). 

Now given n, d, di, d2 such that 
d = d2 - d1; O(n) = O(d1) = O(d2) = O(d) = O(n - d1) = O(n + d2 - di)= i. 
Then , 
/3(n + d + t2, 2) - /3(n + t2, 2) = /3(n + d2 - d1 + t2, 2) - /3(n + t2, 2) 
= /3(n + d2 - d1 + t2, 2) - /3(n - d1 + t1, 1) - /3(n + t2, 2) - /3(n - d1 + ti, 1) 
= r(d2) - r(d1)(modp2). 
Further, r(d2)-r(d1) = ,\(d2)-,\(d1) = ,\(d)( modp) by (a) of the tiling lemma. 

Now if d2 - d~ = d then 
r( d2) - r( d~) 
= /3(n + d2 - d~ + t2, 2) - /3(n - d~ + t1, 1)- (-/3(n + t2, 2) - /3(n - d~ + t1, 1)) 
= /3(n + d2 - d~ + t2, 2) - /3(n + t2, 2) = /3(n + d + t2, 2) - {J(n + t2, 2) 
= {J(n + d2 - d1 + t2, 2) - /3(n + t2, 2). 

So r(d2) - r(di) = r(d2) - r(dD if d2 - d1 = d2 - d~. 

Lemma 1.4.1 for the case c = 2 follows if we set s(d) = r(d2) - r(d1) where 
d=d2-d1. 

It also follows for c = 1 since given n, d with O(n) = O(n+d) = i we can find ad' 
with O(d') = O(n+d') = O(n+d+d') = i. Then by the result for c = 2 we have 
/3(n+d+t1, l)-/3(n+t1, 1) = /3(n+d+d' +t2, 2)-r(d')-({J(n+d' +t2, 2)-r( d')) 
= /3(n + d + d' + t2, 2) - /3(n + d' + t2, 2) = s(d)(modp2). 

This completes the proof of lemma 1.4.1. 

It follows from lemma 1.4.1 that s(kd) = ks(d)(modp2) 
whenever O(d) = O(kd) = i . 
So A) /3(kpi + tc, c) = /3(pi + tc, c) + (k - l)s(pi)(modp2) if k f. 0(modp), 

i.e. if O(kpi) = i. Since consecutive cells of i order differ by s(pi) , cells of order 
i which are (k - l)l apart differ by (k - l)s(pi). 

We want to use lemma 3.4.1 to align the tape for cells of order i, but we do 
not want to change the cells of order < i which are already correct, this can be 
done if the next translate has p-order i + 1 or larger. 

For c = 1, 2 we can choose a kc= l(modp); 0 <kc< p2 such that: 
B) /3(kcpi + tc, c) = s(l). 
This follows from (A) and the following : s( d) = ,\ ( d) ( modp) for each d of 

order i, (kc - l)s(pi) = 0(modp), /3(pi + tc, c) = ,\(pi) = s(pi) = 0l(modp2) 
(since s(d) = ,\(d)(modp) for each d of order i). It follows that we can choose 
kc so that (kc -1)+ the 1st digit of /3(pi + tc, c) add up to the 1st digit of s(pi). 
This proves (B). 
Now let le = (kc - l)pi, then 0(/c) 2: i + 1 for c = 1, 2 and 
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/3(/c + kd + tc, c) = ks(d)(modp2
) when O(d) = i and k f 0(modp). 

Therefore /3(/c + n + tc, c) = ,\(n)s(pi)(modp2 ) for each n of order i, since if 
O(n) = i then n = api for some a f 0(modp) so 

/3(/c +n+tc, c) = /3(/c +api +tc, c) = as(pi)( modp2). Now s(pi) = 1( modp) 
and ,\( n) is the last two digits having 2nd digit non-zero of n in p-ary notation 
so ,\(n) = a(modp2

). 

Now let t~ = le + tc for c = 1, 2 and let h be such that 
a::(n) = ,\(n)(l + ph(O(n))(modp2) for O(n) < i. There exists such an h by 

the fact that cells for orders less than i, are normally tiled. 
We have that J3(n + t~, c) = /3(/c + n + tc, c) = ,\(n)s(pi)(modp2 ). 

To show that the tiling is normal for cells of order i, we want that for 
O(n)::; i, /3(n + t~, c) = ,\(n)(l + ph'(O(n)))(modp2) for some h'. 

We therefore want an h' such that s(pi) = (1 + ph'(O(n)))(modp2
). 

Define : h' (j) = h(j) if j f i 
= (s(pi) - 1)/p if j = i. 

Remember s(pi) = l(modp). 
Define a::' ( n) as follows: 

a::'(n) = ,\(n)(l + ph'(O(n)))(modp2
). 

If O(n) < i we have that 
/3(n + t~, c) = /3(/c + n + tc, c) = /3(n + tc, c) 
= a::(n) = ,\(n)(l + ph(O(n)) 
= ,\(n)(l + ph'(O(n))) 
= a::'(n)(modp2 ), 

since O(/c) ~ i + 1 and O(n + tc) < i. 

If O(n) = i then /3(n + t~, c) = /3(/c + n + tc, c) 
= ,\ ( n) . s (pi ) 
= ,\( n )( 1 + ph' ( i)) by definition of h' ( i) 
= ,\(n)(l + ph'(O(n))) 
= a::'( n )( modp2). 

Therefore, under our translation the accepted tiling has normal Pi-address 
channels up to order i. 

Tiles in cells of p-order i + 1 equal a::' ( modp) 

We now show that if O(n) = i + 1 then /3(n + t~, c) = a::'(n)(modp). 
Proof: 
Let n be any integer of order i + 1. We show that we can find an n' and d such 
that n', n' + d, n - d are of order i and 

(/3(n' + t~, 1), /3(n' + d + t2, 2), /3(n - d + t~, 1), /3(n + t2, 2)) 
satisfies Ip. 
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For then: 
p{3(n + t;, 2) = f3(n - d + t~, 1) + f3(n' + d + t;, 2) - f3(n' + t~, 1) 
= a'(n - d) + a'(n' + d) - a'(n') = pa'(n) - a'(d) + a'(n') + a'(d) - a'(n') 
= pa'(n)(modp2). 

The last step follows by (a) and (b) of the tiling lemma. 

We explain the first step. If a global 4-tuple ( a( n1), a( n2), a( n3), a( n4)) satisfies 
Ip then O(n1) = O(n2) = O(n3) = O(n4) - 1 = O(n2 - n1). The last equality 
follows from the fact that at least two of O(n3), O(n4), O(n4 - n3) must be 
equal. Now it follows from (b) of the tiling lemma that 

pa(n4) = a(n3) + a(n4 - n3)(modp2
). 

Then by (a) of the tiling lemma 
a(n4 - n3) = a(n2 - n1) = a(n2) - a(n1)(modp2), hence 
pa(n4) = a(n3 + a(n2) - a(n1)(modp2

). 

Thus {3(n + t;, 2) = a'(n)(modp). 
By symmetry, if we consider the 4-tuple 

{3( n' + d + t~, 1), f3(n' + t;, 2), f3(n + t~, 1), f3(n - d + t;, 2) it also follows 
that f3(n + tL 1) = a'(n)(modp). 

We now show that given any n of order i + 1 that we can find such an n', d. 

We will choose n' and d from {pi, 2pi, .... (p-l)pi}. Then O(n') = O(d) = i and 
we want that n' + d and n - d are of order i, i.e. that ,\( n') + ,\( d) -:/= 0( modp ). 
Note that n is of order i + 1 and dis of order i so n - dis also of order i. For 
each choice of n' there are only p - 2 choices for d, a total of (p - l)(p - 2) 
choices for the pair ( n', d). 

For I we must have the following incongruent to 0 mod p: 
q4 ± qi, q4 ± q2 , q4 ± q3-:/= 0(modp). 

So {3(n + t2, 2) must be incongruent modp to each of the following: 
±{3(n' + t~, 1), ±{3(n' + d + t;, 2), ±{3(n - d + t~, 1). 

Two choices for n are eliminated, two for n' + d and two for n - d , i.e. for 
d ( n is given). Each choice eliminated for n' disqualifies p - 1 choices for the 
pair ( n', d), the same is true for each choice eliminated for d. The same follows 
for n' + d, since for each n' one d is disqualified. Therefore, (p - 2)1 pairs are 
eliminated. 

So 6(p - 2) choices are eliminated but the total amount of possible pairs is 
(p - l)(p - 2) so if p- l > 6 i.e. p ~ 8 we can find n', d as desired. 

This completes the proof. 

A useful image for the alignment of the address channels order by order is 
the following: imagine having to align some copy C of ,\(n); n E Z for p = 10 
with the sequence .-\(n); n E Z, without the ability to 'see' C globally. 
It is impossible to know globally where on C you find yourself since sequences 
of arbitrary length repeat at different places, for example, the sequence 

01 02 03 04 05 06 07 08 09 01 11 12 13 14 15 16 17 18 19 02 
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81 82 83 84 85 86 87 88 89 09 91 92 93 94 95 96 97 98 99 01 
appears in cells with coordinates 

1, ... , 100, also 1001, ... , 1100 also 2001, ... , 2100, etc. 

The best one can do is align C (or cells order O and as soon as you come 
across a discrepancy with a cell of order 1, align C so that cells of order 1 are 
correct and continue in this way for higher and higher orders. 

In general this alignment of C will not terminate since E and I can only 
help us to align the cells one order up from those which are already aligned so 
there could always be some higher order of which the cells are not yet correctly 
aligned. 

3.4.2. Combining the alignments 

It follows from the lengthy proof above that we can for Pl -and p2-address chan­
nels seperately, translate the channels of an accepted tiling in such a way that 
the p1(P2) address channels are normally tiled up to an arbitrary large P1(P2) 
order. 

We now combine the translations for the p1 address channels and P2 address 
channels to show that if we have an accepted tiling then we can shift the tapes 
to get both the first and 2nd address channels normal up to any given order. 
Remember that shifting the tapes does not spoil the acceptability of a tiling. 

By the infinity lemma(Konig) it will follow that the system accepts some 
normal tiling since it accepts arbitrary long normal segments. 

We use the Chinese Remainder Theorem: 
Let /3 be any accepted tiling and /Ji the projection function onto the ith 

address channel. Given any positive integer r, we show that /3 has a normally 
addressed segment of length 2r + 1. 

Let i + 1 be the smallest integer larger than logp 1 ( r). 
If O < lnl ::; r then Op1(n) < i + 1 and Op2(n) < i + 1 (we set Pl < P2). 
Now by the discussion in 3.4.1, for P1 and P2, there are integers t11, t12, t21, t22 

such that for some normal tiling a 
/31(n + tu, 1) = a1(n), (P1 order 1st tape), 
/31(n+t12,2) = a1(n),(P1 order 2nd tape), 
/32(n + t21, 1) = a2(n), (P2 order 1st tape), 
/32(n+t22,2) = a2(n),(P2 order 2nd tape). 
Now by the Chinese Remainder Theorem there are integers t1, t2 such that 
t1 = t11(modp/2), 
t1 = t•.n(modp~+2), 
t2 = t12(modp~+2), 
t2 = t22(modp;+2). 
Let s11 = t1 - t11, s12 = t2 - t12, s21 = t1 - t21, s22 = t2 - t22, then 

40 

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2022.

 
 
 



Op1(s11) > i + 1, Op1(s12) > i + 1; Op2(s21) > i + 1, Op2(s22) > i + 1 
and so by the agreement property, if OPi ( n) ::; i + 1, then: 

/31(n + t1, 1) = a1(n, 1), 
/31(n + t2, 2) = a1(n, 2), 
/32(n + ti, 1) = a2(n, 1), 
/32(n + t2, 2) = a2(n, 2). 

The following pair of sequences are normally addressed: 
S1 = (/3(t1 - r, 1), j3(t1 - r + 1, 1), ... , /3(t1 + r, 1)), 
S2 = (j3(t2 - r, 2), j3(t2 - r + 1, 2), ... , /3(t2 + r, 2)), 
since if O < lnl ::; r then 
Op 1 (n) < i + 1 and Op2 (n) < i + 1 hence 
f3k(n+te,c) = ak(n) fork= 1,2;c= 1,2. 

This combines the alignment for Pl -and p2-orders into a single shifting of 
the tapes. 

3.4.3 Summary 

For any accepted tiling we have that given any order i, we can move the two 
tapes so that the address channels up to order i are tiled normally. When we 
align the address channels for order i + 1 we move the tapes by some multiple 
of pi+2 which leaves the the address channels of cells with order smaller than 
i + 1 unchanged. 

In this inductive way we obtain for each l E N an accepted tiling with 
address channels normal up to order /, Konig's infinity lemma then implies that 
there is an accepted tiling with address channels tiled normally for all orders of 
Pl and P2· 

This justifies the mapping from accepted tilings of the tapes to accepted 
tilings of the plane defined at the end of chapter 1, since if any tiling is accepted 
then a tiling with normal address channels is accepted and for normal address 
channels we can use ZPi, Ep;, Ip; to place conditions on a tiling of the tapes 
which are equivalent to conditions on the tilings of the plane. 
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References: 

The first part of this chapter is an explanation (not given in Lewis,(20]) for 
the shift from perfect tilings to normal tilings in the proof in Lewis,(20]. The 
proof that any accepted tiling can be transformed into a normal tiling is the 
admissibility lemma in Lewis,[20]:p37-42. The admissible and i-admissible tilings 
of Lewis,(20] :p29 are not explicitly defined in this presentation of the proof. 

The sets Lp; and Gp; which have been defined explicitly here, are defined in 
Lewis,[20]: p23-24 essentially as the sets of local and global samples of normal 
tilings, which does not seem to be a very helpful definition. 

Lewis,(20] constructs the relations Zp;, Ep;, Ip; for normal tilings, while they are 
presented here as constructed for perfect tilings, and it is then just mentioned 
that the same constructions go through for normal tilings, these constructions 
are exactly those in Lewis,(20] and this presentation is solely to facilitate un­
derstanding of the development from perfect tilings to normal tilings. 
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Chapter 4 

A three channel version of 
the linear sampling problem 

4.1 Introduction 

In this chapter we prove a slightly different form of the linear sampling problem 
to be unsolvable. This is necessary for the application to first order logic. The 
constructions are from Lewis,[20]. 

4.2 The three channel version 

We want to demonstrate the unsolvability of the linear sampling problem for 
systems £ 9 ; 0 > 0 where 

X = Z x 1, 2, 3 

that is, the space to be tiled is three disjoint copies of the integers or three 
disjoint tapes. 

Our local sampling conditions are the same as for the previous system, except 
that we now have three tapes, that is, we may sample any 0 consecutive cells 
on any of the three tapes. 

The global sampling configurations, however, become triples of tiles: 

Further, we must show that the tiling problem for such systems is unsolvable 
even if cells on the third tape may contain only either a O or a 1 , and no local 
condition is imposed on the third tape. 

To clarify the idea of the three tape system we eventually construct, we first 
sketch an interim three-tape system. 

43 

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2022.

 
 
 



4.3 The interim system 

Let T be a two tape system, with ITI = q, and consider the following three tape 
system: 
the first two tapes contain tiles t E T, from the original system. 
We now consider the third tape. 

Set up some bijection f between pairs of tiles from T and numbers 
0, 1, 2, ... , q2 -l. That is, f(a, b) E {0, 1, 2, .. , q2-1} for each pair (a, b): a, b ET. 
Let each cell on the third tape be divided into q2 channels and let each channel 
contain either a 0 or a 1. 

For each pair of tiles let 1r1( n) = 1 indicate that the pair of tiles ( a, b) with 
f( a, b) = I appears distance n apart, with tile a on the first tape, b on the 
second. Further, let 1r1 ( n) = 0 indicate that the pair does not appear distance 
n apart anywhere on the first two tapes( one on each tape). That is, the /-th 
channel of cell n on the third tape indicates whether or not the pair of tiles 
referred to by / appears distance n apart. 

Let the global sampling configurations of our three-tape system be triples of 
coordinates : (n1, n2, n2 - n1). 

Now say we take a global sample of tiles from some n1, n2; n2 > n1 and from 
the k-th channel of n3 = n2 - n1. Let the tiles a and b appear at n1, n2 on the 
first and second tape respectively, and let f(c, d) = k. Now, a 1 in channel k 
of n2 - n 1 would indicate that the pair of tiles ( c, d) appear distance n 2 - n 1 

apart somewhere on the first two tapes. Disallowing a 1 in this position makes it 
impossible for the pair ( c, d) to appear distance n 2 - n1 apart and consequently 
for ( a, b) and ( c, d) to both appear n2 - n1 apart. 

In general, disallowing the triple (a, b, 1) where the 1 is read in channel k, makes 
it impossible for ( a, b) and ( c, d) to appear equal distance I apart, for any / E N. 

In this way we can place conditions on the three tape system which only 
allow certain pairs of tiles to appear equal distance apart on the first two tapes. 
This is of course exactly what we did in the original two-tape systems. 

4.4 The final system 

Since our tiling system must contain a single digit (1 or 0) in each cell of the 
third tape, we cannot divide the third tape into channels as in the interim 
system, instead we let q2 adjacent cells on the third tape play the role of these 
q2 channels. 

To carry through the construction in this form we must repeat each tile on 
the first two tapes q2 times, then a 1 or a 0 in the cell at dq 2 + k on the third tape 
will indicate whether or not the pair 1-1 ( k) appears distance dq 2 apart one on 
each of the first two tapes. Note that tiles appearing distance dq 2 apart in this 
system correspond to tiles appearing distance d apart in the interim system. 

The idea is exactly the same as the interim construction. 
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4.5 Conditions on the three-tape system 

An accepted tiling of Z x {l, 2, 3} will be a 'stretched' version of an accepted 
tiling of Z x {1, 2} in that the tiling of Z x {1, 2, 3} contains q2 repeats of each 
tile in Z x {1, 2}, with the numbers 0, ... , q2 - 1 written above the q2 repeats, 
as figure 11 illustrates: 

fig 11 

We fix some correspondence between {0, .. q2 - 1} and the q2 possible pairs 
of tiles in T. 

4.5.1 The correspondence 

We will show the problem unsolvable for 0 = 2, the proof for the case for 
0 = i; i ~ 2 is analogous to that for the two-tape system, at the beginning of 
chapter 2. 

Given a Z x {1, 2} tiling system,£,:= (T, L, G) we set up the conditions for 
a corresponding Z x {1,2,3} system£,'= (T',L',G'). 

Let T' = ( {O, 1, 2, ... , q2 - 1)} x T and let L' and G' be as follows. 

The local condition 

Let (s1, s2) and (s2, s3) EL, then for each j: 0 ~ j ~ q2 - 1, 
L' C T 8 contains: 

These are just the 0-tuples which would appear if we stretched out the tiling 
of Z x {1, 2} as in figure 11. 

The global condition 

a) For any s1, s2 and ii,h; 0 ~ii~ h ~ q2 - 1 with J(h - i1) = (s1, s2): 
i)( (i1, si), (h, s2), 0) (/. G', 
ii)((j1, si), (h, s2), 1) E G' iff (s1, s2, s1, s2) in G, 

( this is of course al ways the case if s 1 , s2 E T). 

This condition ensures that, if two tiles s1, s2 appear dq 2 + k apart and 
f ( k) = ( s1, s2) then a 1 appears at dq 2 + k on the third tape. 

We now place restrictions on which pairs may appear equal distances apart. 
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b) For any s1, s2 E T, and any ii, h; 0 ~ ii ~ h ~ q2 - l 
if f(h - ii)= (s3, s4) :p (s1, s2): 

i)((j1, s1), (h, s2), 0) E G' and 
ii)((j1, s1), (h, s2), 1) in G' iff (s1, s2, s3, s4) in G. 

c) For any s1,s2 ET, and any ii,h; 0 ~h <ii~ q2 -1 and fore= 0,1: 
(i1,s1,h,s2) E G'. 

Condition (b) is the condition corresponding to the global condition of £. 
Condition ( c) just means that we do not place conditions on pairs for which 
h < i1. Condition (b) on pairs for which ii ~ h suffices. 

It should be intuitively clear that the systems £ and £' are equivalent. For 
a formal proof in the form of a mapping from accepted tilings of£ to accepted 
tilings of£' and conversely, see Lewis,[20]:p47-48. 

From this the unsolvability of this form of the linear sampling problem follows. 
We can strengthen the result to the following. 

The linear sampling problem for three tapes is unsolvable, even if we restrict 
ourselves to the class of tiling-systems which are such that, if some tiling is 
accepted then a tiling with a O at coordinate zero on the third tape is also 
accepted. The following argument sketches the reason: 

Given a three-tape tiling system £ = (T, L, G) then we construct a system 
£' = (T', L', G') with T' = Tu T where T := {tit E T}. Consider the tiles l as 
the 'complements' of tiles t. Set O = 1 and I = 0. We then construct as new 
local and global conditions: 

L' =Lu {(s, t)l(s, t) EL} 

G' =GU {(s, l, 1- e)l(s, t, e) E G}. 

This means that the tilings accepted by £,' are the tilings accepted by £ 
along with those tilings where each tile is replaced with its complement. One of 
the tilings must have a O at coordinate zero on the third tape. 

References: This presentation is essentially that of Lewis,[20] except for the 
interim system constructed here. 
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Chapter 5 

First order logic 

This chapter, taken mainly from Lewis and Papadimitriou,[21], and Chang and 
Li,[6], is a very informal survey of the results and concepts needed for the proofs 
in the next few chapters. 

5.1 Language 

5.1.1 Alphabet 

The formulas of first order logic which we will work with are certain strings of 
the following symbols: 

• quantifiers: \/ and 3 

• logical connectives: V and ,; 

-., /\, - are constructed from these in the usual way. 

• a countably infinite number of variables: x, y, z . .. 

• a countably infinite number of k-place predicate signs for each k > 0: 
P,Q,R ... 

• a countably infinite number of k-place function signs for each k > 0: 
f, g, h ... (0-place function signs are constants) 

• parenthesis (). 

(Note that in first order logic quantification must be over elements of the domain, 
and not over functions or predicates.) 
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5.1.2 Terms 

Terms are recursively defined as follows: 
constants and variables are terms and if ti, t 2 , ••• , tn are terms and f is an 

n-place function sign then f(ti, t2, ... , tn) is a term. 
We write f 2 (t) for f(f(t)) and so on. 

5.1.3 Formulas 

Formulas are recursively defined as follows: 
if Pis an n-place predicate symbol, and ti, ... , tn are terms, then P(ti, ... , tn) 

is an atomic formula. Formulas are constructed from atomic formulas using the 
logical connectives, quantifiers and parenthesis. We will sometimes omit certain 
parenthesis and write for example, Pxf(x) for P(x, f(x)). 

If Fi, .. , Fn are formulas then (Fi V ... V Fn) is a formula, called the disjunction 
of Fi, .· .. , Fn and ( Fi A .. . A.Fn) is a formula, called the conjunction of Fi, ... , Fn. 

5.2 Interpretations and models 

An interpretation I of a formula F in first order logic consists of a non-empty 
domain D, and an assignment of 'values' to each constant, function symbol and 
predicate symbol occuring in F, as follows. 

1. To each constant, we assign an element in D. 

2. To each n-place function symbol, n > 0 we assign a mapping from nn to 
D, where nn :={(xi, ... , Xn) I Xi ED, X2 ED, ... , Xn ED}. 

3. To each n-place predicate symbol P, we assign an n-ary relation on D. 

We consider an n-ary relation as a subset S of nn, interpreted as the n-tuples 
in D for which Pis true. We can consider this as a mapping from D" to {T, F}: 
P(ti, t2) is mapped to T(true) iff ti and t2 are mapped to elements di, d2 in D 
such that (di, d2) E S. An interpretation under which a formula is true, is a 
model for the formula. 

5.2.1 Free and bound variables 

Roughly speaking, an occurence of a variable is free, if no quantifier applies to 
it, otherwise the occurence is bound, consider the formula Q(x) V 'vxP(x). The 
first occurence of x is free and the second is bound. 

Formulas containing free occurences of variables cannot be evaluated to be 
true or false. All the formulas we consider will not contain any free occurences 
of variables, such formulas are called closed. 
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5.2.2 Truth values of formulas 

For a given interpretation, truth values of closed formulas are recursively defined 
in the following way: given the truth values of F, G then the truth value of 
F VG, FI\ G, ,Fare determined as follows. 

• If either G or Fis true then the formula G VF is true otherwise it's false. 

• If both F and G are true then the formula F I\ G is true, otherwise false. 

• ,F is true iff F is false. 

• \:/xF is true if Fis true for all replacements of x by elements of D, otherwise 
it's false. 

• 3xF is true if F is true for at least one element of D, otherwise it's false. 

Example 
Let P be a two place predicate sign and f a 1-place function sign, and let F 

be the formula \:/xPxf(x). 
Now let D := N = {1,2,3 ... }; P := {(m,n): m,n E N,m < n}; f be the 

successor function: f ( n) = n + l; n E N. 
Then F is true since every number is less than its successor. Therefore the 

formula is true under this interpretation. 

5.2.3 Satisfiability of a formula 

A formula F is satisfiable iff there exists an interpretation I such that F is true 
under I. If this is the case then we call I a model for F. 

The satisfiability problem is the problem of deciding, given a formula or 
a class of formulas, whether the formulas are satisfiable or not. 

Two formulas are equivalent if they have the same truth values under the 
same interpretations. 

The problem of determining whether or not a formula is satisfiable by trying 
to see whether it has a model or not is clearly problematic since there are in 
general an infinite number of possible domains and interpretations. 

5.2.4 Rectified formulas 

A formula is rectified if no variable occurs both free and bound, and there is at 
most one occurence of a quantifier with any particular variable. Any formula 
can be transformed into an equivalent rectified formula by renaming variables, 
a rectified form of the formula (Q(x) V\:/xP(x, x)) would be (Q(x) V\:/yP(y, y)). 
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5. 2. 5 Pren ex formulas 

If a formula F is of the form q1v1q2v2 ... qnvnFM where each qi is either V or 
3 and FM contains no quantifiers, then F is said to be in prenex form and 
qi vi .. qn Vn is called the prefix while FM is called the matrix. 

It is well known that any formula in first order logic can be transformed into 
an equivalent rectified formula in prenex form. 
Example 

The formula 3zVy3w((Q(z) A (P(z, y) V ,Q(w)) A R(x) 
is a rectified prenex form of the formula 
(3x(Q(x) A (VyP(x, y) V ,VyQ(y)) A R(x). 

For a formula Fin rectified prenex form, the variables of Fare in one-to-one 
correspondence with the occurences of quantifiers. 

5.2.6 · x-and y-variables 

\Ve call the variables of a formula F governed by existential quantifiers, x-variables 
and the variables governed by universal quantifiers, y-variables. 

5.2. 7 The functional form of a formula 

Consider the formula: 
F = 3x1 Vy1 'vy23x2'vy33x3FM (x1, Yi, Y2, x2, Y3, x3). 

Now FM(x1,Y1,Y2,x2,Y3,x3) is the matrix of F and contains the variables 
X1, Yl, Y2, X2, Y3, X3. 

The functional form of this formula would be: 
Vy1 'vy2'vy3Y\.f (a, Yi, Y2, f(Y1, Y2), Y3, g(y1, Y2, y3)). 

Where we replace the x-variables as follows: x1 with some constant a, x2 with 
the term f(Y1,Y2) and X3 with the term g(y1,Y2,Y3). 

This form of the formula makes explicit the following: the value of x1 should 
be independent of the values of any of the other variables, we must therefore be 
able to assign some constant value to x1 to make the formula true.The value of 
the second x-variable, x2, depends on the values of Yi and Y2 and we therefore 
replace x2 with the term f(Y1, Y2) to indicate the dependence. In the same 
way x3 is replaced with the term g(y1, Y2, y3) to indicate that the choice of x3 
depends on the values of Y1, Y2 and y3. 

In this way the functional form reflects the fact that it must be possible to 
choose values for x-variables, corresponding to replacements of y-variables with 
elements from the domain, in such a way that the matrix FM comes out true 
in each case. 

In general, if F is a closed rectified formula then the functional form F* 
of F, is obtained by replacing in the matrix FM each x-variable Xi of F by 
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the term fx; (Yi1' ···Yi..) where n ~ 0 is the number of y-variables (Yi 1 , ··•Yin) 
governing Xi in F, if Xi is governed by no y-variable then we replace Xi with 
a 0-place function sign or constant. The new function signs we introduce are 
called indicial function signs and the terms fx; (Yi 1 , ··•Yin) that replace Xi are 
called indicial terms for Xi in F. 

The functional form F* of a formula Fis a quantifier free formula with free 
variables exactly the y-variables of F. 
We can algorithmically transform any formula F into it's functional form F*. 

5.2.8 F is satisfiable ~ F* is satisfiable 

We sketch the proof. 
If F is satisfiable under some interpretation then for each replacement of 

y-variables with elements from the domain, we must be able to choose values 
for the x-variables so that the matrix turns out true, we can then expand the 
interpretation to include the function sign fx and define fx(Y1, .. , Yn) as the 
value which makes F true. 

On the other hand, if the functional form F* is satisfiable then there is some 
interpretation in some domain D for which F* is true, in particular the element 
in D denoted by fx(Y1, ···,Yn), but then F will also be true if we choose for x 

in F the element denoted by fx(Y1, ... , Yn)-

5.2.9 Herbrand domains 

Given a formula in functional form F, define the set of terms D(F) as follows. 

• If F contains no function sign, then 1 E D(F). 

• If ti, .. , tn E D(F); n ~ 0 and f is any n-place function sign(indicial or 
not) occurring in F, then f(t1 .. tn) E D(F). 

This set of terms is the H erbrand domain. The Her brand domain is to be con­
sidered as a set of terms without denotation i.e. the terms refer to themselves 
and do not have a 'meaning' in some external structure, for example: J(fn(l)) 
is just the term r+l(l) and nothing else. We say that the Herbrand domain is 
a syntactic domain. 

Note that nothing in the definition of satisfiability rules out using a set of 
terms themselves as a domain for interpretation of a formula. 

5.2.10 Herbrand expansion 

The Herbrand expansion of a formula is the set of all formulas: 
F{yift1, .. , Yn/tn} where Y1, .. , Yn are all the y-variables of F and 

t 1 , .. , tn are any terms in D(F). We call the terms tn; n ~ 0 the substituents of 
the Yn; n ~ 0. 
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Example: 
the formula: 

't/y3xPyx I\ 3z't/w,Pwz 

has functional form: 
't/yPyf(y) I\ 't/w,Pwa, 

the matrix of the functional form being 

Pyf(y) I\ ,Pwa. 

The Herbrand expansion is the following sequence of formulas: 

and so on. 

Paf(a) I\ ,Paa, Pf(a)f(f(a)) I\ ,Paa, 

Paf(a) /\,PJ(a)a,Pf(a)J(f(a)) /\,PJ(a)a, 

Each formula of the sequence is called a Her brand instance. The first formula 
is obtained by substituting a for bothy and w, the second by substituting J(a) 
for y and a for w, and so on. 

The atomic formulas Paf(a), ,Paa, P f(a)J(f(a)), ,Paa appear together in 
the first Herbrand instance, we call such atomic formulas directly related. 

Analogously for the formulas Paf(a), ,pf( a)a, P f(a)J(f( a)), ,pf( a)a which 
appear together in the second Herbrand instance. 

Each instance of the Herbrand expansion is viewed as a formula of proposi­
tional logic. In general a formula can have any finite number of indicial function 
signs for different x-variables and some finite number k > 0 of atomic formulas. 
Each Herbrand instance consists of atomic formulas, logical connectives and 
parenthesis. 
Note that the Her brand expansion is a listable, countable set since t1, .. , tn are 
all in the (countable) Her brand domain. 

We are now ready for the result which we will use in the following chapters. 

5.2.11 The functional form of a formula is satisfiable iff 
the Herbrand expansion is truth functionally con­
sistent 

We sketch the proof. A formula in functional form is satisfied under some 
interpretation iff, for each substitution from the domain for the y-variables, the 
indicial terms corresponding to the values, make the matrix true. 

So to be satisfied the matrix must be true for arbitrary replacements of 
y-variables and corresponding indicial terms. Now given any formula and an 
interpretation I in some domain M for which it is satisfied, we show that the 
Herbrand expansion is truth-functionally consistent: 

define the following mapping from the Her brand domain to the domain I: 
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• the constants in F map to anything in the domain M, 

• the term f(t1, .. , tn), ti, .. , tn E D(F) maps to P ((tf), (t{), .. , (t~)) EM. 

Now define the predicate sets for D(F): 
if P is an n-place predicate sign: 

(t1, .. , tn) E Pv ~ ((t{), .. , (t~) E P1 . 

It is clear that the matrix is verified, whichever terms in the Herbrand do­
main we replace into the matrix, since the matrix is verified for arbitrary replace­
ments of elements of M for free variables and corresponding value for indicial 
terms. 

Now, if we have a model as above then we have a truth assignment: 

This assignment is consistent since pI consists of a fixed set of n-tuples. The 
assignment verifies the matrix of F whenever we substitute terms from D( F). In 
other words the Herbrand expansion is verified in a truth-functionally consistent 
fashion. 

Conversely, say that there is some truth assignment A which verifies the 
entire expansion, that is, a non-contradictory truth assignment for all predicate 
letters for all applicable tuples from D(F). Then we can define a model for F 
as follows: 

A satisfied Herbrand expansion is therefore in effect an exhaustive check 
that the formula is true for all substitutions for free variables and corresponding 
indicial terms from the Herbrand domain and is therefore a verification that F 
is satisfied. 

The problem of satisfiability thus shifts from a 'Platonic', 'existence' point 
of view to an (in general) infinite combinatorial problem, i.e. is it possible to 
assign truth values to the atomic formulas of the Her brand expansion, 
in a non-contradictory way, such that each instance of the Herbrand 
expansion is simultaneously verified? 

The relation between the Halting problem and the satisfiability problem for 
formulas is clear from the above. A formula is satisfiable iff all the Herbrand 
instances can be verified without any inconsistent truth value assignments. It is 
conceivable that such a check may never terminate and in fact the next section 
demonstrates the unsolvability of the satisfiability problem for certain classes of 
formulas of first order logic. 
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References: 
Versions of the expansion theorem were given by Skolem, Herbrand and 

Godel. 
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Chapter 6 

Introduction to chapters 7 
and 8 

One of the ways of classifying formulas of first order logic is by the form of the 
prefix of the formula in prenix-form. 

We can, for example, consider the class of first order formulas with prefix 

The names of the variables are unimportant and we therefore refer to this class 
simply as 

We will use the superscript * to denote classes in which no restrictions are placed 
on the (finite) number of quantifiers of a certain type at a certain position in 
the prefix. 

Example 
The class of formulas of which the prefix contains any finite number of universal 
quantifiers in succession followed by a single existential quantifier is denoted by 
'v'"'3 

Another way of classifying formulas of first order logic is by the number of 
predicate letters of each degree occuring in the formulas. For example, we 
refer to the class of formulas with one monadic predicate letter and two dyadic 
predicate letters as 

(1,2) 

In general, the k-th element of the tuple denotes the number of predicate letters 
of order k. 

For example, in the class (1, 2), there is one predicate letter of order 1, two 
of order two and none of higher order. When no restriction is placed on the 
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(finite) number of predicate letters of a certain order we write oo in the place 
of the number. 

Example 
(oo, 1) is the class of formulas with any finite number of monadic predicate 
letters and one dyadic predicate letter. 

We can combine the two classifications and, for example, denote by 

[v'3V( oo, 1)] 

the class of formulas in the intersection of the classes 

\13\I and (oo, 1). 

6.1 The Satisfiability problem for the classifica­
tion 

The satisfiability problem for the following classes in this classification were 
shown to be solvable: 

the monadic class (oo)(Lowenheim 1915), 
the class 3*\l*(Bernays and Schonfinkel(1928)), 
the class 3*V3*(Ackermann(1928), Skolem(1928), Herbrand(1931)), 
the class 3*W3*(Godel(1932,1933), Kalmar(1933), Schiitte(1934)). 

Given the listed proofs of solvability, the satisfiability problem for this clas­
sification of formulas reduces naturally to the following nine classes: (proven 
unsolvable by the names in brackets) 

[v'3V(oo, 1)] (Kahr(1962)), 
[VW3(oo, 1)] (Suranyi(1959)), 
[\1*3(0, 1)] (Gurevich 1966b), 
[v'3V*(0, 1)] (Denton 1963), 
[v'W3*(0, 1)] (Kalmar and Suranyi(1947)), 
[3*VW3(0, 1)] (Suranyi(1959)), 
[3*\13\1(0, 1)] (Suranyi(1959)), 
[v'3*V(0, 1)] (Kostryko (1964)), 
[v'3V3*(0, 1)] (Gurevich (1966a,1966b). 
These references are from Lewis[20]:91-93. 
Lewis,[20] uses the unsolvability of the linear sampling problem to demonstrate 
the unsolvability of these classes in a uniform fashion. 
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Figure 12 illustrates the sequence and dependences of the proofs of Lewis. 

fig 12 

As an illustration of the method we will show in chapter 7 that the class Vo(to be 
defined) is unsolvable by using the unsolvability of the linear sampling problem. 
This proof is due to Lewis. 

In chapter 8 we show Vi unsolvable by showing that for each formula F E Vo , 
we can construct a formula in G E Vi of which the Herbrand expansion contains 
an encoded copy of the Her brand expansion of F. The proof we present is a 
version of the proof of Lewis without using his notion of bigraph-machinery.(see 
Lewis, (20] :p80-86) 

We give indications how Vi is shown unsolvable, the proof of which is very 
much the same as the proof for Vi. The interested reader is referred to Lewis' 
monograph for the proofs of the unsolvability of the rest of the diagram. 

References: This chapter is essentially from Lewis,(20]. 
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Chapter 7 

The linear sampling 
problem and first order 
logic 

All the results and constructions of this chapter are from Lewis, [20]. 

Let Vo be the class of all closed, rectified, prenex formulas: 

where FM contains no function signs but f, and only the predicate letters 
?(dyadic) and Ro, R1, ... (monadic) and such that: 

1. the only atomic formulas of F are Py1 Y2, Pf (Y1) f (Y2) 

and RiY1, RiY2, Rd(Y1); (i ~ 0), and 

2. if F is satisfiable at all, then F is also verified under some assignment 
which falsifies Ptt for each t E D(F). 

In other words there is an assignment which gives the value false to all the atomic 
formulas of the Herbrand expansion of the form P r(1)r(1); n E (0, 1, 2, 3 .... ) 
and verifies the whole sequence E(F). 

In this section we use the unsolvability of the linear sampling problem to 
show the following. 

The satisfiability problem for the class of formulas Vo, is unsolvable. 
We show that Vo is unsolvable by showing that for each linear sampling 

system £, = (T, L, G) there is some formula in Vo which is satisfiable iff there 
exists a tiling acceptable to£. We do this by constructing a formula in Vo which 
under a translation states that there is an accepted tiling for £. 
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7.1 The formula 

Let F be the following formula: 

\/y1 \/y2(M1 /\ M2 I\ M3 I\ M4), 

where the Mi are as follows (v1 denotes 'exclusive or'): 

M1 : Py1y2 ~ P f(Y1)f(y2), 

M -7q-lR -72q-1R 
2 : v i=O iYl I\ v i=q iYl, 

M3: v(i,i)eL(RiY1 I\ Rif(Y1) I\ V(i,i)eL(Rq+iY1 I\ Rq+;f(y1)), 

M4 : v(i,j,e)eG(RiYl I\ Rq+jY2 I\ He)-
Where He is PY1Y2 if e = 1 and -,pY1Y2 if e = 0. 

7 .2 · The translation 

We associate truth assignments A on atomic formulas in the Her brand expansion 
and tilings T of T in the following way. 

• For i = 1, ... ,q-1: A p Rdcl) iff r(n, 1) = i. That is, Rdn(l) is true 
under A iff the tile at n on the 1st tape is i. 

• For i = q, ... , 2q- 1: A p Rd"(l) iff r(n, 2) = i - q. That is, Rd"(l) is 
true under A iff the tile at n on the 2nd tape is i and 

• A p P fm(1)r(l) iff r(n-m, 3) = 1. That is, P fm(1)r(1) is true under 
A iff the tile at n - m on the third tape is a 1. 

Under this correlation M1 - M4 says the following about r: 

• T1 : The truth value of P fm(1)r(l) depends only on n - m. This follows 
from M1 by induction . 

• T2: vr:~r(n, 1) = i I\ v1;!; 1r(n, 2) = i - q). Each cell of the first two 
tapes contains exactly one tile. 

If y1 has substituent /m(l), then f(yi) has substituent Jm+l(l) and M3 
states: 

• T3: (V(i,j)EL(r(m, 1) = i I\ r(m + 1, 1) = j)) /\ 

(V(i,j)EL( r(m, 2) = i I\ r(m + 1, 2) = j)) 
This is exactly the local condition that any two consecutive tiles on either 
of the first two tapes form a pair in L. 

• T4:V{(i,j,e)}ec(r(m, 1) = i I\ r(n, 2) = j I\ r(n - m, 3) = e). 
This states that, if we inspect 3 cells, one on each tape, which satisfy our 
sampling condition, then the tiles form a triple (i,j,e) E G. 
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7.3 F is satisfiable iff an acceptable tiling exists 
for T 

We now verify that our correlation of truth assignment and tiling is such that 
a tiling exists iff a truth assignment verifying the Herbrand expansion exists. 

Tiling to Truth Assignment 

Let , be a tiling accepted by .C = (T, L, G). 
Any two consecutive tiles on either of the two tapes form a pair in L and 

any 3-tuple at n1, n2, n2 - n1 on the 1st, 2nd and 3rd tape respectively form a 
triple from G. 
Take an arbitrary Her brand instance of F, say 

we show that this instance is verified: 
Replacing the occurrences of y1 ,y2 m M1 to M4 with fm(l) and r(l) 

respectively, we get: 

M1: P fm(1)r(l) +--+ P f(m+1)(1)j(n+1)(l)), 

M2: (vl:-t,(m, 1) = i) A Cv;!; 1r(m, 2) = i - q), 

M3: (V(i,j)eL( ,(m, 1) = i A r(m + 1, 1) = j) A 
(V(i,J)eL(r(m, 2) = i A r(m + 1, 2) = j). 

M4: V(i,j,e)eG( r(m, 1) = i A r(m, 2) = j A He), 

Where He is P/m(l)r(l) if e = 1 and ,pfm(l)r(l) if e = 0. 

Since r(n-m, 3) contains only one tile and by the truth assignment we have that 
P fm' (l)r' (1) has the same truth value for all m', n' such that m' -n' = m-n, 
in particular for m, n and m + 1, n + 1, M1 is verified. 
Since the tiling r is accepted, each cell of the first two tapes contains exactly 
one symbol so by the truth assignment M2 is verified. 
Since r(m, 1) and r(m + 1, 1) form some pair from L we have by the truth 
assignment that Rdm(l), RJ!m+1 (l) are true for some pair (i,j) EL, so this 
Herbrand instance of M3 is verified. 

We have that any triple of tiles sampled at some n1 , n2 , n2 - n 1 , (on 1st, 
2nd, 3rd tapes respectively), is in G. The disjunct of M4 which is verified is 

i = r(m, 1),j = r(n, 2), e = r(n - m, 3), 

since r(m, 1) = i implies Rdm(l); r(n, 2) = j implies R(q+J)r(l) and 
e = r(n - m, 3) implies ,p fm(1)r(1) = 0 or 1, depending on the value of e. 
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So we have that 

for i = r(m, l);j = r(n, 2) and e = r(n - m, 3). 
So this Herbrand instance of M4 is verified. 

Therefore, each Herbrand instance is verified and F is satisfiable. 
Further, if r(O, 3) = 0 then A p= ....,p fm(l)fm (1). 

Truth assignment to tiling 

Let A be the truth assignment which verifies the Herbrand expansion, then since 
A(Pfm(1)r(1)) = A(Pfm+1(1)r+l(l)) for all m,n EN it is also true 

that 
A(P fm(1)r(l)) = A(P fm+P(l)r+P(l)) for all m, n,p EN, 

so we can define unambiguously a mapping: 

r3: Z-+- 0, 1 

as follows 

_ { 1 if A F P fm(1)r(1), 
r3 (n- m) - O if A p= ,Pfm(1)r(1) for all m,n EN. 

Note that n + p - ( m + p) = n - m. 
Further, since A verifies every Her brand instance of M2, we can define mappings: 

r1, r2: N-+- T = {O, ... , q- 1} by 
r1(n) = i iff A f= Rdn(l) 
r2(n) = i iff A f= R(q+i)r(l) 

We can combine the above three mappings into one by setting: 

r: (N x {l, 2}) U (Z x {3})-+- T 

with 
r(m, i) = ri(m). 

Since A verifies every Herbrand instance of M3 : 

(r(m, i), r(m + 1, i)) EL for i = 1, 2, 3 and for all m such that r(m, i) and 
r(m + 1, i) are defined. And since A verifies every Herbrand instance of M4 : 

(r(m, 1), r(n, 2), r(n- m, 3)) E G for all m, n such that r(m, 1) and r(n, 2) 
are defined i.e where m, n E N. ( r( n - m, 3) is always defined). 

So we have a tiling from 1 onwards. 
We can extend this tiling to negative n by shifting the tiling to the left as follows: 

(P)( ·)-{ r(n+p,i) ifi = 1,2 
r n, i - ( .) ·r . 3 r n, i 1 i = . 

Now r<P) fulfills the conditions for acceptability in the domain 
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{-p,-p+l, ... }x {1,2}UZx {3}. 
This means that we can find arbitrarily long acceptable pieces so by Konig's 

infinity lemma there is a tiling of Z x {1, 2, 3} accepted by .C. Specifically, since 
we have an infinite number of arbitrary long stretches of tiling, and for each 
n E N the segment (-n, -n + 1, ... , 0, 1, 2, ... , n) is one of a finite number of 
segments, there must exist a tiling of the whole of Z. 

Thus we have that .C accepts a tiling iff F is satisfiable, but if .C accepts a 
tiling, then it also accepts a tiling with r(O, 3) = 0 and then we have a truth 
assignment A verifying E(F) such that A I= ,Ptt, for each t E D(F). So if Fis 
at all satisfiable then E(F) is verifiable with P Jm(l)Jm(l) false for all m ~ 0. 

If the satisfiability problem of this subclass of V0 was solvable then we could 
for each three-tape linear sampling problem .C of the type discussed in chapter 4, 
determine whether or not .C accepts a tiling by determining whether or not the 
corresponding formula Fe, is satisfiable, therefore this subclass of Vo is unsolvable 
and hence so is Vo. 

References: 
The constructions and proofs in this chapter are from Lewis, [20]. 
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Chapter 8 

The unsolvability of V1 

This chapter is essentially a version of the proof in Lewis,[20), but without using 
bigraph machinery,and including our false starts, in the hope of clarifying the 
ideas. 

In this section we use the unsolvability of Vo to demonstrate the unsolvability 
of the class Vi, defined as the class of formulas G of the form 

where F contains only the atomic formulas: 

The class Vi in Lewis,[20) differs slightly from the class discussed here. 

We show that, given any F E Vo, that we can construct a G E Vi which is 
satisfiable iff F is. This will imply the unsolvability of Vi. 

8.1 The correlation 

Given an arbitrary F E V0 , let us as a first attempt associate with F the 
following formula: 

That is we replace occurrences in F of P f(Y1 )f(Y2) by Py2x and Rd(Y1) by 
Rix. Further, we replace the prefix Vy1 Vy2 by Vy13xVy2. We leave the rest of 
F unchanged. Note that G1 E Vi and we have made very few changes to F in 
order to change it to a formula G1 E Vi. 

63 

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2022.

 
 
 



In trying to show the satisfiability problem for different formulas, equivalent, we 
will work directly with the Her brand expansions of the respective formulas. That 
is, we will try to show that the expansion of G1 is satisfiable iff the expansion 
of Fis. 

8.2 Comparing the Herbrand expansions of F 
and G1 

G1 has as Herbrand expansion E(G1), the following: 
FM {PY1Y2/ p fm(l)f"(l), p f(y1)f(y2)/ p f"(l)fm+I (1) , 
Riyi/ Rifm(l), Riy2/ Rdn(l), Rd(yi)/ Rdm+l (1) ; 
0 ~ i ~ q - 1; n, m 2: O}, 

while F has as Herbrand expansion E(F), the following: 
FM {Py1y2/ P fm(l)f"(l), P f(y1)f(Y2)/ P f"+l(l)Jm+l (1) , 
Riyi/ Rdm(l), Riy2/ Rdn(l), Rd(Y1)/ Rdm+l(l) ; 
0 ~ i ~ q - 1; n, m 2: O}. 
The underlined denote substituents affected by the change from F to G1. 

Remember that P f(Y1)f(Y2) is replaced in G1 by Py2x hence the substituent 
Pf"(l)Jm+l(l) for Pf(y1)f(y2) in G1. Although Rd(Y1) is replaced by Rix in 
G 1 , x has indicial term f(yi) since f(yi) is the indicial term corresponding to 
x in F. Therefore Rd(Y1) has the same substituent Rdm+I (1) in G1 as in F. 

8.2.1 The direct relations 

The following pairs of atomic formulas involving the dyadic predicate letter P, 
are directly related in E(F): 

for all m, n E N 

P fm(l)f"(l)&P fm+l(l)f"+1(1) 

P fm+1(l)J"+1(1)&P Jm+2 (l)f"+2 (1) 

and so on. 

On the other hand, in E( G) the following pairs are directly related: for all 
m,nEN 

P fm(l)f"(l)&P f"(l)fm+l(l) 

pf" (l)Jm+l (l)&P 1m+1 (l)f"+1 (1) 

and so on. 

It is apparent that the pairs of atomic formulas directly related in E( G) 
differ from the pairs directly related in E(F). 
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In E(G) the formula Pr(l)Jm+l(l) 'seperates' the pair 

P fm(l)r (l); P Jm+l (l)r+1(l) 

which are directly related in E(F). 
Recall that to satisfy a Herbrand instance of E(F) we must assign truth 

values to the atomic formulas which makes each Herbrand instance true as 
a formula of the propositional calculus. Now, in E(F) an atomic formula 
Pfm(1)r(1) appears both for Py1y2 and for Pf(y1)f(y2) so we must as­
sign to it a truth value which verifies both instances in which it appears. 
In E(G) the truth value we assign to an atomic formula Pfm(1)r(1) will 
depend on the truth value of the atomic formula Pr ( 1) Jm+l ( 1) appearing 
with it in the same Herbrand instance. We therefore cannot independently 
assign truth values to these two atomic formulas. The same is true for pairs 
P fm(l)r(l); P Jm+1(1)r(1) in E(F). 

Because of the different dependences there is no clear way to correlate truth 
assignments between E( F) and E( G). 

We could try to simulate the direct relations of E(F) by building into a new 
formula G E Vi that certain pairs of atomic formulas in the expansion of G have 
the same truth value, specifically the pairs Pr (l)Jm+l (1); P Jm+l (1)r+1(1), 
since it is P r(l)Jm+1(l) which seperates the pairs directly related in E(F). 

So given some Her brand instance of F, say 

pM {PY1Y2/ P fm (l)r (1), P f(Y1)f(y2)/ P r+1(l)Jm+l (1), 
Riyi/ Rdm(l), RiY2! Rdn(l), Rd(yi)/ Rdm+l (1)} m, n 2'.: 0. 

We want a formula G, which has as corresponding part of E(G) the following 
sequence: 

pM {PY1Y2/ P fm(l)r(l), P f(Y1)f(y2)/ P r(l)Jm+l(l) 
Riyi/Rdm(l), Riy2/Rdn(l) Rd(Y1)/Rdm+l(l)} 

p r(l)Jm+l (1) - p Jm+1(1)r+1(l) 

pM {PY1Y2/ P Jm+l(l)r+l(l), P f(Y1)f(y2)/ pr+1(1)Jm+2 (l) 
Riyi/ Rdm+l(l), RiY2/ Rdn+l(l) Rd(Y1)/ Rdm+2 (1)} 

p r+i(l)Jm+2(l) - p 1m+2(1)r+2(l). 
That is, as before, PY1Y2 has substituent Pfm(1)r(1) and Pf(y1)f(Y2) has 
substituent P r(l)Jm+l (1), however, the pair of formulas 

p r(l)Jm+l (1); p Jm+l (l)r+1(l) 

do not appear in pM, but are forced to have the saine truth value. The 
next pair to appear in pM is 
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and so on. 

In this way pairs P fm(l)f"(I); P Jm+l(l)f"+l(l) become in effect directly re­
lated in the sense that the atomic formula P f"(l)Jm+ 1 (1) appearing with 
Pfm(l)f"(l) is forced to have the same truth value as Pfm+l(l)f"+1 (1). 

At first glance this Herbrand expansion seems equivalent to E(F) in that the 
direct relations of E(F) seem to be mirrored in this expansion, unfortunately, if 
we examine the part of E(G) with y1 having substituent r-1 (1) and y2 having 
substituent fm {1) we get as part of the expansion: 

which together with 

forces the pair 
P fm(1)r(I); P Jm+1(1)r+1(l) 

to have the same truth value. 

This no longer reflects the direct relations of E(F), where such pairs are not 
forced to have the same truth value, so the two expansions are not equivalent. 

8.3 A refinement 

The problem arises because any formula Pfk(l)J1(l);k,l ~ 0 is a substituent 
for both PY1Y2 and Py2x in the constructed expansion. We therefore modify our 
initial approach by correlating terms fm ( 1) in E( F) with terms f 2m ( 1) in E( G). 
This means that an atomic formula Pfm(l)f"(l) in E(F) is correlated with the 
atomic formula P f 2m ( 1 )f2n ( 1) in E( G) and an atomic formula Ri fm ( 1) in E( F) 
is correlated with the formula Rd2m(l) in E(G). 

We want the directly related pairs in E( G), between formulas corresponding 
to directly related pairs P / 2m(l)/2n(l); P / 2m+ 2 (1)/2n+ 2 (1) in E(F) to have 
the same truth value. 

8.3.1 The monadic predicate formulas 

In the Herbrand instances of E(F) with y1 , Y2 having substituents fm (1) and 
f" ( 1) respectively, the following monadic formulas are directly related: 

The last formula appears for Rd(Y1)-
If Rdm(I) appears for RiYl in E(F) then Rdm+l(l) appears for Rd(Y1)-
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This Her brand instance is correlated with the Her brand instance in E( G) 
where Y1,Y2 have substituents f 2m(l) and f 2n(l) respectively. 

If RiYl is replaced by Rd2m(l) in E(G) it appears in the same instance 
as Rd2m+l(l) (which appears for Rix), but in E(F), Rdm(l) and Rdm+1(1) 
appear together and these two correspond to Rd2m(l) and Rd2m+2(1) in E(G). 

So to mimic the direct relations of monadic formulas in E(F), E(G) must 
contain the formula: 

Rd2m+l{l) +--+ Rd2m+2(1) 

which in effect will cause Rd2m(l) and Rd2m+2(1) to be directly related for 
the same reason as in the dyadic case. 

So for an arbitrary part of E(F), say: 

FM {PY1Y2/ P fm(l)r(l), P f(y1)f(y2)/ P r+i(l)Jm+l(l) 

Riyi/ Rdm(l), Riy2/ Rdn(l)Rd(Y1)/ Rdm+l(l); 0::; i::; q - 1} 

FM {PY1Yd p 1m+1(1)r+l(l), p f(Y1)f(y2)/ p r+2(1)1m+2(l) 

Riyi/ Rdm+i (1), Riy2/ Rir+i(l)Rd(Y1 )/ Rdm+2 (1); 0::; i::; q - 1} 

we want as corresponding part of E( G): 

FM {PY1Y2/ P f 2m(l)f2n (1), P f(Y1)f(y2)/ P f 2n(l)f2m+l (1) 

Riyi/ Rd2m(l), Riy2/ Rd2n(l)Rd(Y1)/ Rd2m+1 (1); 0::; i::; q - 1; n, m ~ O} 

p f2n(l)f2m+l (1) +--+ p f2m+l(l)f2n+l(l) 

p f2m+l{l)f2n+1(1) +--+ p f2n+l(l)f2m+2(1) 

p f2n+l(l)f2(m+l)(l) +--+ p f2(m+l)(l)f2(n+l){l) 

Rd2m+l(l) +--+ &f2(m+l){l) 

FM {PY1Y2/ P f 2(m+l){l)f2(n+l)(l), P f(y1)f(y2)/ P f 2(n+l){l)f2(m+l)+l (1) 

Riyi/ Rd2(m+l)(l), Riy2/ Rd2(n+l)(l)Rd(yi)/ Rd2(m+l)+l (1); 0::; i::; q-1; n, m ~ O} 

p f2(n+l)(l)f2(m+l)+l (1) +--+ p f2(m+1)+1(1)f2(n+l)+l(l) 

p f2(m+l)+l(l)f2(n+l)+l(l) +--+ p f2(n+1)+1(1)f2(m+1)+2(1) 
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p f2(n+l)+l(l)f2(m+2)(1) ~ p f2(m+2\l)f2(n+2)(1) 

Rd2m+l(l) ~ Rd2(m+l)(l) 

That there is no overlap of truth assignments on the atomic formulas, follows 
directly from the fact that the sets: 

{(2n, 2m + 1); (2m + 1, 2n + 1); (2n + 1, 2m + 2); (2m + 2, 2n + 2)} 

and 

{(2/, 2k + 1); (2k + 1, 2/ + 1); (2/ + 1, 2k + 2); (2k + 2, 2/ + 2)} 

are disjoint if(m, n) -:f. (k, l). 
We now know what we would like E( G) to look like, we have yet to show, 

however, that we can construct a G E Vi with expansion E( G) as above. 

8.4 The construction of G 

Since only terms of the form J2k ( 1) were substituents for y1 , y2 in the matrix 
FM, we must distinguish between such terms which we will call even and terms 
of the form J2k+l(l) which we call odd. To do this we introduce into G two 
new monadic predicate signs Rq and Rq+l (recall that F contains the monadic 
predicate signs Ro, ... , Rq- 1 ). We then construct the following formula as part 
of GM, the matrix of G: (Remember that the prefix of G must be Vy13xVy2.) 

Let Y1 have substituent fm(l), then G1 states that: 

(Rqfm(l),,Rq+dm(l) and Rq+ifm+l(l)) or 
(Rq+ifm(l),,Rqfm(l) and RgJm+l(l)). 

That is, consecutive terms cannot both satisfy Rq or both satisfy Rq+l and 
any term fm(l) must satisfy either of the two but not both. 

The class of terms {f k ( 1); k ~ 0} is therefore split into two disjoint classes, 
those satisfying Rq and those satisfying Rq+l, we call these classes even and odd 
respectively. 

We now use this division of terms to construct the following subformula as 
the next part of G: 
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the other terms having the usual substituents. 

This means that, if for m, n E N, RqJm(l) and RqJ"(l), then they are 
substituents for Y1 1 Y2 in FM. Note that this implies that both m, n are of the 
form 2k + 1 or both of the form 2k for some k E N. 

The 'intervening' atomic formulas are forced to have the same truth value 
by the next subformula: 

G3: (Rq+1Y1 I\ Rq+1Y2) -- (PY1Y2 +-+ Py2x) 

(RqYl I\ Rq+1Y2) -- (PY1Y2 +-+ Py2x) 

(Rq+1Y1 I\ RqY2)-., (PY1Y2 +-+ Py2x). 

So if either fm (1) or f" ( 1) does not satisfy Rq then the pair of formulas 

P fm (l)f" (1); P f"(l)jm+l (1) 

are forced to have the same truth value. 

Analogously for the monadic predicate letters Ri, 0 ~ i ~ q - 1, we have the 
subformula.: 

The complete G is then 

8.5 E(F) is satisfiable iff E( G) is satisfiable 

E(F) ⇒ E(G): 

Say there is some truth assignment A on the atomic formulas 

such that the entire expansion E( F) of F, is verified. 

We construct a truth assignment B which verifies E( G). 
Set B( Rq J0 ( 1)) = true. This means that all even terms pm ( 1) satisfy Rq and 
all odd terms satisfy Rq+l· Now, any dyadic atomic formula Pfm(l)f"(l) in 
E(F), determines the truth value of the following atomic formulas in E(G): 

{ p f2m( l)f2n ( 1), p f2n-1(1 )f2m ( 1 ), p /2m-l(l)f2n-1 (1), p f2n-2(1)f2m-1 (1)}. 

That is, set B(P J2m (l)f2" (1)) = B(P / 2n- 1(1)f2m(l)) = B(P J2m- 1 (1)f2"- 1 (1)) 
= B(PJ2n-2(1)12m- 1(l)) = A(Pfm(l)f"(l)). 
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For n = 0, or m = 0 of course, certain of the above atomic formulas are 
undefined. 
Analogously, for monadic atomic formula, set 
B(Rd2m(l)) = B(Rd2m- 1(I)) = A(Rfm(l); 0 :Si :Sq - 1. 

From the discussion of the correlation between E(F) and E( G), in 8.3.1 and 
8.4 it is clear that this assignment verifies E( G). 

Now for the converse: 
E(G) ⇒ E(F): 

If we have a truth assignment B which verifies E( G) then this assignment assigns 
Rq true to all odd terms f 2k+1 (1) or to all even terms J2k(l), k 2: 0. 

In the first case we have the inverse assignment of the above i.e. for all m, n E N 
set: 

and for 0 :S i :S q - 1 set: 

In the second case odd terms are substituents for Y1, Y2 in FM and all such 
instances are verified. 
So set: 

and for 0 :S i :S q - 1 set: 

In either case E( F) is verified if E( G) is. 
vVe therefore have the result that any formula F in Vo is satisfiable iff a corre­
sponding G in Vi is satisfiable. To each F in Vo there corresponds such a G. 
Therefore the class Vi is unsolvable. 

8.5.1 Remarks on the unsolvability proof for ½ 

The proof that the class Vi in fig.12 of chapter 6 is unsolvable is analogous to 
the proof for Vi except for the following: for an arbitrary formula F E Vo a 
formula H is constructed in which three terms of the Herbrand domain of H 
are correlated with each term in the Herbrand domain of F E Vo (instead of 
two, as was the case here). This is necessary since it is slightly more elaborate to 
build into the formula H that E(H) contains an encoded copy of E(F), than it 
was to build it into G (as was done above). This leads to an interim unsolvable 
class from which the unsolvability of Vi follows. 

70 

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2022.

 
 
 



References: The proof presented here is essentially that of Lewis,(20], except 
that the proof here is by direct comparisons of the Herbrand expansions of the 
formulas. Lewis uses bigraph structures, (see p80-86 in Lewis,(20]) for the proof. 
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