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SYNOPSIS

In the pseudo-homogeneous models of chemical reactors, one assumes that the
content of the reactor is homogeneous. These models are categorized as
two-dimensional (axial and radial changes occur) and one-dimensional models

(only axial changes occur).

In Chapter 1 we give a short survey of the existing literature. We also
propose a modification of the one-dimensional model to reconcile the
boundary conditions of the problem with the practical situation. Various

numerical methods to solve the problems are also discussed.

In Chapter 2 a sufficient condition is derived which guarantees uniqueness
for the one-dimensional problem. This result holds for general kinetics.
An improved a-priori upper bound for the temperature solution is derived

and this result is used to find an upper bound on the Damkohler-number
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which gives an improvement of 10-30 times on existing results. Upper and
lower function bounds on conversion are constructed and it is used to find

a lower bound on the Damkohler-number. This result is new.

In Chapter 3 the bifurcation behaviour of the one-dimensional, two-dimen-
sional and the modified one-dimensional model is examined numerically. A
new method is introduced for the construction of an arc of limit points.
This method enables one to examine the multiplicity behaviour of the pro-

blem as a function of the parameters.

The last chapter deals with the sensitivity of the solutions. Existing
criteria are evaluated and we point out their shortcomings. We propose new

criteria to evaluate sensitivity a-priori and numerically.
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SAMEVATTING

In die pseudo-homogene modelle van chemiese reaktore word aanvaar dat die
reaktorinhoud 'n homogene kontinuum is. Hierdie modelle word onderverdeel
in twee-dimensionele (aksiale en radiale veranderings in reaktor) en een-

dimensionele modelle (slegs aksiale veranderings).

In Hoofstuk 1 word die literatuur kortliks bespreek. Ons stel ook 'n wysi-
ging van die een-dimensionele model voor om die probleem se randvoorwaardes
meer versoenbaar met die praktyk te maak. Verskillende numeriese tegnieke

om die modelvergelykings op te los, word ook bespreek.

In Hoofstuk 2 word 'n voldoende voorwaarde afgelei om eenduidigheid van die
een-dimensionele probleem te verseker. Hierdie resultaat is geldig vir-
algemene kinetika. 'n A-priori bo-grens vir die temperatuuroplossing word

afgelei en hierdie resultaat word gebruik om 'n bogrens vir die Damkdhler-
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getal te vind wat 10-30 keer beter is as die bestaande resultate.
Bo- en ondergrense van die omsetting word gekonstrueer en gebruik om 'n
ondergrens vir die Damkohler-getal te vind. Hierdie resultaat is nog nie

voorheen afgelei nie.

In Hoofstuk 3 word die bifurkasiegedrag van die een-dimensionele, twee-
dimensionele en die gewysigde een-dimensionele model numeries bestudeer.
'n Nuwe numeriese metode word voorgestel om 'n baan van limietpunte te kon-
strueer. Hierdie metode stel mens in staat om die veelvuldigheid van die

oplossings as 'n funksie van die probleem se parameters te ondersoek.

Die laaste hoofstuk handel oor die sensitiwiteit van die oplossings.
Bestaande kriteria word evalueer en die tekortkominge word uitgewys. Ons
stel nuwe kriteria voor om die sensitiwiteit a-priori en numeries te

bepaal.
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LIST OF SYMBOLS

A - Cross-section area of reactor

Aij - First derivative approximate in orthogonal collocation
B - dpl/rg’

Bi - Biot number hy ro/kyp

Bij - Second derivative approximate in orthogonal collocation
C - Concentration

Co - Inlet concentration

Ca - C/Cy

Cp - Specific heat

Das - Axial dispersion coefficient

Dar - Radial dispersion coefficient

Dm - Diffusion coefficient

dp - Particle diameter of catalyst

£ - Activation energy

f(w,v) - Dimensionless rate of reaction R(C,T)/R(Cq,To)
-AH - Heat of reaction

hy - Wall heat transfer coefficient

kg - Axial thermal conductivity

kp - Radial thermal conductivity

L - Length of reactor, m

Le - Lewis number Pepg/Peqng

NE - Number of elements in orthogonal collocation
NCOL - Number of points in orthogonal collocation

n - Order of reaction

Pems - ul/Das

Pemp - dpu/Dar
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vii
Penhs - Cp(pul)/kg
Penr - Cp(pudp)/kp
Rg - Gas constant
R - Intrinsic rate of reaction
Tg - Radius of reactor, m
r' - Radial position, m
r - Radial position r'/rq
s - Axial position z/L
T - Temperature in kelvin
To - Inlet temperature in kelvin
t - Time
U - Global heat transfer coefficient
u - Mean linear velocity
v - Dimensionless temperature (T-Tg)/To
W - Conversion (Cg-C)/Cq
z - Axial position, m
Z - O&B'a
a - LR(Co,T0)/(uCo)
B - (-AH) CoDag/kgTo
B! - (-MH)Co/(pCpTo) or BPepg/Peng
8 - E/RgTo
o - L2R(Co,T0)/DagCo or aPepg
Y - 20L%/(kgrg)
v - 2UL/(uCppry) or Y/Peng
6 - Parameter in Keller's method
) - Density
X - Labyrinth factor
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Subscripts

a ~ Ambient value

h - Heat transfer

m - Mass transfer

v - Initial value

r - Radial direction
s - Axial direction
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CHAPTER ONE

INTRODUCTION

1.1 THE CHEMICAL REACTOR

In the chemical industry, most processes are concerned with the conversion
of raw materials or reactants into products. These processes take place in
a vessel, the chemical reactor. Most materials are in a gaseous or liquid
form and the reactor is designed to convert these feeds into either gaseous

or liquid products.

There is a wide variety of reactor types [107,110]. In this study we shall
concentrate on the fixed bed reactor. This reactor consists of an array of
tubes in a shell (See Figure 1.1). The tubes are packed with small
particles, the catalyst. The catalyst particles are pretreated to get the
required porosity and shape. In most cases the particles shapes are
approximated as either cylindrical or spherical. In a large number of
cases heat is generated when the chemical reaction takes place in the
reactor. The facility exists to remove excess heat by pumping a cooling

liquid through the shell side of the reactor.

Before we discuss the mathematical models of the fixed bed reactor, it is

important to get a rough idea of the flow mechanisms inside the reactor.

The reactants are fed into the tubes and follow a complex flow pattern
around the packed catalyst particles. Reactants go from the bulk or fluid
phase to the catalyst phase where they are adsorped on the catalyst sur-
face. The chemical reaction occurs mostly in the catalyst phase and pro-

ducts diffuse back into the bulk phase. Heat transfer occurs by means of
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FIG. 1.1: Fixed Bed Reactor.

convection in the bulk phase in the axial direction, diffusion and conduc-
tion between adjacent particles in both the axial and radial directions.

The conduction distinquishes heat transfer from mass transfer.
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There exists a difference between the concentration of species in the
catalyst phase and the adjacent bulk phase. Models which recognise these
differences are heterogeneous models. In cases of effective heat and mass
interchange between the phases, the catalyst and bulk phase do not denote
markedly different heat and concentration levels and the whole continuum is
assumed homogeneous. Models which describe this situation are of the

pseudo-homogeneous type.

If radial gradients are significant, models which take both axial and
radial effects in consideration, will prove better than one dimensional
models which ignore radial effects. In [21,24,44] norms are suggested to

facilitate the choice between one- or two-dimensional models.

1.2 PSEUDO-HOMOGENEQOUS MODELS

The spectacular rise in fixed bed reactor capacity stresses the need for
well designed units. As Froment [110] pointed out, the ammonia production
increased more than tenfold from 1950 until 1970. This fact indicates the
importance of appropriate models and the necessity to analyze these models

to the fullest.

In [19,68] the pseudo-homogeneous models are suggested for the design of

fixed bed reactors.

1.2.1 The Two-Dimensional Model

The steady state form of the two-dimensional model for the packed bed

reactor is a boundary value problem.
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PROBLEM- A
! bssw-63w+—Ji;(6rrw+16rw)+ag(w)eév/(1+V)=0 (1)
Pems €mr r
6SSv-65v+——§——(arrv+16rv)+6'ag(w)eéV/(1+V)=O (2)
Peng Penr r
with boundary conditions:
dgW = Pepgw ; s=0
dgVv = Pepgv ; s =0 )
dgw = dgv = 0 ; s =1 (4)
dpw = dpv = 0 ; =0 (5)
opw = 0 ; r© =1
(6)
dpv = Bi(vg-v) ; r =1

For n-th order irreversible reactions g(w) = (1-w)".

w denotes conversion, that is the fraction of a reactant which bhas reac-
ted. If Cy denotes the inlet concentration, w(s,r) = 1-C(s,r)/Cg. v(s,r)
= T(s,r)/Ty-1, where Ty denotes the feed temperature. All the other para-
meters are constants. The subscripts s and r denote axial and radial
directions, h and m heat and mass transfer respectively and vy denotes a
dimensionless ambient temperature. In general Pepg = uL/D4g, Pepg =
Cp(puL)/kg, Pepp = dpu/ Dap, Penp = Cplpudp)/kp where u is the
axial velocity (mean), L is the length of the reactor, dp is the catalyst
diameter and D, and D g are the dispersion coefficients (radial and
axial). Cp is the heat capacity, kp and kg the conductivity (radial
and axial) and p the density of the continuum. The boundary condition (3)

ignores radial effects and is only an approximation [83].
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For the derivation of this model, see Hill [107].

In the case of more than one reacting species, (but the feed is stoichiome-
tric) (1)-(6) will be sufficient to describe the process, since the species
differ from each other with a constant. If the feed is not stoichiometric
additional mass-balances are required. The last term in (2) must also be

updated if additional reactions occur.

1.2.2 The One-Dimensional Model

The following two-point boundary value problem describes the steady state
one-dimensional case. It is derived under different assumptions than

Problem A. See Hill [107].

PROBLEM B
w' - Pepgh' + ¢g(w)eév/(1+\’) =0 (7)
V' - Pepgh' + Bog(w)edV/(1+v)_yy - g (8)
w' = PepgW 3 s=0
(9)
V' - Pehsv ] S:O
wl = V' = 0 ; 8:1 (10)
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B denotes the heat which is involved in the chemical reaction. If the
reaction is exothermic B > 0, if the reaction is endothermic, 8 < O.

Yy denotes an overall heat transfer coefficient between the shell- and tube-
side fluids. When y>0, the reactor is operated non-adiabatically. When
no heat transfer takes place with the surrounding, the reactor is adiabati-
cally operated (y=0). This parameter can be regarded as a design varia-
ble. The Peclet numbers (Pengs Pemps Pepgs Pepp), as defined in
this study, depend on the length of the reactor and the catalyst diameter.
Since mean velocity and dispersion, as well as the physical properties of
the fluid, will remain unchanged, Peclet numbers can also be categorized as
design variables. The only operating variable is the Damkochler-number a
(or ¢). This parameter involves inlet temperature and concentration, the

two variables most likely to fluctuate or change under operation.

This model plays a very important role in design [110]. Jensen [45] repor-
ted a list of comparison studies between experimental results and this
model. In the bifurcation studies of Chapter 3 and the parameter sensiti-
vity study of Chapter 4 we shall concentrate on the effect of changes in

the Damkohler number.

1.3 ANALYSIS OF THE ONE-DIMENSIONAL MODEL

In this section we shall review known results on the existence, uniqueness,
multiplicity, a-priori estimates and stability of solutions of the one-
dimensional model. All these factors play an important role in the design

of a chemical reactor.
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1.3.1 Existence
The dynamic problem was studied by Pao [90] and Kuiper [46]. They proved
the existence of solutions for the dynamic one-dimensional model. The
existence of a solution of the steady state problem was studied by Gavalas

[34,104] and Varma [61].

1.3.1.1 A-priori bounds

Varma [61,69] proved the following a-priori bounds:

0 <w(s) <1 I

0 <v(s) <8 11

If the reactions are of even order, it can be proved that Varma's results
do not hold (Appendix C) unless the terms
g(w)edv/(1+v)

in (7) and (8) are replaced by

g(w)edV/(1+v) 0 <¢w <1
fw,v) =
0 , w1,

One can write (7)-(10) in integral form:

w(s) = [1Gps(sst)eg(w(t))edv(t)/(1+v(t)))qgt (11)
0

v(s) = [Yepg(s.t)[pog(w(t))edv(t)/(1+v(t)) yy(t))dt (12)
0
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1/Pe; s O<t<s
where Gi(s,t) = i = ms,hs
Pe;(s-t)
(1/Pejle , s<t<l

denotes the Green's function.

It is easy to prove that the integral operator T, defined by the right hand
side of (11) and (12) has a fixed point, using Schauder's theorem and

a-priori bounds I and II. See Hartman [105, p.424].

Gavalas [34,104] used the homotopy of T-I and I, the identity operator, to
prove the existence of a fixed point. This approach stems from the work of

M.A. Krasnoselskii.

1.3.2 Uniqueness

Most chemical reactors are operated in regions of uniqueness. This means
that the design and operating variables are chosen to ensure the existence
of only one solution. The Damkéhler numbers ax and a* (or ¢x and ¢*)
are sought such that uniqueness is guaranteed for a<ax and a>a*. We

shall refer to ax and o* as upper and lower bounds for uniqueness respec-

tively. Several authors studied the uniqueness of Problem B.

In the following section we shall look briefly at the various approxima-
tions and assumptions and the resulting criteria for uniqueness.
In most cases assumptions and approximations were made to utilize standard

analytical techniques.
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Simplifications

Various simplifications to the differential equation of Problem B have been

proposed in the literature. They are discussed briefly for the sake of

completeness but no further attention will be given to these issues. A

popular assumption is to choose Pez=Pepg=Pepg (Le:PehS/PemS=1).

If one further assumes the reactor is adiabatic (y=0), one can prove a

linear relation between w(s) and v(s):

w(s)

v(s)

B

Under these simplifications, Problem B reduces to:

v -

<
t

Pev' + B¢(1-V/B)e5V/(1+V) =0 ; 0<s<1 (13)
Pev ; s=0 (14)
0 ; s=1 (15)

Cohen [39] proved uniqueness of the solution of (13)-(15) if
EL.( o(1-v/ )eév/(1+v)) <0 (16)
dv v

He used the maximum-minimum principles of elliptic operators to prove the

convergence of an upper and lower solution to a fixed point. Subsequently

he used a perturbation analysis of the solution v in the region of the

boundary layer at s=0 to arrive at (16).

Fleishman [22] studied the catalyst particle problem. He approximated the

reaction term by a step function and matched the solutions in each domain

continuously in a point. This step function approach did not compare very

well with the numerical results of Parter et al. [53,54].
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All in all, one can regard these assumptions as artificial and the analyti-

cal results are of limited value.

Another popular approach is to approximate Problem B as a sequence of
continuously stirred tank reactors (CSTR). In each CSTR, conditions are
identical (i.e. not a function of space variables) and mass and heat flows
between adjacent cells make provision for both diffusion and convection.
The multiplicity behaviour of a single cell was studied in 1956 [84]. The
sequence-of -reactors-model uses the same approach and was studied by Varma

[64] and Calo [10].
No literature on the validity of the above approach, either the convergence
to the infinite dimensional case or the error of approximation, could be

found. These issues need further examination by mathematicians.

1.3.2.2 Analytical Result of Varma and Amundson

We want to give a brief description of a result of Varma and Amundson [93]
on an upper bound for the Damkohler number to guarantee unigueness, since

it is the only rigorous result. In Chapter 2 we prove a better result.

With the change of variables
u(s) = y(s)e emss/?

Problem B assumes a form which does not have any first derivatives. Let

. y(s) = u(s)e"nss/?

y(s) = yi(s)-ya(s) and u(s) = u;(s)-up(s) be the difference between two

solutions. Using the variational principle of the least eigenvalue of
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42 .
the operator L = — with the boundary operator
ds
Pe.
(_9.+ — =0 ; s=0
ds 2
By = ,1 = ms,hs
Pe.
e oo os=1
ds 2

gl(yLy + p2uLu)ds<0, for p an arbitrary, real number, will not hold

for y and u nontrivial if:

T
[-Bumaa+(uh+v)az]+/T§@maa+(uh+v)az]2+26um(um+v)a1a3e(peh5 °ms )

a <
as[ 8 ale(Péhs:pemgy;ZBaz]

where pp p denotes the least eigenvalue for L and Bpg and L and Bpg

respectively.

a; = inf %% < 0, ap = sup %% <0
df
asz = Ssup '67

They also stated that no rigorous lower bounds on a could be obtained
which would guarantee uniqueness [93]. Varma [93] derived this result for
the special case Le=1 and he stated that the proof of the general case

(Le#l) 1is analogous. In Section 2.5 we shall compare our results with

these bounds.
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In Chapter 2 we shall derive an upper bound ¢x which is much sharper
than the existing one. We shall also derive a lower bound on Damkdhler
numbers to guarantee uniqueness and we claim this to be the first result

of its kind.

1.3.3 Multiplicity and Bifurcation

The analytical results for Problem B are limited to the very special cases
of Le = 1 and y = 0. Keller and Antman [101], Keller [40,78], Amann
[3,4,5,6] and Laetsch [35,37,38] developed theories which give indications

of the number of fixed points.

Most approaches rest on the work of Amann. To apply his methods, one must
find maximum and minimum solutions of Problem B. Wildenauer [66] gave
results for the existence of maximum and minimum solutions, but requires
that f(w(s),v(s)) be concave on s€[0,1]. Numerical results suggest the

contrary.

We cannot find appropriate maximum and minimum solutions of Problem B. If

there exist multiple solutions, they intersect and subsequent ordering

is not possible.

We did not find any general results which were directly applicable to
Problem B in the literature and we had to resort to numerical procedures.

See Section 1.5.3.
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1.3.4 Stability

Although we did not do any work on this aspect, we shall give a short
survey of the literature for the sake of completeness. It must also be
noted that our numerical bifurcation studies (Chapter 3) touched upon this
matter, since a bifurcation point usually marks a change of stability.
Different approaches to study the stability of the steady state solutions
will be discussed. Endo [18], Gilles [31] and Eigenberger [14,15,17] gave
a good review of the stability of different reactor types as well as the

mechanisms which cause unstable behaviour.

In [9,28,33,99] the transient equations were numerically integrated for
different initial values. The phase plane w(s;,t) - v(s,t) for s; fixed,
gives useful information on regions of stability. Although this approach
is cumbersome it gives reliable information on the stability of the nonli-

near equations.

In [2,9,17,56,67] the method of Lyapunov was used. Amundson [8] used per-
turbation analysis and Kastenberg [a7] used the difference function u(s,t)
between the dynamic and steady state to construct eigenfunctions
¢1(s,t) and ¢,(s,t) on a slightly larger domain. Using the maximum

principle of parabolic equations, he showed that ¢;(s,t)<u(s,t)<¢y(s,t).

The two comparison eigenfunctions are shown to converge to zero:

lim ¢ (s,t)=0 , 1i=1,2.

tr
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Varma [63] used this approach to derive stability criteria. Luss [49,50]

used the maximum principle of parabolic equations to derive criteria.

1.3.5 Parameter Sensitivity

Parameter sensitivity is an aspect which is of particular interest to the
engineer. It describes the sensitivity of the steady state solutions to
small perturbations in operating variables. If a system is in the sensi-
tive region, a small perturbation in operating variables will give rise to
a sharp increase in the temperature which can lead to burnout or deactiva-

tion of the catalyst.

Endo [18] suggested the use of the plug-flow model to study parameter
sensitivity. This model results when D4*0, kg0 and one can write

Problem B as:

-w' + af(w(s),v(s)) = 0 (17)
-v' + B'af(w(s),v(s)) - y'v(s) =0 (18)
"o =9 (19)
v(0) = 0

According to Endo, the motivation to use the plug-flow model is that most
reactors are operated in regions of an unique solution where the plug-flow

model (PFM) gives a reasonable description of reactor behaviour.
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This is not generally true, since reactors can be operated in regions of
multiple solutions. The second objection to Endo's suggestion is that
more descriptive models than the PFM may give different criteria for

parameter sensitivity.

In 1959 Barkelew [36] gave the first systematic description of parameter
sensitivity. He used the PFM for his studies. Defining the dimensionless
temperature as: y = (T-Tg)&/Ty and assuming that 6&>>y, he approximated

(17)-(19) as:

9 - zg(w)eY-y'y (20)
ds
- ag(w)eY (21)
ds
y(0) = 0

(22)
w(0) =0

where Z = 8B'a

max

Y*

Y'/z

FIG. 1.2: Sensitivity Diagram
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For over 700 choices of y' and Z, (20)-(22) were integrated and diagrams,

as shown in Figure 1.2, were constructed.

Consider Z = b. For ypax < ¥*, the deviation in y,,, for a change in
y'/Z is small, but for ypax> Y*» the change 1is more drastic. He

proposed the following:

A reactor is stable with respect to small operating fluctuations if

Ymax. S _Yy*, Where y* denotes the value which is tangential to the

envelope.

Using Barkelew's diagram and assuming the PFM is adequate, one can compute

the maximum radius of the tube which will still be parameter-insensitive.

Agnew and Potter [1] extended Barkelew's approach to the two-dimensional
PEM. This model has more parameters and parameters were lumped as
dimensionless groups to avoid complexity. The results were analogous to

Barkelew's diagrams.

In 1970 Froment [23] studied the first order PFM for various parameter

values. (18) is now divided by (17) to give:
av _ ., Y'(V)e-6V/(1+V)

dw a(l-w) (23)

The maximum temperature vpayx for a first order reaction satisfies:

o~ 8max/ (1+vpay) (24)

wn = 1 - L (vpax)

B'a
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Using (24) (1-wgp3  Vpax)-Parameter-planes can be constructed for

different choices of the parameters. In Figure 1.3 such a plane is shown.

Froment gave the following criterion for parametric sensitivity. The

trajectory passing through the maxima of the (1-wm;vmax) curves is

critical. Inlet conditions which lead to vy, values to the right of

this trajectory is sensitive.

In Figure 1.3 his proposition is illustrated.

max

FIG. 1.3: Sensitivity Diagram
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Varma and Morbidelli [89] gave the following criterion for sensitivity:
2
If‘fLXSEé) >0 and.EXLEZ) = 0 where s; < sp, run-away occurs.
dw(s) ds
Run-away is the term used to describe the sharp rise in temperature when a

system is sensitive. Dente and Collina [102] defined their criterion only

. ) d%v(s,) dv(s?y)
slightly different: If ———=*" > 0 and ——“" = 0 where s;<s3y,
ds? ds
run-away OCCUrs.

In 1978 El-Sawi et al [16] examined parameter sensitivity in an experi-
mental fixed bed reactor for the production of vinylacetate from acetylene
and acetic acid. They found that Barkelew's criterion is conservative and
explained the phenomenon in terms of the poor correlation between the

model and experiment.

In 1980 Emig et al [91] examined the same reaction and found that Barke-
lew's diagrams give realistic criteria. Agnew's diagrams were not conser-
vative at large Z-values and these diagrams must be used with care. They
suggest that one must first choose the best model and then analyze it for

parameter sensitivity.

In Chapter 4 we derive conditions for parameter sensitivity for the one-
dimensional model using the criterion of Dente and Collina. We also give
a new criterion for parameter sensitivity which is applicable to any

model.
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1.4 MODIFICATION OF THE- ONE-DIMENSIONAL - MODEL

Before we introduce our modified one-dimensional model, we must first con-
sider the aspect of dispersion. Secondly the status of the boundary condi-
tions will be discussed since we propose a modification of the boundary

conditions as well.

1.4.1 Dispersion

In the discussion which follows, we shall analyze the modelling of disper-

sion in more detail.

Wicke [72] gives a good description of dispersion. We concentrate on
mass-dispersion, since heat transfer mechanisms are very complex and we

will not suggest any changes to the energy balance.

Mass transfer comprises of convection and diffusion. The latter term con-
tributes a small part to the total mass transfer and is of the form:
dC
D A —
™ ds
where D, is the diffusion coefficient in the bulk medium. (A denotes the

cross-flow area of the reactor tube). Dispersion consists of both

diffusion and a hold-up term.
The latter term will be explained briefly. If mass-transfer consisted only

of convection, a tracer-pulse, (an injection of a substance which must be

tractable) as an approximation to the Dirac-delta function, will appear at
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the outlet of the reactor unchanged (concentration as a function of time).
No change should occur in the second moment of the distribution and every
molecule of the tracer should have the same residence time. But in experi-
ments a real tracer output showed a considerable increase in the second
moment of its distribution. This fact suggests a hold-up in the reactor,
due to the complex flow round the catalyst particles. It is exactly this
time delay which forms the second term of dispersion. In more quantitative
form, the dispersion Dgag is:
Das = *xPp + 0,5u dp/(1+10xDm/(udp)) (25)

where x is a "labyrinth factor" to correct for the diffusion along a curved
path around the catalyst particles.

In Figure 1.4 we illustrate the mechanism of hold-up.

O fO 10
Eddies OO O
(@)

- Oﬁh@
O 8TO Oeeeairer

FIG. 1.4: Mechanism for Different Residence Times
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Diffusion is the only process which will cause mass-flow upstream.
Remark: x = 0,7 for uniform packing [72].

1.4.2 1Inlet Conditions

1.4.2.1 Reactor Inlet

Two types of reactor inlets are used in industry.

(a) Packed inlet

The inlet tube is packed with an inert material of the same physical
dimensions as the catalyst. The flow pattern is established when it
reaches the active part and the dispersion coefficient would have
reached a constant value. Small variations in Dgg due to the tempe-

rature effect on Dy may occur, but in most cases this effect 1is

negligible.

(b) Unpacked inlet

The flow of reactants changes drastically when the active stage is
entered and one will surmise a change in dispersion over a certain bed

length until the flow is established for the packed tube.
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1.4.2.2 Discussion of Boundary Conditions

The boundary conditions (9)-(10) were derived by Danckwerts [75] for a
first order reaction. These conditions are still controversial and we
shall give a short survey. Let Cy denote the inlet concentration and u the

mean velocity. A mass balance over the inlet gives:

_ D 9C(0%)
L ds ’

uCq = uC(0%) (26)
where D is the "apparent" diffusion coefficient. He arrived intuitively at

the outlet boundary condition.

Wehner and Wilhelm [73] considered the reactor system in three parts; the
inlet stage (a), the reactor (b), and the outlet (c). The equations were
set up for a first order isothermic reaction. We use Pe for the mass
Peclet number (Pems) where the subscripts a, b, c denote the fore,
reactor and after sections respectively. The dimensionless concentration

Cy = C/Cqy is used.

1 d°Cy  dCp
Poy o2 ~ ds =0 ; s €0 (27)

7 - g5 -~ ¢ Cha=0 ;0<s <1 (28)

Pon 1g? ~ ds =0 ; s 21 (29)

Cal-=) = 1 (30)

cal07) - 1 dCa(07) _ Cal0%) - 1 dCp(0+) (1)
Pea ds Peb ds

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

é%
<

_23-
Ca(07) = Ca(0%) (32)
Call”) - 5%; SSA(I_) Cal1*) - 5%; ::A(1+) (33)
Call) = Call*) (34)

Cal=) is finite.

The boundary conditions provide for continuity and the conservation of

mass. Solving (27)-(34) give:

1-Ca(s) Pe.s
L . 3
(120 (0)) e ~a : s <0 (35)

Cals) = AePebs/2 ((1+B)eBPeb(1-5)/2_(1_B)eBPeb(s-l)/2); 0<s<t (36)

where A and B are constants. Using the fact that Cp(e) is finite,

Cals) = 2n.Bee"e/2 - constant; s > 1 (37)
. : . : dCu(1*y _
Since the solution for the after section 1is a constant, = 0

ds
and it follows from (33)-(34) that:

QEA(l-) =0
ds

Substituting for Ca(s) from (35) into the total flux anywhere in the fore

section gives:

Cals) - — A - g (38)
Pe, ds
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Substituting this result in (31) gives the Danckwert's boundary condition

at the inlet.

In 1959 Pearson [76] used a dispersion-coefficient in the reactor as shown

in Figure 1.5.

r-—-—-—qt-»----
b e > s wn W e e e @

w
—_
(2]
N

FIG. 1.5: Pearson's Variable Dispersion-Coefficient

Pearson showed that if s; » 0 and sp =+ 0, the Danckwert's boundary

conditions result.

Bisschoff [103] generalized Wehner and Wilhelm's results for a reaction of
general order. Van Cauwenberghe [74] considered the unsteady state and
showed that the Danckwert's boundary conditions for the steady state are

only valid if no diffusion occurs in the fore- and after sections.
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Wissler [77] compared the one-dimensional axial dispersion model with the
plug flow model under laminar flow conditions. If Pepg becomes large,
the problem is transformed into an initial value problem (PFM). The

solution is truncated at s=1.

In 1983 Nauman [52] suggested a modification of the Danckwert's boundary

conditions. He used two tuning parameters k and A.

1:£-Qﬁ = w3 sz1 (39)
Pedes

and
g ; s=1+A (40)
ds

The gradient at the outlet can be adjusted until it corresponds with the
experimental results. The inlet parameter is changed until the model and

experimental results are best correlated.

We consider Nauman's approach of an ad hoc nature and it lacks careful

analysis of the model.

The objections to the Danckwert's boundary conditions are best summarized
by Wicke [72].
(a) Which dispersion coefficient must be used at the inlet?

(b) No distinction is made between packed- and unpacked inlets.
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1.4.3 Modification of Axial Dispersion Model

In the light of the objections rose by Wicke and the controversy around the
Danckwert's boundary conditions in general, we propose modifications of the

axial dispersion model in this section.

(a) Packed Inlet

The flow is fully established when it reaches the active zone. We
assume no change occurs in the dispersion when the active zone is

entered. A mass balance over the inlet gives

e, e(om) = ue(o*) - pyx T
dz dz

~DnX (41)

where z = Ls, L = length of reactor

It follows from the results of Wehner and Wilhelm that the flux is Cgu

and
D X +
Co = C(0*+) - M de(@D) (42)
uL ds
xD +
W(0+) = -.[-Tl-d—vi-(-g_)_ (43)
uL ds
Thus Pepg(inlet) = ul/xpp and this Peps differs from the Pegg

defined for the rest of the active zone, i.e. Pepg = UL/ Dag. This
result is also in accordance with Wicke's suggestion that the '"dis-
persion" coefficient at the inlet is not the same as the dispersion in

the reactor itself.
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(b) Unpacked Inlet

The flow is not established and the dispersion coefficient becomes

constant after bedlength AL, as shown in Figure 1.6.

D
Das "_l
XD 4-/
m
v S
AL
L

FIG. 1.6: Variation-in-Pispersion

A mass balance over the inlet gives the identical result as (43). The

mass balance in the reactor changes:

D(s) w' - w' + a(1-w)eéV/(1+V) =0 0 <s <1 (44)
ulL
(Das'xpm) AL
where + sl —— if s ¢ —
XDm AL ’ L
D(s) =
Das . if 138> f&

To summarize: if the inlet is packed Problem B is used but (9) is substi-
tuted by (43). If the inlet is unpacked both (7) and (9) are substituted
by (44) and (43) respectively.
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The outlet conditions are correct if no diffusion occurs in the after

section,

We constructed bifurcation diagrams for this modified model in Chapter 3,

Section 3.7, but in the rest of this work we used the unmodified model.

1.5 NUMERICAL METHODS

In this section we shall discuss various numerical methods for the solution
of the boundary value problems A and B as well as the construction of bi-
furcation diagrams. Sections 1.5.1 and 1.5.2 give a survey of known me-

thods to solve boundary value problems.

1.5.1 One-Dimensional Model.

(a) Finite Difference Methods

(1) Implicit and explicit schemes

Due to the high nonlinearity extremely fine meshes are required
to obtain good accuracy. In the literature very few authors used

these methods to solve the boundary value problem.

(ii) Green's Function and Numerical Approximation of the Integral

Convergence is guaranteed if:

Peps[max(F(w(s),v(s)))] < 1
0<w(s) <1
0<v(s)<B

Peps[max(BF(w(s),v(s)-yv(s))] < 1 [see 95 ]

0<w(s) <1
0<v(s)<B
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When conversion is low and the temperature is close to ambient, this method
gives reasonable results, but no convergence occurred in the case of high

conversions.

(iii) Shooting Methods

Shooting methods [106,98] were used to solve the boundary value
problem [60]. Outlet conditions (w(1),v(1)) are varied until the
inlet boundary conditions are satisfied. If forward integration
is used, the procedure becomes unstable [106]. The outlet values
are corrected after .every integration cycle (from s=1 to s=0)
using a first order Taylor expansion. For a non-stoichiometrical
system, the procedure is cumbersome, since N? equations must be

integrated for every N-unknowns.

(iv) General Parameter Mapping Method

This method [86,95] is a variation of the shooting method. It is

often used to construct bifurcation diagrams [42,45}.

(v) Method of False Transient

The model equations are written in the unsteady state form and
integrated until steady state is approached. Solving a parabolic
partial differential equation, the methods of Saul'yev [51] or
orthogonal collocation of the space variable with integration in

time, can be used [12,62].
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(b) Finite Elements

(i) Galerkin
The coefficients of the polynomial which approximates the
solution over an element are obtained by either minimizing the
residual over the whole element, or forcing it pointwise
orthogonal. In the Galerkin method, the residual is weighted by
the approximate over the whole interval., The integration of the
nonlinear terms can be handled either by quadrature or finite
difference approximations. It is specifically this limitation

which makes other finite element methods more attractive.

(ii) Orthogonal Collocation (0OC)

This method is by far the most popular [24,97,98] since it is

1 = Shooting Method
2 = Orthogonal Collocation
3 = Orthogonal Collocation Finite Elements
.10
.08 _
.06 -
.04 H
.02 -
.OO . T H i I | | }
0 2 4 .6 8 1.0

FIG. 1.7: Comparison Between Different Numerical Methods
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suitable for highly nonlinear equations and was used extensively
to solve the model equations [24,26,27,55,62,65]. For higher
accuracy, the interval [0,1] can be divided into elements and at
the nodes, the approximated function is smoothed (OCFE). If
Hermitian polynomials are used, these continuity conditions at
the nodes are satisfied automatically. Problem B was solved for
Pem = Pep = 5, & = 25, 8 = 0,5, vy = 5 and ¢ = 0.25, using:
1) a shooting method; 2) OC 3) OC on splines. The results are

shown in Figure 1.7.

We did not do a detail study to compare the three methods, but we

decided to use the OC and OCFE methods, due to their popularity.

1.5.2 Elliptic Partial Differential Equations (Two-dimensional model)

FIG. 1.8: Three-Dimensional Temperature Solution
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Finlayson [98] gives a thorough discussion of OC and OCFE to solve this
problem. In [83] they used the OC method to study the differences between
one and two-dimensional models. Feick and Quon [21] used the Crank-
Nicholson method to compare the one-dimensional, two-dimensional and hete-
rogeneous models. Froment [20] also used an implicit finite difference
method to compare theoretical and industrial values of radial effects. In

Figure 1.8 a temperature solution in two dimensions, using OC, is shown.

1.5.3 Construction of Bifurcation Diagrams

One way of looking at the problem of the number of solutions of either Pro-
blems A or B, is to construct an arc of solutions. More precisely, both
problems can be written in the following form:
F(u,0)=0

where F:BxR»B, for some Banach space B. By a smooth arc of solutions we
mean the range in B of the function : ¢>u(¢). If one can construct arcs
for all possible values of the parameter ¢, one will get a complete picture
of the number of solutions. However, we shall not attempt to give a formal
introduction to bifurcation theory and rather introduce the concept infor-
mally. In fact, we shall consider only the discretized versions of Pro-
blems A and B and we assume, as most authors do, that the results are valid
for the original problem. (In general the validity of the approach has not

yet been proved. See Section 3.9 for references.)

Let G(u,0) =0

be the discretized version of Problems A and B, where.
G:RMxRNxR+RNxRN, As long as Gu(u,¢) is non-zero, the arc through
(u,6) is uniquely defined. If Gu(u°,¢°) becomes zero, we have a bifurca-
tion point. In some cases (u0,¢0) marks the junction of two or more arcs

and we refer to such a situation as simple and multiple bifurcation respec-
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tively. (u0,¢0) can also be the point where two arcs merge smoothly,
referred to as a limit point. In the latter case GgR(G,) at (u%,6%).

To construct a bifurcation diagram numerically, the discretized problem (a
set of algebraic equations) is solved at every value of a parameter. The
Newton-type continuation procedure utilizes the Jacobi matrix in every
step. This method fails when a non-isolated solution is approached. One
can use any standard solution method to solve the discretized problem and
keep track of the Jacobi matrix, switching to a method which is specifical-

ly designed for bifurcation points when necessary.

The bifurcation behaviour of the discretized version of Problem B was stu-
died by several authors. Varma [60], used a shooting method. This method
fails at bifurcation points and it 1is not clear how he computed these
points. Hlavacek [42] used the general parameter mapping technique to con-
struct the bifurcation diagrams. Jensen [45] mentions an approach whereby

the determinant of the Jacobi matrix is extrapolated to zero.

Other authors studied integral equations in stead of the differential equa-
tions. Reddien [58] proposed a projection method to construct the bifurca-
tion diagrams. Atkinson [88] used collectively compact operator approxima-
tions to the integral operator. Simpson [59] computed the least eigenva-
lues of the Jacobi matrix and obtained an estimate of the bifurcation point

by extrapolation.
1.5.4 Our Results

In Chapter 3 we used the continuation method of Keller 961 to construct
bifurcation diagrams for Problem A, Problem B and for the modified one-

dimensional problem. We also describe the application of this method.
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We used the principle of Keller's method to develop a new method to con-
struct an arc of limit points for Problem B. No published results for the
non-adiabatic case could be found, to compare our results with. The method
in literature, which was used to construct the arcs, differs totally from

our method.

1.6 SUMMARY OF NEW RESULTS

In Section 1.4.3 we propose a modification of the one-dimensional model.
This model recognises the different elements of dispersion and will help to

clear the controversy around the Danckwert's boundary conditions.

In Chapter 2 we derive a sufficient condition for uniqueness, for the one-
dimensional model. Exploiting the characteristics of the reaction term, we
derive sharper upper bounds on ¢, to guarantee uniqueness. We also con-
struct upper and lower function bounds on w solutions and using this result
in conjunction with the uniqueness result, we construct a lower bound on ¢.
These results compare poorly with numerical values, but are the first of

their kind.

In Chapter 3 we used Keller's arclength method to construct bifurcation
diagrams for the one-dimensional, modified one-dimensional and two-dimen-
sional models. A new method to construct an arc of limit points is intro-

duced and results are reported.

In Chapter 4 we give an exact definition to parameter sensitivity. We use
the criterion of Dente and Collina [102] to construct parameter-sensitivity
diagrams and show that existing approaches in Iliterature are inadequate to

detect all parameter sensitive regions.
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CHAPTER TWO

RIGOROUS BOUNDS FOR UNIQUENESS

2.1 INTRODUCTION

As Emig [91] pointed out, most industrial reactors are operated under
conditions where the model has a unique solution. In the literature,
numerically determined bifurcation diagrams are mostly used to determine
sharp bounds for uniqueness. Apart from the shortcomings of numerical
methods like inherent errors and the validity of dicretization, bifurcation
points (or 1limit points) are only sufficient conditions for multiple
solutions. Since bifurcation 1is local, no knowledge of independent
solution branches will be gained from a bifurcation diagram. Hence the
importance of analytical bounds is obvious. The effect of the Damkdhler
number on the uniqueness of the one-dimensional model attracted much
attention in the past. This is expected since ¢ is an operating variable
(see Section 1.2.2). In this chapter we shall also concentrate on this

parameter.

For the non-adiabatic reactor model (y>0), analytical results are limited
(see Section 1.3.2). We shall derive a much improved upper bound ¢,

and, for the first time, a lower bound ¢*, using new methods.

In Section 2.2 we derive a sufficient condition for uniqueness. In Section
2.3 we show that for any given parameters B, & and vy, there exists a
o, In Section 2.4 we improve the upper bound on v(s) for the first
order reaction. In Section 2.5 we compare our results with Varma's and for
this example, our bounds are ten to thirty times better. This is a

significant improvement.
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In Section 2.6 we derive upper and lower function bounds for w. At high
values of ¢ these solutions converge at s=1 and can prove valuable in error
analysis and convergence of numerical approximations. In the last section
we use this result to prove the existence of a ¢*. These bounds do not
compare well with numerical results, but we claim it is the first result of

it's kind.
An interesting fact which emerges from our approach is that if the specific
properties of the functions in the differential equations are exploited,

better results are achieved than using general or standard approaches.

2.2 GENERAL UNIQUENESS RESULT

2.2.1 Preliminaries

Let (wy(s),vi(s)) and (wo(s),va2(s)) denote two solutions of Problem B.
Define w(s) = wy(s) - wy(s) and

v(s) = va(s) - vi(s).

From the differential form of the model equations and the mean-value

theorem, see Apostol [111, p. 254]:

w"(s)-Pepsw' (8)+6[3, F(W(s),v(s))v(s)+a,f(W(s),v(s))w(s)] = 0 (1)
v'(s)-Pepgv' (s)+Bo[d, f(W(s),v(s))v(s)+a,f(w(s),v(s))uw(s)]-yv(s) =0 (2)
w'(0) = Pepgw(0) (3)
w'(l) =0 (4)
v'(0) = Pepgv(0) (5)
v'(l) =0 (6)
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where w(s) and v(s) in (1)-(2) result from the mean-value theorem. For
these functions the only information we have are the facts that:
w(s)e[wi(s),wa(s)] and V(s)E[vi(s),va(s)]. It is convenient to introduce
the following notation:

a(s) = ¢d,F(W(s),v(s))

o(s) = -60,f(w(s),v(s))
L(s) = a(s)v(s)-p(s)w(s)
Z(s) = BL(s)-vv(s)

Note that o and p are strictly positive functions for any n-th order

reaction.

2.2.2 Behaviour of the Difference Functions

In this section we shall prove that the following condition is sufficient
for uniqueness. Throughout this section, it will be assumed that w and v

satisfy the boundary conditions (4) and (6).

Condition C: For any s€[0,1], Z(s)<0 whenever w(s)>0 and v(s)>0 and Z(s)>0

whenever w(s)<0 and v(s)<0.

Proposition 1:

Suppose Condition C holds for the differential operator and at an sg€[0,1]

the following hold:
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i) w(sg) >0

1"
o

ii) w'(sp)

n
o

iii) w"(sg)
iv) v(sg) > O

v) v'(sg)

v
o

then there is s)€(sg,1) such that:
i*) w(s;) <O

ii*) w'(s1) = O

iii*) w"(s1) » 0O

iv¥) v(s1) <O

v¥) v'(s1) < O
Proof

We shall make use of a sketch to elucidate the arguments.

FIG. 2.1
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Let s* be the first point where v'(s) = 0, s* > sg.
Then v"(s*) < 0, since v'(s) > 0 for s€(sg,s*).
This implies that w(s*) < 0, because w(s*) > 0 implies Z(s*) < 0 and
v'(s*)+Z(s*) = 0 is impossible.
We prove next that w'(s*)<0.
Suppose w'(s*) > 0. Since w(sg) » 0 and w(s*) < 0, there exists an s,€
(sg>s*], such that:

w'(s2) = 0 and w(s2) < 0 and w"(sy) » O.
Since w"(sy) + L(s,) = 0, it follows that a(sy)v(sz)-p(s2)w(sy) < 0. Hence
v(sp) < O which is impossible on the interval (sg,s*]. This contradicts

the assumption, hence w'(s*) < 0.

Let s3 be the first zero of w'(s), s3 > s*. Since w(s*)<0 and w'(s*)<0,
w(s3)<0 and w"(s3)>0. This proves i*-iii*.
It also follows that a(s3)v(s3)-p(s3)w(s3)<0, which implies v(s3)<0. This

proves iv¥*.

We next prove that v'(s3)<O0.
Suppose v'(s3) > O. Since v(s*) > 0 and v(s3) < 0, there exists an
s**g(s*,s3] such that v'(s**) = 0, v(s**) < 0 and v"(s**) > 0. Therefore
vi'(s**) + Z(s**) = 0. This implies Z(s**) < 0 which is impossible. Hence
vi(s3) < 0.

Q.e.d.

In future we shall refer to sp as a P-point and s; as an N-point.
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Proposition 2

Suppose Condition C holds and sg denotes an N-point, then there exists a

P-point s,€(sg,1).
Proof
Let t(s) = -w(s) and n(s) = -v(s), then the proof is identical to the proof

of Proposition 1.

2.2.3 Sufficient Condition for Uniqueness

Lemma 1
If Condition C holds for the differential operator, then Problem B has a

unique solution.

Proof

Qur approach will be to consider a number of possibilities and in each case
show that the boundary value problem reduces to an initial value problem
for the system of ordinary differential equations. (If for soms s,
wi(s) = wa(s), vi(s) = va(s), wi'(s) = wz'(s) and vi'(s) = va'(s), it is

well-known that w; = wp and v} = vy).

The first possibility is w(0) = v(0) = 0. Then it follows from the bounda-

ry conditions that w'(0) = v'(0) 0. Therefore we only have to consider

the case either w(0) # 0 or v(0) # 0.

We can assume without loss of generality that »(0)>0 if w;(0) # wy(0) and

w"(0)>0 if wy(0) = wy(0).
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Note that if w"(0) = 0 and w(0) = 0, it follows from the differential equa-
tions that v(0) = 0. This case was already considered in the first part of

the proof.

We shall prove that their exists a s;E(0,1) such that s; is a P-point.
First, let w(0)>0. From the boundary condition, w'(0)>0. Let s; denote
the first point where w'(s;) = 0. At sy, w"(s;)<0, therefore L(s;)>0,
which implies v(s;)>0. We shall now prove that v'(s;)>0. Suppose
v'(s1)<0, then v(s) must have reached a maximum at s*<s;. At s*, Z(s*)>0

implies w(s*)<0, which is a contradiction. Hence s; is a P-point.

Secondly, v(0) # 0 if w(0) = 0. From (3), w'(0) = 0. Let s; denote the
first point where w'(s;) = 0, w(s;)>0. Using exactly the same arguments as

in the first part, one can prove that s; is a P-point.

Consider the set of P-points on the interval [0,1]. Let p denote the sup
of this set. w' is a continuous function and since a P-point can be found
arbitrarily close to p, it follows that w'(p) = 0. It is obvious from Pro-
positions 1 and 2 that no N-point exists at sg>p. It also follows from
these propositions that an N-point exists arbitrarily close to p. Between
every P-point and N-point v'(s) = 0, thus v' = 0 can be chosen arbitrarily

close to p. Thus v'(p) = 0 since v' is a continuous function.

We shall next prove that w(p) = v(p) = 0. Suppose w(p) = k>0. Then there
is a neighbourhood of p where w(s)> k. But in this neighbourhood there
must be an N-point where w(s)<0. By the same argument w(p)<0 is not possi-

ble. Hence w(p) = O.

From Propositions 1 and 2 it follows that v has positive and negative

values arbitrarily close to p. As for w it follows that v(p) = O.
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Since w(p) = v(p) = w'(p) = v'(p) = 0, the uniqueness theorem for the

initial value problem implies uniqueness. Q.e.d.

2.3 UPPER BOUNDS FOR UNIQUENESS

In this section we shall prove the existence of an upper bound ¢« (See
Section 1.3.2) and derive an estimate for it. It is important to note that

g(w) = (1-w)" as used in Problem B is a decreasing function.

Lemma 2

If there exists a ¢; such that vp,y is an upper bound of v for all ¢<¢;,

then there exists a ¢ such that Condition C holds for all ¢<o¢«-

Proof

Let s denote a point where wy(s)>wi(s) and v,(s)>vy(s).

Then
e OV(s)/(L+v(s))
Z(s)<pog(wa(s)) ——— « v(s) -yv(s)
(1+v(s))
< v(s) (Eiégiigil/(1+v(s)z Y)
(1+v(s))?

Consider the function B defined by

v/ (1 Sv/(1+
B(v) = — A jv)then as(v) . _e ®f Eg-Z-Zv]
(1+v)?2 dv (1+v)"

If &>2(1+v), the function is increasing. Choose ¢, such that:
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y (Ltvax ) Ze "0 max/ (1Vmax)

6, = min[e), (7)
BS
Suppose 6<2, then max B(v) = B(0) and one chooses ¢, such that:
6, = v/BS. (8)
If 2<6<2(1+v), a maximum exists at v = 8/2-1 and one can choose
- x6 e7(82) (9)

O
48

If s denotes a point where wy(s)<wi(s) and v,(s)<vy(s), the proof is

identical.

Hence, for any set of parameters B, 8 and y, an upper bound ¢, exists.

Q.e.d.

Remark

For large 8, no accurate estimate can be made for ox

2.4 A NEW UPPER BOUND ON v(s)

It is obvious from the results in the last section that sharper "global"
upper bounds on v will considerably improve the upper bound for unique-
ness. In this section we shall derive a new upper bound on v for a first

order reaction without solving the differential equation.

2.4.1 Preliminaries

In integral form, the model equations can be written as:

w(s) = [16ne(s,t)o(l-w(t))edv(t)/(1v(t))ge (10)
0
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v(s) = [tepg(s,t)[Bo(l-w(t))edv(t)/(1+v(t)) _yy(t)]dt (11)
0
where Gi(s,t) denotes the Green's function as defined in Section 1.3.

The Peng and Pepo numbers usually differ and we shall first consider

the case Pepg < Pepg

v(s) < [repe(sst)(Bo(l-w(t))edv(t)/(1+v(t)))qt
0

< [Yeps(s,t) (po(l-w(t))edv(t)/(1+v(t)))qt

0
= Bw(s). (12)
If Peps > Pepgs one can find a P > 0, such that
B (s,t)P > Gro(s,t)  (e.g. P = (1/Le)e °ms)
(13)

and v(s) < BPw(s)

An upper bound on v(s) in terms of w(s) can be found such that ¢v(s) <

w(s), where

1/8 , Le >1
(b:
1/(Pg) , Le <1

Definition: Hy : Hg(v) = ¢(l-¢v)e5V/(1+V)
It follows that Hyv(s) > ¢(1-w(s))e5v(5)/(1+v(s)) for all solutions of

(10)-(11).
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We shall show that the function
J¢(V) = BH¢(V) - yv
can be used to compute upper bounds for v without solving the boundary

value problem.
2.4.2 Upper Bound

Lemma 3

If vg has the property that J¢(u)<0 for all wu»>vp then vp is an

upper bound for the temperature solution of Problem B.
Proof

We shall consider two possibilities: Either v is an increasing function or

v has at least one local maximum in (0,1). Note that v'(0)>O0.

In the first case v"(1)<0. Since v'(l) = 0, it follows that
Bof(w(1l),v(1)) - yv(1)>0.

Since
Bof (W(1),v(1)) - yv(1)<J4(v(l)),

it follows from the properties of J¢ that v(1)<vp.
In the second case, we can use the same argument at every local maximum of

v. Consequently max (v)<vR-

Q.e.d.
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In Figure 2.2 three possible graphs for J¢ are shown for various ¢. Note

that ¢1>¢, implies J¢1>J¢2.

FIG. 2.2: JQ(V)

Proposition 3

If &>4¢+4 then there exists an unique ¢ = ¢R such that the local

maximum of J¢ = (.
R
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Proof

ddg(v) =‘§¢5(1-¢v)e5v/(l+v) -y - opoedV/ (1)

dv (1+v)2
d2d, (v) sv/(1+v)
i AN - 968 -28- -BULE-28-
2 (o) [B8-28-208+v(-845-28-28¢) ]

The only point where the second derivative can change sign is at

since 8>2+2¢.

For v<vg, the second derivative is strictly positive and for v>vg the
second derivative is strictly negative. Note that vy<l/¢. It follows that
Jp can have at most one maximum for some v>vg. Our aim is now to find a

v* and o5 such that J¢R(v*) = 0 and J'¢R(v*) = 0.

Let Bog(Ll-gv*)edV*/1Hv*_yyx < g (14)
B¢R6._ (1-¢v*)eév*/(1+v*)'5¢¢Reév*/(l+v*)‘Y -0 (15)
(Lv*)*

Substituting (14) in (15) and rearranging,

ve2(-1-¢8) + v*(6-2)-1 = 0 (16)
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This equation can be solved for &>4¢+4 and the roots are

L, = (5-2)+/52-45(1+¢)
’ 2(1+¢5) )

From previous arguments it follows that the larger root vo* corresponds to

a local maximum. Substituting this root into (14) we find that

=8vo*/(1+vy*)
op = 112 (17)
B(1-¢vo*)
Q.e.d.
Define vgp as the smallest zero of J¢R(V) (see Figure 2.3). It

follows from Lemma 3 and the properties of J¢ that vp is an upper bound

for the temperature solution v for all 6<p-

J¢R

v v*

N

FIG. 2.3: J¢R(v)
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2.5 COMPARISON OF UPPER BOUNDS ON 4

Varma [60] derived analytical estimates for ¢« (See Section 1.3.2.2) and
compared them with values obtained from bifurcation diagrams. In this
section we shall compare our analytical results with those of Varma for the
following set of parameters:
Peps = Pepg = 5

B = 0,5

& =25
We computed ¢p for different y-values using (16) and (17). Then vg,
the smallest positive root of J¢R is determined numerically. This

upper bound for v is now used in (7) to determine ¢=*-.

Table 2.1: Comparison of Upper Bounds

Estimates for o=

Y Varma's Results Our Results

Numerical jAnalytical

5 0,05388 0,00109 0,0156
10 0,1244 0,001109 0,0312
12,51 0,17582 0,001198 0,039
15 0,2233 0,001282 0,0468

2.6 FUNCTION UPPER AND LOWER BOUNDS

In this section we shall construct functions which are upper and lower
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bounds for the conversion solution of Problem B for the case of a first
order reaction. We require these bounds to find a lower bound ¢*, such
that Condition C holds for all ¢>6¢*.

Notation

We shall use g for the solution of

Pepsd' *+ ¢(1-g) = 0

[{e]
]

= Peps9 5 $=0

Vel
I

g' =20 ; s=1
and h for the solution of

h' - Pench' + o(1-h)e®8/(1%8) = o

h' = Pemsh ; =0

h' =0 ; s=1

We shall prove that g<w<h.

Proposition 4

If (w,v) is a solution of Problem B, g<w.

Proof

Let g(s)>w(s), then it follows from the integral representations that
j;Gms(s,t)¢(l-g(t))dt:g(s)>w(s)=f;Gms(s,t)¢(1-w(t))eéV(t)/(1+V(t)))dt

Hence lemS(s,t)¢(w(t)-g(t))dt>0, which implies g(t)<w(t) for some t.
0
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Next we shall prove that g(1)<w(1). Suppose g(1)>w(1), then the solutions
must intersect at s<1 and g'(s1)>w'(s])
For 1»s3s),

g(s) > w(s),

1-g(s) < 1-w(s) and thus

1-g(s) < (1-w(s))edV(s)/(1+v(s)),

Therefore

Y (1=g(s))ds < [* (1-w(s))ed¥(8)/(1+v(8))gg,
Sl sl

Hence

flepems(sl't)¢(1—g(t))dt <
s]

jlepems(sl—t)¢(1_w(t))e6V(t)/(1+V(t))dt and g'(Sl) < W'(Sl)-
s

This is a contradiction, hence g(1)<w(1).

If g(1)=w(1), then g"(1)>w"(1). Thus g(s)<w(s) in (6,1) for some &.

Obviously this is also the case when g(1)<w(1).

We shall now prove that it is impossible for g and w to intersect in (0,1).
Suppose s; is a point of intersection. Either s; is a unique intersection
point on (0,1) or is preceded by s1€(0,s2) where g(s1)=w(si) and

g' (s Ow'(sy).

Suppose there exists a unique sy €(0,1) such that g(sp)=w(sz),
g'(s2)<w'(sy). For O<s<s;

g(s)>w(s)

(1-g(s))<(1-w(s))edV(s)/(1+v(s))
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Hence

So So
[, o0-g(t))de<] 0(1-w(t))edV(t)/(1+v(t)) gy
0

At s;,9'(s,)<w'(sj), therefore g(sj;)<w(sj,). But this is a contradiction.

The remaining possibility is that there exist an s, €(0,1) where
g(sy)=w(sy), g'(s2)<w'(s2) and s1€(0,s2) where g(s1)=w(s1), g'(s1)>w'(s])

and s)>s).
At s;, g'(s;)>w'(sy), and 1-g(s)<(1-w(s))edv(s)/(1+v(s)) ¢or g <s<s,.

Hence

g'(sl)zflepems(sl_t) ¢>(1-g(t))dt+f82epems(sl-t)¢(1—g(t))dt
S2 51

¢ flePems(sl-t)¢(1_w(t))eév(t)/(1+V(t))dt
s

. f52ePemS(Sl—t)¢(1_w(t)eév(t)/(1+v(t))dt
s1

Thus g'(sy) < w'(s}), which is a contradiction.

Q.e.d.

Proposition 5

If (w,v) is a solution of Problem B then h>w.

Proof

The arguments are exactly the same as in the proof of Proposition 4.
Q.e.d.
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It is well-known that the functions g and h are given by:

My-M1+Ms Mos
ms€ Pemse (18)

M H H

Pe

h(s),g(s) = 1+Mp

Pe +/Pe“+4¢' Pe -VPe2+4¢'

where M; = —=2 19 R VP L L
2 2

e(Mz-Ml)

1

¢ for g

. eS8/ (1+B) for h

2.7 A NEW LOWER BOUND o*

In this section we shall derive a new lower bound on ¢ for the case of a

first order reaction.

In Lemma 4 we assume that v(s)<Buw(s). This assumption is strongly

supported by numerical results, but we failed to prove it yet.

Lemma 4

Assume that v(s)<Bw(s). Then there exists a ¢* such that Condition C holds

for all ¢>d*.
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Proof

sv(s)/(1 6v(s)
2(s)<po(Lu(s)) [ 2N ) pee
T ())

But from Proposition 4, it follows that g(s)<w(s), for s [0,1]. Hence
Z(s)< v(s)[Bo6(1-g(s))edv(s)/(1+v(s)) y_gebv(s)/(1+v(s))]

< v(s)[Bo8(1-g(0))edv(s)/(1+v(s)) _y_gebv(s)/(1+v(s))]

Using (18) one can choose ¢* such that
(866(1-g(0))-0)edV(s)/(1*v(s))_ycp
for all ¢>¢* and v(s)€[0,8].

Q.e.d.

In Table 2.2 we compare our analytical bound with the numerical results of

Varma [60] for an identical set of parameters as was used in Table 2.1.

Table 2.2: Comparison of Lower Bounds

Y Numerical Our Result
5 0,0919 3583,5
10 0,138 3573,0
12,5 0,18138 3567,7
15 0,2258 3563,0

Although these results compare poorly, they are the first of their kind.
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CHAPTER THREE

BIFURCATION

3.1 INTRODUCTION

Numerical procedures are used to study the bifurcation behaviour of the
reactor models. (See Section 1.5.3). The existence of multiple solutions
of boundary value problems is well-known. In Section 3.2 some numerical
methods to determine bifurcation points and bifurcation in finite
dimensional space are discussed. In Section 3.3 our numerical approach is
outlined. In Section 3.4 we discuss the results for the one-dimensional
model (Problem B) and present the results. In Section 3.5 a new approach
for the construction of arcs of bifurcation points (parameter-plane
diagrams) is discussed and 1in the following section some results are

shown. This method is new since it uses a totally different approach.

In Section 3.7 the bifurcation behaviour of the variable dispersion model
is studied. The formulation of this model is also new, although a change
in the boundary conditions along these lines were formerly suggested. In
Section 3.8 we look at the two-dimensional model. No literature on the
bifurcation behaviour of this model could be found. Regions of one, two
and three solutions were found but no higher multiplicity than three. For
certain choices of the parameters no solution was found. Due to the com-
plexity of the problem we could link this problem to neither the numerical

procedure nor the non-existence of a solution.
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3.2 BIFURCATION IN FINITE DIMENSIONAL SPACE

We shall now discuss methods to construct arcs of solutions (as a function
of a parameter) for the discretized problem. Consider the discretized ver-
sion of a boundary value problem, parametrized by ¢.

G(u(e),0) = 0, (1)

where u = (w,v) is the solution of (1).

Then (u,¢) is called a regular solution if Gu(u,¢) is nonsingular, other-
wise (u,¢) is a bifurcation point. (u,6) is a normal limit point if
Gy(u,¢) is singular and

(a) dim N(G,) = codim R(G,) = 1. (b) Gy&R(Gy)

At a limit point two solution branches "meet smoothly". Jensen [45] stated
without proof that Problem B only portrays limit point bifurcation and in

the rest of this chapter we assume Gd¢R(Gu) at every bifurcation point.

We shall now explain Keller's method. It is a method used to trace out
solution arcs, by varying a parameter of the problem. This method does not
encounter any difficulties at limit points and bifurcation points, although
this is often the case for other methods. (See Section 1.5.3). A new
independent parameter s is introduced.

G(u(s),s(s)) = O. (2)
An additional equation is now required. Let

No(s) = 010(s) 12+ (1-8)]é(s)|?-1 = 0 (3)
where 6 is an arbitrary constant 0<6<l. The initial value for s is also

arbitrary. (s is a form of arclength). Rewriting (2) and (3) we get

P(u(s).0(s).s) - G(u(s),e(s)) o (@)
Ng(u(s),s)
If the derivative u(s) is not known at s, an approximation of (3) is:
N3(s) = e"U(S)-U(So)"(J(So))+(1-9)|¢(S)—¢(so)|($(so))-ds = 0. (5)
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If x = (u,$), the Frechét derivative of P as a function of x only is
represented by the Jacobi matrix.
G G
P = | Y 0 (6)
N3, N3,

We shall need the following result.

LEMMA (Keller)

Let A be a linear operator A: R™xR™ » RxRV.

(a) If G, is nonsingular then A is nonsingular iff:

1. D - C*G, 'Gy is nonsingular.

(b) If G, is singular and dim N(G,) = codim R(G,) = v

then A is nonsingular iff:

n

<
i
o

2. RGN RG,) =

4. N(Gy) N NCH)

1. dim R(Gy)

1]

o
1]
o

3. dim R(C™)

(c) If G, is singular and dim N(GU) > v then A is singular.

See Keller [96, p. 363].

Note: In the case of simple bifurcation the conditions in (b) can be sta-
ted as: G>\¢R(Gu) and C*¢R(Gu*), whére GU* is the dual ele-

ment of Gg.
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Assuming
G,i*Gyd = 0
and G6¢R(Gu)’ one concludes that & = 0 and hence uéEN(G,).
Since
52> 0
it follows that 4Tu # O and hence GT¢R(GUT).

o+

It follows from the Lemma that P, is nonsingular. Therefore
a continuation procedure, using Py will exhibit no problems at the limit

points.

3.3 NUMERICAL PROCEDURES

We shall give a brief explanation of the method of orthogonal collocation,
since it forms the basis for most of the numerical work in the following
sections. (See Section 1.5.1 for references). Orthogonal collocation is a
finite element used for the numerical solution of differential equations.
The solution is approximated by a polynomial. In certain points on the
interval [0,1], called the collocation points, the polynomial is forced to
satisfy the differential equation exactly. These conditions supply the

necessary equations to solve for the coefficients of the polynomial.

Let the function y(x) be approximated in NCOL points:
NCOL

y(x3) wn(xq) = z C5x3d, i=1,2, ... NCOL.
J:
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Differentiating with respect to x gives:
NCOL

wN'(x) = & Cyixd-l
j=0

Or in matrix form,

Y = XC
and

Yto=x'c
But

C = x-ty,
thus

Y'o= x'x-ly,

Let A = X'X™1,
then one can approximate the first derivative with a linear combination of
the function values at NCOL-points

Y' = AY.

Following the same approach, one can derive an approximation of the second
derivative in the form
Y* = BY

where B is also a square matrix.

Let Aij and Bij denote the elements of A and B respectively. Using
Villadsen's notation [94] for orthogonal collocation, the discretized ver-

sion of Problem B for a first order reaction (and Le=1) can be written as:
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NCOL
z Aljuj - Peu; =0 (7)
j=1
NCOL NCOL
BijWj-Pe £ Ajjwite(l-wyi)exp(svyi/(1+vy)) = 0 (8)
j=1 j=1
NCOL NCOL
z Bijvj-Pe b Aijvj+ﬁ¢(1—wi)exp(évi/(1+vi))_Yvi =0 (9)
j:']. j:l
NCOL
I, fncongts = 0 (10)
j=1
NCOL
2 ANcoL-1,545 7 PAncoLY (1)
J:
8]u(s)-u(so)|us(so)+(1-0)|6(s)-0(s0)|os(s0)-ds=0 (12)

The method of Powell [92] was used to solve the resulting system of
nonlinear algebraic equations. To compute us the system of equations
(8)-(12) was differentiated with respect to s and an additional system was

solved at each step of s.

NCOL )  du ]
X Aij(usj) - Pe(usy) =0  (us = HE) (13)
j=1
NCOL NCOL 06(1-ws) s _
T Bijwsj - Pe ¥y Ai 1.wsj + ___._2.]_ 85V1/(1+V])vsi (14)
j=1 j=1 ° (1+v;)
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NCOL NCOL .
Cyg. $B00(1wi) BV /14v;

£ B;ivs: - Pex A -
g1 g Y ()

(15)

Svi/l+y e<‘3v1-/1+v1-cbs - 0

-yvsj-goe ws;+B(1-w;)

NCOL
T AncoL,jusj = O (16)
J:

NCOL NCOL
L ANCOL-1,3YSj = = AncoL,jYsj (17)
j=1 j=1

e(us(s)us(s)T)+(1-e)¢s(s)2-1 = 0, (18)
(@ )
ds’ ds

where us

bs - 88

ds

We can summarize the procedure in the form of an algorithm.

1. Solve (2) for a known value of ¢, using any standard procedure like a
shooting method, imbedding techniques etc. [95].

2. Solve (13)-(18) to obtain us(sgy) and ¢s(sq)-

3. Increment s.

4. Solve (7)-(12) to obtain u(s) and ¢(s)-.

5. Termination? If not return to step 2.
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3.4 BIFURCATION DIAGRAMS OF PROBLEM B

Varma [60] constructed bifurcation diagrams using a shooting method, the
way he computed the 1limit points is not clear from his article. His re-
sults appear to be identical to those of Figure 3.1 and Figure 3.2. For
the adiabatic reactor (y=0), a maximum of three solutions exist for ¢€E

(¢*,¢*) and only two limit points, at ¢% and o respectively.

Luss [7] proved that multiplie solution profiles do not intersect when y = 0
and Le = 1. This simplifies the representation of a bifurcation diagram
since an one-to-one relation exists between the function u and it's func-
tion values. Figure 3.1 is a true bifurcation diagram. In the non-adiaba-
tic case numerical examples exist where the temperature and conversion pro-
files intersect [60]. A function value can no longer be uniquely assigned
to a value of the function and the representation of the bifurcation beha-
viour is no longer an obvious matter. A possible way to overcome this pro-
blem is to construct diagrams for both temperature and conversion. If both
profiles have intersections, it cannot be at s = 1 or s = 0. This is ob-
vious from the uniqueness theorem for the initial value problem of ordi-

nary differential equations.

We constructed the bifurcation diagrams for Problem B using the same set of
parameters as in [60] and [93]. Our results (see Figure 3.1 and Figure
3.2) compare favourably. An orthogonal collocation method on splines was
used with sixteen collocation points in total. The formulation differs
slightly from (7)-(12), see [98]. A set of 33 equations was solved simulta-
neously at each step to give x(s) and the same number for xs(s). When
fewer points were used an additional wiggle occurred in the bifurcation

diagram, see Figure 3.3
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0,4 }

FIG. 3.1: Bifurcation Diagram of the Adiabatic Reactor

The program for the construction of these bifurcation diagrams is listed in
Appendix A. This program is very versatile and the aspects of parametric
sensitivity (see Chapter 4), stability and multiplicity can be examined at
the same time. It can be very useful to engineers in the design stage of a

reactor.
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FIG. 3.2: Bifurcation Diagram of the Nonadiabatic Reactor Using 16
Collocation Points
¢

v(1l)

FIG. 3.3: Bifurcation Diagram of the Nonadiabatic Reactor Using 13

Collocation Points
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3.5 CONSTRUCTION OF AN ARC OF LIMIT POINTS

Jensen [45] solved the adiabatic one-dimensional problem, constructing a
bifurcation diagram at every Pe-value. Values of ¢* (or ¢x) and Pe for
every diagram can be used to construct a diagram of ¢ versus Pe which marks
the transition from one to three solutions. These arcs meet in a point

called the trifurcation point [42].

This process can be repeated for the non-adiabatic reactor but it becomes
very cumbersome to construct the parameter planes. The only attempt to do
it for this reactor, was found in [42], but it was for the Frank-Kamenet-
skii type of temperature dependence [48]. It is also not permissible to
construct the parameter planes solely from the temperature bifurcation

diagrams for reasons already mentioned.

Using the same arguments as Keller [96], one can use Pe as a stepping
parameter to trace an arc of limit points. In fact, any parameter can be
used as independent variable, with any other as the dependent one to

construct such a parameter plane. The procedure is as follows:

Instead of an arc-length, we set the determinant of the Jacobi matrix equal

to zero. Let M(u(Pe),o(Pe),Pe) = detG,(u(Pe),o(Pe),Pe)
G(u(Pe),d(Pe),Pe)

P(u(Pe),4(Pe),Pe) = =0 (19)
M(u(Pe),d(Pe),Pe)
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Since u is a polynomial approximation over splines it is not easy to get an
explicit expression for the determinant of the non-symmetric Jacobi matrix.

Since we assume that N(G,) = 1 there exists a ZERMR" such that
Gy(us0)eZ = 0. Furthermore, Z can be normalized: 1Z1 = 1 or 7, = 1.
Since Z s non-zero, Gy(u,e) is singular. (See [85] for more details.)
We thus solve the following.

G(u(Pe),6(Pe),Pe)
(20)

il
(@)

P(u(Pe),o(Pe),Pe) = |G,(u(Pe),o(Pe),Pe).Z
Z-1
Using Pe as stepping parameter we initiate the procedure at a known limit
point (using results from the bifurcation diagram). Since there exist more
than one limit point at each Pe-number, the arc of lower or upper limit
points in the case of the adiabatic reactor can be computed by either
starting of with ¢« or ¢* respectively.
The procedure can be summarized in the form of an algorithm.
1. Compute the bifurcation diagram for the initial value of the
independent parameter.
2. Supply an initial guess for u at a limit point.
3. Solve (20).
4. Increase Pe.
5. Termination of the arc? If not go to step 3.

6. Have all the limit point arcs been considered? If not, go to step 2.
3.6 RESULTS

To check the accuracy of this approach, a parameter plane was constructed
for the same choice of parameters as Jensen [45], and Hlavacek [42]. The

parameter plane in Figure 3.4 compares very well with their results.
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FIG. 3.4: Parameter Plane of an Adiabatic Reactor

No published results for the non-adiabatic reactor could be found. In

Figure 3.5 a Pe versus ¢ diagram is shown.

(010) 1

Pe

FIG. 3.5: Parameter Plane of a Non-Adiabatic Reactor

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021



&
&

s‘ UNIVERSITEIT VAN PRETORIA

A 4

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

-68-

The numerical procedure broke down for Pe > 12 and for Pe < 3. The reason
for the latter is probably the approach of a singularly perturbed problem.
In the former case it 1is surmised that a true bifurcation point is
approached. Possibly one can overcome by defining an arc-length for this

problem and use the Newton chord method to jump over the singular points.

In Figure 3.6 the dimensionless heat transfer to the surroundings (y) was

varied independently, and ¢ was the dependent parameter.

009

< te

003:

007

006t

005

FIG. 3.6: Parameter Plane of y vs. ¢
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For certain values of y we compared our results with those of Varma [60].
Note that ¢** and ¢xx denote the transition from five to three and three
to five solutions respectively (See Figure 3.2).

Appendix B is a listing of a program to compute an arc of limit points.

Table 3.1
v=0 ~ v=5 v=10
¢, (Varma) 0,0708 0,26;; 0,62218
¢*(Our_;;sult) 0,0700 0,2702 0,62207
o*(Varma) O,ZQ;;;6 0,45969 | 0,693
— B —
¢*(Our Result) 0,2800 0,46065 | 0,683
Table 3.2 B |
Y=5 y=10
¢**(Var;;;‘_ 0, 301368 0,659677
¢,,(Our Result)} 0,295312 0,65728-~
o**(Varma) 0,322784 0,681204
¢**(Our Result)| 0,31556 0,681
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3.7 ONE-DIMENSIONAL MODEL WITH VARIABLE DISPERSION

In Section 1.4 the issue of boundary conditions was discussed. Dispersion
is an input variable, since the depth of catalyst bed over which the
dispersion still increases and the initial diffusion of the feedstream will
differ for different systems. For numerical purposes we defined a
dispersion function with a radical change from inlet to final steady-state
dispersion and another one with a slight change. In both cases the
bed-length of unsteady state dispersion was 20%. This will be unrealistic

in a large number of cases, but the choice is only illustrative.

The dispersion term was defined as: (u = linear velocity)

W + 8(Dag - Wp)/0.2 0<s<0.2
D(s) =
Das 0.2<s<1
The orthogonal collocation method was suitable to solve this system of
equations with the additional complication of a nonlinear Laplacian. In
Figure 3.7 we used xDp = 0,5 and g = 0,6 with uL = 3. (Appropriate

units for uL and Dy, Dag Must be used to render Pens dimensionless).
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FIG. 3.7: Bifurcation Diagram for Slight Dispersion Variation

The diagram is similar to Figure 3.2 and for slight variations of the
dispersion the behaviour is similar to the one-dimensional model. If
xDp = 0,1 and Dy = 0,6 (uL=3) we find totally different bifurcation
behaviour. See Figure 3.8. The procedure broke down for (v(1),a) =
(0.36297;0.00615). The multiplicity changes from one to two at a = 0,00615
and at o = 0.047934 four solutions exist until « = 0.0496717. Ffor a >

0.088 no solutions could be found.
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FIG. 3.8: Bifurcation Diagram for Drastic Dispersion Variation

The diagram is similar to the slight and non-variable dispersion case over
the first part, i.e. (v(1);a) = (0;0) - (0,3388;0,048). The one-di-
mensional and the variable dispersion model will both correspond well with
experimental results over this first part if the experiment approximates
one-dimensional behaviour. For higher conversicns in the experimental
results, slight variations of the dispersion will also give good correspon-
dence between the one-dimensional, the variational model and the experimen-

tal results. Deviations between the models and the experimental
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results will occur for drastic dispersion variations. Unfortunately
experimental results are limited and the true dispersion variation will not

be known.

3.8 BIFURCATION-BEHAVIOUR OF THE TWO=DIMENSIGNAL MGDEL

The model equations were approximated in a way analogqous to the
one-dimensional equations. A double collocation procedure was used. The
inlet conditions were assumed to be of the Danckwert-type. Actually a
Bessel function describes the inlet axial condition correctly [83], but the
approximate:
du/ds = Pe u

was used (u = (w,v)). The analysis of this problem will be very difficult
and proofs of existence were not found in the literature. No published

results on the numerical study of bifurcation were found either.

The orthogonal collocation method, was used. (See Appendix D). At higher
values of Damkéhler (Damk&hler can be seen as an attenuation factor of the
nonlinear term), the procedure fails to compute the steep conversion
profiles accurately. We used symmetric polynomials in the radial direction
which satisfied the boundary condition at r = 0 automatically. Three

points in the radial and five points in the axial direction were used.

In Figure 3.9 only one solution was found over the range of Damkdhler
numbers. In Figure 3.10 the multiplicity changes from one to two but no
higher multiplicity was found. In Figure 3.11 a maximum of three solutions

was found.
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This is in contrast with the one-dimensional model which has more complex
bifurcation behaviour. At this stage we cannot attribute the simple
bifurcation behaviour of the two-dimensional model to either the numerical
procedure or an inherent property of the model itself. In all the cases
only limit points were found. In the continuation process the solution
arcs turned around when a point of no solution was reached and retraced the

arc, although the arc-length parameter s was increased all the time.

a .04

.02

v(l)

FIG. 3.9: Two-Dimensional Model- One Soclution
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FIG. 3.10: Two-Dimensional Model-: One-Two Solutions
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FIG. 3.11: Two-Dimensional Model-: One-Two-Three Solutions
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3.9 REMARKS

The numerical procedures discussed in the previous sections are useful in
the study of bifurcation behaviour. The validity of the results lies in a
thorough study of the convergence properties of Powell's method using
polynomial approximations. Weiss [79] studied the validity of a numerical
approximation of the true bifurcation problem, Brezzi [108] studied the
convergence properties of numerical methods for the computation of limit
points and reported errors. To apply these results is not a simple task,
and it is suggested that a more detailed study of the limit point

approximations should be done.

A last aspect is the difference between a model's multiplicity and it's
bifurcation behaviour. The existence of limit points are only sufficient
conditions for multiplicity. Solution arcs which lie "independently" of
the computed bifurcation curves, will not be discovered with the standard

numerical procedure.
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CHAPTER FOUR

PARAMETER SENSITIVITY

4.1 INTRODUCTION

Most reactors in practice are operated under steady state conditions. The
whole process is controlled in such a way as to ensure either maximum yield
[11,29,30] or profit. The effectiveness of the process will decrease if
fluctuations occur in the product stream. Although minor fluctuations in
the products will have less effect than large deviations, it is important
to identify the origin of the fluctuations/variations and determine to what

extent they will influence the product.

Parameter sensitivity describes the influence which operating variables
have on the temperature and conversion profiles in the reactor. Operating
variables are mostly the inlet concentration, inlet temperature and average
velocity (flow speed). Inlet concentration is not always a control
variable and it is important to know to what extent it will influence

reactor performance.
If a reactor system is sensitive towards minor changes in the operating
variables, it can be regarded as parameter sensitive. In [109] several

criteria for parameter sensitivity are proposed.

Bilous and Amundson [see 89] have shown that the maximum temperature of a

reactor may be very sensitive towards changes in the operating variables.
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If the maximum temperature occurs within the reactor, (an internal
maximum) ,this temperature is referred to as the "hot spot". Morbidelli and
Varma [89] defined "run—awéy" as the occurrence of an inflexion point in

the temperature versus conversion profile before the hot-spot.

The type of model plays an important role when parameter sensitivity is
studied. Most authors [23,36,70,87,89,109] have concentrated on the
one-dimensional plug-flow model and has linked parameter sensitivity to the
existence of a positive second derivative prior to a local maximum in the
temperature profile. In this chapter we shall give examples to point out
the limitations of their conditions for sensitivity. The plug-flow model
does not have multiple solutions since it is an initial value problem.
Most authors base their choice of the plug-flow model on the fact that
axial dispersion is negligible. Although Pe may be very large, the whole
nature of the model changes when axial dispersion is considered since the
boundary value problem can have multiple solutions. In Chapter 3 it was
mentioned that the one-dimensional axial dispersion model has only limit
point bifurcation. At the "first" limit point, (referring to the lower
solution branch; see figure 4.3, ¢*) the temperature profile does not have
a local maximum nor a positive second derivative for typical parameter
values. But still, as ¢>¢* (¢* the limit point value of ¢), both

sup!fyi] and sup ]fti!

dé |
become large and are undefined at ¢*. If one keeps track of the smallest
real part of the eigenvalues of the Jacobi matrix, a change from stable to
unstable conditions occur as 6¢>¢*, The plug-flow model does not sense
these parameter values as sensitive and is one of the main reasons why the

axial dispersion model is used in this study of parameter sensitivity.
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4.2 NECESSARY AND SUFFICIENT CONDITIONS FOR "RUN-AWAY"

It is convenient to check for run-away conditions without solving Problem
B. In the derivation of these conditions for the one-dimensional axial
dispersion model, the same criteria for "run-away" will be used as Dente &
Collina. (see Section 1.3.5) In our analysis we shall need the following

assumption, which is supported by numerical results:

v does not have a local minimum.

The first derivative of v(s) can be written as:

v'(s) = [ePens(s-t) (gog(w(t))e®V(t)/(IHv(t)) yy(t))dt.
S

If the right-hand-side is non-negative, (eg. y=0), v'(s)>0 for s [0,1],
hence y>0 is a necessary condition for an internal maximum. If v'(sq)=0,

then v'(s)<0 for sp<s<l and go(g(w(s))e®v(s)/(1+v(s))_yy(s) will become

negative at sp» Sp<sp<l.

The sufficient condition for an internal maximum is

C1: pog(w(1))edV(1)/(1+v(1))_yy(1)<0

Final conversion and outlet temperature can be measured and the existence
of a local maximum temperature can be determined. If Condition Cl does not
hold for y>0, pseudo-adiabatic behaviour occurs and the maximum temperature
is at the outlet. The evaluation of Cl plays an important role in the

monitoring of the maximum reactor temperature.
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2 inf. points
1 inf. point

FIG. 4.1: Pe v'(s) and v(s)
2 inf. pcints
————— 1 inf. point
> Pev'

S

FIG. 4.2:
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A qualitative picture of v(s) and Pev'(s) is shown in Figure 4.1 for the
case of a local maximum. Either one or two inflexion points exist. Note

that we use Pe for Peclet number.

When Pepgv'(s) reaches either a maximum or a minimum, v"(s)=0 and a
qualitative picture of Pepgv'(s) and Bog(w(s))edv(s)/(1+v(s))_yy(s) is
shown in Figure 4.2. The full lines depict a typical parameter sensitive
system, as defined by Dente & Collina. A sufficient condition for
parameter sensitivity is v"(0)>0 and the existence of a local maximum in

the temperature profile ("hot-spot").

C2: If C1 holds and Bog(w(0))edv(0)/(1+v(0))_yy(0)) < Peng®v(0),

the system is parameter sensitive.

Therefore the measuring of inlet and outlet temperatures and concentrations

is sufficient to detect parameter sensitivity conditions.

4.3 A NEW NORM OF PARAMETER SENSITIVITY

We shall propose a new norm of parameter sensitivity in this section.

As in Section 3.2 one can write Problem B in the form:

G(w(s),v(s),d(s)) = 0O
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Let h(¢) = sup [fﬂi
d¢

As long as G, is non-singular, h(¢) is uniquely defined and gives a clear
picture of the influence of a parameter (or operating variable) on the
solution. In the rest of this chapter we shall use this norm of parameter
sensitivity, since most authors concentrate on the sensitivity of the

temperature profile.

This norm is the first which relates sensitivity to the limit points. 1In
the construction of the bifurcation diagram, h(¢) is calculated and will
indicate sensitive regions easily. For ¢ close to the limit point values,

the numerical calculation of h(¢) is omitted.

The discretized version of the two-dimensional model and the variable
dispersion model can be easily analyzed by this method, while analytical
conditions will be difficult to derive for them and usually give conserva-

tive operating limits.
4.4 RESULTS

In this section we shall compare different criteria as a function of ¢.
The approach of Adler & Emig [109] was omitted since the numerical calcula-

tion of V" was too inaccurate for the one-dimensional dispersion model.
We also calculated h(¢) for the two-dimensional model and the results can
be regarded as the first attempt to quantify parametric sensitivity for the

two-dimensional axial dispersion model,
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We give the bifurcation diagram with the parametric sensitivity results to
show the relation between sensitive regions and regions of multiple solu-

tions.

4.4.1 One-Dimensional Model

In Figure 4.3 the bifurcation diagram for Pe=Pepg=Peng=5, v=5, &25,
B=0,5 as a function of ¢, is shown for a first order reaction. h(¢) is
shown in Figure 4.4 in conjunction with the analytical result (Condition
C2). The values of v(s) and w(s) were used to test for Condition CZ and
the value of

B(6)=Pe2v(0)-Bo(1-w(0))edV(0)/(1+v(0)) Ly (0)

was registered.

.1
.08 ¢
.06
—~—
04 t
.02t
0 . N . X . . . . ,
.04 .08 .12 .16 v(1) .24 .28 .32 .36

FIG. 4.3: Bifurcation Diagram
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FIG. 4.4: h(®) and the Analytical Result B(¢)

At o=d¢* (4=0.459) h(4) becomes infinite which indicates a very sensitive
situation but the analytical criterium (B(¢)) does not sense it, since

v'(s)<0 for all s€/0,1]. At all the other limit points both h(¢) and B(¢)

indicate parameter sensitivity.

4.4.2 Two-Dimensional Model:

The sensitivity diagram of Figure 4.5 was constructed for the same set of
parameters as the bifurcation diagram of Figure 3.9. In Figure 3.9 a limit

point is approached as ¢ increases and the increase in h(¢) reflects of

this behaviour.
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av
do 1+
5t
025 035 045 055
a

FIG. 4.5: Sensitivity Diagram For One Solution

The sensitivity diagrams in Figure 4.6 and Figure 4.7 correspond with the
bifurcation diagrams of Figure 3.10 and Figure 3.11 respectively. Note
that we plotted-g—\i and not h(¢) to point out the change in sign of

da

E! once o> ¢*.
da
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3
0.0-
dv
do
_.3-
I 2 L] " )
.04 .08 12

FIG. 4.6: Sensitivity Diagram For Two Solutions

dv 0.0F
da r

.03 .05 .07

FIG. 4.7: Sensitivity Diagram For Three Solutions
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4.5 DISCUSSION

At this stage no absolute definition for parameter sensitivity has been
formulated. A-priori criteria are limited by the complexity of the model
and the conservative limits it prescribes on operating variables. In the
light of these facts, as well as the availability of high-speed computers,
we strongly recommend a numerical approach towards parameter sensitivity.
The results of Figure 4.4 - Figure 4.7 illustrate this approach. Neatly
defined regions seperate the areas of sensitivity and non-sensitivity.
These diagrams represent the effect of one variable on another and do not

confuse one with the maze of other definitions and approaches.
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APPENDIX A

A listing of a Fortran program to compute bifurcation diagrams and do

sensitivity checks.
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FILE: KkbLo FOSPXAN Al UNLVEKSLiTE[L VAN QRLIrOULA

C THE CONSTrUCTICJ OF BLFURCATLON CULVIL Fun SOJLLUALY VALJEL PlUS,
C USING KeLLiEx?'S 5-MBTHOD «lTd SPLIAES AWD URITuUsuNAL CULLUCATLU
C THE ALGEBRALC B UATIONS Axis SOLVED BY PuwaslLs HELEGD

IiNTSwER WSIs,NCCL, HE U, IlMAX, 188, K,0,L,d4,K0,1i0,bL,41,0J,D4

C NE = NUJABER Of sLodEZHTS5;NCOL=NUHBLL OF CUL-DPUOLNLS a0 AN oL dab
C N = SUd(NCCGL=(i£r=-1))
C i = N*(3%N+15) /2 ,&K(H):0 = N=1;L = OU/2 ; & = L/Z.
REAL X ({33),4K(1s81),PAL(105), FNOA{l,F¥Ld,D
REAL DC,AE,dV,Cd,CH3,VEI,VE2,VE3, CHZ,Cdl
DIALNSLION DV (lo) ,1ivi(1o)
DLdSNSION DLFV1(20) ,DIF2(40) ,0LF3(c0),VLlT(«d),vic{luy
DIMENSLION HUOUT (29) ,Y(300),4(300),B(4,4) ,a(4,4)
ELLESRNAL rFCu,PIULL,DFURR
NSIG = 4
NE = 5
U= 33
IT¥ax = 100
VET = Ja.
C PAR(35) = BETA -DIHENSIONLLS5 ADIAsALZIC Todl2:20didelil alde
C PAK(36) = DSLTA-DIMENSIONLES3S ACTIVAILCYH E¥NZasd
C PAR(37) = GAJ4MA-DIMENSIONLES5 H4EAT TRANSFEK
C PAR(38) = PoCLET NUMBER : ONLY LZ = 1 15 CONSIUERLD.
C (1) -X(K) 15 CONVEZRSLION ;A (K¢1)=-X (L) I5 ToMPERATUR c.
o PAR(Jw) = FINCTLONAL; TO CALCULATE A(i,J) AND(3(l,J) OANLY ONCL.
C PAR(3Y9) = FUNCTLCNAL TO JO13TINSJLSUH Dol wEEN CONVLESLIN AND Taod.
C ERATUEEZ CALCJLALACNS AND THE.R DEXIVATIVES WedeTa Ue
IEL =0
PAR(35)=V.5
PARK(37) = U000
PAR(34) =1
PAR (38) = 5.9
PAR (3b) = 25
C 50 = INITIAL VALUE CF STEPP1ds PARAMLYLE AND IPIH sal Taolilloaw
C VALU 2+ 2AKR(73) = ZIUCEEMEWLI Ld oslIEgPPlas PAnaddbloi:n.
FFIN = Q.4
SU = 0.9V
PAK(73) = 0.015
D5 = PAK({73)
C PAR (1) - PAR(Jb) 1S5 COMNous3lui; Pan(l7) - 2Qag(32) is ludPeaalid:
C PAR(34)-PAR(3Y) ARL OPESATLINs VARIABLES - Pax{33) = [Fl.
PAf(33)= 0.23070005
C AEXRERKE R AN KE XXX F AR NS RYX X FAE X XA AR EK KL X RARK A EXR XRERFR XXEERER
C GEAD INIL1AL X (4)
C EHE KA AR AR FEX XXX R A AT R XX AR E F AR R kR 2R X e xR FK XX XK KK K&y
Pau (3Y) = 1.
S = 39
CALiL 4320a (Flu,N31G,N,IT4aX,PAL, X, FNURA, ak,I0k)
C £(1)~-X(1o) = DL/DS; X(17)-X(32) 13 LT/0S5; X(33) io v(Fui)/05.

(1]
C

S = 3+4PAK{73)

DG 2u i = 1,u

PAR (L+3Y) = £(ij

X(i) = PAL ()

20 CUNildNJE

PAk (3v) = 2

CALL 4320a (dChy i, 5, ITHAL, PAR, &, FROa, wa, L)
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KELS FOKI RAN A1 UNIVERSLITELT VAN Pholubia

BERRE R REERE KRS A K SR RN R R XK AR R R R TR KRR SR R Rk X% AE KA ER EREE &
NEXT Io SEVSdKAL PAEK. SENSLITLIVITY TESLS

Y R R I EE R II R 2T N R R R T T R R R B R E LI P R R R P TR S R g g T
NCOL = 4

KO = hNCOL-2

CALu POLL (NCOL,nhO,DIF),DiFZ,vilF3,u8C0Ll, Palk)

DU 949 &L = 1,KO

DO J49 I = 1,NCOL
caLl DFo2z (NcoL,I1,EL,Di¥1,DiF2,DL1F3,LuCi, ViCl)
DO w49 J = 1,NCOL

IP (ELe2Q-1) 0 TU Y53
If (£LledQ.2) GO TO 359
A(I,J) = VECT(J)

0 10 94y

B(I,Jd) = VECT{J)
CONTINUE

LI 951 2L = 1,NE

DG 951 I = 1,NCUL

DI = (ZL-1)%*3 ¢ [

D0 951 J = 1,4

DI = (EL-1)%3+J

DV(DI) = A(I,Jd)*X(DJ)
DV2(DI) = (I,Jd)*X(DJ)

CONTINUE

HEEARKE XKUY AU A EFFFFH A RRXE R X KR XX AR FXIE R G XE TR E R K& XF &R & Rx

UC = DENTo & COLLLiNA'S APPROACH

BKEREX KX EREEE AR XXX IREXRRER T FR AL R LRI X T RAOR LR XX XE FXETEREE F K

DC = Va

v = 0.

DO U3 L= 1,15

DC1(I) = X(o#17)=-X(I*+10)

bu 21 1 = 1,1

IP (OV2{1) e EeDCaANDDV(I)e3lad.) LC = Dvz (i)

CONTINTLS

Cii=ABS (X (33) -PAa(33))

Cd2 = (X(33) -PAK(33))

I[F (CHe LEaUeUU1.AND.X(33)esb.PAR(33)) Cal2= J.dJ1

IF (CHeLEe0aJd01aANDa£(33).LT.PAR(33)) Cuz= =-0.u90!

Y I L I I E L R R R R R O I R R R R I R P NI RS E R D
HV = XAX((TZAR(3+4D03) =TEAP(S))/ ((FI (S+L3)-F1(3))

AR KR AR T REE EA X AT XA SRRk R X A x X kR AR EY XXX F R L& KX Rk &K ok kR KKK K
DU v3s I = 1,10

AV (L) SABS ({X(e+10)-RPAK(1+ o)) /liic)

IF (dVI(L) .o feiiV) H€V = 1V1(L)

CONTINUE

Ci3 = A3S (Pax(7«))

LF (CH3.LE.J.00ul) CiH3 = J.uJu1l

VE2=ABS (PAR(71) /i)

REE XL AR KRR Kk AR KX K KR RRE R KRR G FRERER KT R EF R XX XK xR &
Vo3 = ANALYTICAL RE3ZJLT; s<bE CHAPIlel ¢

X E R X XK KR KRR MR KR X KKK K XK R F RN K AXEE X AN X KT RE XX HK XK RS X NX L ERE
VE3=2A0 (38)*Pan (33)*X (17)=-PA3 (33) *X(33) *(1a-k(1))*

AP (PAL(30)*L(V])/ (Ve *X(17))) #2AR (37) %L (17)

Cdd = (L(33)+PaR (33)) /2.

Ciid = (€ (34) #Pix(34)) /2.
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|
[l
t

tas
(X

X
=
=
v,
g

C
=3
[ ?]
=8
S
=

PAL(31)=PAL{31) %0, =X (33)%¥0a0® (1a-X (1)) *3K2 (¢ba*X (1) /(1. +4 (17
& +5.%X(17)
DO 782 i = 1,1u
IT = 80 +1
WRIT= (1,22) £(33) ,VE3,dV,0C, Vsl
2< FORJAAT (HFleat, 24)
C 782 CONTLNGS
IF (s.58.FFLN) GOTO 9000
IF (iERaZue131) PAR{(73) = PAr{(73)-u.Jdul

oG

40 DU 23 1 = 1,1
Pan{i) = X{i)
28 X(l) = PAx(i+3v)

PAkh (39) = 1
CALL 45PO(FCN, w513, l, Iidhi,24R, £, ENCLi, ad, i2k)
GUTO 590
9000 DO 20 I = 1,W

WRITE (1,873) X{I)

373 FORAAL (F12.3)

2v COUNTLINJE
5TOP
END
AR FE AR F SRR KX KRS RF R X AR XS G ARG K A RE KK AR AKX I XK KK KRR KKK &K
IN THIS ROULWNE AKZ THE SOYLLNEAR EQUATLIONS .
AU AR URE AR RE K AR ES TR RE S N R BN R H XA KK KX X AKX T X KKK R X XK KE KK
SUBROUTLNE FCN (X, 7, N,PAR)
[4T33ES L,K,d,%,80,4c¢,0,0d,01,DJd, oL,2M, NCOL, K5, L4
HnAL Z{8) ,5(d) ,24an(105), 14214, DA
DIASNSION DLP1(40) ,DI1F2(20) VECI(2V),DLed (2], Ruul (2J)
DIMANSION A(10,1V) ,B(1J,190),HK(5)
aF = (d-1)/2

o

NE = 5

OJ = wi-l
K= (N=1)/2
G = N-1

KO = K-2

dx (1) =1. /0.2
dK (2) =1. /0.2
HR (3) =14 /0.2
dAK (4) =1 /0.2
K (3)=1./0.2
NCCGL= 4

4 = NCOL=-2

28 = dCUL-]
PAR(30) = 4o
AL (37) = 9.0
Pak{38) >. U
PAK(35) = 0.5
PAR(191)=0.0
2an (102) =U.0V
PAL (103)=3.

i

PAK (1U3) = DPA&(103) /PAk (1u1)
LHETA = 0.7
DO 15 1 = 1, &F
IT = oo+l
15 PAL(LT) = J.
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RiLos FORT xad A1 WUNIVEWSLIELT VAN PhkriUuala

IF {PAR(34). 5Lela) GU TO 9

GO 10U 4B

co 1 1L o= 1,5

F(l) = V.

IF (PAR(39). SEec.) SO TG 17

GO Tu 22¢

DU 2 J = 1,a4C0L

PAR(B1) = PAK(31) #+dK (1) %K (1) *3(1,Jd) #X (J+LF)
F(1) = F(1)+dK (1) *a(1,Jd)*£(J)

PAK (81)=¢ (1)

FQU4KE) =P (1#aF) #4K (1) *a (1, J) *& (J+KF)
F(1) =F(1)-2AR(1059)*4(1)

FQUI+#KF) = F(1+4KF) =PAR (38) #4 (1+KF)
DO 3 EL = 1,k
DO 3 DL = 2, M

DC 4 DJ= 1,J4CCL

I = (EL-1)*(M+1)+DI

LF (2L.20.1) DA = PAE(101) + RGCT {i) *PAn(102)

IF (£L.5T.1) DA = PAE(101) + Par(l1uz)

PAK (104) = DA/PAu(103)

PAL(104) = 5.

J = (EL-1)%(4+1)+DJ

i = 80+1

PAR(471)=2AK(1T) ¢dK {EL) *dn(=2L) *B(Di,Dd)*X(J+nF)

F(I)=F(L)+ (45 (EL) #*HK (EL) *o (DL, 0J) —iiK (L) %4 (DL, DJ)*PAER (104) ) *4 (U
F(l#¢abk)=F (I+KF) + (dK(EL)*ng (E.)*B (DI, 0d) —ak (<L) *a (D4, dd)*PAk (104
*{ (J+KF)

F(l) = F(L)+X{u)* (le=L (1)) *EAP (PAR (30)*X(L¢4F) / (Ve +X (L+KFT)))
F(I+&F) =PAR (35) ¥X (N) # (1a=%K (1) ) *EXP (PAR (3u) *£ (I+KF) /(1 +£ (L +KE))
~PAR(37) %L (L +KF) #F (I +KI)

I I I T T I T T T I T I Y I
CONLIAwUILY a1 NUVES FOLLuas nUde

P R I T I T I T T T T I T IIIIYI Y™™
00 5 kL = 1,0d

J6 5 DJ = 1, NCCL

{EL-1)*(M+1)+NCOL

(SL-1)*{4+1) +DJ

=LL®(M+1)+DJ

T = 5o+l

AR(LT) =2 Aa(IT) + (HA(EL) *uX (Eu) *5 (4,DJ) %X (J+KF) +H& (EL ¢ 1) %in (it ]
¥B(1,DJ) ¥ (L +kF)) /2. |

F{(I)= F(L)+dK(EL)*A(HNCCOL,0J)*X (J) —uk{zL+1)*a(1,Cd) #*L (L)
F(L#KF)=F (L¥AF) +K (SL) %A (WCGL, DJ) *X (J*RF) —ain (o L+ 1) A (1,0J) *
X(L+xr)

P e e I T T I T I I iy
WOWw FOULLOWS The SOUNDARY CONDITION aT 5 = 1.

N R R I I T T T T T I T T T T I T I I I o
JC o DJ = 1, NCUL

I = (Ne-1)%(4+1) +KCOL

J o= (GE-1) % 4+1)+DJ

noh

ook G

iY = 1+40

Pan (IW) =2ak(L7) +ak (N&) *0K (NE) *5 (4, DJ) *X (J+KP)
L) = F(L)*Ln(NE) %A (NCUL,  d) *K (J)
FAitAD)SE(L+RE) *ak (Na) *a (MeUL,ud) *X (J+ar)
BCoY 1 o= 1,0
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FILE: (LLS FURL «AN AV JUliwversiidil VAs 2oniusia

G F(h) = &(h) + TAdsLASPAR (L+39) * (X (L) ~2au (1))

FN) = F(N)# (la=adoTa)* (A(u)=2Ak(32)) *Pau (a*3s) —Piul /J)

G0 TO 5390
C A R R R R AR K KRR K R OR R KRR R R RRR B RE R RN K R KRR K KRR E R K KKK RE KRR R R A K K
C 0w FOLLGws ThzZ DelivVvalives weliale S
C BEE R AR R T RRK EXRRE AR AK KRR R XE R R RR R KR KRR AKX KK R G LXK R KLY K 8

222 L0 223 £ZL = 1,4n

DO «23 I = 2,324

DC <24 vJd = 1,d3C0L

I = (ZL-1)*(ii+1)+D1

IF (ELeZyel) DA = PAa(1U1) #00UL (L) ¥Pauq 10Z)

IF (wLl.sTa 1) wA = PAx(101)+2aL (1J¢)

PAK (1U4) = JA/2AR(103)

PAL(104) = »a
= (EL-1)%(M+1)+DJ

F(I) = (dX (EL) *U8 (2l)# 5 (DL, DJ) ~h (BL) *a (D1,0) €228 (104) ) *4 () +4 (.
224  F(LI+AF)=(dE(EL) *#dK (LL) *2(D1,0J) ~uak (EL)*A(LI,DJ)*23ua(104))

[P ¥)

& *X {(J+ht') +F{LitK)

Fi)=F (L) +PAR{33)*PAx (30)*(1. (L)) o AP (2Ah (JL) FAu (LHKE) /0
& Ja+Pah (L+X2) ))/((1. *PAR\l*Kr)}*’ e tPAL(LI+KE) ) ) *X (L #8F) =L (03) *
& LEXP (PAR(30)*PAa(i+KE) /(la#Pad (L+KE)))*X (1) +(1.-24ax (1)) *
& LAP (PAR{30)*PAR (L+KF)/ (1a+2Ax {1tRE))) *X (V)

223 F(L#KF)=F (L+KF) + {PAR(33)*PALR (35) *¥{ 1a—PAK (L)) *oLD (2au(3b) *Pak (I+.
& /(1a+PAR(I#5F)) ) /((1a #PAL(L4XF) ) * (1. #PAL (L +KF) ) ) *D AR (30) =PAK (3
& ®X (L+KF) =PAR (33) ¥PAkK (39) *542 (Pak (30) %*PaR (L+XF)/ (1. +245 {(L+aF)))
& L (L) + (1e=212(1)) *EXP (PAR(30) ¥PAX (L+XKF) /(1.¢2Ak (I+&r)))
& *DAX (35) %4 (J)
AR KEX KKK AER R XXX XEEXXRTERRIRNE R EAFEREIR X XARERE RARRXIXFERARR AR FR FRFE K LE K
MNOW FULLOw3 TJE CUNTINUOUS CONOITIVWS
EF AR R EE R XA RK CK K XA RE AR KRR A R R T AR RN R A RFE AT RERERR KR KR AR R R FRK
DO 225 uwl = 1,0d
DL <25 DJ = 1,NCCw

oon

I = (2L=-1)p*x(atl)+iCus
J = (2L=1)%(i+1) +DJ

L = SL*x(d+1)+02J
F(I) =EF (L) #dx (L) *4 (HCOL,Ld)*L (J)-an(sL+1)*a(1,2Jd)*a(Ll)
225 F(L+K&) =k (I+XF) #an (EL) #*A(seVL,DJ) *X (Jear)—aX{=Lt1)=a(1, 07) %L (ut
AR XX TR FRR B RRE AE R E R TR R AR R AR R KO KRR R R RRE KR ARG R AR & R RF WX RE XX RE G HR L
NOw FOLLOWS T2 BUUNDIKY CUNDIILON AT v = O
B ROR R R R R R Ak Rk KK % R K K xR K R KK Kk K R ok MR X ok R KRR R K R KK EE KWK KKK
DO 220 3 = 1,NCulL
FQ1) = 5 (1) rak (1) %A (1,3) *a ()
428 E(1+Ar)=:(l*nA)*“u(1)*u&1 J) #L{ (Jdtilik)
E(1) = F(1)-2a=x{10>2) *X (1)
FUI+KE) =k ( 1+ KF) =PAL(38) ¥A (i+a)
EERREERB AR KR ER MR A KK RA R FRAT R R AR R RAR XL AR AR ARE RE R R I ERE RE R o KR T E X
NOs FULLOWS Tu g DUJNDARY codoliluas 4T 5 = 1
R R AR AR R R Rk Rk KRN R E KX AR TR R MK A RRRR RN F R Fw Xk kkn Ak A X kX kA F R
I = (Ne=1)={d+«1) +iCOo.L
DO 227 DI = 1,0C04
J = (az=1)x{+1)+DJ
e (i) =F (1) +H(hE) *A (WCCL,Dd) *£ (J)
2 F(LERE)=F (1tak) #da (H3) ¥A{(wlUL, DJ) *X(J)
DU 23 L 0= ],(1
224 Fd) = ()« Chnad=X (1) *K (1)

(PN eNe!

i
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E(N) = F(N) *+ (Ve=TJETA)*4 (&) %X (w) - s
GO Tu 500
498 K = NCOL
CALL POLI (a,KG,0iF1,D1¥2,01c53,300%,Pak)
DU 130 ib= 1,2
DO 130 I = 1,k
CALL DFOPxs (K,1,i0,0lF1,DLF2,00F3,R800l, VoLl)
DO 130 J = 1,K
IF (ID.£EQ.1) GO 10 193
IF (ID.:J.2) GJ 1C 159
198 A(I,J) = VECI(J)
GC TU 130
199 E[(I,Jd) = VEC1i(J)
130 CONTINUE
PAR (34)= Z.
GO TO Y9
500 RETURN
END

’

SUBROUTLNE 20LL ¢ CALCULATES Tiacs CCLLOCAT.LCN Pulils .

co0

SUBROUTINE POLi(&,X0,DIP1,D1F2,DIF3,K0CT,PAs)
DIMENSION DIF1(Y),DIF2(v),DIF3(9),h00T(Y),PAR(10V)
IliIfcsZIR KO
KEAL AB,AD,AD,AL,cE,PePN,PN1,PO,PDT,PP,PP1,21,40,4
KO K=2
AL 0.
BE 0.
Ab AL+BC
AD =bE-AL
AP Le*il
DQIF1(1) =
DIFZ(l) =
17 {KG.LT.
bu 210 1 = 2
21=4i-1
2 = AB+2%x21
DIF1(1) = (AB*XAD/Z/{i+2+)%1.) /2.
1F (l-.Nc2.2 ) GO TO 211

DIF2 (1) = (AB+AP+2Y) /4/i/(avla)
GU 40 210
A
AV* (Ap+u)

% (AD+Y)

DIce (L)y=Y/2/(Z-1.)

210 COLliNUZ

.‘\D/(AQ*Z;) *10)/‘:.

) 3C Q10 215
v

[\

-

=
< <t
i ohn

215 p = ).

DG 220 L = 1,KU
22 PD = Q.

2N = 1.

POl = .

P = ).

DO ¢<su J = 1 ,Ky
PP = (DLF1(J)-P)=PN=-DLFZ2(J) *PD
P21 = (DIF1(J)-2)*Pul=-Dlzre(J) *P21-Pd
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KELS FORDRAN Al UNIVaRSIToli Vad ¢anlOnla
vD = PH

PD1 = PN

PN = PP

PN1 = P21

20 = 1.

L = PN/PN]
IF (1.£29.1 ) GO 1Tu 221

DO 222 J = 2,1

20 = Z0-2/(2-k00T (J=-1))

Z = u/40

F = P-4

IF (AbS(Z).51.0.0000001) 50 G 220
ROGI (L) = 2

E = P+ 0.0001

CONTINUL
DO 231 1
J = K0+1-1
RCOT (J+1) =
00T (1) = 0

1,KU

t

RUVL (J)

KOOT (K) = 1a
DG 240 I = 1,K
¥ = rOOT(I)
DLF1 (L) = 1.
DIF2(l) = O.
DI¥3{I) = 0.

DO 240 J = 1,k

IF (Jailded) SU 10 24V

{ = P-R0UT(J)
DIF3(1)=Y*DIF3 (i) +3.*DiF2 (L)
DIF2(I) =Y*DIF2(i) + 2.%0LlF1(I)
DIFV{I) = Y*Dir1(4)

CONLLNGS

RETJu N

LXD

KoT asw SoCUi) JoakivVaiivos

[

SUBAVUTINE OFUPR » CaLCULAT&S Ids &
APPROXIMATES -

SULRQUTINE DFOUPK (R, L, lu,0lF1, 0ire,blicd, wu0d,VEICT)
DIASHSLOH VeCT () ,E00T (Y) , 08¢ 1(9) , 014 (Y¥), 0073 (Y)
GEAL AX

DO 320 J = 1,k

I¥ (J-N2.1) GG iU 3¢1

IF (1D.N£e1) GO L0 305

VECI(l) = DIF2(a)/DIF1{1)/2-

30 10 320

VECT (1) = DLF3 (L) /0LEV(L)/3-

GU TU 329

Y = KOGT (L1)=-20Ui (J)

WVECT (J) = DLE1{i)/Dit1(J) /1

LE (LDe20ec ) VolT(J) = VeCi(J)*(Jice(s)/Dic)(l)=0/1)
CONTINYE

GO LU 350

Y = VU

DU 325 J = 1,k

2 = QUGT(J)
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FURIRAN 41 UNIVekoil sil VAU YuoiUnad

Px(1.=-0)

VECT(J) = AX/DLiF1(J)*%2

Y =

Y + VECI (J)

DO 300 J = 1,k
VECT(J) = ViCl(Jd)/Y
RETUaN

END
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APPENDIX B

A listing of a FORTRAN program to compute an arc of limit points.
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PILE: LEXA FOET RAN A1 UNLVLESLTOLIT VAS PaoiOiia

C Tde SCLUTLOJ OF NOLNLINEARK ALGEBHALIC £,U0Aic0ds
C STEuPPIdG ALUNG A DIFURCATIVSN CUUVe USlus CULLUCATLON ON SoLIUE
LNTEGER N5S1S N, 8L,iTHAX, [ER,K,Q9,L,H,KU, LD, LNDIn
INTESEKR NCOL,#CUL,OR,EL,DL,DJ, L%
C N3IG,ITAAX aRE iNPUI FUR i#5e 5UBKUUSINE L320% (Soe LaSlL
C MANJAL)
C N = 13 PUINIS fuR CONVEKRSLON, 13 FURK TuoMePelaTUus,l rou DAdaUOdLI
C PLUS 20 FOBR THZ JACOBIAW
C N& = NUMBER OF ELEdENIS
C NCOL = 2+ NUMEEL OF INTLERNAL COLLOCALIGH 20LNIs Pox sLEAENT
Cc INDLIK ¢ THE INDiIL'Th X-VALUs 15 S5cet T0 1. ( 5o Seivwsl 15 pnabz
Cc RENCZ ) )
N3IG = 4
ITHAKX = 100
N = 53
REAL DEL,X(33) ,aK{(db11),2aK(23),FHCRY
DIMZNSION A(Y,9),B(9,9),VECI(Y),DLFV(y) ,0iFi(9) ,urF3(Y),H0d% {J,
DIMENSION w(26),wKARCZA (20)
LXTERNAL FrCi,PUuLI,DFUPR
C PAK (4) = BEIA-VLAENSICHLESS dEAT GF GoACTIuln
C PAK (D) = DELTA-DiNENSLONLESS ACTIVATIUN ENERSY
C PAR(b) = vABdA- HBEAT TKANsFzr COBFFICILIZINY
C PAR(7) = PECLEl NUMBERz ONLY LZ = 1 I5 CUNSIDEZ:ED
C X (N) = FI:-DAUKCHLER*PSCLET
C X(1)-X(K) I3 CORVEKSION ;X(n+1)-%(L) I35 TodPsbAdidnc.
C ANY CNE OF THESo PAR(IL) CAN 38 USZD AS IUCDEPLIDEST VARIYDwia
PAK(4) = 0<5
PAXR (5)=25.0
PAR{D0) = 5.0
PAR(7)= 5.30
PAR(B)= 1.0
C SR EERE RN R AR K E X XK KRS AR R R R AR I XK H 5 b A G d Rp R AR kG R SRS w3 k& X XE KX
C EEAD INITIAL VALULS FCE X(I)
c ER AR R RN IR R KRR X E R AR R E KR RN K ERRF G X XE A KK A R h Ak KX SR UERE K&
bbb CaLL Z5POW (FCN,NSIG,N,1udAX,PAak,&,FNuUhd,aK,1an)
C (32 R E RSP RS EI RIS RS ESLEES SRS ISR SRR SRS R R ES R B SRS R EE P
C IN Tdls ZXAYPLE +dE PROGRAYM wAS TIRdLwATLu atddN SASd4 SXCEZIDwm)
C TSRS EEEIRIE RS R ESFERSELE R RS RS IR LR R R R TR R ERERESIIEESEEE T RS- FF3
1F (PAR(b)evie12.0) 35U 10U 97
77 PAR{2) = PAR {v)
1F (PAR(po).2Z2dsDd.) DEL = 1.0
If (PAR{v) avTwd.) DEL = 1.0
PAR{v) = PaAd {(v) +DLL
PAL(20) = X{N)/2ali (2)
C EEEXRXEERH AL LB X EFEEER TR XX E XXX RERXE KR K xRk T xRk xR EREXE XX
C Wi Ile REsULIS :
C FRERERRE AT AR AR R KRR RE R XK TR R K KR G R or xR F R R X ROk kK %A & ok Rk R ok Kk x K
GU TV ovo
97 STO?
LND
C AR EEE AP L FFEXEECEE E R FRRE A XX RN AP REX Ry FAX XX R IR K& xk X% E X
C Ia sUHIs TOJULiNe I3 TAdE ~ONLAbzZAR eQUATICG 5.
C HEX R XKL KRR KE A AR UK R LI EX R AN L X GRR TR AR R TR R AR XX KR G h& Kk

SUBRUUTINL ¢ CN (K, F, 8, PAu)
INTEGES Pyol, DI, Uk, BL, N2, WCOL, 4C0L, i, J, apdyly i DIk, U,id,au
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EXa FORUVEAN A1 UNIVERSIT=IT VAN PhoiOBLA

KEAL X (N),F(d),RaRr(21)
DIMENSION DLF1(Y) 4DLF2{9),0LF3 (9) ,VECL () ,obut (V) ,a(Ys ) ,3(Y,9
DIALNSION HK (4)

INDLIX = ‘2o

NE = 4

NCOL = 4

4COL = NCOL - 1
OR = NE-1

¥ = NCOL-2

G = N-=-1

K = 0/+4

L= u/2

K (1) =1./0.275

dK (2) =1 /0.2175

HK {3) =1./0.225

HK (4) =1./0.225

1F {PAX(B).9Eel-) GO TG 99

sU IV 498

pu 1 1 = 1,4d

F(I) = O«

R R R AR R R K AN KN R KRR IR KRR KK KRR IR FA KKK R AR IR AR AKX FR K AEZ
pOUNDAKY CONDITION AT 5 =0

FEEEERARB HEX XK AR RR R R E R ARG R R kF Ok Kok w o Rk K R R K K KRR KR Rk KK KR kR XK
po 2 J = 1,NCUL

FQ1) = EF(1) + ds(1)*A(1,d)*K5(J)

F(1+s)= F(1+X) ¢dK (1) *A (1,d) ¥4 (J*+K)

F(1+#L) = F(1+L) +dK (1) *A(1,J) *X (J+L)

F(l1+L4K) = S(I1+L+K)+dK (1) *a(1,d)*K (J+Lr3)

F(l1) = B(1)-PAK (7)*X(1)

F1#K)=F (1#K)=PAL (7) #X (1+K)

F(1+Ll)=F(1+L)-PAR(7)*xX(1+L)

FL1+L+X) = F(1+L+K)-PaR(7)*X(1+L+4)

R B AR R K RER XGRS R A R R RN R TR X X E RN X T K W7 4K R w KK ok ok k& X%
FUNCTLCONS AL L1NLEZZNAL POIUIS

AR R AR KRR KSR AE KRR R KT T T R BN R R AT AR AR R RIX KR AR AR RS X S %0k K% 6% R XX K kKX
UG 3 ZL = 1,10L

Q0 3 DI = 2, HCOL

L =(SL-1)*(d+1) + I

po 4 DJ = 1,3CUL

J = (EL-1)*(d+1) + DJ
F(L)=(-2aA4(7)*un (LbL)*a(DL,0J) ik (L) *un (aL)*s{(D1l,0d) ) *L(J) +7(«
F{i4R)= (=2Ad (7) *uk (EL) #A(DL,0J) +dn (3L) *Un (EL) * 5 (DL,0d) ) * 5 (J+a)
+F (L+X)

F(L¥L) =\ =PAR(7) *un (RL) *A(DL,0J) vk (FL) *an{£L) %0 (01 ,2Jd) ) L (J+L)
+¢ (1+L)

FI+L*K) = (=2AL (7)) *SK (EL) *A (DL, oJ) #uk(al) *uk (2u) *2{ L, 2J))
*{(JrLen) +r (L+L+K)

F(L) = FL)+ L (L) *®(1a-L (1)) 2l (PAk (D) *K (0+K) /(-

tX(L+K)))

FI+K)=F (L) +X (N) *PAR (W) % (e =K (1)) *2Xe (PAh (D) *
A{I+K)/{T1at{(I+x)))-PAk (L) *L{L+K)

F(LL) =S (I#L )+ (Pal (3) ¥ (N) ¥ (la-K (1)) Foal(2aa(n)*

K(L#K) /(T #X (i+R)) )/ (M #X (LtK) ) * (1o #a (L)) )) ¥a(iturn)

—X(§) *¥oAP (PAR(D) *A(L#K) / (Ve tX (L*n))) *L(i*L)

FAL*L+K) =0 (L+L#R) ¢ (X (D) *¥2A2(4) *2A0 (D) * (1=K (a)) *
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FILE: EXA FOEIRAN A1 UNIVeksedoIli VAN PRodOkla

& BXP(PAR(D)*X (I+a)/ (Ve #X(L4K)) )/ ((1atX(atrn) )= (1o+L(L¢R)))-2ak (u
& *¥X (L+L+K) =X (V) ¥PAR (4) *2X2 (PAL (D) *x (L+K) /(1-+X(1+K))) ®*X(iL+L)

C AR R KRR R AR FF R KRS R R R B AR R AR R X E F R KRR RE AR A SR A KK SRR kR R K Kk K E K Fax
C CONTLINULTY cQUATIUNS AT NODES
C R R T R R T I R R R R R R R L R L IR ITELITTTYT
DG S5 EL = 1,0R
1 = (ZL-1)*(¥+1) + NCOL
b6 5> DI = 1, NCuwL
J = (EL-1)*{d4+1) + DJ
P = wL*(1+1) + DJ
F(I) = F{Li)+idk (ki) ¥A(NCOL,DJ) *L(J) —aa(Lwutl) =i (1,0J)*X(2)
F(L#+8)=F (L *K) #idn {EL) *A (JCOL,0J) *X (J+¢K)-un{£L+1)*a(1,DJ)*
& L (P+K)
2(L+L)=F (I+u)+lia (SL) *A(UCOL,0J) *X (J#L)-un(cl+l) *a(1,DJ) *X (P+i)
5 F(i+L+K)=FP(L#L+K) +HK(EL) *A(NCOL,DJd) *X (J+uL+K) -k (L+¥)*A(1,DJ)*
& K(P+L#K)
C BEE AR AR K RUK R R R KX R R RRAC XN R R TR R R AR KRR RS UK Bk Sk KX AR RE R Kk
cC BOJWDARY CGHCITiICH AT 5 =1
C R AR AR R R KRR KRR R KX AR E A KRR AKX H A R K RROR KKK E R RO R EK KR KKK KKK

DC o DJ = 1,iCOL
J = (NE-1)#(#d+1) + DJ
F(K) = UK(NZ)* A(NCUL,DJ)*X(J) + F(K)
103  F(L)=dK(NE)*A(NCOL,DJ) *X(J+K) +F (L)
105 F(L+K)=JK(NZ)*A(NCOL,DJ)*X (J+L) + F(L+r)
o P(L+L)=uK(N:)*A (NCOL,DJ)*X (J+K+L) +F (L+L)

C AR AT AR R AR SRR KRR KRN R A AR KA AR XX E RSk KT E R R KA K AN F R R E AR KK FE
o SET V(K) =1. (TO FORCE JACOSLAN ZEEV)
C AR KR AR R AR KR E KRR AX E R AR A AR N R SRR KL SR KRR AR E R AR R X F A KR FRKK
109  F(¥) =X (L+IdDIK)-1.
GO0 I'C 300

498 CALL 2ULI (4COL,K0C,DIF1,01r2,uvlr3d, kUol, 2al)
po 1390 1D= 1,2
po 139 L = 1,kCuUL
CALL DFOPK (NCOwW,I,ID,21IF1,Di#2,01r3,hUCT,Vall)
po 130 J = 1,NCUL
iF (1D.20.1) Gu TG 1938
I¥ (ID.Zp.4) GO 10 199
198 A(I,J) = VECTI(J)
GO 1u 134
199 5(i,Jd) = VECT({J)
130 CONTINUZ
PAL(8) = 2«
GO TU Y
500  bETJuN
END
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APPENDIX C

THE EXISTENCE OF UNREALISTIC SOLUTIONS

A1l proofs to guarantee only realistic solutions, are only valid for odd
order kinetics. In the case of zero and even order kinetics, unrealistic

solutions exist.

A second order isothermic reaction was chosen. For a Pe=3 and ¢=4 and

_unrealistic solutions were numerically determined.

1]
o

w" - 3w' + 4(w-1)2

3w ;3 s=0 (1)

=
1]

In the following section we will show that (1) has at least one unrealistic

solution, i.e. w(s)>l.

Existence

One can rewrite (1) as

y(t) = -2'(t)
y'(t) = -3y(t) + 4(z(t)-1)*

y(0) = 0 (2)
y(1) = 32(1)

where t = l-s, Z(t) = w(s).
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C-2

If one considers (2) as an initial value problem, ignoring the boundary
condition at t=1, it follows from previous results that for different
choices of Z(0) different y({l) and Z(1l) will result. Suppose there exist
Zyy and Zgp such that y;(1)<3Z;(1) and y (1)>3Z,(1), then there exist a
291<Lg<Zgy, such that (2) holds. Furthermore, if Zg;>1, then the solution

is unrealistic.
Lemma 1

max Z(t)
O<t«l

n
N
—_
[en]
~

Proof

0 and y'(0) = 4(2(0)-1)2 > 0.

At Z(0), y(0)

Thus Z(0) is a local maximum. If there exist a Z(t), t€(0,1] where
Z(t)>Z(0), then there must also exist a t*€(0,t) where Z(t*) is a local
minimum. At t*, y(t*) = 0 and y'(t*)<0, but y' is non-negative for all
Z(t). Since Z(t) never attains a local minimum, Z is a decreasing function
of t and max Z(t) = Z(0).

O<t<l

Lemma 2

There exist an unrealistic solution of (2) and 2<Z(0)<10.
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Proof

Let Zg = 2, yg = 0. Suppose there is a t* [0,1) where y(t*) = Z(t*), then

Z(t)>y(t), for all t<t*.

Thus Z(t) > 92 pepx
dt
Z(t) > 2t , t<t*

At t = t*, y'(t)>Z'(t)
S3y(t)+4(Z(t)-1)2>7" (t)
S37(t)+42%(t)-8Z(t)+4>-Z(t)

Thus Z(t*)<O0,5. It follows from Lemma 1 that the other root is not

possible.
When 2e-t' = 0,5 then Z(t')>0,5 and thus t'<t*.
Thus -t' = -2nd4<-2ne
<-1
t'>1 and there does not exist a t* [0,1] such that y(t*) = Z(t*).

Since y(t)<Z(t) for t [0,1] it follows that y(1)<3Z(1).
This completes the first part of the proof.

Let Zg = 10, yo = 0. Suppose y(t)<3Z(t), t [0,1]
Then Z(t)>10e-3t.

And 4f1(z(t)-1)%dt>aft' (10e~3t-1)%dt, where 10e-3t" = 1.
0 0
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The integrand value of the r.h.s. > 30 = Pe Z(0).

Integration of y' gives: y(1)-y(0) = 32(1)-3Z(O)+4f1(2-1)2dt
0
If 32(0) < 4[*(z-1)%dt, then
0
y(1) > 32(1), which is a contradiction.

Thus, there exists a t*€(0,1] where

y(t*) = 3Z(t*).

The possibility may exist that y and 3Z can intersect again at t"€(t*,1).

This is only possible if y'(t") < 3Z'(t").
S3(3Z(t")) + 4(z(£")-1)2 < 3(-32(t")), which is impossible.

Thus y(1) > 3Z(1)
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APPENDIX D

A listing of a Fortran program to compute bifurcation diagrams and do

sensitivity checks for the two-dimensional model.

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

é%
<

FILE: TW0D FOKTRAN Al JNIVERSLTEIT VAN PusTOKLA

EEXSEEX KGR EREE KRG XX R KKK KRR KT R R XX KK KRR XK x K kX xR kEL
IN THIS PROGBAM BlFURCATION CURVES AKE CONSTRUCT=D FOR Thi
TWO-DIMENSIONAL PSEUDO-HOMOGENEZOUS EEACTUR MODEL. KELLER'S S5-
AETHOD 1S USZD wITH SHIFTeD LEGENDRE POLYWORIALS ALLALLY AND
SYMMETRICAL POLYNOMLALS KADLALLY. A PARAMETRIC 5oNSITLVLITY TE.
IS ALSO AVAILABLGZ.

EERERE AR E R KRR F R R R X KR SRR R R R K E XK Kk X KRR R AR A AR XX T X KR K&
INTEGER NSIG,NI,lJ,ITdAX,1E4,K,0,L,N, 80,10, INDLK,INDLL,N,TEL
DIMENSION AR (10,10),BE (10,10) ,AZ(10,10) ,82Z (10, 10)

REAL KS,KSF,KS0,X(33),wK(1381),F(33),FNOud,PAR(105), PkiUSP1, PKY
REAL EUK

EXTERNAL FCN,POLI,DFOPR

NSIG = 4

ITMAX = 100

NI= 5

NJ = 3

N =2% (NI*NJ-2)+1

I I I I I I T I I I I I I I T I T IIEITTIITYY
H = u*(3%N+15) /2 ;wK(d):u = N=1;L = 0/2 ; & = L/2
EEEEEEEEREXR REEXRXERRRE AKX R E X AR FEIEE XXX B R XX XX KFEE KR E RS
PAR(34)= FUNCIIONAL

PAR (35)= FUNCTIGHAL

PAR(30)= PECLET Z-MASS

PAR(37)= PECLET a-MASS

PAR (38)= PECLET R-HEAT

PAR(39)= DELIA - DINENSICNLE5S ACTIVATLION ZNERGY.

PAR (40)= BETA - DIMENSIONLESS ADIABATIC 1LJdPERATURL dusE.
PAR(41)= GAYdA — DIMEWSIONLESS HEAT TEANSFER-

PAR(42)= B - ASPECT KATIC .

PAx (43)= PECLET Z-HZAI.

PAR(44) = DK3 ; LNCREAENL LU KS, wubRE KS L5 TUE S—-2AKAAZIEZE C
KELLEK'S METJCD.

PAR(1)-PAR(10) = w(1)-w{lo)

PAZ(17)-PAR(32)= V(1)=V{(lo)

PAR(33) = FI
PAR (45) -PAR{60)
PAR (01) -PAR{76)

PAR{77) = DFI/Ds
XU EEE XA XS R XK E AR EREK AR X XX XE AR AXEE RO

oo n

WS (1) -aS (1v)
VS (1) -VS (o)

ocoooOoocnononoOnOcocnOO000nn

PAR(35) = 1

PAR {36) = 5.00
PAK (37) =30.00
PAR (38) =30.20
PAR(39) = 25.0
PAK (40) = 0.5
PAR(41) = 125.0
PAR(42) = 19.0
PAR(43) = 5.00
PAK (44) = .04
KSO = 0.0

KSF = 0.2

EREXRREE R KKK AR AR KRR KK E R E SRR AR R KRR R K RS KR K AT K KK KKK KK R
BEAD INLTIAL PA&K(4) USLlihu ANY 2-D SCLVER AND oiVLN FI-VALUGo
KEAD INITIAL X (L) ; GUESS FPUK DA/DS , DV/U3 aNU OF I/DS.

EEE AR X R REE KR X KB E R KR R KRR R R KGR RN K AR R KX R XA KK K KX XK K&

none
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97
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C

392
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s;ﬂ UNIVERSITEIT VAN PRETORIA

A 4

TWOD FORI 2AN A1 UNLIVERSITEIT VAN 2xeTOHLA

PAR (30) =10

PAR(34) = 1

KS = KSO

CALL ZSPOWK (FCN,NSIG,N,IiMAX,PAR,X,FHOKHd,wK,LsD)

KS = KS + PAK(44)

DO 23 I = 1,27

PAR (I+44) = X({(4i)

X(1) = PAR(I)

CONTINUE

PAR(34) = 2

CALL ZSPOW (FCN,NSIG,N,ITMAX,PAR,X, FNOKi,an,iZ4)

IF (ABS{X(27)-PAR(27))-1T.9.0001) GOUTO 711

PRMSP 1= (X(15)-PAK(15))/{X{27)=-PAR(27))

EUK = 0.0

DO 26 I =13,26

EUK = EUK + X(I)**2

EUK = EUK#%0.5

IF (ABS (X (27) -PAK (27)) . LT-0.0001) GCIO 711

PRMSP2 = (EUK-PAK(80))/(X(27)-PAR(27))

WRITE (1,87) X(26),X(27)

FORMAT(* ',2FP12.5)

IF (KS.GT.K3P) GOTO 97

IF (X(12).GT.1.) GOTO 97

IF (X{12).LT.0.) GOIO 97

IF (IER.EQ.131) PAR(44) = DAR (44)-0.001

DO 27 I = 1,27

PAR(L) = X(I)

X{I) = PAR(L*44)

PAR(34) = 1

CALL ZSPOW(FCH,NS51G,N,ITHAX,2AR,X, FNOkl,wK,IZR)

PAE (30) = EIJK

GOTO 28

STOP

END

2323 E SR RIS RIS SRS RS SRS RS R RIS RIS I NISE SRS RS RIS RS LR &4
IN TIIS ROUZINE ARE THE NGULINEZAR EQUATIONS.

EERE R AR R CRE AR SR R R F R R AR R AR R AR F AT A KRR R R TR SR X AR KX KX
SUBROUTINE FCN (X, F,¥,PA&)

DIMENSION T(32,32)

INTESER K,Hd, L, INDIK, 1D, KO, Ni,NJ,01,00,1J,4K4,%,0,5,50,KB,P,S4,
INTEGER ADD, KP,Q

REAL X (%) ,F(N),PAR(105),TuETA

DIMENSION A& (10,10),BR(10,10),a2(10,10),b5(10,10),DIF1(10)
DIMEZNSION DIF2(10),DIF3(10),VECI(10),«08T(19), COT (19) ,ALFA (2
AEK XK B AR R SR R R AR AR SRR R KRR A E K R AR KX A F G AR AR e ok R KKK KX
NI = OK AXIALLY ; NJ = OK RADIALLY.

OK = TOTAL NUMBER OF COLLOCATION POULNTS

KRR EE R R R RAE SRR R R KRR R A AR KRR AT KGR X A XA R KK Rk KR R KGR K XX
DO 391 I=1,20

DO 392 J=1,.06

T(I,J)=J

CONTLINUE

NI = 5

0L = NI-1

NJ 3
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T WO D FOETRAN A1 UNLVERSLTZIT VAN PKLTORLA
0J = NJ-1
0 = (NI*NJ-2)
N = O0%x2+1

AR A E TR R R XA KRR R S SR KR KRR AR A AR S AR U R AR R F R R R IR KR Kk k& Kk K&
THETA IS PARAMETER IN KELLEK'S {EZTHGD .

EXXEEEX XX KKK B X KR KRR R EREE X AN R R AR A AR ER ARk k& % kg KX kK kK xxk kX
THETA = 0.55

IF (PAR(35)GE.2.) GO TO 99

GO TO 498

DO 15 I = 1,N

F(I)= 0.

TP P TR REETTHTL RS LS FEET PR TR ETEE LTI TR T T LT ER E T LR TR T LR
AAKE PROVISION HEKRE POR Tdi SYAAETEKICAL POLYNOMIALS FIRST AN
SECOND DERIVATIVES (AR, BR ) AS WELL A5 1HE ROO15 (4OKT)-
AEXEKEFREEESE KKK R E XXX REEFEX KT E XK E F R Xk F Rx X R EF R R X F ok kx &k Fkxx Xk
IF (PAK {34) .6E.2) GOTO 252

GOTO 253

DO 1 I = 2,01

DO 2 J 1,3J

KA=(I-1) *NJ+J-1

KB = KA+O

DO 3 P = 1,NJ

S = (I-1)*NJ+P-1

SO = S+0

F(KA) =P (KA) ¢+ PAR (42)/2/PAK (37) * (AR (J,P) /aCRIL(J) +BR(J,2) ) *¥5(35)
F(KB) =F(KB) + PAB (42) /2/PAR(38) % (AR (J, P) /wURT (J) +£R (J, P) ) *X (30
DO 4 L = 1,NI

IF (L.EQ.1) ADD = 0

IF (LeGTe1.ANDuL.LT-HI) ADD = 1

IF (L-GE.NI) aDD = 1

S = (L-1)*MJ+J-ADD

50= S+ O

F(KA) =F(KA) ¢(1/PAK(36) %32 (I,L)-As(1,1))*X(S)

F(K3) =F(KB) +(1/PAR(43)*B4(I,v)=-AZ (I,L))*X(50)

F(KA) = F(KA)+X (N)*(1-=X(KA)) *£X2 (PAR (39) *X (K3) / (1-+£(K3)))
F(KB) F(K3) +X{N)*PAR(40)*(1.-X (KA))*£XP (PAK (3Y) *£ (K3) /(1=
+X (£B)))

CONTINUE

CONTLNUZ

AKX XK EE R ERE XK ER KRG E TR ERE XXX AFE R RIAR X AXEFXE XXX RE TR EFREE KX X
KELLER'S MN3-FPUNCITION. (SEE CHAPI =k 3)

AT AR A AR RE ERE RN A XX R A RF AL G R R E R Gk R XXX KK Rk Rk h X Ak Rk k&
DO 220 I = 1,20

F(N)=F(N) +TAETA*PAR (I +U4d)* (X (i) -PaAR(I))

F(N) = F(N) + (1-0-THETA)*PAc (J+44) *(X (1) —PAR(i))—PAR(4Y)
REEEE X ATFT R FE X AR T AR KRR A RX K TR XX AR EI R AR KX XX PR X HRX
NEXT FOLLOW THE BOUNDARY CONDITIONS.

BREKEXEEX G EXK EX TR R E KR KR KRR R A AT EE E ok ko Tk Xk AR kX R EXXE &K
THE 3.C. AT R = 0 IS AUTOMATICALLY SaTISFIED

AEK KRR ER R RN KRR E KR AR R R AR AR TR X M AERER AR R R R R X KR xR x Ak k& E %X
R = 1.

KEKE R KR T ECRE KR E KB R R X RPN R AR AR R AR RN A G KR R Rk xk ak kT % &
D0 7 I = 2,01

KA (I-1)*NJeNJ-1

KB = KA+O

[

L}

o
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DU 8 J = 1,8J

S= (I=1)*xJe¢Jd-1

SO = S+0

T(KA,S)=T (Ka,S) +aR (NJ, J)

F(KA)=F(KA) + Ak (NJ,J) *X (S)

T (KB, SO) =1 (KB, S0) +AR (NJ,J)

F(KB)=F (KB) + Ak (NJ, J) *X (5C)

T(KB,KB) =T (KB, KB) +PAkK (41)

F(KB) = F(K3)+PAR(41)*X(KB)

CONTINUE

32 P E RS SRR RIS RS R R R R 22 R 2 R R RS R R RIS RIS RS RS R SIRFEERE R SR 3
BOUNDARY COSDITION AT Z = O.

AE SRR SRR KRR E R AU KB AR AR R AR R K AR F X KX SR AR KA KK KX XX A FEE X
DO 9 J = 1,2J

KA=J

KB=KA+0

DO 10 P =2,01

S = (P=1) *NJ +J-1

S0 = S+0

T(KA,S)=T (KA,S) #AZ (1, P)

F(KA)=F(KA) +AZ (1,P)*X (S)

T (KB SO) =T (KB, S0) +AZ (1,P)

F(KB)= P (KB) +AZ (1, P) *X (S0)

SA = (NI-1)*NJ+J-1

SAO = SA+0

T({KA,KA)=T(KA,Ka)+AZ (1, 1)=-Paxz (3v)
F(KA)=F(KA)#AZ (1,1)%X (KA) #AZ(1,3I) *X({34)-2 AL (3b) *X (KA)
T (KB, K3) =T (KB, KB) +AZ (1, 1) -PAR (43)

F(KB) =P (KB)+AZ (1,1)*£ (KB) +AZ (1, NI) *X(SAC) -PAH (4.3) *£(K3)
AEXEREEE B AKX XA X AR A E A R AR AR K AR R IR R S AR A AR AR A KR R X A RS XX A R A M X &
BOUNDARY CONDLIT1UN AT 2 = 1.

AEEX XXX EEEERE AR T XX XX E XX IR LR XN EREAREX FEFRXFE R R E X AR X%
DO 11 J = 1,0J

Ka= (NI-1) *NJ+J-1

KB = KA+O

DO 12 P = 2,0L

S = (2-1) *NJ+J-1

SO =S+0

T{KA,S)=T (KA,S) +AZ (NI,P)

F(KA) = F(KA) +AZ (NI,P)*X(S)

T(K3,S0)=T (XB,Su) +aZ (.1, P)

F{K3) = F(KB) #+A2 (NI,P) *X (50)
T(KA,KA)=T (KA, KA) +AZ (NI,K1)

F(KA) =F (KA) #AZ (41, 1) *X (J)+AZ{¥I,N1)*X (xa)
T(KB,K3)=T(KB,KE) +AZ (NI, NIL)

F(KB) = F(K3)+AZ (NI, 1)*a(J#0) +AZ (i1, NL) *X (Kb)

GO TO 500

DO 503 IJ = 1,2

IF (IJ-EQ.1 ) K = NI

IF (IJ.EQ.2) X = NJ

CALL POLIL (4,KC,DiF1,DIFZ,DAFJ3,R00T,DRAR)

IF (IJ.Ey.2) GO TO 135

Gu TO 139

DO 137 KP= 1,NJ

WORI (KP) = 50GI (KP)
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TwOD FCRTRAN A1 UNIVEKGLSIIELT VAd PRoTOQLA

DO 130 ID= 1,2
DO 130 I = 1,K
CALL DFUPR (K,I
DO 130 J = 1,k

IF (ID-EQ.1) GO TO 198
IF (LD.EQ.2) GO TG 199
IF (LJ.EQ.1) GO TO 201
IF (1J.EQ-2) GO TO 202
AZ (1,J) = VECT (J)

+1D,DLF1,DIF2,DIF3,R0O0T, VECT)

GO TC 130
AR(I,J) = VECT (J)
GO0 TO 130

IF (1J.EQ.1) GO 10 203

IF (IJ.EQ-2) GO TO 204

BZz(L,J) = VECT(J)

GO TO 130

BR(L,J) = ViCT (J)

GO TO 130

CONTINULS

CONTLINUE

PAR(35) = 2.

G0 TO 99

EEXXKXXEX L KX EEF XXX XE B REXEE K KX R AT R XA xR X E XK ey k& Xk kK RE Kk
IN TdIS SECTICN iS THE Du/DS ,DT/DS AND DFi/DS rUWCILONS.

AKX AR KIS FEB XXX EAEE NIRRT REE R E N X EE R R I R wR Lk xx kK &k xk kx k& kK
DO 201 1 = 2,GI

DO 202 J = 1,0J

KA = (I-1)*NJ+J=1

KE=XKA+0

DG 203 2 = 1,NJ

S = (I-1)*NJ+p-1]

S50 =5 + 0

F(Ka) F(KA)+PAK (42) /2/PAR(37) * (AR(J,P)/WORT (J) +0k(J, P)) *X (2
F(KB) F(K3)+PAR(42) /2/PA (33) * (AR (J,2)/nwOuT (J)+3R(J,2))*X (
DO 204 L = 1,NI

IF(L-EQ.1) ADD = 0

1F(L.GT- }.AND.L.LT.NI) ADD = 1

IF(L.GE.NI) ADD = 1

S = (L-1) *NJ+J-4abdD

SO = § +« O

F(XA) = F(KA) +{1/PAR(30)*DL2 (I, L)=-A2{L,L))*L(5)

F(K3)= F(KD) ¢(1/PAK(43)*B2(L,L)-AZ{I,L))*X(30)

F(KA) =F (KA) -DAR (N) *EXP (PAR (39) *PAT (KB)/ (1+#2AX(KE)) )*£ (Ka)
F(KA)=F(KA)+PAR (39)*PAR (i) * (1-PAR (KA) ) ®*ZXP (PAn (39) *2AR (KB) / (
R(K3)))/{1#2Ah (Ku) ) **2%X (K3)

F(KA)=F(KA)+ (1-X (KA) ) *EXP (PAR (39) *Pax (KE) / (1+2A&(n5))) *¥X (N)
F(K3)=({1-PAR(KA)) *PAR (N)*P AR (39) *LX2 (PAK(39) *PAL(K3)/ (1+24ak
)))/{1+PAR(KB)) **2*X (KB)-PAR(N) *EXP (PAR(3Y) *PAL (KB)/ (1+2

AR (KB)) ) *X(KA) + (1-PAR (KA) ) *24P (PAk (39) *PAR (K3) / (1+PAK (KD)
})*¥4 (N)) *PAs (40) +F (KB)

CONTINUL

CONTINUZ

I R R I R O R I R R R R R
TdeE BOUNDAKY CONDITIONS

AEK XA RE KRS KRR KRR R R R KR AR R KRR X KKK SRR XK KA G KA KT R XX KR R X K K& XK
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TwOD FORI AN A1l UNIVZRSITELT VAl PKelCRIA
R = 1
Yk REKEXKE KRR K XX SR E X KEERE R XX RN X X E R EE BE R AKX R Ky X Rk kK KK
Do 267 1 = 2,01
KA = (I-1)*nJd+hJ-1
KB = KA + O
Do 268 J = 1,NJ
S = (I-1)*NJ+J-1
SO =S + 0
F(KA) =F (KA) +AR (NJ, J) *X (S)
F(KB)=F(KB)+AR (NJ, J) *X (SO)
F(KB) =F (KB) + PAR (41)*X (KB)
CONTINUE
ERE XX REEEREIE R X SRR EE R R R KR A R EFER R X R kxR R x A E XX &
2 =9
$EEXTEREKE R XK E KA T TR ER AR R AR AR R X R KRR R R kAR AR K X TR & k&
DG 2069 J = 1,0d
KA = J
KB = KA ¢ O
po 270 2 = 2,01
S = (P-1)*NJ+J-1
SO = S+0
F(KA)=F(KA)+AZ (1,P)*X(S)
F(KB)=F(Kb)+a2(1,P)*X (S0)
SA = (NI-1)*HJ+J-1
SAO = SA + D
F(KA)=FP (KA)+AZ (1,1)%X (KA)+AZ (1,NI)*X(SA)-PAK (306) *X (KA)
F(KB3)=P{KB)+AZ {1, 1)=& (Kis)+AZ (1,NI) *X (SAU) -PAL (4 3)*X(KD)
I E R R ST SSI RIS F LRSS RIS RS R SRR E RS TR EE SRR Y RESESEE RS
2 0= 1
AR R F XX EXREX ERE KRR AR K E A A TR AR KRR X AT xR TR RRE pE kXXX
DO 271 J = 1,040
KA= (N1-1) *NJ +J-1
aB = KA + O
DO 272 P = 2,01
S = (P=1)=NJ+J-1
S50 = S + 0
F(KA) =F(KA) +AZ (NL1,P) *X (S5)
F(K3)=F(KB)+AZ (NI, P) *X(50)
F(KA)=F(KA)+AZ (N1, 1) *X(J)+AZ (NI,NL)*L(K4)
F(KB)=F(KB) +AZ (N1, 1) *X (J+0) +AZ (NI, NI) *X (K1)
XX XU XY X R KX RN R TR AR R AR xRk Xk kk ok kA xx ko ok okokok ok ok Kok k%
IN THZ NeiT SECTION KELLER'S THeTA FIuCTiuN Is COMpePUTLD
FEAX TR AEE T REE XXX TR T AT RS F R E XX R RN K KRR AR TR EKF R X TR R &k ke & X
DO 274+ I = 1,20
F(l)= F(N)+THETA*X (1) *%2
F(N)=F (M) +(1-TdSTA)*X (N)**2-1.0
RETUASN
END
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