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SYNOPSIS 

In the pseudo-homogeneous models of chemical reactors, one assumes that the 

content of the reactor is homogeneous. These models are categorized as 

two-dimensional (axial and radial changes occur) and one-dimensional models 

(only axial changes occur). 

In Chapter 1 we give a short survey of the existing literature. We also 

propose a modification of the one-dimensional model to reconcile the 

boundary conditions of the problem with the practical situation. Various 

numerical methods to solve the problems are also discussed. 

In Chapter 2 a sufficient condition is derived which guarantees uniqueness 

for the one-dimensional problem. This result holds for general kinetics. 

An improved a-priori upper bound for the temperature solution is derived 

and this result is used to find an upper bound on the Damkohler-number 
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which gives an improvement of 10-30 times on existing results. Upper and 

lower function bounds on conversion are constructed and it is used to find 

a lower bound on the Damkohler-number. This result is new. 

In Chapter 3 the bifurcation behaviour of the one-dimensional, two-dimen­

sional and the modified one-dimensional model is examined numerically. A 

new method is introduced for the construction of an arc of limit points. 

This method enables one to examine the multiplicity behaviour of the pro­

blem as a function of the parameters. 

The last chapter deals with the sensitivity of the solutions. Existing 

criteria are evaluated and we point out their shortcomings. We propose new 

criteria to evaluate sensitivity a-priori and numerically. 
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SAMEVATTING 

In die pseudo-homogene modelle van chemiese reaktore word aanvaar dat die 

reaktorinhoud 'n homogene kontinuum is. Hierdie modelle word onderverdeel 

in twee-dimensionele (aksiale en radiale veranderings in reaktor) en een­

dimensionele modelle (slegs aksiale veranderings). 

In Hoofstuk 1 word die literatuur kortliks bespreek. Ons stel oak 'n wysi­

ging van die een-dimensionele model voor om die probleem se randvoorwaardes 

meer versoenbaar met die praktyk te maak. Verskillende numeriese tegnieke 

om die modelvergelykings op te las, word oak bespreek. 

In Hoofstuk 2 word 'n voldoende voorwaarde afgelei om eenduidigheid van die 

een-dimensionele probleem te verseker. Hierdie resultaat is gel dig v ir · 

algemene kinetika. 'n A-priori bo-grens v ir die temperatuuroplossing word 

afgelei en hierdie resultaat word gebruik om 'n bogrens vir die Damkohler-
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getal te vind wat 10-30 keer beter is as die bestaande resultate. 

Bo- en ondergrense van die omsetting word gekonstrueer en gebruik om 'n 

ondergrens vir die Damkohler-getal te vind. Hierdie resultaat is nag nie 

voorheen afgelei nie. 

In Hoofstuk 3 word die bi furkasiegedrag van die een-dimensionele, twee­

dimensionele en die gewysigde een-dimensionele model numeries bestudeer. 

'n Nuwe numeriese metode word voorgestel om 'n baan van limietpunte te kon­

strueer. Hierdie metode stel mens in staat om die veel vuldigheid van die 

oplossings as 'n funksie van di~ probleem se parameters te ondersoek. 

Die laaste hoofstuk handel oar die sensitiwiteit van die oplossings. 

Bestaande kr iter ia word evalueer en die tekortkominge word uitgewys. 0ns 

stel nuwe kriteria voor om die sensitiwiteit a-priori en numeries te 

bepaal. 
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LIST OF SYMBOLS 

A - Cross-section area of reactor 

Aij - First derivative approximate in orthogonal collocation 

B - dpL/r0
2 

Bi - Biot number hw r 0 /kr 

Bij Second derivative approximate in orthogonal collocation 

C - Concentration 

Co Inlet concentration 

Cp - Specific heat 

Das - Axial dispersion coefficient 

Dar - Radial dispersion coefficient 

Dm - Diffusion coefficient 

dp - Particle diameter of catalyst 

E - Activation energy 

f(w,v) - Dimensionless rate of reaction R(C,T)/R(Co,To) 

-~H - Heat of reaction 

hw - Wall heat transfer coefficient 

ks - Axial thermal conductivity 

kr - Radial thermal conductivity 

L - Length of reactor, m 

Le - Lewis number Pehs/Pems 

NE - Number of elements in orthogonal collocation 

NCOL Number of points in orthogonal collocation 

n - Order of reaction 

Pems - uL/Das 

Pemr - dpu/Dar 
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Pehs - Cp(pul)/ks 

Pehr - Cp(pudp)/kr 

Rg - Gas constant 

R - Intrinsic rate of reaction 

r 0 - Radius of reactor, m 

r' - Radial position, m 

r - Radial position r'/r0 

s - Axial position z/L 

T - Temperature in kelvin 

To - Inlet temperature in kelvin 

t - Time 

vii 

U - Global heat transfer coefficient 

u - Mean linear velocity 

v - Dimensionless temperature (T-To)/To 

w - Conversion (Co-C)/Co 

z - Axial position, m 

Z 6~'a 

a: - LR (Co, To)/ ( uC o) 

~ - (-~H) CoDaslks To 

~· - (-~H)Co/(pCpTo) or ~Pems/Pehs 

6 - E/Rg To 

<t> - L 2R(Co,To)/DasCo or a:Pems 

y - 2UL 2/(ksr0 ) 
0 

y' - 2UL/(uCppr0 ) or y/Pehs 

e - Parameter in Keller's method 

p - Density 

X - Labyrinth factor 
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Subscripts 

a - Ambient value 

h Heat transfer 

m - Mass transfer 

u Initial value 

r - Radial direction 

s Axial direction 
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CHAPTER ONE 

INTRODUCTION 

1.1 THE CHEMICAL REACTOR 

In the chemical industry, most processes are concerned with the conversion 

of raw materials or reactants into products. These processes take place in 

a vessel, the chemical reactor. Most materials are in a gaseous or liquid 

form and the reactor is designed to convert these feeds into either gaseous 

or liquid products. 

There is a wide variety of reactor types [107,110]. In this study we shall 

concentrate on the fixed bed reactor. This reactor consists of an array of 

tubes in a shell (See Figure 1.1). The tubes are packed with small 

particles, the catalyst. The catalyst particles are pretreated to get the 

required porosity and shape. In most cases the particles shapes are 

approximated as either cylindrical or spherical. In a large number of 

cases heat is generated when the chemical reaction takes place in the 

reactor. The facility exists to remove excess heat by pumping a cooling 

liquid through the shell side of the reactor. 

Before we discuss the mathematical models of the fixed bed reactor, it is 

important to get a rough idea of the flow mechanisms inside the reactor. 

The reactants are fed into the tubes and follow a complex flow pat tern 

around the packed catalyst particles. Reactants go from the bulk or fluid 

phase to the catalyst phase where they are adsorped on the catalyst sur­

face. The chemical reaction occurs mostly in the catalyst phase and pro­

ducts diffuse back into the bulk phase. Heat transfer occurs by means of 
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FIG. 1.1: Fixed Bed Reactor. 

convection in the bulk phase in the axial direction, diffusion and conduc­

tion between adjacent particles in both the axial and radial directions. 

The conduction distinguishes heat transfer from mass transfer. 
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There exists a difference between the concentration of species in the 

catalyst phase and the adjacent bulk phase. Models which recognise these 

differences are heterogeneous models. In cases of effective heat and mass 

interchange between the phases, the catalyst and bulk phase do not denote 

markedly different heat and concentration levels and the whole continuum is 

assumed homogeneous. 

pseudo-homogeneous type. 

Models which describe this situation are of the 

If radial gradients are significant, models which take both axial and 

radial effects in consideratipn, will prove better than one dimensional 

models which ignore radial effects. In [ 21 , 24, 44] norms are suggested to 

facilitate the choice between one- or two-dimensional models. 

1.2 PSEUDO-HOMOGENEOUS MODELS 

The spectacular rise in fixed bed reactor capacity stresses the need for 

well designed units. As Froment [110] pointed out, the ammonia production 

increased more than tenfold from 1950 until 1970. This fact indicates the 

importance of appropriate models and the necessity to analyze these models 

to the fullest. 

In [ 19, 68] the pseudo-homogeneous models are suggested for the design of 

fixed bed reactors. 

1.2.1 The Two-Dimensional Model 

The steady state form of the two-dimensional model for the packed bed 

reactor is a boundary value problem. 
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PROBLEM-A 

1 OssW-Osw~(orrw~orw)+ag(w)eOV/(1+v)=□ 
Pems Pemr r 

( 1) 

( 2) 

with boundary conditions: 

OsW = PemsW s = 0 ] OsV = Pehsv s = 0 
( 3) 

OsW = osv = 0 s = 1 (4) 

orw = Orv = 0 r = 0 (5) 

Orw = 0 r = 1 ] (6) 
Orv = Bi(va-v) r = 1 

For n-th order irreversible reactions g(w) = (1-w)n. 

w denotes conversion, that is the fraction of a reactant which has reac­

ted. If Cu denotes the inlet concentration, w(s,r) = 1-C(s,r)/Co. v(s,r) 

= T(s,r)/Tu-1, where To denotes the feed temperature. All the other para-

meters are canst ants. The subscripts s and r denote axial and radial 

directions, h and m heat and mass transfer respectively and va denotes a 

dimensionless ambie~t temperature. In general Pems = uL/V as, Pehs = 

Cp(pul)/ks, Pemr = dpu/ Dar, Pehr = Cp(pudp)/kr where u is the 

axial velocity (mean), L is the length of the reactor, dp is the catalyst 

diameter and Var and Vas are the dispersion coefficients ( radial and 

axial). Cp is the heat capacity, kr and ks the conductivity (radial 

and axial) and p the density of the continuum. The boundary condition (3) 

ignores radial effects and is only an approximation [83]. 
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For the derivation of this model, see Hill [107]. 

In the case of more than one reacting species, (but the feed is stoichiome­

tric) (1)-(6) will be sufficient to describe the process, since the species 

differ from each other with a constant. If the feed is not stoichiometric 

additional mass-balances are required. The last term in (2) must also be 

updated if additional reactions occur. 

1.2.2 The One-Dimensional Model 

The following two-point boundary value problem describes the steady state 

one-dimensional case. It is derived under different assumptions than 

Problem A. See Hill [107]. 

PROBLEM B 

w" - Pemsw' + ¢g ( w) e 6v / ( 1 +v ) = 0 (7) 

VII Pehsw' + ~¢g(w)e6v/(1+v)_yv = 0 (8) 

w' = Pemsw s=D] 
(9) 

v' = Pehsv s=O 

w' = VI = 0 s=1 ( 10) 
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~ denotes the heat which is involved in the chemical react ion. If the 

reaction is exothermic~> O, if the reaction is endothermic, ~ < O. 

y denotes an overall heat transfer coefficient between the shell- and tube­

side fluids. When y>O, the reactor is operated non-adiabatically. When 

no heat transfer takes place with the surrounding, the reactor is adiabati­

cally operated ( y=O). This parameter can be regarded as a design varia­

ble. The Peclet numbers (Pems' Pemr' Pehs' Pehr), as defined in 

this study, depend on the length of the reactor and the catalyst diameter. 

Since mean velocity and dispersion, as well as the physical properties of 

the fluid, will remain unchang~d, Peclet numbers can also be categorized as 

design variables. The only operating variable is the Damkohler-number a: 

( or <f>). This parameter involves inlet temperature and concentration, the 

two variables most likely to fluctuate or change under operation. 

This model plays a very important role in design [110]. Jensen [45] repor­

ted a list of comparison studies between experimental results and this 

model. In the bifurcation studies of Chapter 3 and the parameter sensiti­

vity study of Chapter 4 we shall concentrate on the effect of changes in 

the Damkohler number. 

1.3 ANALYSIS OF THE ONE-DIMENSIONAL MODEL 

In this section we shall review known results on the existence, uniqueness, 

multiplicity, a-priori estimates and stability of solutions of the one­

dimensional model. All these factors play an important role in the design 

of a chemical reactor. 
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1.3.1 Existence 

The dynamic problem was studied by Pao [90] and Kuiper [46]. They proved 

the existence of solutions for the dynamic one-dimensional model. The 

existence of a solution of the steady state problem was studied by Gavalas 

[34,104] and Varma [61]. 

1.3.1.1 A-priori bounds 

Varma [61,69] proved the following a-priori bounds: 

0 <; w(s) ( 1 

0 ( v(s) ( ~ I I 

If the reactions are of even order, it can be proved that Varma's results 

do not hold (Appendix C) unless the terms 

g(w)eov/(l+v) 

in (7) and (8) are replaced by 

__ [ g

0

(w)e6v/(l+v) , 
f(w,v) 

w ) 1. 

One can write (7)-(10) in integral form: 

w(s) = JlGms(s,t)~g(w(t))eov(t)/(l+v(t)))dt 
0 

v(s) = J1Ghs(s,t)[~~g(w(t))e 0v(t)/(l+v(t))_yv(t))dt 

0 

( 11) 

(12) 
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1/Pei 

where Gi ( s, t) = 
Pe; (s-t) 

(1/Pei)e , s<t(l 

= ms,hs 

denotes the Green's function. 

It is easy to prove that the integral operator T, defined by the right hand 

side of (11) and (12) has a fixed point, using Schauder's theorem and 

a-priori bounds I and II. See Hartman [105, p.424]. 

Gavalas [34,104] used the homotopy of T-I and I, the identity operator, to 

prove the existence of a fixed point. This approach stems from the work of 

M . A . Kr as no s e l s k i i . 

1.3.2 Uniqueness 

Most chemical reactors are operated in regions of uniqueness. This means 

that the design and operating variables are chosen to ensure the existence 

of only one solution. The Damk6hler numbers a* and a* (or <f>* and <t>*) 

are sought such that uniqueness is guaranteed for a(a* and a:>a*. We 

shall refer to a.* and a* as upper and lower bounds for uniqueness respec-

tively. Several authors studied the uniqueness of Problem B. 

In the fol lowing section we shall look briefly at the various approxima­

tions and assumptions and the resulting criteria for uniqueness. 

In most cases assumptions and approximations were made to utilize standard 

analytical techniques. 
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1.3.2.1 Simplifications 

Various simplifications to the differential equation of Problem 8 have been 

proposed in the literature. They are discussed briefly for the sake of 

completeness but no further attention wil 1 be given to these issues. A 

popular assumption is to choose Pe=Pems=Pehs (Le=Pehs/Pems=1). 

If one further assumes the reactor is adiabatic ( y=O), one can prove a 

linear relation between w(s) and v(s): 

w(s) = v(s) 
~ 

Under these simplifications, Problem 8 reduces to: 

v" Pev' + ~~(1-v/~)e 6v/( 1+v) = O 

v' = Pev 

v' = 0 

O<s<1 

s=O 

s=1 

Cohen [39] proved uniqueness of the solution of (13)-(15) if 

( 13) 

( 14) 

( 15) 

d (§~(1-v/§)e6v/(1+v)) < o (16) 

dv v 

He used the maximum-minimum principles of elliptic operators to prove the 

convergence of an upper and lower solution to a fixed point. Subsequently 

he used a perturbation analysis of the solution v in the region of the 

boundary layer at s=O to arrive at (16). 

Fleishman [22] studied the catalyst particle problem. He approximated the 

reaction term by a step function and matched the solutions in each domain 

continuously in a point. This step function approach did not compare very 

well with the numerical results of Parter et al. [53,54]. 
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All in all, one can regard these assumptions as artificial and the analyti­

cal results are of limited value. 

Another popular approach is to approximate Problem B as a sequence of 

continuously stirred tank reactors ( CSTR). In each CSTR, conditions are 

identical (i.e. not a function of space variables) and mass and heat flows 

between adjacent ce l ls make provision for both diffusion and convection. 

The multiplicity behaviour of a single cell was studied in 1956 [84]. The 

sequence-of-reactors-model uses the same approach and was studied by Varma 

[ 64] and Calo [ 10] . 

No literature on the validity of the above approach, either the converoence 

to the infinite dimensional case or the error of approximation, could be 

found. These issues need further examination by mathematicians. 

1.3.2.2 Analytical Result of Varma and Amundson 

We want to give a brief description of a result of Varma and Amundson [93] 

on an upper bound for the Damkc>h l er number to gu ar an tee uniqueness, s i nee 

it is the only rigorous result. In Chapter 2 we prove a better result. 

With the change of variables 
Pe S/2 Peh s/2 w(s) = y(s)e ms v(s) = u(s)e s 

Problem B assumes a form which does not have any first derivatives. Let 

y(s) = yi(s)-y 2 (s) and u(s) = ui(s)-u 2 (s) be the difference between two 

solutions. Using the variational principle of the least eigenvalue of 
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the operator 
d 2 . 

L = - with the boundary operator 
ds 2 

d Pe. 
(-=- + _,) = 0 s = 0 
ds 2 

B· = 
l 

d Pe. 
(.:!:_ + _,) = 0 

, i = ms, hs 

s = 1 
ds 2 

J1(yly + p
2
ulu)ds<O, for p an arbitrary, real number, wi 11 not hold 

for y and u nontrivial if: 

[ -~µma3+(µh+y)a2J+/[~µma3+(µh+y)a 2] 2+2~µm(µm+y)a 1a3e(Pehs-Pems~ 
a(---------------

a3[ ~ a1e(Pehs-PemsJ+2~a2J 

where ~,h denotes the least eigenvalue for Land Bms and Land Bhs 

respectively . 

. f of < 0, of 
0 a1 = ,n - a2 = sup ow <; ow 

of 
a3 = sup -

ov 

They also stated that no rigorous lower bounds on a could be obtained 

which would guarantee uniqueness [93]. Varma [93] derived this result for 

the special case Le=l and he stated that the proof of the general case 

(Le1l) is analogous. 

these bounds. 

In Section 2.5 we shall compare our results with 
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In Ch apter 2 we sha 11 derive an upper bound q,* which is much sharper 

than the existing one. We shal 1 also derive a lower bound on DamkcYhler 

numbers to guarantee uniqueness and we claim this to be the first result 

of its kind. 

1.3.3 Multiplicity and Bifurcation 

The analytical results for Problem Bare limited to the very special cases 

of Le= 1 and y = 0. Keller and Antman [101], Keller [40,78], Amann 

[3,4,5,6] and Laetsch [35,37,38] developed theories which give indications 

of the number of fixed points. 

Most approaches rest on the work of Amann. To apply his methods, one must 

find maximum and minimum solutions of Problem B. Wildenauer r66] gave 

results for the existence of maximum and minimum solutions, but requires 

that f(w(s),v(s)) be concave on s6[0,l]. Numerical results suggest the 

contrary. 

We cannot find appropriate maximum and minimum solutions of Problem B. If 

there exist multiple solutions, they intersect and subsequent orderinq 

is not possible. 

We did not find any general results which were directly applicable to 

Problem B in the literature and we had to resort to numerical procedures. 

See Section 1.5.3. 
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1.3.4 Stability 

Although we did not do any work on this aspect, we shall give a short 

survey of the literature for the sake of completeness. It must also be 

noted that our numerical bifurcation studies (Chapter 3) touched upon this 

matter, since a bifurcation point usually marks a change of stability. 

Different approaches to study the stability of the steady state solutions 

will be discussed. Endo [18], Gilles [31] and Eigenberger [14,15,17] gave 

a good review of the stability of different reactor types as well as the 

mechanisms which cause unstable behaviour. 

In [ 9, 28, 33, 99] the transient equations were numerically integrated for 

different initial values. The phase plane w(s1,t) - v(s1,t) for s1 fixed, 

gives useful information on regions of stability. Although this approach 

is cumbersome it gives reliable information on the stability of the nonli­

near equations. 

In [2,9,17,56,67] the method of Lyapunov was used. Amundson [8] used per­

turbation analysis and Kastenberg [47] used the difference function u(s,t) 

between the dynamic and steady state to construct eigenfunctions 

~1(s,t) and ~2(s,t) on a slightly larger domain. Using the maximum 

principle of parabolic equations, he showed that ~1(s,t)<u(s,t)<~2(s,t). 

The two comparison eigenfunctions are shown to converge to zero: 

lim ~i(s,t)=O 
t-+oo 

i=1,2. 
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Varma [63] used this approach to derive stability criteria. Luss [49,50] 

used the maximum principle of parabolic equations to derive criteria. 

1.3.5 Parameter Sensitivity 

Parameter sensitivity is an aspect which is of particular interest to the 

engineer. It describes the sensitivity of the steady state solutions to 

small perturbations in operating variables. If a system is in the sensi­

tive region, a small perturbation in operating variables will give rise to 

a sharp increase in the temperature which can lead to burnout or deactiva­

tion of the catalyst. 

Endo [ 18] suggested the use of the plug-flow model to study parameter 

sensitivity. 

Problem 8 as: 

This model results when Das-+□ , ks-+□ and one can write 

-w' + af(w(s),v(s)) = 0 ( 17) 

-v' + ~•af(w(s),v(s)) - y'v(s) = 0 ( 18) 

w(O) = :] ( 19) 

v(O) = 

According to Endo, the motivation to use the plug-flow model is that most 

reactors are operated in regions of an unique solution where the plug-flow 

model (PFM) gives a reasonable description of reactor behaviour. 
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This is not generally true, since reactors can be operated in regions of 

multiple solutions. The second objection to Endo 's suggestion is that 

more descriptive models than the PFM may give different er iter ia for 

parameter sensitivity. 

In 1959 Barkelew [ 36] gave the first systematic description of parameter 

sensitivity. He used the PFM for his studies. Defining the dimensionless 

temperature as: y = ( T-T o) <5/T u and assuming that o»y, he approximated 

(17)-(19) 

.91. = 
ds 

dw - = 
ds 

y(O) 

w(O) 

where Z = 

ymax 

z 

as: 

Zg(w)eY-y'y 

ag(w)eY 

= 0] 
= 0 

o~•a 

Y'/z 

FIG. 1.2: Sensitivity Diagram 

(20) 

( 21) 

(22) 
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For over 700 choices of y' and Z, (20)-(22) were integrated and diagrams, 

as shown in Figure 1.2, were constructed. 

Consider Z = b. For Ymax < y*, the deviation in Ymax for a change in 

y'/Z is smal 1, but for Ymax> y*, the change is more drastic. He 

proposed the following: 

A reactor is stable with respect to small operating fluctuations if 

Ymax < y*, where y* denotes the value which is tan gent i al to the 

envelope. 

Using Barkelew's diagram and assuming the PFM is adequate, one can compute 

the maximum radius of the tube which will still be parameter-insensitive. 

Agnew and Potter [1] extended Barkelew's approach to the two-dimensional 

PFM. This model has more parameters and parameters were lumped as 

dimensionless groups to avoid complexity. The results were analogous to 

Barkelew's diagrams. 

In 1970 F roment [ 23] studied the fir st order PFM for various parameter 

values. (18) is now divided by (17) to give: 

~ _ S'- y' (v)e-6v/(l+v) 
dw o: ( 1-w) 

(23) 

The maximum temperature vmax for a first order reaction satisfies: 

w = 1 - L (v )e- 6Vmaxl(l+vmax) (24) 
m ~, o: max 
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Using (24) vmax)-parameter-planes can be constructed for 

different choices of the parameters. In Figure 1.3 such a plane is shown. 

Froment gave the following criterion for parametric sensitivity. The 

trajectory passing through the maxima of the (1-wm;vmax) curves is 

critical. Inlet conditions which lead to Vmax values to the right of 

this trajectory is sensitive. 

In Figure 1.3 his proposition is illustrated. 

1-w 
m 

V max 

FIG. 1.3: Sensitivity Diagram 
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Varma and Morbidelli [89] gave the following criterion for sensitivity: 

d2v(s1) d dv(s2) If ----
2 

> 0 an -- = 0 where s1 < s2, run-away occurs. 
dw(s) ds 

Run-away is the term used to describe the sharp rise in temperature when a 

system is sensitive. 

slightly different: 

run-away occurs. 

Dente and Collina [102] defined their criterion only 
'2 

If d·v(s1) > 0 and dv(s2) 
2 ds ds 

= 0 where s1<s2, 

In 1978 El-Sawi et al [16] examined parameter sensitivity in an experi­

mental fixed bed reactor for the production of vinylacetate from acetylene 

and acetic acid. They found that Barkelew's criterion is conservative and 

explained the phenomenon in terms of the poor correlation between the 

model and experiment. 

In 1980 Emig et ~l [ 91] examined the same reaction and found that Barke-

lew's diagrams give realistic criteria. Agnew's diagrams were not conser­

vative at large Z-values and these diagrams must be used with care. They 

suggest that one must first choose the best model and then analyze it for 

parameter sensitivity. 

In Chapter 4 we derive conditions for parameter sensitivity for the one­

dimensional model using the criterion of Dente and Collina. We also give 

a new criterion for parameter sensitivity which is applicable to any 

model. 
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1.4 MODIFICATION OF THE ONE-DIMENSIONAL-MODEL 

Before we introduce our modified one-dimensional model, we must first con­

sider the aspect of dispersion. Secondly the status of the boundary condi­

tions wi 11 be discussed since we propose a modification of the boundary 

conditions as well. 

1.4.1 Dispersion 

In the discussion which follow~, we shall analyze the modelling of disper­

sion in more detail. 

Wicke [ 72] gives a good description of dispersion. We concentrate on 

mass-dispersion, since heat transfer mechanisms are very complex and we 

will not suggest any changes to the energy balance. 

Mass transfer comprises of convection and diffusion. The latter term con­

tributes a small part to the total mass transfer and is of the form: 

-DmA ~ 
ds 

where V m is the di ff us ion coefficient in the bulk medium. ( A denotes the 

cross-flow area of the reactor tube). 

diffusion and a hold-up term. 

Dispersion consists of both 

The latter term will be explained briefly. If mass-transfer consisted only 

of convection, a tracer-pulse, (an injection of a substance which must be 

tractable) as an approximation to the Dirac-delta function, will appear at 
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the outlet of the reactor unchanged (concentration as a function of time). 

No change should occur in the second moment of the distribution and every 

molecule of the tracer should have the same residence time. But in experi­

ments a real tracer output showed a considerable increase in the second 

moment of its distribution. This fact suggests a hold-up in the reactor, 

due to the complex flow round the catalyst particles. It is exactly this 

time delay which forms the second term of dispersion. In more quantitative 

form, the dispersion Das is: 

(25) 

where x is a "labyrinth factor" to correct for the diffusion along a curved 

path around the catalyst particles. 

In Figure 1.4 we illustrate the mechanism of hold-up. 

9Jo~o 
Eddies 0¥0' 

'o' 
Channeling 

o·~oo·~o 
0 0 0 0 Catalyst r particle 

FIG. 1.4: Mechanism for Different Residence Times 

 
 
 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

-21-

Diffusion is the only process which will cause mass-flow upstream. 

Remark: x = 0,7 for uniform packing [72]. 

1.4.2 Inlet Conditions 

1.4.2.1 Reactor Inlet 

Two types of reactor inlets are used in industry. 

(a) Packed inlet 

The inlet tube is packed with an inert material of the same physical 

dimensions as the catalyst. The flow pattern is established when it 

reaches the active part and the dispersion coefficient would have 

reached a constant value. Small variations in Vas due to the tempe­

rature effect on Vm may occur, but in most cases this effect is 

negligible. 

(b) Unpacked inlet 

The flow of reactants changes drastically when the active stage is 

entered and one will surmise a change in dispersion over a certain bed 

length until the flow is established for the packed tube. 
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1.4.2.2 Discussion of Boundary Conditions 

The boundary conditions (9 )-( 10) were derived by Danckwerts [ 75] for a 

first order reaction. These conditions are still controversial and we 

shall give a short survey. Let C0 denote the inlet concentration and u the 

mean velocity. A mass balance over the inlet gives: 

uCo = uC( □+) - Q. dC(O+), 
L ds 

(26) 

where V is the "apparent" diffusion coefficient. He arrived intuitively at 

the outlet boundary condition. 

Wehner and Wilhelm [73] considered the reactor system in three parts; the 

inlet stage (a), the reactor (b), and the outlet (c). The equations were 

set up for a first order isothermic reaction. We use Pe for the mass 

Peclet number (Pems) where the subscripts a, b, c denote the fore, 

reactor and after sections respectively. The dimensionless concentration 

CA= C/C 0 is used. 

1 d2C -~ ~ 
Pea ds 2 - ds 

1 d2C -~ ~ 
Peb ds2 - ds 

_1_ d
2

CA ~ 
2 -Pee ds ds 

= 0 s , 0 

- o: CA = 0 0 , s , 1 

= 0 s ;;. 1 

CA( □-) - _1_ ~ = CA(O+) - _l__ ~ 
Pea ds Peb ds 

( 27) 

(28) 

(29) 

(30) 

( 3 1) 
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CA(O-) = CA(O+) (32) 

CA(l-) 1 dCA(l-) 
CA(l+) 1 dCA(l+) 

(33) = 
Peb ds Pee ds 

CA(l-) = CA(l+) (34) 

The boundary conditions provide for continuity and the conservation of 

mass. Solving (27)-(34) give: 

1-CA(s) = ePeas 
(1-CA(O)) 

where A and B are constants. 

- Peb/2 CA(s) = 2A·B•e = constant; 

s ( 0 (35) 

Using the fact that CA(CX)) is finite, 

s) 1 (37) 

Since the solution for the after 

and it fol lows from (33)-(34) that: 

section is a constant, 

Substituting for CA(s) from (35) into the total flux anywhere in the fore 

section gives: 

CA(s) - _1_ ~ = 1. (38) 
Pea ds 
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Substituting this result in (31) gives the Danckwert's boundary condition 

at the inlet. 

In 1959 Pearson [76] used a dispersion-coefficient in the reactor as shown 

in Figure 1.5. 

V 

FIG. 1.5: Pearson's Variable Dispersion-Coefficient 

Pearson showed that if s1 ~ 0 and s2 ~ O, the Danckwert's boundary 

conditions result. 

Bisschoff [103] generalized Wehner and Wilhelm's results for a reaction of 

general order. Van Cauwenberghe [ 74] considered the unsteady state and 

showed that the Danckwert 's boundary conditions for the steady state are 

only valid if no diffusion occurs in the fore- and after sections. 
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Wissler [77] compared the one-dimensional axial dispersion model with the 

plug flow model under laminar flow conditions. If Pems becomes large, 

the problem is transformed into an initial value problem (PFM). The 

solution is truncated at s=1. 

In 1983 Nauman [ 52] suggested a modification of the Danckwert 's boundary 

conditions. He used two tuning parameters Kand A. 

1-K dw 
s=1 (39) ---= w 

Pemsds 

and 

dw 
0 -- s=1+A (40) 

ds 

The gradient at the outlet can be adjusted unti 1 it corresponds with the 

experimental results. The inlet parameter is changed until the model and 

experimental results are best correlated. 

We consider Nauman' s approach of an ad hoc nature and it lacks careful 

analysis of the model. 

The objections to the Danckwert 's boundary conditions are best summarized 

by Wicke [ 72]. 

(a) Which dispersion coefficient must be used at the inlet? 

(b) No distinction is made between packed- and unpacked inlets. 
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1.4.3 Modification of Axial Dispersion Model 

In the light of the objections rose by Wicke and the controversy around the 

Danckwert's boundary conditions in general, we propose modifications of the 

axial dispersion model in this section. 

(a) Packed Inlet 

The flow is fully established when it reaches the active zone. We 

assume no change occurs in the dispersion when the active zone is 

entered. ,A mass balance over the inlet gives 

( 41) 
dz 

where z = Ls, L = length of reactor 

It follows from the results of Wehner and Wilhelm that the flux is C0u 

and 

(42) 

-
- XVm dw( o+) 

w(o+) --- (43) 

ul ds 

Thus Pems (inlet) = ul/ x V m and this Pems differs from the Pems 

defined for the rest of the active zone, i.e. Pems = ul/ Vas. This 

result is also in accordance with Wicke' s suggest ion that the "dis­

persion" coefficient at the inlet is not the same as the dispersion in 

the reactor itself. 

 
 
 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

-27-

(b) Unpacked Inlet 

The flow is not established and the dispersion coefficient becomes 

constant after bedlength tl, as shown in Figure 1.6. 

----·---------------- s 
6L 
T 

FIG. 1.6: Variation· in·0ispersion 

A mass balance over the inlet gives the identical result as (43). The 

mass balance in the reactor changes: 

V(s) w" - w' 
ul 

where 

V(s) = 

+ a(1-w)e6v/(1+v) = 0 

XVm + sl 
(Vas-XVm) 

tl 

Das 

if 

if 

0 < s ~ 1 ( 44) 

& 
s ( -

L 

To summarize: if the inlet is packed Problem Bis used but (9) is substi­

tuted by (43). If the inlet is unpacked both (7) and (9) are substituted 

by (44) and (43) respectively. 
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The outlet conditions are correct if no diffusion occurs in the after 

section. 

We constructed bifurcation diagrams for this modified model in Chapter 3, 

Section 3.7, but in the rest of this work we used the unmodified model. 

1.5 NUMERICAL METHODS 

In this section we shall discuss various numerical methods for the solution 

of the boundary value problems A and 8 as well as the construction of bi­

furcation diagrams. Sections 1. 5. 1 and 1. 5. 2 give a survey of known me­

thods to solve boundary value problems. 

1.5.1 One-Dimensional Model. 

(a) Finite Difference Methods 

(i) Implicit and explicit schemes 

Due to the high nonlinearity extremely fine meshes are required 

to obtain good accuracy. In the literature very few authors used 

these methods to solve the boundary value problem. 

(ii) Green's Function and Numerical Approximation of the Integral 

Convergence is guaranteed if: 

Pems[max(f(w(s),v(s)))] < 1 
O(w(s)(1 
O(v(s)(~ 

Pehs[max(~f(w(s),v(s)-yv(s))] < 1 
O<w( s) <1 
O<v(s)<~ 

[see 95] 
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When conversion is low and the temperature is close to ambient, this method 

gives reasonable results, but no convergence occurred in the case of high 

conversions. 

(iii) Shooting Methods 

Shooting methods [ 106, 98] were used to solve the boundary value 

problem [60]. Outlet conditions (w(1),v(1)) are varied until the 

inlet boundary conditions are satisfied. If forward integration 

is used, the procedure becomes unstable [106]. The outlet values 

are corrected after . every integration cycle ( from s=1 to s=O) 

using a first order Taylor expansion. For a non-stoichiometrical 

system, the procedure is cumbersome, since N2 equations must be 

integrated for every N-unknowns. 

(iv) General Parameter Mapping Method 

This method [86,95] is a variation of the shooting method. It is 

often used to construct bifurcation diagrams [42,45]. 

(v) Method of False Transient 

The model equations are written in the unsteady state form and 

integrated until steady state is approached. Solving a parabolic 

partial differential equation, the methods of Saul' yev [ 51 ] or 

orthogonal collocation of the space variable with integration in 

time, can be used [12,62]. 
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(b) Finite Elements 

(i) Galerkin 

The coefficients of the polynomial which approximates the 

solution over an element are obtained by either minimizing the 

residual over the whole element, or forcing it pointwise 

orthogonal. In the Galerkin method, the residual is weighted by 

the approximate over the whole interval. The integration of the 

nonlinear terms can be handled either by quadrature or Finite 

difference approximations. It is specifically this limitation 

which makes other finite element methods more attractive. 

(ii) Orthogonal Collocation (OC) 

This method is by far the most popular [24, 97, 98] since it is 

1 - Shooting Method 

2 - Orthogonal Collocation 

3 - Orthogonal Collocation Finite Elements 
.10 

2 

. 00 -L-~-----:---~--~--:-1---:---:-1 --r--i, 
.0 .2 .4 .6 .8 1.0 

FIG. 1.7: Comparison Between Different Numerical Methods 
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suitable for highly nonlinear equations and was used extensively 

to solve the model equations [ 24, 26, 27, 55, 62, 65]. For higher 

accuracy, the interval [D,1] can be divided into elements and at 

the nodes, the approximated function is smoothed ( OCFE). If 

Hermitian polynomials are used, these continuity conditions at 

the nodes are satisfied automatically. Problem B was solved for 

Pem = Peh = 5, 6 = 25, ~ = 0,5, y = 5 and <f> = 0.25, using: 

1) a shooting method; 2) DC 3) DC on splines. The results are 

shown in Figure 1.7. 

We did not do a detail study to compare the three methods, but we 

decided to use the DC and OCFE methods, due to their popularity. 

1.5.2 Elliptic Partial Differential Equations (Two-dimensional model) 

FIG. 1.8: Three-Dimensional Temperature Solution 

 
 
 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

-32-

Finlayson [98] gives a thorough discussion of QC and OCFE to solve this 

problem. In [83] they used the QC method to study the differences between 

one and two-dimensional models. Feick and Quon [21] used the Crank­

Nicholson method to compare the one-dimensional, two-dimensional and hete-

rogeneous models. Froment [20] also used an implicit finite difference 

method to compare theoretical and industrial values of radial effects. In 

Figure 1.8 a temperature solution in two dimensions, using OC, is shown. 

1.5.3 Construction of Bifurcation Diagrams 

One way of looking at the problem of the number of solutions of either Pro­

blems A or B, is to construct an arc of solutions. More precisely, both 

problems can be written in the fol lowing form: 

F ( u, <!>) =O 

where F:BxR~B, for some Banach space B. By a smooth arc of solutions we 

mean the range in B of the function : ¢~u(¢). If one can construct arcs 

for all possible values of the parameter¢, one will get a complete picture 

of the number of solutions. However, we shall not attempt to give a formal 

introduction to bifurcation theory and rather introduce the concept infor­

mally. In fact, we shall consider only the discretized versions of Pro­

blems A and Band we assume, as most authors do, that the results are valid 

for the original problem. (In general the validity of the approach has not 

yet been proved. See Section 3.9 for references.) 

Let G(u,¢) = 0 

be the discretized version of Problems A and B, where. 

G: Rn xRn xR~Rn xRn. As long as Gu ( u, <I>) is non-zero, the arc through 

(u,<1>) is uniquely defined. If Gu(u 0
,¢

0
) becomes zero, we have a bifurca­

tion point. In some cases (u 0 ,<1> 0
) marks the junction of two or more arcs 

and we refer to such a situation as simple and multiple bifurcation respec-
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tively. (u 0
,<t>

0
) can also be the point where two arcs merge smoothly, 

referred to as a limit point. In the latter case GjR(Gu) at (u 0 ,q, 0 ). 

To construct a bifurcation diagram numerically, the discretized problem (a 

set of algebraic equations) is solved at every value of a parameter. The 

Newton-type continuation procedure utilizes the Jacobi matrix in every 

step. This method fails when a non-isolated solution is approached. One 

can use any standard solution method to solve the discretized problem and 

keep track of the Jacobi matrix, switching to a method which is specifical­

ly designed for bifurcation points when necessary. 

The bifurcation behaviour of the discretized version of Problem B was stu­

died by several authors. Varma [60], used a shooting method. This method 

fails at bifurcation points and it is not clear how he computed these 

points. Hlavacek [42] used the general parameter mapping technique to con­

struct the bifurcation diagrams. Jensen [45] mentions an approach whereby 

the determinant of the Jacobi matrix is extrapolated to zero. 

Other authors studied integral equations in stead of the differential equa­

tions. Reddien [58] proposed a projection method to construct the bifurca­

tion diagrams. Atkinson [88] used collectively compact operator approxima­

tions to the integral operator. Simpson [59] computed the least eigenva­

lues of the Jacobi matrix and obtained an estimate of the bifurcation point 

by extrapolation. 

1.5.4 Our Results 

In Chapter 3 we used the continuation method of Keller r967 to construct 

bifurcation diagrams for Problem A, Problem B and for the modified one­

dimensional problem. We also describe the application of this method. 
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We used the principle of Ke 11 er I s method to develop a new method to con­

struct an arc of limit points for Problem B. No published results for the 

non-adiabatic case could be found, to compare our results with. The method 

in literature, which was used to construct the arcs, differs totally from 

our method. 

1.6 SUMMARY OF NEW RESULTS 

In Section 1.4.3 we propose a modification of the one-dimensional model. 

This model recognises the different elements of dispersion and will help to 

clear the controversy around the Danckwert's boundary conditions. 

In Chapter 2 we derive a sufficient condition for uniqueness, for the one­

dimensional model. Exploiting the characteristics of the reaction term, we 

derive sharper upper bounds on cf>, to gu ar an tee uniqueness. We a 1 so con­

struct upper and lower function bounds on w solutions and using this result 

in conjunction with the uniqueness result, we construct a lower bound on cp. 

These results compare poorly with numerical values, but are the first of 

their kind. 

In Chapter 3 we used Keller's arclength method to construct bifurcation 

diagrams for the one-dimensional, modified one-dimensional and two-dimen­

sional models. A new method to construct an arc of limit points is intro­

duced and results are reported. 

In Chapter 4 we give an exact definition to parameter sensitivity. We use 

the criterion of Dente and Col lina [102] to construct parameter-sensitivity 

diagrams and show that existing approaches in literature are inadequate to 

detect all parameter sensitive regions. 
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CHAPTER TWO 

RIGOROUS BOUNDS FOR UNIQUENESS 

2.1 INTRODUCTION 

As Emig [91] pointed out, most industrial reactors are operated under 

conditions where the model has a unique solution. In the literature, 

numerically determined bifurcation diagrams are mostly used to determine 

sharp bounds for uniqueness. Apart from the shortcomings of numerical 

methods like inherent errors and the validity of dicretization, bifurcation 

points (or limit points) are only sufficient conditions for multiple 

solutions. Since bifurcation is local, no knowledge of independent 

solution branches will be gained from a bifurcation diagram. Hence the 

importance of analytical bounds is obvious. The effect of the Damkcihler 

number on the uniqueness of the one-dimensional model attracted much 

attention in the past. This is expected since <f> is an operating variable 

(see Section 1.2.2). In this chapter we shall also concentrate on this 

parameter. 

For the non-adiabatic reactor model (y>O), analytical results are limited 

(see Section 1.3.2). We shall derive a much improved upper bound <f>* 

and, for the first time, a lower bound <f>*, using new methods. 

In Section 2.2 we derive a sufficient condition for uniqueness. In Section 

2.3 we show that for any given parameters ~, 6 and y, there exists a 

<f> * • In Sect i on 2 . 4 we improve the upper bound on v ( s ) for the f i rs t 

order reaction. In Section 2.5 we compare our results with Varma's and for 

this example, our bounds are ten to thirty times better. This is a 

significant improvement. 
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In Section 2.6 we derive upper and lower function bounds for w. At high 

values of¢ these solutions converge at s=l and can prove valuable in error 

analysis and convergence of num~rical approximations. In the last section 

we use this resu 1 t to prove the existence of a ¢*. These bounds do not 

compare wel 1 with numerical results, but we claim it is the first result of 

it's kind. 

An interesting fact which emerges from our approach is that if the specific 

properties of the functions in the differential equations are exploited, 

better results are achieved than using general or standard approaches. 

2.2 GENERAL UNIQUENESS RESULT 

2.2.1 Preliminaries 

Let (w 1(s),v1(s)) and (w 2(s),v 2(s)) denote two solutions of Problem B. 

Define w( s) = w2 ( s) - w i( s) and 

v(s) = v2(s) - v1(s). 

From the differential form of the model equations and the mean-value 

theorem, see Apostol [111, p. 254]: 

w" ( s ) -P ems w ' ( s ) + ¢ [ o v f ( w ( s ) , ~ ( s ) ) v ( s ) + ow f ( w ( s ) , v ( s ) ) w ( s ) ] = 0 ( 1 ) 

v 11 ( s ) -p eh s v ' ( s ) + ~ <P [ o v f ( w ( s ) , v ( s ) ) v ( s ) + ow f ( w ( s ) , v ( s ) ) w ( s ) ] -y v ( s ) = 0 ( 2 ) 

w'(O) = Pemsw(O) (3) 

w'(l) = 0 (4) 

v'(O) = Pehsv(O) (5) 

v'(l) = 0 (6) 
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where w(s) and v(s) in (1)-(2) result from the mean-value theorem. For 

these functions the only information we have are the facts that: 

w(s)6[wi(s),w 2 (s)] and v(s)e[vi(s),v 2 (s)]. It is convenient to introduce 

the following notation: 

a(s) = <!>ov f ( w ( s) , v ( s) ) 

p(s) = -~owf(w(s),v(s)) 

L(s) = a(s)v(s)-p(s)w(s) 

Z(s) = ~L(s)-yv(s) 

Note that a and p are strictly positive functions for any n-th order 

reaction. 

2.2.2 Behaviour of the Difference Functions 

In this section we shall prove that the fol lowing condition is sufficient 

for uniqueness. Throughout this sect ion, it wi 11 be assumed that w and v 

satisfy the boundary conditions (4) and (6). 

Condition C: For any s€[0,l], Z(s)<O whenever w(s)~O and v(s)>O and Z(s)>O 

whenever w(s)(O and v(s)<O. 

Proposition 1: 

Suppose Condition C holds for the differential operator and at an soe[O,l] 

the fol lowing hold: 
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i) w(so) ) 0 

ii) w' (so) = 0 

iii) w" (so) ( 0 

iv) v(s o) > 0 

v) v' (so) > 0 

then there is s1£(so,1) such that: 

i*) w(s 1) < 0 

ii*) w' (s1) = 0 

iii*) w" (s 1) ) 0 

iv*) v( s l) < 0 

v*) V 1 (s L) < 0 

Proof 

We shall make use of a sketch to elucidate the arguments. 

fW ( s) 

s 

FIG. 2.1 
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Lets* be the first point where v'(s) = 0, s* > s 0 • 

Then v"(s*) ( 0, since v' (s) > 0 for st(s 0 ,s*). 

Th i s i mp 1 i es that w ( s * ) < 0, b ec au s e w ( s * ) > 0 i mp 1 i es Z ( s * ) < 0 and 

v"(s*)+Z(s*) = 0 is impossible. 

We prove next that w'(s*)<0. 

Suppose w'(s*) > 0. Since w(so) > 0 and w(s*) < 0, there exists an s2 l 

(s 0 ,s*], such that: 

w'(s2) = 0 and w(s2) < 0 and w"(s2) > 0. 

Since w"(s 2 ) + L(s 2) = 0, it fol lows that a:(s2)v(s2)-p(s2)w(s2) ( 0. Hence 

v(s2) < 0 which is impossible on the interval (so,s*]. This contradicts 

the assumption, hence w'(s*) < 0. 

Let s 3 be the first zero of w'(s), s 3 > s*. Since w(s*)<0 and w'(s*)<0, 

w(s 3)<0 and w"(s3)>0. This proves i*-iii*. 

It also follows that a(s 3)v(s 3)-p(s3)w(s3)(0, which implies v(s3)<0. This 

proves iv*. 

We next prove that v'(s 3 )<0. 

Suppose v'(s 3) > 0. Since v(s*) > 0 and v(s 3 ) < 0, there exists an 

s**&(s*,s3] such that v' (s**) = 0, v(s**) < 0 and v"(s**) > 0. Therefore 

v"(s**) + Z(s**) = 0. This implies Z(s**) ( 0 which is impossible. Hence 

v' (s3) < 0. 

Q.e.d. 

In future we shall refer to so as a P-point and s1 as an N-point. 
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Proposition 2 

Suppose Condition C holds and s 0 denotes an N-point, then there exists a 

P-point s16(s 0 ,l). 

Proof 

Let ~(s) = -w(s) and n(s) = -v(s), then the proof is identical to the proof 

of Proposition 1. 

2.2.3 Sufficient Condition for Uniqueness 

Lemma 1 

If Condition C holds for the differential operator, then Problem B has a 

unique solution. 

Proof 

Our approach wi l 1 be to consider a number of possibilities and in each case 

show that the boundary value problem reduces to an initial value problem 

for the system of ordinary differential equations. (If for soms s, 

wi(s) = w2(s), vi(s) = v2(s), w1'(s) = w2'(s) and v1'(s) = v2'(s), it is 

wel 1-known that w1 = w2 and v1 = v2). 

The first possibility is w(O) = v(O) = 0. Then it fol lows from the bounda­

ry conditions that w' (0) = v' (0) = 0. Therefore we only have to consider 

the case either w(O) * 0 or v(O) * 0. 

We can assume without loss of generality that w(O)>O if wi(O) * w2(0) and 

w 11 
( 0) >O if w i( 0) = w 2 ( 0) . 
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Note that if w11 (0) = 0 and w(O) = 0, it fol lows from the differential equa­

tions that v(O) = 0. This case was already considered in the first part of 

the proof. 

We shall prove that their exists a s 1e(O,l) such that s 1 is a P-point. 

F i rs t , l et w ( 0 ) > 0. Fr om the bound a r y con d i t i on , w 1 
( 0 ) > 0. Let s 1 denote 

the f i rs t po i n t where w 1 
( s i) = 0. At s 1 , w 11 

( s i) <: 0, therefore L ( s i) > 0, 

which implies v(si)>O. We shall now prove that v'(si)>O. Suppose 

v'(si)<:0, then v(s) must have reached a maximum at s*<:s 1. At s*, Z(s*)>O 

implies w(s*)<O, which is a contradiction. Hence s 1 is a P-point. 

Secondly, v(O) * 0 if w(O) = 0. From (3), w'(O) = 0. Let s1 denote the 

first point where w'(s 1) = 0, w(s 1)>0. Using exactly the same arguments as 

in the first part, one can prove that s1 is a P-point. 

Consider the set of P-points on the interval [0,1]. Let p denote the sup 

of this set. w' is a continuous function and since a P-point can be found 

arbitrarily close top, it follows that w'(p) = 0. It is obvious from Pro-

positions 1 and 2 that no N-point exists at s 0 >p. It also follows from 

these propositions that an N-point exists arbitrarily close to p. Between 

every P-point and N-point v'(s) = 0, thus v' = 0 can be chosen arbitrarily 

close top. Thus v'(p) = 0 since v' is a continuous function. 

We shall next prove that w(p) = v(p) = 0. Suppose w(p) = k>O. Then there 

is a neighbourhood of p where w( s) > k. But in this neighbourhood there 

must be an N-point where w(s)<O. By the same argument w(p)<O is not possi­

ble. Hence w(p) = 0. 

From Propositions 1 and 2 it fol lows that v has positive and negative 

values arbitrarily close to p. As for wit fol lows that v(p) = 0. 
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Since w{p) = v{p) = w' (p) = v' (p) = 0, the uniqueness theorem for the 

initial value problem implies uniqueness. Q.e.d. 

2.3 UPPER BOUNDS FOR UNIQUENESS 

In this section we sha l l prove the existence of an upper bound 4>* ( See 

Section 1.3.2) and derive an estimate for it. It is important to note that 

g{w) = (1-w)n as used in Problem Bis a decreasing function. 

Lemma 2 

If there exists a 4>i such that Vmax is an upper bound of v for all 4><<t>i, 

then there exists a 4>* such that Condition C holds for all 4)(4>*· 

Proof 

Then 

oe 6v{s)/(l+v(s)) 
Z(s)(~q,g(w2(s)) --- • v(s) -yv{s) 

( 1 +v ( s) ) 2 

~ v ( s ) ( ~ 4> oe c5 v ( s )_I ( 1 +v ( s ) ~ Y ) 

(l+v(s)) 2 

Consider the function 8 defined by 

e6v/(l+v) dB(v) 
B(v) = -- , then-~ 

(l+v) 2 dv 

e 6v / ( 1 +v) 
= --- [6-2-2v] 

(l+v) 4 

If 6>2(l+v), the function is increasing. Choose 4>* such that: 
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. [ y(l+vmax)2e-6vmaxl(l+]vmax) 
~*=min ~1, ---

~6 

Suppose 6<2, then max B(v) = 8(0) and one chooses~. such that: 

( 7) 

~. = y/~o. (8) 

If 2<6<2(l+v), a maximum exists at v = 6/2-1 and one can choose 

~.=yo e-(6-2) (9) 

4~ 

If s denotes a point where w2(s)(wi(s) and v2(s)<vi(s), the proof is 

identical. 

Hence, for any set of parameters~, 6 and y, an upper bound¢* exists. 

Q.e.d. 

Remark 

For large 6, no accurate estimate can be made for¢• 

2.4 ~ NEW UPPER BOUND ON v(s) 

It is obvious from the results in the last section that sharper 11 global 11 

upper bounds on v will considerably improve the upper bound for unique­

ness. In this section we shall derive a new upper bound on v for a first 

order reaction without solving the differential equation. 

2.4.1 Preliminaries 

In integral form, the model equations can be written as: 

w(s) = f1Gms(s,t)~(l-w(t))e6v(t)/(l+v(t))dt 
0 

( 1 0) 
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v(s) = J1Ghs(s,t)[~¢(1-w(t))e 6v(t)/(l+v(t))_yv(t)]dt 
0 

where Gi(s,t) denotes the Green's function as defined in Section 1.3. 

( 11) 

The Pems and Pehs numbers usually differ and we shall first consider 

the case Pems ( Pehs 

v(s) < J1Ghs(s,t)(~¢(1-w(t))e6v(t)/(l+v(t)))dt 
0 

( J1Gms(s,t)(~¢(l-w(t))e6v(t)/(l+v(t)))dt 
0 

= ~w ( s). 

If Pems > Pehs' one can find a P > 0, such that 

( 12) 

and v(s) < ~Pw(s) (13) 

An upper bound on v(s) in terms of w(s) can be found such that cvv(s) < 

w(s), where 

<), = r 1/ 13 , Le > 1 

r/ ( P!3) , Le < 1 

Definition: H<I> H<l>(v) = ¢(1-cvv)e0v/(l+v) 

It follows that H<l>v(s) > ¢(1-w(s))e 6v(s)/(l+v(s)) for all solutions of 

(10)-(11). 
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can be used to compute upper bounds for v without solving the boundary 

value problem. 

2.4.2 Upper Bound 

Lemma 3 

If vR has the property that J~(u)(Q for all u)vR then vR is an 

upper bound for the temperature solution of Problem B. 

Proof 

We shal 1 consider two possibilities: Either vis an increasing function or 

v has at least one local maximum in (0,1). Note that v' (0)>0. 

In the first case v11 (1)(0. Since v'(l) = 0, it follows that 

~~f(w(l),v(l)) - yv(l))0. 

Since 

~~f(w(l),v(l)) - yv(l)<J~(v(l)), 

it fol lows from the properties of J~ that v(l)<vR· 

In the second case, we can use the same argument at every local maximum of 

v. Consequently max (v)<VR• 

Q.e.d. 
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In Figure 2.2 three possible graphs for J<t> are shown for various ¢. Note 

that ¢1>¢ 2 implies J¢1>J¢2 • 

FIG. 2.2: ~ 

Proposition 3 

If o>4~+4 then there exists an unique ¢ = ¢R such that the local 

maximum of J<t> = 0. 
R 
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Proof 

The only point where the second derivative can change sign is at 

= 6-2-24, > O Vo --- , 
q,6+2+2q, 

since 6>2+24,. 

For v<vo, the second derivative is strictly positive and for v>vo the 

second derivative is strictly negative. Note that v0<l/q,. It fol lows that 

J<!> can have at most one maximum for some v>v 0 • Our aim is now to find a 

Substituting (14) in (15) and rearranging, 

v* 2 (-l-q,6) + v*(o-2)-1 = O 

( 14) 

( 15) 

( 16) 
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This equation can be solved for o>4~+4 and the roots are 

= (o-2)±✓o 2 -4o(l+~) 
2( l+~o) 

From previous arguments it follows that the larger root v2* corresponds to 

a local maximum. Substituting this root into (14) we find that 

Define vR as the smallest zero of J4> ( v) 
R 

Q.e.d. 

(see Figure 2.3). 

( 17) 

It 

fo 11 ows from Lemma 3 and the properties of J4> that vR is an upper bound 

for the temperature solution v for all 4>~4>R• 

FIG. 2.3: J4> (v) 
R 
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2.5 COMPARISON OF UPPER BOUNDS ON¢ 

Varma [60] derived analytical estimates for <P* (See Section 1.3.2.2) and 

compared them with values obtained from bifurcation diagrams. In this 

section we shall compare our analytical results with those of Varma for the 

fol lowing set of parameters: 

~ = 0, 5 

o = 25 

We computed ¢R for different y-values using (16) and (17). 

the smallest positive root is determined numerically. 

upper bound for vis now used in (7) to determine <P*· 

Table 2.1: Comparison of Upper Bounds 

Estimates for ¢* 

y Varma 1 s Results Our Results 

Numeric a 1 An a 1 yt i ca 1 

5 0,05388 0, 00109 0,0156 

10 0,1244 0, 001109 0,0312 

12,5 0,17582 0,001198 0,039 

15 0,2233 0,001282 0,0468 

2.6 FUNCTION UPPER AND LOWER BOUNDS 

This 

In this section we shall construct functions which are upper and lower 
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bounds for the conversion solution of Problem B for the case of a first 

order reaction. We require these bounds to find a lower bound <f>*, such 

that Condition C holds for all <f>~<f>*. 

Notation 

We shall use g for the solution of 

g" Pems9' + 4>(1-g) = 0 

g' = Pems9 ' 
s=O 

g' = 0 
' 

s=l 

and h for the solution of 

h" Pemsh' + 4>(l-h)e 6~/(l+~) = 0 

h' = Pemsh ' 
s=O 

h' = 0 , s=l 

We shall prove that g(w(h. 

Proposition 4 

If (w,v) is a solution of Problem B, g(w. 

Proof 

Let g(s)>w(s), then it fol lows from the integral representations that 

J1~ (s,t)4>(1-g(t))dt~g(s)>w(s)=J 1Gms(s,t)4>(1-w(t))e 0v(t)/(l+v(t)))dt 
a '1'TIS a 

Hence f 1trn5 (s,t)4>(w(t)-g(t))dt>O, which implies g(t)<w(t) for some t. 
a 
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Next we shall prove that g(1)(w(1). Suppose g(1)>w(1), then the solutions 

g(s) ~ w(s), 

1-g(s) ( 1-w(s) and thus 

1-g(s) < (1-w(s))e6v(s)/(1+v(s)). 

Therefore 

f 1 (1-g(s))ds < f 1 (1-w(s))e 6v(s)/( 1+v(s))ds. 

Hence 

flePems<s1-t)¢(1-g(t))dt < 

s1 

f 1ePems<s1-t)¢(1-w(t))e 6v(t)/( 1+v(t))dt and g'(s1) < w'(s1). 

s1 

This is a contradiction, hence g(1)(w(1). 

If g(1)=w(1), then g"(1)>w"(1). Thus g(s)<w(s) in (6,1) for some 6. 

Obviously this is also the case when g(1)<w(1). 

We shall now prove that it is impossible for g and w to intersect in (0,1). 

Suppose s2 is a point of intersection. Either s2 is a unique intersection 

point on (0, 1) or is preceded by s1 € (O,s2) where g(s1)=w(s1) and 

g' ( s l) >w' ( s 1) • 

Suppose there exists a unique s2 E (0, 1) such that g(s2)=w(s2), 

g' (s2)<w' (s2). For 0(s(s2 

g(s)~w(s) 

(1-g(s))<(1-w(s))e6v(s)/(1+v(s)). 
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Hence 

s2 s2 
J ¢(1-g(t))dt<J ¢(1-w(t))e 0v(t)/(1+v(t))dt 

0 0 

The remaining possibility is that there exist an s 2 € (O, 1) where 

Hence 

g'(s1)=J1ePemsCs1-t) ¢(1-g(t))dt+Js2ePemsCs1-t)¢(1-g(t))dt 

< J1ePemsCs1-t)¢( 1-w(t))eov(t)/(1+v(t))dt 

s2 

+ Js2ePemsCs1-t)¢( 1-w(t)eov(t)/(1+v(t))dt 

s1 

Thus g'(s1) < w'(s1), which is a contradiction. 

Proposition 5 

If (w,v) is a solution of Problem B then h)w. 

Proof 

Q.e.d. 

The arguments are exactly the same as in the proof of Proposition 4. 
Q.e.d. 
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It is well-known that the functions g and hare given by: 

h(s),g(s) = 

Pe +/Pe 2 +4<P' 
ms ms 

where M1 = -------
2 

[

<P for g 
<P' -

- <t>e 6~/( 1+~) for h 

2.7 A NEW LOWER BOUND <P* 

H 

Pe -fPe 2+4<P' 
ms ms 

'M2 = ------
2 

(18) 

In this section we sha 11 derive a new lower bound on <P for the case of a 

first order reaction. 

In Lemma 4 we assume that v(s)(~w(s). This assumption 1s strongly 

supported by numerical results, but we failed to prove it yet. 

Lemma 4 

Assume that v(s)(~w(s). Then there exists a <P* such that Condition C holds 

for all q,;;.q,*. 
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Proof 

oe6v(s)/(l+v(s)) ov(s)/(l+v(s)) 
Z(s)(~¢(1-w(s))[--~ v(s)]-yv(s)-~¢e w(s) 

( 1 +v ( s) )2 

But from Proposition 4, it fol lows that g(s)(w(s), for s [0,1]. Hence 

Z(s)< v(s)[~¢6(1-g(s))e6v(s)/(l+v(s))_y-¢eov(s)/(l+v(s))J 

< v(s)[~¢o(l-g(O))eov(s)/(l+v(s))_y-¢eov(s)/(l+v(s))] 

Using (18) one can choose¢* such that 

(~~o(l-g(O))-¢)eov(s)/(l+v(s))_y(Q 

for all ¢)~* and v(s)6[0,~]. 

Q.e.d. 

In Table 2.2 we compare our analytical bound with the numerical results of 

Varma [60] for an identical set of parameters as was used in Table 2.1. 

Table 2.2: Comparison of Lower Bounds 

---
y Numerical Our Result 

5 0,0919 3583,5 

10 0, 138 3573,0 

12,5 0,18138 3567,7 

15 0,2258 3563,0 

------

Although these results compare poorly, they are the first of their kind. 
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CHAPTER THREE 

BIFURCATION 

3.1 INTRODUCTION 

Numerical procedures are used to study the bifurcation behaviour of the 

reactor models. (See Section 1.5.3). The existence of multiple solutions 

of boundary value problems is wel ]-known. In Section 3.2 some numerical 

methods to determine bifurcation points and bifurcation in finite 

dimensional space are discussed. In Section 3.3 our numerical approach is 

outlined. In Section 3.4 we discuss the results for the one-dimensional 

model (Problem B) and present the results. In Section 3.5 a new approach 

for the construction of arcs of bifurcation points (parameter-plane 

diagrams) is discussed and in the fol lowing section some results are 

shown. This method is new since it uses a totally different approach. 

In Section 3.7 the bifurcation behaviour of the variable dispersion model 

is studied. The formulation of this model is also new, although a change 

in the boundary conditions along these lines were formerly suggested. In 

Section 3.8 we look at the two-dimensional model. No literature on the 

bifurcation behaviour of this model could be found. Regions of one, two 

and three solutions were found but no higher multiplicity than three. For 

certain choices of the parameters no solution was found. Due to the com­

pl ex i ty of the problem we could link this problem to neither the numerical 

procedure nor the non-existence of a solution. 
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3.2 BIFURCATION IN FINITE DIMENSIONAL SPACE 

We shall now discuss methods to construct arcs of solutions (as a function 

of a parameter) for the discretized problem. Consider the discretized ver­

sion of a boundary value problem, parametrized by~-

( 1) 

where u = (w,v) is the solution of (1). 

Then (u,~) is called a regular solution if Gu(u,4>) is nonsingular, other-

w i s e ( u , 4> ) i s a b i fur c at i on po i n t . 

Gu(u,4>) is singular and 

(u,4>) is a normal limit point if 

At a limit point two solution branches "meet smoothly". Jensen [45] stated 

without proof that Problem B only portrays limit point bifurcation and in 

the rest of this chapter we assume Gd(,R(Gu) at every bifurcation point. 

We shall now explain Keller's method. It is a method used to trace out 

solution arcs, by varying a parameter of the problem. This method does not 

encounter any difficulties at limit points and bifurcation points, althouqh 

this is often the case for other methods. (See Section 1.5.3). A new 

independent parameters is introduced. 

G(u(s),4>(s)) = 0. (2) 

An additional equation is now required. Let 

where 9 i s an a r b i tr a r y cons t ant 0< 9 < 1. The i n i t i a 1 v a 1 u e for s i s a 1 so 

a r b i tr a r y . ( s i s a form of arc 1 en gt h ) . 

[

G(u(s),ct>(s))] 
P(u(s),4>(s),s) = 

N9 (u(s),s) 

Rewriting (2) and (3) we get 

= 0 

If the derivative u(s) is not known at s, an approximation of (3) is: 

(4) 

• • N3(s) = enu(s)-u(s0 )n(u(s0 ))+(1-e)jct>(s)-4>(s0 )1(4>(s0 ))-ds = 0. (5) 
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If x = ( u, 4>) , the Frechet derivative of P as a function of x only is 

represented by the Jacobi matrix. 

We shall need the following result. 

LEMMA (Keller) 

(a) If Gu is nonsingular then A is nonsingular iff: 

(b) If Gu is singular and dim N(Gu) = codim R(Gu) = v 

then A is nonsingular iff: 

1. dim R(GA) = v 

3. dim R(C*) = 0 

2. R(GA) (\ R(Gu) = 0 

4. N(Gu) n N(C*) = 0 

(c) If Gu is singular and dim N(Gu) > v then A is singular. 

See Keller [96, p. 363]. 

(6) 

Note: In the case of simple bifurcation the conditions in (b) can be sta-

ted as: and where 

ment of Gu· 

G * u is the dual ele-
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Assuming 

Guu+G4>~ = 0 

and GiR (Gu), one cone l udes, that ~ = 0 and hence ucN (Gu). 

Since 

llull2 + 1¢12 > 0 

it follows that uTu * O and hence uT¢R(GuT). 

It fo 11 ows from the Lemma that Px is nonsingular. Therefore 

a continuation procedure, using Px wi 11 exhibit no problems at the limit 

points. 

3.3 NUMERICAL PROCEDURES 

We shall give a brief explanation of the method of orthogonal collocation, 

since it forms the basis for most of the numerical work in the following 

sections. (See Section 1.5.1 for references). Orthogonal collocation is a 

finite element used for the numerical solution of differential equations. 

The solution is approximated by a polynomial. In certain points on the 

interval [O,l], called the collocation points, the polynomial is forced to 

s at i sf y the d i ff ere n t i a l eq u at i on ex act l y . These con d i t i on s supp l y the 

necessary equations to solve for the coefficients of the polynomial. 

Let the function y(x) be approximated in NCOL points: 

NCOL 
y(xi) YN(xi) = r Cjxij, 

j=O 
= 1, 2, . . . NCOL. 
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Differentiating with respect to x gives: 

NCOL 
YN' (x) = r Cjjxj-1 

j=O 

Or in matrix form, 

y = XC 

and 

Y' = X'C 

But 

C = x-ly , 

thus 

Y' = x•x-1v. 

Let A= x•x-1, 

then one can approximate the first derivative with a linear combination of 

the function values at NCOL-points 

Y' = AY. 

Following the same approach, one can derive an approximation of the second 

derivative in the form 

Y11 = BY 

where Bis also a square matrix. 

Let Ai j and Bi j denote the e 1 ements of A and B respectively. Using 

Villadsen's notation [94] for orthogonal collocation, the discretized ver­

sion of Problem B for a first order reaction (and Le=l) can be written as: 
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_r Bijwj-Pe _r Aijwj+¢(1-wi)exp(6vi/(l+vi)) = O 
J=l J=l 

NCOL NCOL 
_r

1 
Bijvj-Pe _r Aijvj+~¢(1-wi)exp(ovi/(l+vi))-yvi = O 

J = J=l 

NCOL 
L ANcoL·U· = 0 . 1 J J J= 

NCOL 
_rl ANCOL-1,juj = rANCQLUj 
J= 

eju(s)-u(so)lus(so)+(l-8)1¢{s)-¢(so)l¢s(so)-ds=O 

( 7) 

(8) 

(9) 

( 1 0) 

( 11 ) 

( 12) 

The method of Powell [92] was used to solve the resulting system of 

nonlinear algebraic equations. To compute us the sys tern of equations 

(8)-(12) was differentiated with respect to s and an additional system was 

solved at each step of s. 

NCOL 
r A· · (us · ) - Pe (us 1) = 0 

. 1 l J J 
J= 

du ( us = -) ds 

NCOL NCOL ¢6{1-w•) 
r B · · WS • - Pe r A· · WS • + -- 1 e ov i / ( l +vi ) vs i 

j = 1 l J J j = 1 l J J ( 1 +v i ) 2 

- ¢e6v;/(l+v;) ws;+(l-w;)e6v;/(l+v;)¢s = 0 

( 13) 

( 14) 
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N~O\. ·VS· - Pe ~co~. ·VS· i~<t>o(l-w;) 
j = 1 1 J J j = 1 1 J J ( 1 +v i ) 2 

ov · /1 +v · e 1 1 

ov · / 1 +v ov · /1 +v · -yvsi-~<t>e 1 wsi+~(l-wi)e 1 lq,s = O 

NCOL 
1: ANCOL J· USJ· = 0 . 1 , 

J= 

NCOL NCOL 
L ANCOL-i ·US· = . 1 ,J J 

J= 
1: ANCOL 1· usJ• . 1 , ' 

J= 

e(us(s)us(s)T)+(l-0)<t>s(s) 2 -l = 0, 

where us= (dw, dv) 
ds ds 

q,S - d <t> 
ds 

We can summarize the procedure in the form of an algorithm. 

1. Solve (2) for a known value of <f>, using any standard procedure like a 

shooting method, imbedding techniques etc. [95]. 

2. Solve (13)-(18) to obtain us(s 0 ) and <t>s(s 0 ). 

3. Increments. 

4. Solve (7)-(12) to obtain u(s) and <t>(s). 

5. Termination? If not return to step 2. 

( 15) 

( 16) 

( 17) 

( 18) 
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3.4 BIFURCATION DIAGRAMS OF PROBLEM B 

Varma [60] constructed bifurcation diagrams using a shooting method, the 

way he computed the limit points is not clear from his article. His re­

sults appear to be identical to those of Figure 3.1 and Figure 3.2. For 

the adiabatic reactor (y=O), a maximum of three solutions exist for <t>l. 

(<t>*,<t>*) and only two limit points, at¢* and q,* respectively. 

Luss [7] proved that multiple solution profiles do not intersect when y = 0 

and Le= 1. This simplifies the representation of a bifurcation diagram 

since an one-to-one relation exists between the function u and it's func­

tion values. Figure 3.1 is a true bifurcation diagram. In the non-adiaba­

tic case numerical examples exist where the temperature and conversion pro­

files intersect [60]. A function value can no longer be uniquely assigned 

to a value of the function and the representation of the bifurcation beha­

viour is no longer an obvious matter. A possible way to overcome this pro­

blem is to construct diagrams for both temperature and conversion. If both 

prof i l es have i n terse ct i on s , i t cannot be at s = 1 or s = 0 . Th i s i s ob -

vious from the uniqueness theorem for the initial value 

nary differential equations. 

problem of ordi-

We constructed the bifurcation diagrams for Problem Busing the same set of 

parameters as in [60] and [93]. Our results (see Figure 3.1 and Figure 

3.2) compare favourably. An orthogonal col location method on splines was 

used with sixteen col location points in total. The formulation differs 

slightly from (7)-(12), see [98]. A set of 33 equations was solved simulta­

neously at each step to give x(s) and the same number for xs(s). When 

fewer points were used an additional wiggle occurred in the bifurcation 

diagram, see Figure 3.3 
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0,4 · 

0,3 

0,2 

0, 1 

0,1 0,2 
V ( 1) 

0,3 0,4 0,5 

FIG. 3.1: Bifurcation Diagram of the Adiabatic Reactor 

The program for the construction of these bifurcation diagrams is listed in 

Appendix A. This program is very versatile and the aspects of parametric 

sensitivity (see Chapter 4), stability and multiplicity can be examined at 

the same time. It can be very useful to engineers in the design stage of a 

reactor. 
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FIG. 3.2: 
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Bifurcation Diagram of the Nonadiabatic Reactor Using 16 

Collocation Points 

V (1) 

FIG. 3.3: Bifurcation Diagram of the Nonadiabatic Reactor Using 13 

Collocation Points 
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3.5 CONSTRUCTION OF AN ARC OF LIMIT POINTS 

Jensen [45] solved the adiabatic one-dimensional problem, constructing a 

bifurcation diagram at every Pe-value. Values of 4>* (or 4>*) and Pe for 

every diagram can be used to construct a diagram of 4> versus Pe which marks 

the transition from one to three solutions. These arcs meet in a point 

cal led the trifurcation point [42]. 

This process can be repeated for the non-adiabatic reactor but it becomes 

very cumbersome to construct the parameter planes. The only attempt to do 

it for this reactor, was found in [42], but it was for the Frank-Kamenet­

skii type of temperature dependence [48]. It is also not permissible to 

construct the parameter planes solely from the temperature bifurcation 

diagrams for reasons already mentioned. 

Using the same arguments as Keller [96], one can use Pe as a stepping 

parameter to trace an arc of limit points. In fact, any parameter can be 

used as independent variable, with any other as the dependent one to 

construct such a parameter plane. The procedure is as fol lows: 

Instead of an arc-length, we set the determinant of the Jacobi matrix equal 

to zero. Let M(u(Pe),¢(Pe),Pe) = detGu(u(Pe),¢(Pe),Pe) 

G(u(Pe),¢(Pe),Pe) 

P(u(Pe),¢(Pe),Pe) = = 0 (19) 

M(u(Pe),¢(Pe),Pe) 
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Since u is a polynomial approximation over splines it is not easy to get an 

explicit expression for the determinant of the non-symmetric Jacobi matrix. 

Since we assume that N(Gu) = 1 there exists a Z£RnxRn such that 

Gu(u,<t>)•Z = 0. Furthermore, Z can be normalized: 11Z11 = 1 or Zk = 1. 

Since Z is non-zero, Gu(u,<1>) is singular. (See [85] for more details.) 

We thus solve the fol lowing. 

G(u(Pe),<t>(Pe),Pe) 

P(u(Pe),<t>(Pe),Pe) = Gu(u(Pe),<t>(Pe),Pe)•Z 

Zk-1 

= 0 

Using Pe as stepping parameter we initiate the procedure at a known limit 

point (using results from the bifurcation diagram). Since there exist more 

than one limit point at each Pe-number, the arc of lower or upper limit 

points in the case of the adiabatic reactor can be computed by either 

starting of with <t>* or¢* respectively. 

The procedure can be summarized in the form of an algorithm. 

1. Compute the bifurcation diagram for the initial value of the 

independent parameter. 

2. Supply an initial guess for u at a limit point. 

3 • So 1 v e ( 2 O ) . 

4. Increase Pe. 

5. Termination of the arc? If not go to step 3. 

6. Have all the limit point arcs been considered? If not, go to step 2. 

3.6 RESULTS 

To check the accuracy of this approach, a parameter plane was constructed 

for the same choice of parameters as Jensen [45], and Hlavacek [42]. The 

parameter plane in Figure 3.4 compares very well with their results. 

(20) 
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0.05 

a.(¢/Pe) 
0.1 

FIG. 3.4: Parameter Plane of an Adiabatic Reactor 

No published results for the non-adiabatic reactor could be found. In 

Figure 3.5 a Pe versus~ diagram is shown. 
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FIG. 3.5: Parameter Plane of a Non-Adiabatic Reactor 
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The numerical procedure broke down for Pe> 12 and for Pe< 3. The reason 

for the latter is probably the approach of a singularly perturbed problem. 

In the former case it is surmised that a true bifurcation point is 

approached. Possibly one can overcome by defining an arc-length for this 

problem and use the Newton chord method to jump over the singular points. 

In Figure 3.6 the dimensionless heat transfer to the surroundings (y) was 

varied independently, and~ was the dependent parameter. 

01 

009 

t 
y 008 

OITT 

006 

005 
5 6 7 8 9 10 

y 

FIG. 3.6: Parameter Plane of y vs. ~ 
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For certain values of y we compared our results with those of Varma [60]. 

Note that <t>** and q,** denote the transition from five to three and three 

to five solutions respectively {See Figure 3.2). 

Appendix Bis a listing of a program to compute an arc of limit points. 

Table 3.1 

- -- ------,-------, 

y=O y=5 y=lO 

q,*(Varma) 0,0708 0,2694 0,62218 

--·-

q,*{Our Result) 0,0700 0,2702 0,62207 

-

<t>*( Varma) 0,28053 6 0,45969 0,693 

------ --

<t>*( Our Result) 0,2800 0,46065 0,683 

·- -------- ------

Table 3.2 

------·--------- ----------

y=5 y=lO 

-----~ --

q,**(Varma) 0,301368 0,659677 

-· --

q,**(Our Result) 0,295312 0,65728 

·-- ·-

<t>**(Varma) 0,322784 0,681204 

-

<t>**(Our Result) 0,31556 0,681 

-
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3.7 ONE-DIMENSIONAL MODEL WITH VARIABLE DISPERSION 

In Section 1.4 the issue of boundary conditions was discussed. Dispersion 

is an input variable, since the depth of catalyst bed over which the 

dispersion still increases and the initial diffusion of the feedstream will 

differ for different systems. For numerical purposes we defined a 

dispersion function with a radical change from inlet to final steady-state 

dispersion and another one with a slight change. In both cases the 

bed-length of unsteady state dispersion was 20%. This will be unrealistic 

in a large number of cases, but the choice is only illustrative. 

The dispersion term was defined as: (u = linear velocity) 

V(s) = 

The orthogonal collocation method was suitable to solve this system of 

equations with the additional complication of a nonlinear Laplacian. In 

Figure 3.7 we used XVm = 0,5 and Vas = 0,6 with uL = 3. (Appropriate 

units for uL and Vm, Vas must be used to render Pems dimensionless). 
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o ___ ....__ __ _._ __ _,_ __ _..., ____________________ ..__ __ _ 

.04 .08 .12 .16 V ( 1) .24 .28 • 32 .36 

FIG. 3.7: Bifurcation Diagram for Slight Dispersion Variation 

The diagram is similar to Figure 3 .2 and for slight variations of the 

dispersion the behaviour is similar to the one-dimensional mode 1. If 

x V m = 0, 1 and Das = 0, 6 ( ul=3) we find totally different bifurcation 

behaviour. See Figure 3. 8. The procedure broke down for ( v ( 1), a) = 

(0.36297;0.00615). The multiplicity changes from one to two at a= 0,00615 

and at a = 0.047934 four solutions exist until a = 0.0496717. For a > 

0.088 no solutions could be found. 
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.16 .2 • 24 • 28 .32 .36 

FIG. 3.8: Bifurcation Diagram for Drastic Dispersion Variation 

The diagram is similar to the slight and non-variable dispersion case over 

the first part, i.e. (v(1);a) = (O;O) (0 1 3388;0 1 048). The one-di­

mensional and the variable dispersion model will both correspond well with 

experimental results over this first part if the experiment approximates 

one-dimensional behaviour. For higher conversions in the experimental 

results, slight variations of the dispersion will also give good correspon­

dence between the one-dimensional, the variational model and the experimen­

tal results. Deviations between the models and the experimental 
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results will occur for drastic dispersion variations. Unfortunately 

experimental results are limited and the true dispersion variation will not 

be known. 

3.8 BIF~ReATIBN-BEHAVIB~~ BF THE TWB~BIMENSIGNAL M00EL 

The model equations were approximated in a way analogous to the 

one-dimensional equations. A double collocation procedure was used. The 

inlet conditions were assumed to be of the Danckwert-type. Actually a 

Bessel function describes the inlet axial condition correctly [83], but the 

approximate: 

du/ds = Pe u 

was used (u = (w,v)). The analysis of this problem will be very difficult 

and proofs of existence were not found in the literature. No published 

results on the numerical study of bifurcation were found either. 

The orthogonal collocation method, was used. ( See Appendix D). At higher 

values of Damkohler (Damkohler can be seen as an attenuation factor of the 

nonlinear term), the procedure fails to compute the steep conversion 

profiles accurately. We used symmetric polynomials in the radial direction 

which satisfied the boundary condition at r = 0 automatically. Three 

points in the radial and five points in the axial direction were used. 

In Figure 3.9 only one solution was found over the range of Damkohler 

numbers. In Figure 3.10 the multiplicity changes from one to two but no 

higher multiplicity was found. In Figure 3.11 a maximum of three solution~ 

was found. 
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This is in contrast with the one-dimensional model which has more complex 

bifurcation behaviour. At this stage we cannot attribute the simple 

bifurcation behaviour of the two-dimensional model to either the numerical 

procedure or an inherent property of the model itself. In all the cases 

only limit points were found. In the continuation process the solution 

arcs turned around when a point of no solution was reached and retraced the 

arc, although the arc-length parameters was increased all the time . 

. 06 

a. .04 

.02 

.04 .08 
V ( 1) 

FIG. 3.9: Two-Dimensional Model- One Solution 
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FIG. 3.10: Two-Dimensional Model-: One-Two Solutions 
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FIG. 3.11: Two-Dimensional Model-: One-Two-Three Solutions 
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3.9 REMARKS 

The numerical procedures discussed in the previous sections are useful in 

the study of bifurcation behaviour. The validity of the results lies in a 

thorough study of the convergence properties of Powell's method using 

polynomial approximations. Weiss [79] studied the validity of a numerical 

approximation of the true bifurcation problem, Brezzi [ 108] studied the 

convergence properties of numerical methods for the computation of limit 

points and reported errors. To apply these results is not a simple task, 

and it is suggested that a more detailed study of the limit point 

approximations should be done. 

A last aspect is the difference between a model's multiplicity and it's 

bifurcation behaviour. The existence of limit points are only sufficient 

conditions for multiplicity. Solution arcs which lie "independently" of 

the computed bifurcation curves, wi 11 not be discovered with the standard 

numerical procedure. 
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CHAPTER FOUR 

PARAMETER SENSITIVITY 

4. 1 INTRODUCTION 

Most reactors in practice are operated under steady state conditions. The 

whole process is controlled in such a way as to ensure either maximum yield 

[ 11 , 29, 30] or profit. The effectiveness of the process will decrease if 

fluctuations occur in the product stream. Although minor fluctuations in 

the products will have less effect than large deviations, it is important 

to identify the origin of the fluctuations/variations and determine to what 

extent they will influence the product. 

Parameter sensitivity describes the influence which operating variables 

have on the temperature and conversion profiles in the reactor. Operating 

variables are mostly the inlet concentration, inlet temperature and average 

velocity (flow speed). Inlet concentration is not always a control 

variable and it is important to know to what extent it will influence 

reactor performance. 

If a reactor system is sensitive towards minor changes in the operating 

variables, it can be regarded as parameter sensitive. In [ 109] several 

criteria for parameter sensitivity are proposed. 

Bilous and Amundson [ see 89] have shown that the maximum temperature of a 

reactor may be very sensitive towards changes in the operating variables. 
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If the maximum temperature occurs within the reactor, (an internal 

maximum), this temperature is referred to as the "hot spot". Morbidelli and 

Varma [ 89] defined "run-aw~y" as the occurrence of an inflexion point in 

the temperature versus conversion profile before the hot-spot. 

The type of model plays an important role when parameter sensitivity is 

studied. Most authors [23,36,70,87,89,109] have concentrated on the 

one-dimensional plug-flow model and has linked parameter sensitivity to the 

existence of a positive second derivative prior to a local maximum in the 

tempera,ture profile. In this chapter we shall give examples to point out 

the limitations of their conditions for sensitivity. The plug-flow model 

does not have multiple solutions since it is an initial value problem. 

Most authors base their choice of the plug-flow model on the fact that 

axial dispersion is negligible. Although Pe may be very large, the whole 

nature of the model changes when axial dispersion is considered since the 

boundary value problem can have multiple solutions. In Chapter 3 it was 

mentioned that the one-dimensional axial dispersion model has only limit 

point bifurcation. At the II first II limit point, (referring to the lower 

solution branch; see figure 4.3, $*) the temperature profile does not have 

a local maximum nor a positive second derivative for typical parameter 

values. But still, as$+~*(~* the limit point value of~), both 

l dwl 
1

_dv
11 sup ,- and sup 

d~ d$ 

become large and are undefined at $*. If one keeps track of the smallest 

real part of the eigenvalues of the Jacobi matrix, a change from stable to 

unstable conditions occur as ~+$*. The plug-flow model does not sense 

these parameter values as sensitive and is one of the main reasons why the 

axial dispersion model is used in this study of parameter sensitivity. 
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4.2 NECESSARY AND SUFFICIENT CONDITIONS FOR 11 RUN-AWAY 11 

It is convenient to check for run-away conditions without solving Problem 

B. In the derivation of these conditions for the one-dimensional axial 

dispersion model, the same criteria for "run-away" wi 11 be used as Dente & 

Collina. (see Section 1.3.5) In our analysis we shall need the following 

assumption, which is supported by numerical results: 

v does not have a local minimum. 

The first derivative of v(s) can be written as: 

v'(s) = JlePehs(s-t)(~¢g(w(t))e6v(t)/(l+v(t))_yv(t))dt. 
s 

If the right-hand-side is non-negative, (eg. y=O), v'(s)>O for s [O,l], 

hence y>O is a necessary condition for an internal maximum. If v' (sm)=O, 

then v'(s)~O for Sm(sd and ~¢(g(w(s))e 6v(s)/(l+v(s))_yv(s) will become 

The sufficient condition for an internal maximum is 

Cl: ~¢g(w(l))e 6v(l)/(l+v(l))_yv(l)<O 

Final conversion and outlet temperature can be measured and the existence 

of a local maximum temperature can be determined. If Condition Cl does not 

hold for y>O, pseudo-adiabatic behaviour occurs and the maximum temperature 

is at the outlet. The evaluation of Cl plays an important role in the 

monitoring of the maximum reactor temperature. 
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FIG. 4.2: ~¢f(w(s),v(s))-yv(s) and Pe v'(s) 
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A qualitative picture of v(s) and Pev' (s) is shown in Figure 4.1 for the 

case of a local maximum. Either one or two inflexion points exist. Note 

that we use Pe for Peclet number. 

When Pehs v' ( s) reaches either a maximum or a minimum, v" ( s) =0 and a 

qualitative picture of Pehsv'(s) and ~¢g(w(s))e 0v(s)/(1+v(s))_yv(s) is 

shown in Figure 4.2. The full lines depict a typical parameter sensitive 

system, as defined by Dente & Collina. A sufficient condition for 

parameter sensitivity is v" ( 0) >O and the existence of a local maximum in 

the temperature profile ("hot-spot"). 

C2: If C1 holds and ~~g(w(O))e 6v(0)/( 1+v(O))_yv(O)) < Pehs 2v(O), 

the system is parameter sensitive. 

Therefore the measuring of inlet and outlet temperatures and concentrations 

is sufficient to detect parameter sensitivity conditions. 

4.3 A NEW NORM OF PARAMETER SENSITIVITY 

We shall propose a new norm of parameter sensitivity in this section. 

As in Section 3.2 one can write Problem Bin the form: 

G(w(s),v(s),¢(s)) = 0 
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As long as Gu is non-singular, h(<t>) is uniquely defined and gives a clear 

picture of the influence of a parameter (or operating variable) on the 

solution. In the rest of this chapter we shall use this norm of parameter 

sensitivity, since most authors concentrate on the sensitivity of the 

temperature profile. 

This norm is the first which relates sensitivity to the limit points. In 

the construction of the bifurcation diagram, h( <t>) is calculated and will 

indicate sensitive regions easily. For <t> close to the limit point values, 

the numerical calculation of h(<t>) is omitted. 

The discretized version of the two-dimensional model and the variable 

dispersion model can be easily analyzed by this method, while analytical 

conditions will be difficult to derive for them and usually give conserva­

tive operating limits. 

4.4 RESULTS 

In this section we shall compare different er iter ia as a function of <t>. 

The approach of Adler & Emig [109] was omitted since the numerical calcula­

tion of v" was too inaccurate for the one-dimensional dispersion model. 

We also calculated h( <t>) for the two-dimensional model and the results can 

be regarded as the first attempt to quantify parametric sensitivity for the 

two-dimensional axial dispersion model. 
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We give the bifurcation diagram with the parametric sensitivity results to 

show the relation between sensitive regions and regions of multiple solu-

tions. 

4.4.1 One-Dimensional Model 

In Figure 4.3 the bifurcation diagram for Pe=Pems=Pehs=5, y=5, 6=25, 

~=0,5 as a function of <I>, is shown for a first order reaction. h(<P) is 

shown in Figure 4. 4 in conj unction with the analytical result (Condition 

C2). The values of v(s) and w(s) were used to test for Condition C2 and 

the value of 

B(<P)=Pe 2v(0)-~<1>(1-w(O))e 6v(0)/( 1+v(O))+yv(O) 

was registered • 

.08 

a .06 

.04 

.02 

.04 .08 . 12 .16 V ( 1) .24 .28 .32 .36 

FIG. 4.3: Bifurcation Diagram 
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FIG. 4.4: h(<t>) and the Analytical Result B(<t>) 

At <t>=<t>* ( ¢=0.459) h( ¢) becomes infinite which indicates a very sensitive 

situation but the analytical criterium (B(<t>)) does not sense it, since 

v"(s)<O for all se[ □ ,1 ]. At all the other limit points both h(<t>) and B(<t>) 

indicate parameter sensitivity. 

4.4.2 Two-Dimensional Model 

The sensitivity diagram of Figure 4.5 was constructed for the same set of 

parameters as the bifurcation diagram of Figure 3.9. In Figure 3.9 a limit 

point is approached as ¢ increases and the increase in h( <t>) re fleets of 

this behaviour. 
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1.5 

dv 
aa 1 

.5 

.025 .035 .045 .055 

a 

FIG. 4.5: Sensitivitv Diagram For One Solution 

The sensitivity diagrams in Figure 4.6 and Figure 4.7 correspond with the 

bifurcation diagrams of Figure 3.10 and Figure 3.11 respectively. Note 

dv 
that we plotted - and not h(<1>) to point out the change in sign of 

da 

dv - once <1>><1>*. 
da 
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FIG. 4.6: Sensitivity Diagram For Two Solutions 
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FIG. 4.7: Sensitivity Diagram For Three Solutions 
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4.5 DISCUSSION 

At this stage no absolute definition for parameter sensitivity has been 

formulated. A-priori er iteria are limited by the complexity of the model 

and the conservative limits it prescribes on operating variables. In the 

light of these facts, as well as the availability of high-speed computers, 

we strongly recommend a numerical approach towards parameter sensitivity. 

The results of Figure 4.4 - Figure 4.7 illustrate this approach. Neatly 

defined regions seperate the areas of sensitivity and non-sensitivity. 

These diagrams represent the effect of one variable on another and do not 

confuse one with the maze of other definitions and approaches. 

 
 
 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

1. 

2. 

-88-

REFERENCES 

JB Agnew: The Design of Stable Packed Tubular Reactors for Highly 

Exothermic Reactors. Trans. Instn. Chem. Engrs. 44 (1966), 216-223. 

R Aris: On Stability Criteria of Chemical Reaction Engineering. 

Chem. Eng. Sc. 24 (1969), 149-169. 

3. H Amann: On the Number of Solutions of Equations in Ordered Banach 

Spaces. J. of Funct. Anal. 11 (1972), 346-384. 

4. H Amann: Multiple Positive Fixed Points of Asymptotically Linear 

Maps. J. of Funct. Anal. 17 (1974), 174-213. 

5. H Amann: Fixed Point Equations and Nonlinear Eigenvalue Problems in 

Ordered Banach Spaces. SIAM Review 8 (1976), 621-707. 

6. H Amann: Existence of Multiple Solutions for Nonlinear Elliptic BVP. 

7. 

8. 

Indiana University Mathematics Journal 21 (1972), 925-935. 

NR Amundson & D Luss: Qualitative and Quantitave Observations on 

the Tubular Reactor. Can. J of Chem. Eng. 46 (1968), 424-433. 

NR Amundson: Stability in Distributed Parameter Systems. 

Journal 11 (1965), 339-350. 

AIChE 

9. DE Clough & WF Ramirez: Stability of Tubular Reactors. Simulation, 

May (1971), 207-216. 

 
 
 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

-89-

10. J CALO: Exact Universal Uniqueness Criteria for the Adiabatic Tubular 

Packed Bed Reactor. Chem. Eng. Sc 14 (1980), 1611-1624. 

11. TG Smith & JJ Carberry: Optimization of a Non-Isothermal, Non-

Adiabatic Fixed-Bed Catalytic Reactor Model. Chem. Reaction Eng. II 

( 1 9 7 4 ) , 36 2-3 7 5 • 

12. JH Cerutti & SV Parter: Collocation Methods for Parabolic Partial 

Differential Equations in One Space Dimension. 

(1976), 227-254. 

Numer.Math. 26 

13. PH Deuflhard: A Modified Continuation Method for the Numerical 

Solution of Nonlinear Two-Point Boundary Value Problems. 

Math. 26 (1976), 327-343. 

Numer. 

14. G Eigenberger: Modellbildung und Rechnersimulation als Werkzeug der 

sicheren Reaktionsfuhrung. Chem. Ing. Tech. 51 (1979), 1105-1110. 

15. G Eigenberger: Stabilitat und Dynamik heterogen-katal ytischer Reak­

tionssysteme. Chem. Ing. Tech. 50 (1978), 924-933. 

16. M El-Sawi et al: Runaway of Packed Bed Reactors. Int. Chem. Eng. 18 

(1978), 221-223. 

17. G Eigenberger: Dynamik und Stabili tat verfahrenstechnischer Prozes­

se. Chem. Ing. Tech. 55 (1983), 503-515. 

18. I Endo et al: Stability of Catalytic Reactors: A Critical Review. 

Catal. Rev.-Sci. Eng. 18 (1978), 297-335. 

 
 
 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

19. GF Froment: 

(1976), 18-27. 

-90-

Fixed Bed Catalytic Reactors. Ind. & Eng. Chem. 59 

20. GF Froment: Two Dimensional Model for the Simulation of Tubular 

Reactors for Thermal Cracking. Chem. Eng. Sc. 35 ( 1980), 364-371 • 

21. J Feick & D Quon: Mathematical Models for the Transient Behaviour of a 

Packed Bed Reactor. Can. J Chem. Eng. 48 (1970), 205-211. 

22. BA Fleishman & TJ Mahar: A Step-Function Model in Chemical Reactor 

Theory: Multiplicity and Stability of Solutions. Nonlinear Anal. 

Theor. Meth. & Appl. 5 (1981), 645-654. 

23. GF Froment & RJ Van Welsenaere: Parametric Sensitivity and Runaway in 

Fixed Bed Reactors. Chem. Eng. Sc. 25 (1970), 1503-1516. 

24. BA Finlayson: Packed Bed Reactor Design by Orthogonal Collocation. 

Chem. Eng. Sc. 26 (1971), 1081-1091. 

25. GF Froment: Design of Fixed Bed Catalytic Reactors Based on Effective 

Transport Models. Chem. Eng. Sc. 17 (1962), 849-859. 

26. BA Finlayson: Hysteresis and Multiplicity in Wall-Catalyzed Reac-

tors. Chem. React. Eng. Houston (1976), 98-109. 

27. BA Finlayson: Applications of the Method of Weighted Residuals and 

Variational Methods. Brit. Chem. Eng. 14 (1969), 179-182. 

 
 
 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

-91-

28. A Gawdzik: Numerical Methods for Determining the Stability of Steady 

States in Autothermial Reactors. Int. Chem. Eng. 19 (1979), 240-247. 

29. C Georgakis et al: Studies in the Control of Tubular Reactors-I I I. 

Chem. Eng. Sc. 32 (1977), 1371-1379. 

30. C Georgakis et al: Studies in the Control of Tubular Reactors. Chem. 

Eng. Sc. 32 (1977), 1381-1387. 

31. ED Gilles: Stability Phenomena in Chemical Reactors. Ber. Bunsen­

~es. Phys. Chem. 84 (1980), 323-333. 

32. H Henkel: Stabilitatsverhalten van Autothermreaktoren bei der oxida-

tiven Spaltung van Kohlenwasserstoffen. 

Entwickl. Ber. 6 (1977), 74-77. 

Siemens For sch. und 

33. CD Han & AU Meyer: Stability Analysis of a Class of Nonlinear Dis­

tributed Parameter Systems - Tubular Chemical Reactors. Int. J Con­

trol. 11 (1970), 509-526. 

34. GR Gavalas: On the Steady States of Distributed Parameter Systems 

with Chemical Reactions, Heat, and Mass Trans fer. Chem. Eng. Sc. 21 

(1966), 477-482. 

35. T Laetsch: On the Number of Solutions of Boundary Value Problems with 

Convex Nonlinearities. J Math. Anal. Appl. 35 (1971), 389-404. 

 
 
 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

-92-

36. CH Barkelew: Stability of Chemical Reactors. Chem. Eng. Prag. Symp. 

Ser. 55 (1958), 37-46. 

37. T Laetsch: Existence and Bounds for Multiple Solutions of Nonlinear 

Equations. SIAM J Appl. Math. 18 (1970), 389-400. 

38. T Laetsch: The Number of Solution of a Nonlinear Two Point Boundary 

Value Problem. Indiana Univ. Math. J 20 (1971), 1-13. 

39. DS Cohen: Multiple Stable Solutions of Nonlinear Boundary Value 

problems Arising in Chemical Reactor Theory. SIAM J Appl. Math. 20 

( 1971 ) , 1-1 3. 

40. HB Keller & WF Langford: Iterations, Perturbations and Multiplicities 

for Nonlinear Bifurcation Problems. Arch. Rational Mech. Anal. 48 

( 1972) , 83-108. 

41. M Kubicek & V Hlavacek: Solution of Nonlinear Boundary Value Pro­

blems-II Method of Third Order Convergence for Solution of Nonlinear 

Two-Point Boundary Value Problems. Chem. Eng. Sc. 26 (1971), 321-324. 

42. V Hlavacek & H Hoffmann: Modelling of Chemical Reactors-XVI Steady 

State Axial Heat and Mass Trans fer in Tubular Reactors. Chem. Eng. 

Sc. 25 (1970), 173-185. 

43. RF Heinemann & AB Poore: Multiplicity, Stability and Oscillatory 

Dynamics of the Tubular Reactor. Chem. Eng. Sc. 36 (1981), 1411-1419. 

 
 
 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

-93-

44. H Hoffmann: Fortschritte bei der Modellierung von Festbettreaktoren. 

Chem. Ing. Techn. 51 (1979), 257-265. 

45. KF Jensen & WH Ray: The Bifurcation Behaviour of Tubular Reactors. 

Chem. Eng. Sc. 37 (1981), 199-222. 

46. HJ Kuiper: Existence and Comparison Theorems for Nonlinear Diffusion 

Systems. J Math. Anal. Appl. 60 (1977), 166-181. 

4 7. WE Kastenberg: On Asymptotic Stability of Nonlinear Distributed 

Parameter Energy Systems. Int. J Control. 19 (1974), 73-79. 

48. DA Frank-kamenetskii: Diffusion and Heat Exchange in Chemical Kine-

tics. Princeton University Press, Princeton New Jersey (1955). 

49. D Luss & NR Amundson: Some General Observations on Tubular Reactor 

Stability. Can. J Chem. Eng. 45 (1967), 341-346. 

50. D Luss & JCM Lee: On Global Stability in Distributed Parameter 

Systems. Chem. Eng. Sc. 23 (1968), 1237-1248. 

51. S-L Liu: Numerical Solution of Two Point Boundary value Problems in 

Simultaneous Second Order Nonlinear Ordinary Differential Equations. 

Chem. Eng. Sc. 22 (1967), 871-881. 

52. EB Nauman & R Mallikar jun: Generalized Boundary Conditions for the 

Axial Dispersion Model. Chem. Eng. J. 26 (1983), 231-237. 

 
 
 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

-94-

53. SV Parter: Solutions of a Differential Equation Arising in 

Chemical Reactor Theory. SIAM J Appl. Math. 26 (1974), 687-715. 

54. SV Parter et -al: On the Multiplicity of Solutions of a Differential 

Equation Arising in Chemical Reactor Theory. Stud. in Appl. Math. LIV 

(1975),293-314. 

55. KC Rao et al: Finite Element Collocation Solution of Tubular and 

Packed Bed Reactor Two Point Boundary Value Problems. Chem. Eng. Sc. 

36 (1981), 987-992. 

56. F Plau & JM Tarbell: Stability of the CSTR by Correlation of Lyapunov 

Functions. Chem. Eng. Comm. 4 (1980), 677-698. 

57. GW Reddien: Approximation Methods for Two Point Boundary Value 

Problems with Nonlinear Boundary Condit ions. SIAM J Numer. Anal. 13 

( 1 9 7 6 ) , 40 5-4 11 • 

58. GW Reddien: Computation of Bifurcation Branches Using Projection 

Methods. J Math. Anal. Appl. 81 (1981), 204-218. 

59. RB Simpson: A Method for the Numerical Determination of Bifurcation 

States of Nonlinear Systems of Equations. 

( 1975), 439-451. 

SIAM J Numer. Anal. 12 

60. A Varma & NR Amundson: Some Observations on Uniqueness and 

Multiplicity of Steady States in Non-Adiabatic Chemically Reacting 

Systems. Can. J Chem. Eng. 51 (1973), 206-226. 

 
 
 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

-95-

61 • A Varma & NR Amundson: Some Problems Concerning the Non-Adiabatic 

Tubular Reactor. Can. J Chem. Eng. 50 (1972), 285-291. 

62. J Villadsen & JP Sorensen: Solution of Parabolic Partial Differential 

Equations by a Double Collocation Method. Chem. Eng. Sc. 24 ( 1969), 

1337-1349. 

63. A Varma & NR Amundson: Global Asymptotic Stability in Distributed 

Parameter Systems: Comparison Function Approach. Chem. Eng. Sc. 27 

( 1 9 72 ) , 90 7 - 91 8 • 

64. A Varma: On the Number and Stability of Steady States of a Sequence 

of CSTR's. Ind. Eng. Chem. Fundam. 19 (1980), 316-319. 

65. JV Villadsen & WE Stewart: Solution of Boundary Value Problems by 

Orthogonal Collocation. Chem. Eng. Sc. 22 (1967), 1483-1501. 

66. P Wildenauer: Existence of a Minimal Solution and a Maximal Solution 

of Nonlinear Boundary Value Problems. 

(1980), 184-191. 

Indiana Univ. Math. J 29 

67. J Wei: The Stability of a Reaction with Intra-Particle Diffusion of 

Mass and Heat: The Lyapunov Methods in a Metric Function Space. 

Chem. Eng. Sc. 20 (1965), 729-736. 

68. V Hlavacek: Aspects in the Design of Packed Catalytic Reactors. Ind. 

Eng. Chem. 62 (1970), 8-26. 

69. A Varma: Bounds on the Steady State Concentration and Temperature in 

a Tubular Reactor. Can. J Chem. Eng. 55 (1977), 629-632. 

 
 
 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

-9C-

70. AS Lopez et al: Parametric Sensitivity of a Fixed Bed Catalytic 

Reactor. Chem. Eng. Sc. 36 (1981), 285-291. 

71. WN Gill: Unsteady Tubular Reactors - Time Variable Flow and Inlet 

Conditions. Chem. Eng. Sc. 30 (1975), 1123-1128. 

72. E Wicke: Zur Frage der Randbedingung am Eingang eines Festbett-

Reaktors. Chem. Ing. Techn. 47 (1975), 547-551. 

73. JF Wehner & RH Wilhelm: Boundary Conditions of Flow Reactors. Chem. 

Eng. Sc. 6 (1956), 89-93. 

74. AR van Cauwenberghe: Further Note on Danckwert 's Boundary Condition 

for Flow Reactors. Chem. Eng. Sc. 21 (1966), 203-205. 

75. PV Danckwerts: Continuous Flow Systems. Chem. Eng.Sc. 2 (1953),1-13. 

76. JRA Pearson: A Note on the "Danckwerts" Boundary Condition for 

Continuous Flow Reactors. Chem. Eng. Sc. 10 (1959), 281-284. 

77. E Wissler: On the Applicibility of the Taylor-Aris Axial Di ff us ion 

Model to Tubular Reactor Calculations. Chem. Eng. Sc. 24 (1969), 

527-539. 

78. HB Keller: Elliptic Boundary Value Problems Suggested by Nonlinear 

Diffusion Processes. Arch. Rational Mech. Anal. 35 (1970), 363-381. 

79. R Weiss: Bifurcation in Difference Approximations to Two-Point Boun­

dary Value Problems. Math. Comp. 29 (1975), 746-760. 

 
 
 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

-97-

80. H-S Chen & M Stadtherr: A Modification of Powell's Dogleg Method for 

Solving Systems of Nonlinear Equations. Comp. Chem. Eng. 5 ( 1981 ) , 

143-150. 

81. V Hlavacek & H Hoffmann: Modelling of Chemical Reactors-XVII Steady 

State Axial Heat and Mass Transfer in Tubular Reactors. Chem. Eng. 

Sc. 25 (1970), 187-199. 

82. AK Kapila & AB Poore: The Steady State Response of a Nonadiabatic 

Tubular Reactor: New Multiplicities. Chem. Eng. Sc. 37 (1982), 57-68. 

83. L Young & BA Finlayson: Axial Dispersion in Non-isothermal Packed Bed 

Chemical Reactors. Ind. Eng. Chem. Fundam. 12 (1973), 412-422. 

84. C van Heerden: Autothermic Processes. Ind. Eng. Chem. 45 (1956), 

1242-1247. 

85. R Seydel: Numerical Computation of Branch Points in Nonlinear Equa-

tions. Numer. Math. 33 (1979), 339-352. 

86. V Hlavacek & M Kubicek: Solution of Nonlinear Boundary Value Problems 

- A Novel Method: 

( 1972) , 743-7 50. 

General Parameter Mapping. Chem. Eng. Sc. 27 

87. A 0roskar & SA Stern: Stability of Chemical Reactors. AIChE J 25 

( 1979) , 903-904. 

 
 
 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

-98-

88. KE Atkinson : The Numerical Solution of a Bifurcation Problem. SIAM 

J Numer. Anal. 14 (1977), 584-599. 

89. M Morbidelli & A Varma: Parametric Sensitivity and Runaway in Tubular 

Reactors. AIChE J 28 (1982), 705-713. 

90. CV Pao: Positive Solution of a Nonlinear Diffusion System Arising in 

Chemical Reactors. J. Math. Anal. Appl. 46 (1974), 820-835. 

91. G Emig et al: Experimental Studies on Runaway of Catalytic Fixed Bed 

Reactors. Chem. Eng. Sc. 35 (1980), 249-263. 

92. J Mare et al: USER GUIDE FOR MINPACK-1, Argonne National Laboratory 

Report ANL -80-74, Argonne, Illinois (1980). 

93. A Varma: Chapter 2. Chemical Reactor Theory edited by L Lapidus and 

NR Amundson. Prentice-Hall, Englewood Cliffs, New Jersey (1977). 

94. J Villadsen & M Michelsen: Solutions of Differential Equations by 

Polynomial Approximation. Prentice-Hall, Englewood Cliffs, New Jersey 

(1978). 

95. M Kubicek & V Hlavacek: Numerical Solution of Nonlinear Boundary Value 

Problems With Applications. Prentice-Hall, Englewood Cliffs, New 

Jersey (1983). 

96. H Keller: Numerical Methods in Bifurcation. Applications of 

Bifurcation Theory edited by Paul H Rabinowitz. Academic Press, New 

York ( 1977). 

 
 
 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

-99-

97. BA Finlayson: The Method of Weighted Residuals and Variational 

Principles. Academic Press, New York (1972). 

98. BA Finlayson: Nonlinear Analysis in Chemical Engineering. McGraw-

Hill, New York (1980). 

99. WH Ray et al: On the Dynamic Behaviour of Catalytic Wires. Chem. 

Eng. Sc. 29 (1974), 1330-1334. 

100. F Zirilli: The Solution of Nonlinear Systems of Equations by Second 

Order Systems of O.D.E. and Linearly Implicit A-stable Techniques. 

SIAM J Numer. Anal. 19 (1982), 800-815. 

101. JB Keller & S Antman: Bifurcation Theory and Nonlinear Eigenvalue 

Problems. WA Benjamin. Inc. Amsterdam (1969). 

102. M Dente & A Collina: Ing. Chim. Ital. 2 (1966), 55-60. 

103. K Bisschoff: A Note on Boundary Conditions for Flow Reactors. Chem. 

Eng. Sc. 16 (1961), 131-133. 

104. GR Gavalas: Nonlinear Differential Equations of Chemically Reacting 

Systems. Springer Verlag, Berlin (1968). 

105. P Hartman: Ordinary Differential Equations. Wiley, New York (1964). 

 
 
 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

-100-

106. P McGinnis (Jr): Numerical Solution of Boundary Value Nonlinear 

Ordinary Differential Equations. Chem. Eng. Prog. Symp. 

Ser. 61 (1965), 2-7. 

107. CG Hill: Chemical Engineering Kinetics and Reactor Design, Wiley & 

Sons, New York (1977). 

108. F Brezzi et al: Finite Dimensional Approximation of Nonlinear 

Problems. Part II: Limit Points. Numer. Math. 37 (1981), 1-37. 

109. V Hlavacek: 

1587-1597. 

Review Article Number 3. Chem. Eng. Sc. 36 (1981), 

110. GF Froment & K Bisschoff: Chemical Reactor Analysis & Design, Wiley & 

Sons, New York (1979). 

lll. TM Apostol: Calculus, vol. II. Wiley & Sons, New York (1969). 

 
 
 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

APPENDIX A 

A listing of a Fortran program to compute bifurcation diagrams and do 

sensitivity checks. 
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C H V = l'1 AX ( { I 3 .1 P ( S + D S) -T E I1 P ( S } ) / ( ( f I ( S + US ) - f l ( .S ) ) 

C ****************~*****************~**~*~**********************4 
Du d 3 ~ l = 1 , 1 o 
dV1 (l.) =AJ~l(X(J..+1o)-?AH(l+1oJ )/..:.i£) 
H' ( d V 1 (I) • J E.. d \/) d V = Li V 1 ( 1) 

d J ~ CG N r l NU S 
C ii J = A J .S ( P ,\ L"{ ( 7 L.) ) 

lf (CHJ.LE.J110U01) CriJ = J.JJJ1 
VE2=AbS (PAR ( 71) /~HJ) 

C ************~*****************************~********~*****~****~ 
C V ~ J = AN AL y-;: l C ii. L H E::i J 1 T ; ;j .:; £ C ii,; PI~ F 4 

C ****•************************************•************•~*•~~••+ 
VE 3 = t! A 1: ( 3 cl ) * PA .ti l J d ) * X l 17 ) - t> ,; ~~ ( J .5 ) * X ( J J ) * ( 1 • - f... ( 1 ) ) * 

, .._ :.. f.. 2 ( l) .\ ~,. ( 3 u ) ~ .( ( 1 7 ) I l 1 • + X. { l 7 ) ) ) + 2 A E { J 7 ) * i.. ( 1 l ) 
C ~, U = (:{ ( J J ) ._ ? A R l J J ) ) / 2 • 
C C.i-+ = ( .( { JL) tP .L< l L:)) / 2.. 

 
 
 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

C 
C 

2 .L 
C 782 

40 

➔ oo o 

d7 J 
2u 

'l O ~ i: J.~ AN A l U N IV.:. H ...i l. 'l' i l T VA.~ ,! :~ L:. ~ ult 1. A 

P i\ [i ( d 1 ) = P A l1 ( 3 1 ) * .J • - X ( J J ) * J • .J * \ 1. - X ( 1 ) ) * ;:: .( r! ( t!. 1:J • ~ X l 1 / ) / ( 1 • + .... ( 1 7 

6 +5 .. *Al17) 
DO l d 2 ~ ·= 1 , 1 u 
lT = lh) +1 
wHlT:; (1,2~1 X(JJ) ,VEJ,dV,0C,V~2 
Fu fd A 1 ( ~ .?' 1 ~. t,, 2..() 
CUNIINLJ~ 
1 F ( .:i • ,_; S .. r l' L~ J u OT O :J O O 0 
IF (i.ER .. ~,.J.1J1) 2tlh(73) = 2Arl{7J)-0 .. Ju1 
Ou i d l = 1 , :,J 

Pi\.1.(.i) = X{i) 
1..(1) = P.lri(l.+J'J) 
PAi\ {]'3) = 1 
CAL L ~ ..5 p u ., ( F' C N , .'i _j I ,; , :-i , l i d l.. X , !..J A d , .{ , f N () L:l , A i.\ , i. :; £,: ) 

GUTO 50 
DO 2& I = 1, :~ 
.,jiil'l'E (1,d7J) X{I) 
FOR~1A'l' (F12.:3) 

ST02 
END 

C *********************************************~¥****~*****~** 
C IN fdIS ROJl~LE Ahi THE NG~LLNBAR EQJAll0NS. 
C ***********¥*********~****~**•***************¥****•********* 

SU2L{OUT1Ni i•'CN ,X, F, N, PAh) 
I ~~ :r J ::; E ~ L , K , d , t: , ~ o , ~; .c: • o , o J , u l. , DJ , .r.:. L , i 11 , :,r c. u 1.. , i< i , 1. J. 

h t. A I.. X { J ) , £ ( J) , .? A L\ ( 1 0 5 ) , I :i i 'l' A I J A 
D I t1 .:: ~~ S l u ~ D l. f 1 ( L. u ) , J I f 2 ( ~ J ) , V i C i: ( 2 J ) , J l r' J ( 2 J J , I: vu i' l l. J ) 

uI~1~iJSlUU A\ 10,101 ,3 ( 1J,1J), Hi<(S) 
~F = pl-1) I 2 
~E = 5 

cZ = {ti-1)/2 
0 = N-1 
hO = K- 2 
di()) =1./0 .. 2 
.iK{2)=1./0.2 
~i l'\ {J ) -= 1 • / 0 ~ 2 
i1K( ➔)=1./u,.2 

!1.t\ { =>) = 1 • / J .. 2 
1lCO I.= 4 

PA 1\ ( 3 D ) = L .) • 

2Ai.\(J7) = J.J 
2;d•:(3t3} = ).0J 
.t'A~(JS) = 0.'J 
PAh'{lJ1)=0 • .J 

.t?At. { 1 U2) =u.J J 
P1U(lJJ)=J. 
t' Ah ( 11.b) = P .\ .; ( 1 J j J /PA h ( 1 v 1 ) 
· ... ri E: A = 0 • 7 
iJO 1 :J l = 1 , C\ t 
.i.'l = o J + l 

1 ::> P A L ( l T ) = ,) • 
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H' {PA:{ ( J 4) • ~ L. 2 .. ) Gu TO J <-J 

GO l'O 4 ~ ti 

9 :, DO 1 l = 1 , ~~ 
1 i(l) = 0 .. 

I .r' ( 2 h P { 3 9 ) • ,_; E. .:. • ) J O 'l' G 11 
GO TU 222. 

1 7 Du 2 J = 1 , i~ CU L 
I! A t\ ( d 1 ) = P 1\ fi ( d 1 ) + H K i 1 ) * ti K ( l ) * J { 1 , J ) * 1 ( J + i'\ F) 
1"(1) = t'(l)+rlK(l)*t\(l,J)*f..{J) 
PAH(d1)=f'(1) 

~ f(l+Ki')=f(l+i\f) +HK(Jj*A(1,J)*£.(J+Kr) 
f(1) =F(1)-2AH(10S)*i..(1) 
l:(1+!\.r) = ~(l+Kf)-2.\R(JdJ*i..(l+KF) 
DO J EL = 1, NE 
DO J JI = '2, J1'1 
DO ~ DJ= 1 , J CG l.. 
.I = { E L - 1 ) * ( i1 + 1 ) + D I 
H (EL.S,J.1) DA= PAli(101) t h0CT(l.j*2Aul102) 
IF (tL •. ;r. l) DA = PAE (·101) + p;iH { 1 U.l'.) 
f>,\h(104) = JA/PA11{1OJ) 
PAl:\l104) = S. 
J = (EL-1) * ({1+1) +DJ 
11' = 80+I 
PA H ( i. 1') = 2 c'dt ( lI) + ri K ( EL) * Ht\ ( .:: L j * 13 ( D .i , DJ ) * X ( J + t'\ F) 
f (I) = f {I) + {.ii ( £ i.) * HK ( EL} * u (JI , JJ ) - d K ( ~ L j * A ( D l, DJ) * PA R ( 1 0 ➔) ) * A l 0 

~ F ( l • r. f ) = f' { l + K F ) + ( tl K ( EL ) * .t1 f... { ~~ ~ ) * B ( D I , u J ) - i1 K ( ;::: .L) * A l D .i, J J ) * PA h ( 1 0 -.j 

:\ *X p+Kf) 
f' { l) = l (I) + ~{ ( ~i) * ( 1. - 1 ( l) ) * £.( .i? \2 Ah (Ju j * X ( l + t<.f) / ( 1. + :{ ( l + K F) ) ) 

3 F { I + i\ F ) = P A ii ( J j ) * A { N) * ( 1 • - X l .1. ) ) * 2 .( P (? .\ fi ( J u J * .( ( I + C\ r') / ( 1 • + ..( { l. + i:\ f) J 

& -?AR (J7) *I.. {l+KFJ t-r' (I+Kf} 
C *******•*********•**************************•**********•****** 
C (0 ~; l "- i~ [JI .i. Y 1~ :i' NG Jc~ f O L Lu,.. S ~~ U ,.; • 

C **********************************•*************************•~ 
;J~ 5 11. = 1, JJ 
JO 5 DJ = 1, !KO .i.. 
l = ( i L- l ) * \ l'H· 1 ) + N CO l.. 
J ={2L-1)*(J+1)+DJ 
L = Z l.. * ( i1 + 1) + DJ 
IT= GJ+I 
PA h ( I T) = ? A .. ~ ( I 'l} + { :-i t\ { i:: L) * 11 :\ { E ~ ) * LJ ( 4 , DJ ) * X { J + i\ i) + ti i ( tL + J } 1" ;i ,.;,, ( r.. ~ + 1 

& *3 l 1 , DJ) * X lL tr-. F) ) / 2. 
l: { I ) = F ( l) + d K ( EL) * A (t~ CG l.. , J J ) * X l •J) - iii< ( i L t 1 ) * A l 1 , 2 J) * i.. i L ) 

S F {l•Kf) =1" (l+~r') +dK {EL) *1\ (~;COi., :JJ) *X {J+l\f) -.ir~ {~L+ 1} ¥-Al 1,JJ) * 
~ X (L+!\r') 

C ************~***************************~**************~****** 
C l• u ii F Q L L O w S '.i' h t du UN D A R Y CO N u I T i u ~,; .; T J = 1. 

C ***********************~****•***********~************¥*•+***** 
:JO u ;) J = 1 , ~JC u L 
l = ( :; i- 1 } * ( .1 + 1 ) + t~ COL 
J = ( ~; i~ - 1 } * L :H l } + 0 J 
.i'l' = l+J(J 

PA l\ ( r 1J. ) = t' ,, r, , 1 '1 ) + L1 !\ { N t) * d K { ~1 £ J • u (-• , DJ) * x ( J + Kr) 
... { 1 ) = r' { 1) + ~ i!\ ( ~~ i~) * A ( !~Cu L, J J) * X ( .J ) 

!; .r'\ l + r\ r } = l-' { lt i\ t I ♦ .i h c: ..:.. ) * .\( ~ .... l, L , JJ ) ~ .\ { J + I\ r) 
;JL ~ l -= 1 , J 
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FILE: t\l:.i..S 

(' 
') L' (L~) = r' {:i) + 'Li~'f A*PAf'(..L+JI)) * {;'i.{1) -tJlL.! (1.)) 

f ( :J) = l:" ( t~) + ( 1. - .A. d tl' ;i ) * ( i--.. ( .~) - r! A 1': l J .J) ) * I! i, 11 { .::. + J J ) - t) .\ ~, l 7 J J 
Gura SJO 

C 
C 

C 

*******************4********************•***¥***~****¥***~*~*¥ 
:; 0 ."4 f G L LG n S T L Z i) i:. :: l V ,U j_ V c. J ~ • :-, • J .. S 

****~********~***********~~~~*~**************~***~*~**~*~~***~ 

C 

C 
C 

C 

2 2 2 UO 2 ~ J G L = 1 , ~1 r, 
DO ..: 2 3 JI = l., id 
DO ~24 OJ= 1,JCuL 
l = ( i L - 1 ) * l i1 + 1 ) + D l 
l F ( EL • i:: ,d.. 1 ) D .\ = f'l :\ i.:, { 1 u 1 ) + h .J u 1 ( 1. ) * ? iu ( l 1 u ~ ) 
l 'l ( .:.. L •. _; I • 1, JJ A -= t! .\ .{ ( 1 J 1 ) + ? d :.- ( 1 J ~) 
PA H l 1 u-+) = ) A/ 2 A i-: ( 10 J ) 
2 A~{ ( 104) = :) .. 
J = {EL- 1 ) * ( r1 .. 1 } + U .. J 
f ( I ) = ( d ?( { E i.) * Li t\ l ~ i ) * J ( D l. , U J ) - 1 u~ ( i L ) * ,t ( D l , J J ) * L' :l i ( 1 J-. ) ) * 1: ( .J ) + .r' ( . 

2 2 4 1:· ( l + :Z f ) -= ( d K ( il ) * ~ i K ( f.. L ) * ~ ( J 1 , :J .. J ) - n i\ ( I:: L ) * .1 l ~) l , D..; ) * 2;;. ~\ ( 1 J 4 ) ) 

& *X(J+Kr') +Fll+t<.) 
F l i ) = F ( I ) + P ,\ H , 3 J) * 2 .\ _,, l J u ) * ( 1 • - 2 Ll l, ( l ) ) * ~ Ai; t ~) ~\ h l .3 t.i ) * 2 A .. , l .1. t Ki:' ) I \ 

c. 1 • + P d h ( l. + K £ ) ) } / ( ( 1 .. + P ;1 R l l. + I:\ F ) ) * { 1 .. + P i\ i.i ( I + t( F ) ) ) * X ( .i + K :' ) - .( ( J J ) .tF-

6. EXP (?Art (Jb) * :,;:,.;.:.i ll+Kf) / ( 1.+PA~ (i.+Ki"))) *X (1) + ( 1 .. -PAit ll)) * 
& LX P ( i.1 rlf~ {Jo) * PA H (I+ KF) / ( 1 .. + 2 tl ti. (I+ Kt } ) ) * X l (;) 

22J F(I+KP) =?(l+i<F) +{PAR(JJ)*?AR (JS)*{ 1...-i?AE (..i..)) *.:.ii? (?rtL<{Jb) *2i\t< {I+, 

& I ( 1. +PAR (I+;-;: f) ) ) I { ( 1. +PL { l + =~ E) ) * ( 1 • + 2 t1 ~ (.:. + 1~ F) ) ) * i:~ :'ui ( J G) - ? AH (3 
& * i.. ( l + K F ) - PA a ( J _j ) * t? A h (3 '.:> ) * ~ .{ 2 ( P ,H: ( J ti ) * .2 n E ( l + :<: F ) / ( 1. +:? ,\ ii ( .1. + A :· ) J ) 
& * .{ ( l ) + { 1 .. - ? .1 .. ~ ( i. ) ) * E i ? ( P li h ( 3 u) * P .Hi { l + K r ) / ( 1 • + ? A h ( I+ Kr' ) ) ) 
& * P A R ( J j ) * X { .i ) 

**********************************************•*******••~****~•~-
~.o-;. :C'ULL0,'43 T.iE cu:Vi1::Jous ~~rUI'~ld1iS,. 

****•**************•*****~**************4••*****~*~**~•***¥••~** 
DO ~ 2 j t L ·= 1 , CJ 
JG k.C:~ JJ -= 1 ,Nee~ 
I = ( .::; i.. - 1 J * { .1 + 1 ) + ~; C..h. 
J = { i L - 1 ) * { :i +- 1 ) + D J 
L = .:: L * { .1 + 1 ) + JJ 
f (I} ~ f { l) • rl i\ ( t L ) * i1 ( ;; CJ L, U J) 1:C ,( ( J ) - n C\ { ~ i. + 1 ) * A ( l , J .J) * A ( i..) 

r' ( 1 + K i.' ) = r· ( I + :{ f') • .i !\ l EL ) * A ( L'i ~ :J L , :J J ) * X ( a + ~\l.' ) - ... K { ;.:; I.. + 1 J * .~ ( 1 , J J ) * . ( ( J..t + , 
*************•**********************************T***~*~*~****~**l 
~ 0 111 f u L LO ~ S T .i .2 DU J :. iJ .1 l\ Y Lli :~ u l I l U ~~ A 'l.' ::j = J,. 

C ********•*************•******•********Q•~**********¥*******•**~*: 
uO 2Lu J = 1, ~CU.L 

1"(1} = :(1J+ . .iC\(1J*i\{1,,j),;,:;..{J) 
2 ~ ti t' ( 1 + ·"- F) -= .F ( l t- ,\.: ) +,it~ ( 1 ) * ;1 l 1 , J ) * .( ( J + ~: t· J 

r(1} = r(1)-?!d~10:i)*K(1) 
F{l+iF)=r {1+!\f)-2:1.F(Jd)*.,:,,ll+,-:.i:') 

~ NGn F0LLU~S ~Ji G0J~D~HY ~UNJltlU~S hi S = 1 
C **************************•***•**¥******•*•**~9~****************' 

l = ( N 2- J ) * { ,·l + 1 ) + t-; CO ~ 
JG .i 2 7 0J -= 1, ~; C v L 

J = (.1..::-1) *l:1+ 1) +DJ 

r l l) = l: ( l) + fi :{ l l\ i) * tt p; CC:., DJ) * .( ( J) 

~.n r (1.+Kf) =c· (l+-I\i:) +,lr\ {'.L::) *iq .. ~UL, J,J} *X ,..;J 
JU 4- 2 ~ .;.. = 1 , l.1 

'2 2 d F { :~ J = / ( :; ) + 'l. l I r, .,_ .\ 'I' X ( .: ) * .{ ( l) 
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FILE: KELS 

r ( N ) = f ( ~ ) + ( 1 • - 'LI E 'I .A) * I. { ~✓ J * X ( ·• ) - 1 .. 
GO Tu 500 

4()8 K = NCOL 
CALL POLI (ri.,KG, J.if,1, iHF'2, lJUJ.:tOVJ.,!?Ah) 
D0 1 J 0 l. U= l , 2 
UO 1 3 0 I = 1 , l\ 
CALL JFO?~ (K,l,lJ,JlF1,Dlf2,0lfJ,BU0l,V~llJ 
DO 1 JO J = 1 , K 
IF (ID.EU- 1) GO ru 19d 
If (ID.iJ.2) GJ 10 H9 

1 9 u A ( I , J) = V E~ I ( J ) 
GC TU 130 

1 9 9 I3 ( I , J) = V E·~ 'i { J ) 
130 CONTINUi 

PA8{J4)= ~-
GO TO 99 

50 0 RE'l' u Hi.~ 
tND 

C 
C SUBROUT LE l CI.i. : CA.i..CU.i..t'\T ES T i1t CULLGC A1 -'-()£4 ?Jl~1'I .3 .. 
C 

.SUBROUrINE: 1.10Ll {t<.., KO, DIF1, 0lP2,0IfJ,H001, ?Au) 
Dli'.1iN~ION Ji F 1 C:1), Dlr' 2 (~), Dlf 3 (9), hOv'I' { 9), PiiR ( 100) 
I li r t .; E R K 0 
1" EAL AB, ..\ 0, A [>, A.,__, 2 E, P, P l'1, P :,i l , ? J, PD 1 , ? 2, ? 2 I , Z 1 , L... iJ, i 
KO = rC-2 
AL = 0. 
BE = O. 
Ab = AL+u::.. 
AJ =bE-AL 
,\P = l.ic*A!. 
Ji. f 1 ( 1 ) = { .i D / ( A ~-if· 2 .. J + L. ) I 2 • 
i)lfi{l) = J. 
l F' ( i u • L T • 2 ) .; C 'J. 0 2 1 S 
lJJ 2 1 0 I = 2 , K J 

Z1=i.-1 
Z = .\ B + 2 * i. 1 
DlF 1 {I) = (i'\L3*AD/Z/{Z+2 .. ) t 1 .. ) /2. 
l r' ( l • t1 i.: • ~ ) G O I u 2 1 1 
D I l 2 ( l ) = ( .\ 13 + A 2 + ~ 1 ) / ~ / i I ( Z ♦ 1 .. ) 
GU ~-u 2 lJ 

Y =ll*(Ao+.ul) 
Y = 'l*(A?.+Y) 
Jir2 (l} ='i/l./ {Z- 1.) 

2 1 0 CG i, l' d; U :: 
2 1 5 P = J. 

DO 2 2 0 l = 1, i\ 0 

22 '..> PD = 0. 
? ti = 1. 
P01 -= .J .. 
~N1 = J. 
DO I. J u J = l , E J 

?P = (DlF1l])-PJ*PN-DlF2lJ)*P:J 
P21 = l0iF1 {J) - .. ') *P:,.1-Dlc~ (J) *2J1-Pd 
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FI LE; K tL3 

C 

l 1 D = Pl'l 
PD1 = PN1 
PN = PP 

23Q PN] = i..1?1 
ZO = l .. 
~ = P~/t.'N 1 
lr' (i. .. r;Q .• 1) GO 'lu 2.21 
DO 2. 2 2 J = 2, l 

22 2 ZO = ZO-Z/ (?-i\OUT {J- 1)} 
22 1 Z = i../ZO 

r = l?-Z 
l F ( A o S ( Z ) •. .i l' • J • J 0 ~) 0 u J 1 ) , •J 1-' U L L :J 

hOG I {l} = 2 
f = P+ 0 .. OOJ 1 

2 2 0 CO NT I N U l:: 
DO 2 j l l = 1 , KU 
J = X0+1-I 

23 1 iWOI {J+ 1) = HO.Ji. (J) 
JuO'l' l 1) = O. 

23'J iiOOT (K) = 1. 
333 DO 2-+U I= 1,K 

~ = rtOOI' (I) 
Dlf1 (1) = 1. 
Dlf2{l) = O. 
D11-'J(I) = 0. 
DO 2 4 0 J = 1 , K 
l.F (J .. i.:.:,2 .. l) Jv .i:J 2-.v 
Y = P-RCnJ'l'{J) 
Dlf3 (l) =Y*DIFJ (~) ♦ J. *DlF2 (1} 
;; I f 2 ( I ) = Y * J l F 2 , i. ) + 2 "' * J H' 1 ( ~ } 
Dl f' 1 {I) = Y ,,,_ :.Hf 1 ( .1.) 

2 4 0 CU ~J 1 ir; J ~ 
241 t<ETJi,;N 

C SUt.hi.JUI'INt Jr0PZ,;. CiLCULLZr...:.> I:L:. i:E~_jT ,\.,J .J,:.LviU J..:.~u'v'ALiV-j 
C APP&OXI:1ATE3 • 

SU 1 du UT L~ Z J fv P fa ( !\, I , l.u, J l F 1 , .J l r L. , lJ l. r J , .. , v O L, , V 2 C'i'} 

D L1;:; Li S l O :. V c; C'I ( lj) , F G (j'f ( lJ } , J 1. / 1 ( 9 J , iJ L: L.. ( 'j) , J 1. :7 J { ~) 
fee ,1L Al. 
DO 3 2 0 J = 1 , r~ 
Ir' ( J .. Ni: .. l) Gu .L. u 3L 1 
l.f (40. 0ii. 1) GO IO JJ~ 
VECI(l) = ulF2(-'-)/DIF1 (l)/2 .. 
JO lG 320 

JO ::, V i.:: CI ( 1 ) = D I i:' .J ( l) / J H 1 ( l) I J. 
liU TU 32J 

321 'i = hOOr(1)-]u1..J'i(J) 
·Vi:.CT{J) = 1Ht1(l)/Dll-1(J)/Y 
1f l l J. I: ~). .. L. ) V LC T ( J ) = ., L C T { ~J ) * \ J I .:' ,:_ ( J ) / :.) i .: l { l ) - - • I i ) 

JLO CONTlNUB 
GO i.'U JJV 

J 1 u Y = J. 
Du J 2 5 J = 1 , l\ 
t? = duGf(J) 
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flLE: KELS 

Al..= P*(l.-t?) 
VECT (J) = Ax/Di.fl (J) **2 

3 2 5 'i = Y + V tC r (J) 
DO 3 u U J = 1 , i-. 

3 ti O V EC-i' { J) = V ~ C'l ( J) / Y 
J5 0 .RET U 1.dJ 

EN i) 
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APPENDIX 8 

A listing of a FORTRAN program to compute an arc of limit points. 
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PILE: tXA 

C 'Id~ JCLUTlOLJ Gf NUI~Ll.NtAH AL-.:iiLlHAiL i·~LJA1dnL.) 
C .:iTiPi>DL..i ALUi~li A BllUHCATluj Ci.JL{V~ u:.;1: .. _; LUL .. uLATl.G{~ Oti S.!LL;i:: 

L~TeGEU NSl~,~,EL,~7MAX,IEii,K,O,L,M,KG,lD,l~Ul~ 
I N T E i..i E b'. NC O L , i1 C 0 l , O,rt, E L , D 1 , DJ , 1-~ :~ 

C NS I G , l T j A X .; rl 1:: l l~ P U I FU H l MS .i.. :..i J J 1W J .• .' H .t. ..J .., 2 0 ;, ~ ~1 .~ .:. L·i SL 
C MAN JAL) 
C N = JJ 201~1:S f(j[( cu~~VEh..5.LJN, 1J FuE 1'4'i-i.t!dil\:Ui.L.:.:, 1 J:J1.( DAdi:dJ.iLii 
C PL U S 2 o r' G H TH l:: J A CO D l A l~ 
C Ni= NUMBER OF EL1ctENTS 
C NCOL = 2+ ?JU,'.1Bi'.:h Of IUTi::J:,iAL COL1uCA'lIOl,; ,)UHJl',:j 2;.;.i .:.LE:12jl' 
C I N O 1 K : 'l' ii i H iH i\ 1 Th X - VA L U .;:.; 1 :i ~ t T ·r O 1. l .;j ...:. ..:; j i:. i...J .:. L i. :•; n ~ c ~ 
C HENCJ ) 

N.::ilG =--+ 
ITt1Ai = 100 
N = SJ 
RE A L D EL , X ( S J) , ,. K ( 4 b 1 1 ) , ~ d rt ( '.) J ) , .r' H O I-rn 
DI i1 .£ N :3 IO N A { 'J, 9 } , o ( 9 , 9 ) , V t CI { ':I ) , D I F 1 { :j J , J .i f ~ ( :J } , JJ .l U ( :1 ) , :\ u J l { J 1 

DI:1ENSION W l 26) , 111 KARt A (2o) 
EXT EHN AL i'CJ, PU Ll, Dr'OP R 

C PA ii { 4 ) = ll B.r A - J .l. ~1E N 3 1 G t, L ES .:i J EAT O f :-{ i A CT I Li Ii 
C PAH (S) = DEL. TA-Jli1.ENSlUNLE3S ACTI V .!TlO.'i L-. EriGY 
C PAR (6) = ~Aii.1A- hi AT T&Albr'irt COtfFlCL~Nl' 
C PA 8 (7) = PE.; LE I' NU MD i R;; 0 NL Y L 2 = 1 IS C1.nl S l LJ £di:. u 
C X(N) = fI:-DAJKCriLEh*PiCLiT 
C Xll)-;{(K) 13 CUt~VEhSION ;X(L\+-1)-X{.L) I.S L .. dPi.hA'ii.foc.. 
C AUY ONE Or rdES.i:. f>Af< (I) CM! JE us.::D AS r:;0E2r.:JDLH VAJl.\2~i .. 

PAR(4) = u.5 
PA H ( S) = 2 5- 0 
PAR (o) = 5 .. J 
?Art(7)= 5.JO 
PAR{d)= 1.J 

C **************************~~~*~***•**••*•******~**4********* 
C EEAJ INirIAL VA~UiS fUh X{I) 
C ****************~*********~***~***~**~**************~~~***** 

bu CA1L ZSPOW (fCN,~SlG,N,li~AX,?Ab,i,fNuhJ,~K,I~n) 
C ***********~**************#**************~*~****~**~******** 
C IN Tdl~ iXA:1Pi.E J.dE t?ROuhA:1 ,., AS T .:";fLH.-iAii.i.J .td~N ,;:d:Li .::xu:=~)r.J 
C ***********~************~************************************* 

l f { 2 A R ( b ) • _; i:. l 5 .. J } J v 'i u 'J 7 
77 PArt {2) = f>;\H lO) 

lF {PAi:<(o)ai,2.::>.) Di!..= 1.0 
1.c(2AR{o).-il' .. S.J DEl.. = 1.0 
L) AR { l)} = t' Ad ( l>) + ;) iL 
PA L, { L 0 ) = X ( ~l) I 2 ,i n ( 2 ) 

C ***********•**•******************•***~*****~**************** 
C ~hlli E~~UL:j 
C *************•**********************************~*********** 

GU iu oo 
'J 7 ~TU 2 

i:.N J 
C ****************•********¥~**********~***~****~*•~•~~****~** 
C L~ .lliij IWJ'iH;(. I.S 'LiE .'iUNi.1.td,\R iQUaTlU.~S. 
C ********************~*******~**************•***~***~*•****** 

!3 u JI~ d UT l N l:. L Ch \ ,( , t, l; , ? i\ 1..) 

l :~ T i:; ,; i ~: t">, u l. , DJ ,. v I, , r~ I.. , t\ i , l-4 C UL , ~-1 ( 0 L , l , J, (\ , : 1 , L , :_ ;; U ~ ::. , U , ~ J , :\ u 
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HEA.i. I.. {N) ,f(i:~) ,?iih (21) 
Dr a r; N s r o N o .,_ F 1 ( <), , 01 l-' 2 ( 9, , J 1 r' J ( <J) , v Ee J ( ; ) , .:. u u i l ·n , A l lJ , j) , J , 'J, ':) 
Dii1~NSiuN HK {4) 
lNDlK = 2o 
NE= 4 
NCOL = :.+ 

t1Cu1 = NCOL - 1 
OH= NE-1 
M = :l C0I.-2 

110 0 = N-1 
11 1 K = 0/~ 
11 2 i. = 0/ 2 

hK(1) =L/0.275 
dK (2) = 1./0 .. 2 JS 
dK{J) =1./0.22~ 
HK (4) = 1./0.225 
lF (2A::,(8).JE.2 .• ) GD TO 'J'j 
..iu IJ 4:-J 8 

<J 9 Du 1 l = 1 , 3 
1 F{I) = J .. 

C *************************~*~***********************~****$***** 
C bOU~UAiiY CONDITION A1 S = 0 
C ************************************************************** 

DO 2 J = 1 , N CG L 
f(1) = f(l) + ,it-.l1)*A(1,J)*X(J) 
F ( 1 + i ) = £ ( 1 + K) • ri K ( 1 ) * I~ ( 1 , J) * I.. ( J + K ) 
r'(1+.i...) = f(1+L)+riK(1)*A(l,J)*X(J+1.) 

2 f' ( J + ~ + i< ) = l ( J + L + K ) + rl K ( 1 J * A ( 1 , J } * I. ( J + i. + .'.\) 
l(1) = P(1)-i?Aiil7)*X(1) 
f'( l+t\) =F ( 1+K)-2Ah {7) *X (1+K) 
F ( l+l.) =f ( 1+L)-?Alt ( 7) *X ( 1+1) 
f' ( l + i... + :, ) = i' ( 1 + L + K ) - ? t\ E l 7) * i. l 1 + :.. + .\ ) 

C **~*********************************~•*~*~4••~*•************~* 
C fUjCfiGNS Ai 1N1E3NAL PJINIS 
C *****************~*********•~***********~•*******************~ 

~ G J i L = 1 , ~a; 
J() 3 DI = 2, i'1 C CJ L 
.i.. = ( : L- 1 ) * ( ,·1 .. , ) + 0 I 
DO -+ DJ = 1 , ~Cu i 
J = l E 1- 1) * (:'1 + 1) + DJ 
F ( l } = ( - 2 A f < (l } * u :~ { .t. L) * ;l (Di , J J) .,. ii K ( t L) * : : (-, \ .::, L ) * n { J l , u J) ) * .{ { J) + : l _;_ 
i ( ~ + i ) = ( - .e A .1.i. {7 ) * u :-. ( S I.. ) * A l u i , J J ) + d t\ ( 3 .i... ) * . I!\ ( E i. ) * .:, ( J l. , J J ) ) * . .: { J + r\ ) 

6 +I.-' (I+ X) 
1 J 1 r ( .i. + .L} = \ - 2 iU O) * .. i\ ( I~ L) * .\ ( D ..1.., J ,J) + .1 i·~ ( Ei.) * .1t, ( ~ i,, * i..) ( .h , J J) ) * :\ (,I+~) 

~ +i: (l+i.) 
4 .F ( l + L + K ) = ( - .! .\ .;., (1 ) * r: K ( E L ) * :\ ( J .r , J ,J) + ~ l r: ( i.. i. ) * u .-( ( .:.: ,.. ) * .. l( .. n , J J ) ) 

r'.ir *.{ (J+ L•i} +r ( .i+L+l\) 
l' ( I ) = .F ( l ) + X { :; ) * ( 1. - I.. \ l} ) * ::; ,( f.> (? A h { S ) * X ( ~ + l\ ) I ( 1 • 

& +X(I+K))) 
r ( 1 + x ) = r, ( .L + (\ } + \ l r-; ) *? ,, R ( 4 ) ,;c ( 1 _ - x. ( .:. ) ) * .:: x 1.: ( l? .i h ( ') ) * 

,.\ f... (It- K) / ( 1. + .;: (I+..: J ) ) - PA h lo J * i.. p. + K) 
101. l-' ( l + i...) = :' { I ~ L ) + ( 2 11. L { 5) * i. ( N) * ( 1 • -1.. ( 1} ) * r.. i.. ~, ( ~-, A .. , { "J) * 

u X ( l + K ) / ( 1 • + X l l + K J ) ) / l ( 1. + X ( J.. + K) ) * ( 1 • ~"' ( 1 + r<) ) J ) * A ( 1. + ..... + :, ) 
,1, - .( p ) * t. i 2 { 2 .\ J C) J * h {l ~ K ) / ( 1 • + i l l + L\ ) ) ) ._ X { l+ ~ ) 

J r' l l + i... + ;'() = r' ( l. + L + i J + ( X ( N ) * c' A:-: (-+ ) * c> A i, { '.J ) * ( 1 .. - .( ( -1. ) ) * 
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FILE: EX.A 

C 
C 
C 

C 
C 
C 

C 

5 

103 
1J :> 

b 

·& EXP (PAH (5) * .. { (l+tL) / (1 .. +X (l+L{) 1) / l ( 1 .. +,{ {.A. +h)) * ( 1 .. +/. ( li- ..ZJ) J -2AF l'-' 
& *X (i:•L+K)-X (d) *i?AR (4) *ciP (PAtl (S} *l (l+K) /l 1. +X {.!.+K) }) *X (L+L) 

********************************~***************************+~ 
CONTlNUlTY ~JUATIUNS AT NOUt3 
***************************************************~~***~***~* 
Du S EL = 1, OR 
l = { 2 L - 1 ) * { l\1 + 1 ) + ;~ C O L 
DO 3 DJ = 1, NC0 !.. 
J = (EL-l)*(d+l) + JJ 
2 = r..L*(f1+1) + DJ 
.I: {I) = r ( 1} + at\ ( i:., la.) * ti ( N co L, i) J J * .( ( J) - l1 .\ (:.:. ~ + 1 ) * A ( 1 , JJ ) * I.. ( 2) 
F ( l + l\) = F ( .L + ~ ) f- d n { E L) * A CT CU L, J J ) * X ( J + K) - u 1\ { C: L + 1 ) * A ( 1 , lJ J ) * 

& I.. (P+K} 
t(i.+L}=i:"(I+M)+li~(EL) *A(tiCJL,0J) *X(J¼l..)-dh(tL+l) *iq 1,DJ) *X\2+L) 
r ( l + L + K) = F ( l .. L + 1\) + HK ( E L) * A ( N: 0 L, DJ ) * I.. l J ._ !.. + K) - d K ( r.~ + J ) * A ( l , DJ ) * 

t, i(P+Lt-K) 
***************•**********~*****•*******~****~*****~********~*· 
BOJ~DARY CGjDII10N ATS= 1 
*********************#**~***************~**~*•~***************' 
DU t> DJ = 1, :~co L 
J = (::IE- 1 ) * ( I1 + 1 ) + D J 
.F ( K) = ii K ( N 2: , * A ( N CUL, DJ) * X ( J) + f' ( i) 
i:' ( L) = d K ( N E) * A ( NCO l, u J) * X ( J + K) + f' ( L) 
f { L + l\ ) = d K ( N.:: ) * A ( N C O L , DJ) * X ( J + L) + f ( .L, + r: ) 
F{l..+L) =dK (N~) *A (NCOL, DJ) *'I. (J+K+L) +f (L+L) 

C S .E 'i' V ( K ) = 1. ( T O FOR C E J AC U o Ll N l E h D ) 

109 F(N) =X(L+rnDlt\)-1 .. 
._;o l'O 500 

4 9 8 l A L L .? lJ L I ( -~ CO L , .KO , J I f 1 , Ll I F 2 , iJ I r· J , L·. u J i , 2 ct i·. ) 
Du 1 3 u l D = 1 , 2 
DU 1J J 1 = 1 , l~ Cu 1 
C~LL D?OPR (UCOL,I,ILJ,Jlf1,Ul7~,JlrJ,hUC1,V~~l} 
Du 1 J O J = 1 , !-; C u L 
lf (ID. BQ.1) Gu TO Ht3 
H' { 1 u .. il.2. 2} GO I J 1 ~ ~ 

1 9 cl A ( r , J) = v Ee r ( J ) 
GO .i.'U 1J,J 

1 lJ 9 0 ( l , J) = V EC I ( J) 
JJO CON'i'lilU.;:. 

PA i1 { d) = 2 .. 

5 0 u !' t T J c\ :i 
E:J J 
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APPENDIX C 

THE EXISTENCE OF UNREALISTIC SOLUTIONS 

All proofs to guarantee only realistic solutions, are only valid for odd 

order kinetics. In the case of zero and even order kinetics, unrealistic 

solutions exist. 

A second order isothermic reaction was chosen. For a Pe=3 and <t>=4 and 

unrealistic solutions were numerically determined. 

W II - 3w I + 4 ( W -1 ) 2 : 0 

w' = 3w s=O 

w' = 0 s=l 

( 1) 

In the fol lowing section we will show that (1) has at least one unrealistic 

solution, i.e. w(s)>l. 

Existence 

One can rewrite (1) as 

y(t) = -Z I ( t) 

y I ( t) = -3y(t) + 4(Z(t)-1) 2 

y(O) = 0 ( 2) 

y ( 1) = 3Z(l) 

where t = 1-s, Z(t) = w(s). 
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C-2 

If one considers (2) as an initial value problem, ignoring the boundary 

condition at t=l, it follows from previous results that for different 

choices of Z(O) different y(l) and Z(l) wi 11 result. Suppose there exist 

Zo1 and Zo2 such that yi(l)<3Zi(l) and Y2(1)>3Z2(l), then there exist a 

Z01 <Z 0<Z 02 , such that (2) holds. Furthermore, if Z01 >1, then the solution 

is unrealistic. 

Lemma 1 

max Z ( t ) = Z ( 0 ) 
Q(t (1 

Proof 

At Z(O), y(O) = 0 and y'(O) = 4(Z(O)-1) 2 > 0. 

Thus Z(O) is a local maximum. If there exist a Z(t), tE.(O,1] where 

Z ( t ) > Z ( 0 ) , then there must a l so ex i st a t * € ( 0 , t ) where Z ( t * ) i s a 1 o c a 1 

minimum. At t*, y(t*) = 0 and y' (t*)(O, but y' is non-negative for al 1 

Z(t). Since Z(t) never attains a local minimum, Z is a decreasing function 

oft and max Z(t) = Z(O). 
0(td 

Lemma 2 

There exist an unrealistic solution of (2) and 2<Z(O)<lO. 
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C-3 

Proof 

Let Zo = 2, Yo= 0. Suppose there is at* [0,1) where y(t*) = Z(t*), then 

Z(t)>y(t), for all t<t*. 

Thus Z(t) > dZ(t) , t<t* 
dt 

Z(t) > 2e-t , t<t* 

At t = t*, y'(t)>Z'(t) 

-3y(t)+4(Z(t)-1) 2 >Z'(t) 

-3Z(t)+4Z 2 (t)-8Z(t)+4>-Z(t) 

Thus Z(t*)<0,5. It fol lows from Lemma 1 that the other root is not 

possible. 

When 2e-t' = 0,5 then Z(t')>0,5 and thus t'<t*. 

Thus -t' = -In4<-Ine 

<-1 

t'>l and there does not exist at* [0,1] such that y(t*) = Z(t*). 

Since y(t)<Z(t) fort [0,1] it follows that y(l)<3Z(l). 

This completes the first part of the proof. 

Let Zo = 10, Yo= 0. Suppose y(t)<3Z(t), t [0,1] 

Then Z(t)>loe-3t. 

And 4f 1 (Z(t)-1) 2dt>4Jt'(l0e- 3t-1) 2dt, where 10e-3t' = 1. 
0 0 

 
 
 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

C-4 

The integrand value of the r.h.s. > 30 = Pe Z(O). 

Integration of y' gives: y(1)-y(O) = 3Z(1)-3Z(0)+4J1(Z-1) 2dt 
0 

If 3Z(O) < 4f1(Z-1) 2dt, then 
0 

y(1) > 3Z(1), which is a contradiction. 

Thus, there exists a t*6(0,1] where 

y(t*) = 3Z(t*). 

The possibility may exist that y and 3Z can intersect again at t"€(t*, 1). 

This is only possible if y'(t") < 3Z'(t"). 

-3(3Z(t")) + 4(Z(t")-1) 2 < 3(-3Z(t")), which is impossible. 

Thus y(1) ) 3Z(1) 
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APPENDIX LJ 

A listing of a Fortran program to compute bifurcation diagrams and do 

sensitivity checks for the two-dimensional model. 
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FILE: TwOD FO&fRAN Al JNIVid511EIT VAN ~tiilOHlA 

C **************************************************~*********~~ 
C IN THIS PHOJ~Ad BlFURCATION ;URV~S AkE CUN~fH □ CTLJ iUH TH~ 
C 1'~0-DH1ENSlON.\L PSi:..'UUO-HOMOGENiWuS EEACTUrt £10Jtl. !iliLLEB. 1 .::i 5-
C ~ETHOD IS USZU ~ITH SHlfTiU L~~ENDRE POLY~U~IAL5 AilALLY ANU 
C SY M M E 'l' R l C AL P J L i N O Ml A L S rt A J LU .. L Y. A t> AH AM 1 'I R l C J .6 ~LS I T 1 Y l 'i' Y r ::~ 
C LS ALSO AV Al LABLi:. 
C ****************************************************~********l 

INTEGER NSI~,NI,NJ,ITJAi,lEii,K,O,L,M,~O,lU,INDlK,INJlL,N,TEL 
DHl EN .:,j ION AR ( l O, IO) , BR ( l J, 1 0) , Al ( 1 0, 1 0) , BZ ( IO, 10) 
HEAL KS, KS F, KS O , 'J.. (3 3) , ..., K ( 1 d d 1 ) , F ( J 3) , F NO u] , PA H ( 1 v 5) , t> H i1S? 1 , Ph ( 
REAL EuK 
EX r EH NA L F G~ , P CJ l. l , D FOP E 
NSIG = 4 
ITl'iAX = 100 
NI= 5 
NJ = J 
N =2*(NI*NJ-~)+l 

C ***********$**********~*****•********************************~ 
C H = ~*(3*N+15)/L. ;wKfd):U = N-l;L = u/2; K = L/2 .. 
C ***********~************************************************** 
C PAR(34)= FUNCTIONAL 
C PAR(J5)= FUNCTIONAL 
C PAR(Jo)= PECLET Z-MA~S 
C PAR (J7) = PE:LET :i-MASS 
C PAR(38)= PE~LET R-HEA1 
C PAH(J9)= UELlA - DIJENSIUNLEjS ACTlVATIUh i8~~GY. 
C PAR(~O)= BEtA - DIMENSIONLEjS ADIABATIC 1Ed~~RA1~~i tl~jE. 
C PAR(~l)= GAldA - UlMi~SlJNLESS ilEA1 ThANSfER~ 
C PAR(~2)= B - ASPECT hATIO. 
C PAri(4J)= ?E2LET Z-HEAT. 
C PAii(~4) = DKS; llKRE;1Eii'1' 11, i\.::i, lllitHE K~ 1;.., TuE S-i:':l.RA;L::l'Lh C 
C KELL Eli' S i1 ET JC D. 
C PAR(1)-Pt\R(1o) = w(1)-w(1o) 
C PAii(17)-PA8(32)= V(l)-V(lo) 
C PAH(J3) = FI 
C PAH{-+5)-PAR(b0) = ~S(l)-111S(lt.>) 
C PAR(o1)-PAR(7b) = VS(1)-VS(1o) 
C PAR{77) = DFI/DS 
C *************************************~************************ 

PAR (JS) = 1 
PAR(36) = 5.JO 
PHt {3 7) =30. JO 
PAR (38) =30. JO 
PAR (J9} = 25.0 
PAR (~O) = O. 5 
PAfi(4J) = 125.0 
PAR(1.t2) = 10.0 
PAR (~3) = 5. JO 
PAE. (4~) = J.04 
KS O = LL. 0 
KS F = 0. 2 

C ***********••******•*********~*******•**~~******************• 
C h E A J I N l T I Al. PH\ ( i) U ~ l lH.i AN 1 2 - D SOL Y ~ rt A N D u l V r.N r' l. - 'w' A LU c. 
C 1' 8 A D l N I T I AL X ( l ) ; G U ES~ F .J it D .ii / D S , U V / J 3 A 4" u Jf l/ lJ ~ • 

C **********************************~******************* 
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FILE: T._OD FOR£ HAN A 1 U NH EH SIT tl'l' v AN t! 1iiTu1.UA 

PAR(dO)=JO 
PAR (J 4) = 1 
KS= KSO 

b6 CALL ZSPOW (FCN,NSIG,N,I1MAX,PAil.X,f~ORM,~K,1~P) 
28 KS= KS+ PAR(4 ➔) 

DO 23 I = 1, 27 
PAR(I+44) = X(i} 
X(l) = PAH (I) 

23 CONTINUE 
PAR (34) = 2 
CALL ZSPOw (PCN,NSIG, N,ITMAX,PAH,x. FN0fu1,.I\,l.~H) 
IF (ABS{X(27)-PAH(27)).L1'.J .. 0001) GOl'O 711 
PR MS P 1 = ( X ( 1 5) - PA H ( 1 5) ) / ( X L 2 7) - PA H ( 2 7) ) 
EUK = O. 0 
DO 2 b I = 1 3, 2 b 

26 EUK = EUK + l(I)**2 
£UK = EUK**J.5 
IF(ABS(X:(27) -PA&(27) ) .. LT.J .. Ju01) GU10 711 
PRMSP2 = (EuK-PAh(80))/(X(27)-?AR(27)) 

711 WHITE (1,87) X(2b) ,X(27) 
8 7 PO B i1 AT (' 1 , 2 F l 2. 5} 

IF (KS.GT.K3P) GOTO 97 
IF (X(l2).Gr.1.) GOTO 97 
IF ( X (12) • Lr • 0 o ) G OI O 9 7 
IF (IER.EQ.1J1) ?AR(/+ij) = PAd(t+4)-0.00L 
DO 21 I = 1, 21 
PAR(l) = X(I) 

27 X(I) = PAH(I+44) 
PAR (J4) = 1 
CALL ZSPOi41{FCN,NSI-.-;,N,lTrlAX,:!do.,X,fNOh:1,-1ii{,l~R) 
PAli (dO) = EJK 
GOTO 28 

9 7 STOP 
END 

C **********************************•************************* 
C IN 'Ill IS RO Ur IN E AB E T H E NO ~l LI N r; AB E Q LJ AT ION S. 

C ************************************************************ 
SUBROUTINE FCN iX,F,~l,PA&) 
DictENSION T(32,32) 
r NT E.; EE K, a, I.., IN n r K, 1 D. Ko, N 1, NJ, o r, oJ, I J, rC A, ~I, u, ~, so , KB, P, s A, 
INT Eli ER ADD, KP, Q 
F. EAL X ( N) , F ( N) , P AF. ( 1 0 5) , 'I' li EL\ 
DIM tN S ION Ati ( 1 0 , J 0) , B H ( 10, 1 0) , az ( l O, 1 0) , v..: { 1 u, 1 0) , DI f 1 ( 1 0) 

DI M Z US IO N Di P 2 ( 1 0 ) , D I F J ( 10 , , V SC l' ( 1 0) , "' 0 RT l 1 J ) , R U OT ( l J ) , A L F A { 2 

C *****************************************~****************** 
C 
C 
C 

JY2 
391 

NI= OK AXIALLY ; NJ= OK iiADlALLY. 
OK= TOTAL NUMUtR OF COLLOCATION POlNTS 
*****************~******************************************* 
DO 3 9 1 I = 1 , 2 o 
DO J 'J 2 J = 1 , l. b 

T(I,J)=J 
CONTINUE 
NI= 5 
01 = NI-1 
NJ = 3 
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FILE: TW0D fORrRAN Al UNlVEHSlTEIT VAN PR~tUlllA 

OJ = NJ-1 
0 = (N I*NJ-2) 
N = O* 2+ 1 

C *************************************~*******************•** 
C 'liiETA IS PAH AMET ER IN KELLEh' .S i-ltTHOD • 

C ***************************~******************************** 
THETA = O. 55 
IF (PAR(JS).GE.L.) GO TO :J:J 
GO 'IO 498 

9 9 DO 15 I -= 1, N 
15 F (I)= 0. 

C ***~********************************************-..********* 
C JAKE PBOVlSlON HEHE FOR Tdi SYJ~ET&~CAL POLYNOMIALS ~lRST AN 
C SECOND DElilVATIVES (A.R, BR) A.::i iliELL AS 'lHE HOO'l.:i (wORT). 

C *****•**************************************************~** 

C 
C 
C 

C 
C 
C 
C 
C 
C 
C 

IF (PAfi (3~) .ti E. 2) GOTO 252 
GOTO 2 SJ 

252 DO 1 l = 2,JI 
DO 2 J = 1 ,J J 
KA= (I- l) *NJ+ J-1 
KB= KA+O 
DO j P = 1,NJ 
S = (I-1) *NJ+P-1 
SO = S+O 
F ( K t\) = F ( K A) + ? AR ( 4 2 ) /~/PAR ( J 7 I * { A E ( J , 2) / w Ca T ( J) + 13 h { J, ? ) ) * :0: { S ) 

J f'(Ki3) =F(KB) .. ?AR {~2)/2/PAR (38) * (AR (J, i?)/v.uH'I' (J) +~R (J, P)) *X (30 
DO :.+ L = 1, .NI 

4 

& 

2 
1 

220 

IF (L. EJ. 1) ADJ = 0 
IF (L.GT.1.i\ND.L.LT.Nl) ADD= 
IF (L-la; ... Nr) ADD = 1 
S = ( L- 1 ) * ~I J + J - A JD 
SO= S + 0 
f(KA) =F(KA) +(1/PAh(Jb)*BZ(l,L)-rli(l,l..) )*X{S) 
.F(Kd) =F(KB) +{1/PAR(-.3)*8~(1,L)-A.l (l,L) )*X(SO) 
F ( I( A} = F ( K A ) + X ( N ) * ( 1 • - X ( K A ) ) * t X ? ( P A ii { 3 '1 ) * X ( K 3 ) / ( 1 • + A ( i\ 3 ) ) ) 
F(Ki3) = F(K3) +X(N)*PAR(40)*(1.-X(KA))*l::XP(PAR(3'1)*.<(K3)/(1.. 
+X(i<B))) 
CONTINUE 
CONTiNUE 
************•********************************************** 
K EL L E R ' S lU - f U ~~ CT IO N - { .:3 t E ~ H t\ P r .t. R J ) 

DO ~ 2 0 I = 1 , 2 o 
f ( N ) = F ( N ) + T d ET il * P A TI ( I + 4 ~ ) * ( X ( i ) - P A ii ( I ) ) 
F ( N) = r' ( N) + ( 1 • 0-T HE TI\) *PA ri p + ~ Lt] * ( X ( ;~) - ? ,; ~ ( i:.) ) - 2 Ari ( :.+ 4) 

***************************•**************************•***** 
NEXT FOLLOW THE clOUNDARY CO~DlllO~S. 
************************************************************ 
THE J.C. AT R -= 0 IS AUTOMATICALLY SATlS.r'lBD .. 

*******************************~********************~***•*** 
R = 1. 
**************************************************•********* 
DO 7 I = 2, JI 
KA-= (I-l)*iJt-NJ-1 
KB= KA+O 
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FILE: TiiiOD FURIRAN Al UNIViRSit~lT VAN Pil~1UtilA 

DO 8 J = 1,NJ 
S= ( I- 1) * ~ ... J + J- I 
SO= S+O 
T(KA,S)=T{Ka,S) +1..R (~J,J) 
f(KA)=F(KA) +Ali (NJ,J) *X (S) 
T (K.8, SO) =I (KB, SO) +AR (NJ,J) 

8 F(KB) =F (KB)+ Al< (NJ, J) *X (SO) 
'r(KI3,KB) =T(KB,Ki3) +PAi1(41) 
F(Kil) = F(KJ)+PAR(L+1) *X(KB) 

7 CONTINUE 
C ************************************************************ 
C DOUJDARY COJDilION AT Z = 0. 
C **************************************~********************• 

DO 9 J = 1, J J 
KA=J 
KB=KA+O 
DO 10 P = 2 ,O l 
S = { P- 1) * td +J- 1 
SO = S+O 
T (KA, S) =T (KA ,S) i-AZ ( 1, P) 
F (KA) = F (KA) + AZ ( 1, P) * X (S) 
T (Ka. SO) =T (KB, SO) +AZ ( 1, P) 

10 F(KB) = F (KB) +AZ ( 1, P) *X (SO) 
SA = (NI-l)*NJ+J-J 
SAO= SA+O 
T(KA,KA) =1'(KA,KA) +AZ (J, 1)-PA.:i (3o) 
F ( K A J = F ( K A) t- AZ ( 1 , 1 ) * X ( KA) + a Z ( l , ~l I ) * X ( .:i .\ , - 2 A E ( 3 b ) * X ( i A) 
T ( K B , K i3) = T ( K B, K B ) + AZ ( 1 , 1 ) - P AR ( ~ 3 ) 

9 F ( KB) = P' ( K 3) + AZ ( 1 , 1 ) * A ( KB) + AZ ( 1 , tll ) * X ( S AO} - PA ii { ij j) * .{ ( K 3 ) 
C **************************************~*~******************* 
C BOUNDARY cmIDlTlON AT Z = 1. 

DO 11 J = 1, OJ 
KA= (NI- 1) *NJ +J-1 
KB= KA+O 
DO 12 P = 2, OI 
.S = (?-1) *NJ+J-1 
SO = S+O 
T (KA, S) = 'I ( Ka , S) +AZ {N .l, P) 
f' ( K A ) = F ( K A) + A Z ( N I , P ) * X ( S ) 
T (Ki3, SO) =T (K B,Su) +,\Z (:~l, 2) 

12 F(Kil) = f (KB) •AZ {NI,P) *X {SO) 
'l(KA,KA) =T(KA,KA) +AZ (Nl,Ln) 
F ( K A J = r--' ( K A) • AZ pn , 1 ) * X ( J) + A Z ( :n , (i I ) * X ( i\ ti) 
'I ( K t3, K 3) = T ( K B, KE) + AZ pi l, NI) 

i 1 F c K a) = F ( K .:i , + A z ( N l , 1 ) * A ( J + 0) + l\ z ( ;_~ 1 , N 1 ) * x , L\ u ) 
GO TO SUO 

l+ 9 8 DO 5 v J I J = 1 , 2 
lf (IJ.E'.,2.1} K = NI 
lF {IJ.EQ.2) K = NJ 
CALL POLI {ti:,K0,Ulf1,DlL::'.,DlfJ,tlOuT,2Ah) 
IF (IJ.El,d.2) GO TO ]JS 
Gv TO 139 

1 3 5 DO 1 j 7 C\ P = 1 , r.. J 
13 7 w OH r l Kl') = i 001' l KP) 
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FILE: TwOD FOBrRAN A1 UNlVEh~l£iLT VAJ ~dtTOdiA 

C 
C 
C 

C 
C 
C 

1) 9 DO 1J O ID= J , 2 
DO 13 0 I = 1 , K 

19 8 

20 1 

202 

19 9 

203 

2Qij 

13Q 
503 

253 

2b3 

264 

26 2 
2&) 

1 
1 
1 

CALL DFOPR (K,I,lD,DiF1,DlF2,DlF3,ROOT,VECIJ 
DO 1 JO J = 1 , K 
IF (ID .. EQ.1) GO TO 1~8 
lF (lD.EU .. 2) GO TO 199 
IF ( lJ .. EQ. 1) GO TO 2 0 J 
lF (lJ.EQ.2) GO TO 202 
AZ (I, J) = VE C'I ( J) 
GO l'G 130 
AR (I,J) = V~CT(J} 
GO TO 130 
IF (IJ. Er.2. 1) GO ro 20 3 
IF (IJ.EQ .. 2) GO 1'0 204 
BZ ( I , J ) = V l CT { J } 
GO TO 130 
DR ( I , J ) = V.:: CT ( J) 
GO '£0 130 
CONTINUB 
CONTINUE 
PAR (JS) = 2. 
GO 'ro 9<J 
******************************************~*****************J 
IN TdIS SECrICN J.S THE D111/i)S ,DT/DS .AND Dr' .. L/DS .rUiiCfi.uNS. 

*****************************~******************************· 
DO 2 o 1 I = 2 , 0 l 
DO 2u 2 J : 1 ,OJ 
KA= (I-1)*l1J+J-1 
KB=KA+O 
DO 2u3? = 1,NJ 
S = (I-l)*NJ+P-l 
.so= S + 0 
f ( K a J = F { KA } + ? ~ li ( 4 2 ) / 2 IP A. B. { 3 7) * ( A fi ( J , i' ) I ;.; 0 rt T ( J ) + u i.~ ( J , P ) ) * X F 
f ( K r3) = r' ( K J, + .2 A ii ( 4 2) I 2/ PA d. ( 3 d) * ( A & ( J, 2 ) Ir. 0 h 'L ( J ) + 3 ct ( J, 2) ) * X ( ~ 
DO 2 o !+ L = 1 , N I 
IF ( L. EQ. 1) A DD = 0 
l F ( L. GT.. J • A :-J il. L • L T • ~lI ) A DD = 
If(L.GE .. NI) ADD= 1 
S = (L- 1) *NJ +J- liUD 
so = S + 0 
F(KA) = F (KA)+( 1/PAR(Jo} *:GZ (l, L) -AZ (l,L)) *I.. (S) 
I-' ( K 3) = F ( K D) ♦ ( 1 / 2 AR ( 4 J ) * 13 l ( I, L) - AZ {I, L) ) * .\ ( :3 0) 
F ( K lt) = F ( K A) - i? A R ( N ) * i:; X P ( P ~1\ ( 3 ➔ ) * P A r ( K D ) / ( 1 + 2 A r, ( K D) ) ) ,;. I.. { K A ) 
F(KAJ =F(KA) +PAH (39)*PAfl (H) * (1-PAR (KA) )*2XP (t!:\u (J-j) *2~R {KB)/ ( 
R ( i d ) ) ) / { 1 ♦ ? Ah ( K L>) ) * * 2 * X ( K 3) 
P { K A) = F ( KA) 1- ( 1 - X (KA) ) * EXP ( t> A i1 ( J 9) * P.; il ( K E) I ( 1 + 2 A..{ { c~ ~l ) ) * X ( N ) 
F ( K 3) = ( { 1 - PA R ( K A) ) *? AR ( N) • i' AR ( 3 9 ) * EX 2 ( t> AR { 3 9) * 2 A H ( K 3 ) I { 1 + 2 ~ h 
) ) ) / ( 1 +PAR {KB) ) * * 2 * X ( K i3) - Pl R ( N) * E 1 P ( i? AR (J 1j) *PA i1 { Krl} / ( 1 +? 
Ali ( K J) ) ) * X ( ~ A) + ( 1 - PA R ( KA) ) * ~ i. P (? A i1 { J 9) * 2 A H ( K !3) / ( 1 + PA f< ( K Ll) 
) ) * l ( :~) ) * P A.:t ( 4 0) +l-' (KB) 
CONTINUE 
CON'l'INU.C: 

************************************************************~ 
Til~ bUUND~Hl CONDlTIONS 
************************************************************~ 
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FILE: T.-0D f UR r ii A N A 1 U N 1V .:-; H S l T El 1' V A :I l.' h r.; J G ii I A 

C H = 1 

C **********************************•************************** 
DU 2o7 r = 2,0I 
KA = ( I - 1 ) * i~ J + N J - 1 
Ko= KA+ 0 
DO 2 b 8 J = 1 , NJ 
S = (I-l)*NJ+J-1 
so = S + 0 
f(KAJ =f(KA) +AR (NJ,J) *X (S) 

2 6 d .f ( K B) = F ( K B) + AR ( N J , J) * X (SO) 
F ( K d) = F (KB) + PA H ( t+ 1) * X ( KB) 

267 CONTINUE 
C ************************************************************* 
C l = 0 
C ******************************~****************************** 

DO 2 b 9 J = 1 , OJ 
KA= J 
Kl3 = KA + 0 
DO 2 7 0 P = 2 , 0 I 
S = (P-1) *NJ+J-1 
SO = S+O 

F(KA}=FlKA) ♦ AZ (1,P)*X(S) 
270 r'(KB) =F(KB) +dZ( 1,Pj*X {SO) 

SA = ( N I - 1 ) * t~ J + J - 1 
SAO = SA + J 
F ( K ;\) = F ( K A ) + AZ ( 1 , 1 ) * X ( KA) + Al ( 1 , :n ) * X ( SA ) - P AH ( 3 b ) * X (KA ) 

2 6 9 i' ( K d ) = Y ( K B) -t AZ ( 1 , 1 J * £. ( K .J ) + A l ( 1 , N I ) * X ( SA O ) - .2 A h ( -. J ) * 1 ( 1\ B ) 

C ************************************************************ 
C l = l 
C *************************************~*#******************** 

DO 2 7 1 J = 1 , 0 J 
KA= {Nl-1} *N.J +J-l 
iB =KA+ 0 
DO 2 7 2 P = 2 , 0 I 
S = (?-l}*NJ+J-1 
so= S + 0 
F(KA) =F{KA) +AZ(Nl,P) *X (S) 

272 F (K3) =f' {KB)+ AZ (N.l, P) *X (SO) 
F ( KA) = I-' ( K A) + AZ ( N I , 1} * X ( J) +AZ ( I.I , N I) * I.. ( K A) 

2 7 1 P ( K B) = F ( K B) t- AZ ( N l , 1) * X ( J + 0) + A Z PII , N I ) * X ( L> ) 

C *******************************************~**************** 
C IN T!I.2 NEXT SECTIOU KELL.t:H'S Iriil'A FJh~TiuN I.j c0:12ur1D 
C ************************************************************ 

DO 2 7-+ l = 1 , 2o 
274 F(N} = i'(N) +1:HETA*X (I) **2 

f ( N) = f ( N) + (l -'Id EI A) * X ( N) * * 2- 1. 0 
50 0 EET UiN 

END 
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