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A B S T R A C T

In this work, we study the dual effects of linear cross-diffusion and geometry on reaction–diffusion systems
for pattern formation on rectangular domains. The spatiotemporal dynamics of the reaction–diffusion system
with linear cross-diffusion are explored for the case of an activator-depleted model of two chemical species
in terms of the domain size and its model parameters. Linear stability analysis is employed to derive the
constraints which are necessary in understanding the dual roles of linear cross-diffusion and domain-size in
studying the instability of the reaction–diffusion system. The conditions are proven in terms of lower and upper
bounds of the domain-size together with the reaction, self- and cross-diffusion coefficients. The full parameter
classification of the model system is presented in terms of the relationship between the domain size and cross-
diffusion-driven instability. Subsequently, regions showing Turing instability, Hopf and transcritical types of
bifurcations are demonstrated using the parameter values of the system. In this work, our theoretical findings
are validated according to the proper choice of parameters in order to understand the effects of domain-size and
linear cross-diffusion on the long-term spatiotemporal behaviour of solutions of the reaction–diffusion system.
For illustrative purposes, numerical simulations showing each of the three types of dynamics are examined for
the Schnakenberg kinetics, also known as an activator-depleted reaction kinetics.
1. Introduction

Reaction–diffusion systems (RDSs) have been extensively studied as
a class of the prominent models for investigating the pattern generation
in various biological and chemical processes [1–8]. The evolution of
self-organising pattern formation was introduced by Alan Turing in
his seminal work [9] through a detailed justification of how and why
reaction–diffusion systems could explain the dynamics of chemical mor-
phogenesis that are responsible for the emergence of pattern formation
in nature. Activator-depleted reaction kinetics known as Schnakenberg
kinetics [1,3,7,10] modelled with diffusive systems, is one of the well-
known reaction kinetics for investigating the spatiotemporal dynamics
of patterns induced by the reaction–diffusion theory.
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Diffusion processes can be characterised in a variety of forms in
many multi-component systems. One of these forms of diffusion is cross
diffusion, which serves to explain a process in which a gradient in
concentration of one chemical or biological species induces the fluxes
of another species [4]. The classical pattern formation mechanism in
reaction–diffusion systems in the absence of cross-diffusion requires the
existence of long-range inhibition and short-range activation, which
implies that the diffusion coefficient of the inhibitor should be sig-
nificantly greater than the diffusion coefficient of the activator [3,7].
On the other hand, the existence of cross-diffusion enables the usage
of equal rates of diffusion coefficients. It has been shown that the
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presence of cross-diffusion in RDSs has a significant and positive effect
on the ability of reaction–diffusion systems to form patterns [4,7,8,11].
Cross-diffusive induced pattern formation has been extensively studied
in several biochemical applications such as interactions of solutes [4,
12,13], prey-predator systems [14–16], chemotaxis [17,18]. A study
in [19] focused on the generation of different kind of bifurcation
regions for the cross diffusive RDS to exhibit pattern formation. Turing
instability analysis have been discussed in [7,8] with the necessary
conditions for such systems to exhibit pattern formation on stationary
and growing domains, respectively.

Linear stability analysis is a useful tool to investigate stability
and instability conditions for the spatiotemporal dynamics of RDS
around a uniform steady state. These conditions are determined by
the eigenvalues of the linearised time-dependent stability matrix. With
the linear stability analysis, regions corresponding to pattern formation
can be created in the presence of self or cross-diffusion [7,20–22].
Parameter classification has a significant importance in the analysis
of the mechanisms for pattern formation formulated by RDSs. The
works presented in [7,8], provide a detailed linear stability analysis,
which is proposed with the derivation of the necessary conditions
for the cross-diffusive system to exhibit Turing instability on static
and evolving domains respectively. The study in [7,8] focused mainly
on finding the unstable regions of parameter spaces confined only to
Turing diffusion-driven instability in the presence of cross-diffusion for
the activator-depleted model. One of the novelty of this study is to
derive sufficient conditions relating the domain-size to the necessary
cross-diffusion driven instability conditions proposed in [7,8]. The
methodology used in the current work compared to [7,8] is completely
independent i.e. a dynamical system’s approach utilising the spectrum
of the Laplace operator in classifying the parameter spaces is novel. The
classification of the parameter spaces in the current study is not only
limited to the Turing spaces (which is the case in [7,8]). Moreover, the
current study extends to acquire a full classification of the admissible
parameter spaces of the RDSs, which entails the regions pertinent
to different dynamical properties such as spatial and spatiotemporal
pattern formation. The numerical simulations in the current manuscript
successfully demonstrate a diverse set of dynamical properties (spatial
and spatiotemporal) of the Schankenberg RDS. While demonstrating
our key results, it turns out that the results of [7,8] form a subset
of the generalised spatiotemporal dynamical properties discovered in
the current study. For a traditional RDS to undergo the mechanism
of pattern formation, it is shown in [1,9,23] that the domain must
satisfy a critical scale. The work in this article extends the analysis of
domain size to explore beyond the necessary conditions for diffusion-
driven instability and to discover the effects of domain size and linear
cross-diffusion on the dynamical properties of RDSs.

Studies in the field of RDSs have shown that bifurcation analysis
plays an important role in understanding the spatiotemporal dynami-
cal characteristics of the system near a uniform steady-state [24–32].
Recently, more attention has been paid in bifurcation analysis for the
prey-predator RDs with and without cross diffusion [33–36]. However,
in most current state-of-the-art studies, there is still a lack of expla-
nation on the relationship (and its role) between the domain size and
different bifurcation types. A study conducted in [22] addressed the
full classification of parameter spaces in the combination of spatial
pattern and temporal periodicity on rectangular domains without cross-
diffusion. Hence, this study substantially extends these results by taking
into account cross-diffusion to relate the domain size and the system
parameter values in the presence of linear cross-diffusion. The domain-
dependent analysis is highly dependent on the problem geometry. A
recent study in [37] addressed a quantitative analysis on the relation
between the domain-size of domain and spatiotemporal analysis of
cross-diffusive reaction–diffusion systems on circular domains. In con-
trast, theoretical analysis of this paper is explicitly articulated with a
focus on flat rectangular domains, with simpler eigenfunctions rather
2

than the complex Bessel functions which arise on circular domains,
thereby exhibiting a clear distinction in the presentation of results be-
tween these distinct geometric contexts. We provide rigorous analysis,
parameter spaces on which other researchers can use to study these
models and the exhibition of patterns formed under the theoretical
findings. In order to validate our theoretical findings, a state-of-the-
art finite element method is applied to provide approximate numerical
solutions.

Many of the RDSs contain nonlinear terms which makes them
impractical to obtain closed-form solutions. This difficulty can be over-
come by using suitable computational approaches. Therefore, it be-
comes attractive to explore numerical methods to understand the dy-
namical behaviour of RDSs. It has been well demonstrated in the
literature that the finite element method is one of the powerful numer-
ical method for the spatial discretisation of RDSs [38–43]. According
to this procedure, the system of partial differential equations is first
discretised in space using the finite element method which produces
a time-dependent system of ordinary differential equations (ODEs),
followed by the time discretisation using several time-stepping schemes
to obtain the desired numerical solution [44]. On the other hand,
classification of the parameter space plays a fundamental role in the
parameter selection during the numerical discretisation process. In this
work, our theoretical findings have been validated according to the
proper choice of parameters in order to understand the spatiotemporal
dynamics of the reaction–diffusion system in the presence of linear
cross-diffusion.

In this work, we aim to classify the domain-dependent parametri-
sation and distinguish between the temporal bifurcation and spatial
instability in the presence of linear cross-diffusion using the well-known
activator-depleted model of two chemical species. This process includes
the linear stability analysis of the interaction of these two species in
terms of domain size and the influence of cross-diffusion. We use linear
stability analysis to derive the constraints on the domain-size, necessary
to understand the role of linear cross-diffusion in driving the diffusion-
driven instability of the system. Relating the domain-size and linear
cross-diffusion driven system parameter values enables us to present
the full parameter spaces. Analytical results are verified and supported
by finite element solutions of the full reaction–diffusion system with
linear cross-diffusion.

Hence, the novelty and key contributions of our work to current-
state-of-the-art literature on reaction–diffusion systems for pattern for-
mation is the dual interplay between linear cross-diffusion and the
domain-length. In our study, domain-length acts as a bifurcation pa-
rameter which characterises the transition of solution behaviour from
Turing, Hopf and transcritical bifurcations. By introducing linear cross-
diffusion, the conditions for diffusion-driven instability are substan-
tially relaxed. In particular, equal self-diffusion coefficients can give
rise to pattern formation only in the presence of linear cross-diffusion.
Moreover, we have derived sufficient conditions relating the domain-
size to the necessary and sufficient conditions for cross-diffusion driven
instability. Unlike previous studies which focused on understanding
only Turing cross-diffusion-driven instability, in this work, we have
substantially extended these results to study conditions under which
domain-size coupled with linear cross-diffusion drive Turing instability,
Hopf and transcritical bifurcations.

Hence, this article is organised as follows. In the following section,
we present the cross-diffusive reaction–diffusion model with its related
initial and boundary conditions on a rectangular domain. In Section 2,
we present the linear stability analysis performed around a uniform
steady state using Taylor’s theorem in two variables. In this section,
we also present the necessary and sufficient conditions for the system to
exhibit Turing instability, Hopf bifurcation, and limit cycle behaviour.
Section 3 presents numerical generation of the parameter spaces to
show the effect of self- and cross-diffusion processes on the dynamics
of the system. Section 4 presents finite element solutions of the cross-
diffusive reaction–diffusion system. Finally, in Section 5, we discuss the

novelty of our findings and propose directions of future work.
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1.1. Model equations

The non-dimensionalised form of the RDs in the presence of linear
cross-diffusion for two chemical species 𝑢(𝑥, 𝑦, 𝑡) and 𝑣(𝑥, 𝑦, 𝑡) with
homogeneous Neumann boundary conditions reads as

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝜕𝑢
𝜕𝑡

= 𝛥𝑢 + 𝑑𝑣𝛥𝑣 + 𝛾𝑓 (𝑢, 𝑣), (𝑥, 𝑦) ∈ 𝛺, 𝑡 > 0

𝜕𝑣
𝜕𝑡

= 𝑑𝛥𝑣 + 𝑑𝑢𝛥𝑢 + 𝛾𝑔(𝑢, 𝑣)

𝐧 ⋅ ∇𝑢 = 𝐧 ⋅ ∇𝑣 = 0, (𝑥, 𝑦) ∈ 𝜕𝛺, 𝑡 ≥ 0

𝑢(𝑥, 𝑦, 0) = 𝑢0(𝑥, 𝑦), 𝑣(𝑥, 𝑦, 0) = 𝑣0(𝑥, 𝑦),

(𝑥, 𝑦) ∈ 𝜕𝛺, 𝑡 = 0.

(1)

System (1) is considered on a bounded planar domain 𝛺, where the
ositive constants 𝑑 and 𝛾 represent the non-dimensional diffusion and
eaction coefficients respectively. The outward normal unit vector to
he boundary 𝜕𝛺 is denoted by 𝐧. The non-dimensional coefficients for
elf and linear cross-diffusion are respectively defined in terms of the
imensional coefficients as 𝑑 = 𝐷𝑣

𝐷𝑢
, 𝑑𝑢 = 𝐷𝑢𝑣

𝐷𝑢
, and 𝑑𝑣 = 𝐷𝑣𝑢

𝐷𝑢
(see [7,8]

for further details). The functions 𝑓 (𝑢, 𝑣) = 𝛼 − 𝑢 + 𝑢2𝑣 and 𝑔(𝑢, 𝑣) =
− 𝑢2𝑣, represent the nonlinear [7,8] coupling reaction kinetics with
ositive constants 𝛼 and 𝛽. The system is subject to zero-flux boundary
onditions and strictly positive spatial initial conditions 𝑢0 and 𝑣0.

emark. The rectangular region is considered as 𝛺 = [0, 𝐿𝑥] × [0, 𝐿𝑦]
where 𝐿𝑥 and 𝐿𝑦 denotes the side lengths of the area. For practical
purposes, we consider 𝐿𝑥 = 𝐿𝑦, which means the area of the domain is
taken as 𝐿2 [22].

1.1.1. Well-posedness and global existence and uniqueness of solutions
In order for system (1) to be well-posed, the normally elliptic

condition for semi-linear parabolic partial differential equations must
be satisfied (an interested reader is referred to see [45–47] for further
details). To view the condition more clearly, it is better to write system
(1) in matrix–vector form as follows

𝐔𝑡 = 𝐃𝛥𝐔 + 𝛾𝐅(𝐔), (2)

with appropriate initial and boundary conditions. Here,

𝐔 =
(

𝑢
𝑣

)

, 𝐃 =
(

1 𝑑𝑣
𝑑𝑢 𝑑

)

, and 𝐅 =
(

𝑓 (𝑢, 𝑣)
𝑔(𝑢, 𝑣)

)

.

The so-called normally elliptic condition on the diffusion parameters
𝑑, 𝑑𝑢 and 𝑑𝑣 requires that the diffusion tensor matrix 𝐃 is positive
definite and that entails that 𝑑 − 𝑑𝑢 𝑑𝑣 > 0. This regularity condition
ensures the well-posedness of the system of partial differential equa-
tions [45–47]. This elliptic condition also ensures the global existence
and uniqueness of solutions for the full nonlinear system, provided the
reaction-kinetics given by 𝐅 are Lipschitz continuous or that they satisfy
maximum principles (see [47], Chapter 14). For details, on classical
global existence and uniqueness of solutions of reaction–diffusion in the
absence of cross-diffusion, see the work of [47], Chapter 14. The proof
of the global existence and uniqueness of the solutions for System (2) in
the presence of linear cross-diffusion should follow similar arguments,
however, this is not a trivial calculation.

It must be noted that the analysis for global existence and unique-
ness of solutions of reaction–diffusion systems on growing domains was
carried out in [48], only in the presence of self-diffusion. The results
hold true in the absence of domain growth. However, the inclusion of
cross-diffusion both in the absence and presence of domain growth has
3

not yet been carried and this remains an open problem.
2. Stability analysis in the presence of linear cross-diffusion

System (1) admits a constant uniform steady state solution given by
(𝑢𝑠, 𝑣𝑠) = (𝛼+𝛽, 𝛽

(𝛼+𝛽)2 ) [7,8,22]. This steady state is a unique stationary

oint which is a solution to the system of nonlinear algebraic equations
iven by the reaction kinetics i.e. 𝑓 (𝑢𝑠, 𝑣𝑠) = 𝑔(𝑢𝑠, 𝑣𝑠) = 0, and the
ero-flux boundary conditions enforced on System (1). We proceed
ith the conventional application of linear stability theory to locally
erturb System (1), and thereby investigate the local evolution of the
ynamics of the perturbed variables namely (𝑢, 𝑣) = (𝑢𝑠 + 𝜖�̄�, 𝑣𝑠 + 𝜖�̄�) in

the neighbourhood of the uniform steady state, 𝜖 ≪ 1. The perturbation
ariables (�̄�, �̄�) are assumed sufficiently smooth to satisfy the conditions
or Taylor expansion on functions of two variables leading to the
erivation of a linearised approximation of System (1) neglecting 𝑂(𝜖2)
nd higher order terms, which in the matrix–vector notation is given
y,
𝜕�̄�
𝜕𝑡

= 𝐃𝛥�̄� + 𝛾𝐉𝐅�̄� (3)

where �̄�, 𝐃, 𝐅, and the Jacobian matrix 𝐉𝐅 are respectively expressed
s

̄ =
[

�̄�
�̄�

]

, 𝐃 =
[

1 𝑑𝑣
𝑑𝑢 𝑑

]

, 𝐅(𝑢, 𝑣) =
[

𝑓 (𝑢𝑠, 𝑣𝑠)
𝑔(𝑢𝑠, 𝑣𝑠)

]

,

and

𝐉𝐅 =
[

𝑓𝑢(𝑢𝑠, 𝑣𝑠) 𝑓𝑣(𝑢𝑠, 𝑣𝑠)
𝑔𝑢(𝑢𝑠, 𝑣𝑠) 𝑔𝑣(𝑢𝑠, 𝑣𝑠)

]

. (4)

The linearisation procedure is completed by finding the eigenfunc-
tions of the Laplace operator satisfying the homogeneous Neumann
boundary conditions. Without loss of generality the eigen-expansion of
̄ and �̄� for the spectrum of the Laplace operator on planar rectangular
domains is assumed to hold a similar form. With this in mind the
corresponding eigenvalue problem is given by

⎧

⎪

⎨

⎪

⎩

𝜕2�̄�
𝜕𝑥2

+ 𝜕2�̄�
𝜕𝑦2

= 𝑘2�̄�, (𝑥, 𝑦) ∈ 𝛺,

𝜕�̄�
𝜕𝑥

= 𝜕�̄�
𝜕𝑦

= 0 (𝑥, 𝑦) ∈ 𝜕𝛺,
(5)

where 𝑘 determines the mode of the eigenfunctions satisfying Eq. (5).
Using the standard method of separation of variables the eigenvalue

problem (5) on 𝛺 satisfies a closed form infinite paired series of orthog-
onal functions and discrete positive eigenvalues in the form (�̄�𝑛,𝑚, 𝑘2),
which are expressed as

̄𝑛,𝑚(𝑥, 𝑦) =
∞
∑

𝑛=0

∞
∑

𝑚=0
𝑈𝑛,𝑚 cos

( 𝑛𝜋𝑥
𝐿

)

cos
(𝑚𝜋𝑦
𝐿

)

, (6)

where 𝑚, 𝑛 are natural numbers, i.e. 𝑚, 𝑛 ∈ N. In (6), 𝑈𝑛,𝑚 represents
the mode dependent coefficients of the eigen-expansion of the series
solution to (5). The solution of System (1) is written as a separable
ansatz consisting of infinite expansion of the product of an exponential
decay in the time variable 𝑡 and the spectrum of the two-dimensional
Laplace operator for the space variables 𝑥 and 𝑦, which leads to writing

�̄�(𝑥, 𝑦, 𝑡) =
∞
∑

𝑛=0

∞
∑

𝑚=0
𝑈𝑛,𝑚exp(−𝑘2𝑛,𝑚𝑡) cos

( 𝑛𝜋𝑥
𝐿

)

cos
(𝑚𝜋𝑦
𝐿

)

, (7)

�̄�(𝑥, 𝑦, 𝑡) =
∞
∑

𝑛=0

∞
∑

𝑚=0
𝑉𝑛,𝑚exp(−𝑘2𝑛,𝑚𝑡) cos

( 𝑛𝜋𝑥
𝐿

)

cos
(𝑚𝜋𝑦
𝐿

)

,

where 𝑈𝑛,𝑚 and 𝑉𝑛,𝑚 represent the unknown coefficients of the series
solution. Here, we have defined

𝑘2 ∶= 𝑘2𝑛,𝑚 =
(𝑚2 + 𝑛2)𝜋2

𝐿2
. (8)

Substituting solution (7) into system (1) leads to a fully linearised
dynamical system of ODEs
[

�̄�𝑡
]

=
[

−𝑘2 + 𝛾𝑓𝑢 −𝑑𝑣𝑘2 + 𝛾𝑓𝑣
2 2

] [

�̄�
]

, (9)

�̄�𝑡 −𝑑𝑢𝑘 + 𝛾𝑔𝑢 −𝑑𝑘 + 𝛾𝑔𝑣 �̄�
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where the partial derivatives are evaluated at the uniform steady state
(𝑢𝑠, 𝑣𝑠).

The components of the matrix on the right hand-side of (9) are
xplicitly found in terms of the system parameters using the partial
erivatives of the reaction kinetics 𝑓 (𝑢, 𝑣) and 𝑔(𝑢, 𝑣). These are eval-

uated at the uniform steady state solutions (𝑢𝑠, 𝑣𝑠), which leads to
writing the two-component dynamical system (9) in the form of a
two-dimensional discrete eigenvalue problem given by

⎡

⎢

⎢

⎣

𝛾 𝛽−𝛼𝛼+𝛽 − 𝑘2 𝛾(𝛽 + 𝛼2) − 𝑑𝑣𝑘2

−𝛾 2𝛽
𝛼+𝛽 − 𝑑𝑢𝑘2 −𝛾(𝛽 + 𝛼2) − 𝑑𝑘2

⎤

⎥

⎥

⎦

[

�̄�

�̄�

]

= 𝜆

[

�̄�

�̄�

]

. (10)

olving (10) for 𝜆 requires to find the roots of the corresponding
haracteristic polynomial, which in terms of the trace and determinant
f the stability matrix on the left hand-side of (10) is a quadratic
quation in 𝜆 of the form
2 −  (𝛼, 𝛽)𝜆 +(𝛼, 𝛽) = 0. (11)

ence, the eigenvalues are the roots of (11), which are given by

1,2 =
 (𝛼, 𝛽) ∓

√

 2(𝛼, 𝛽) − 4(𝛼, 𝛽)
2

, (12)

where  (𝛼, 𝛽) and (𝛼, 𝛽) denote the trace and determinant, respec-
tively expressed in terms of the system parameters as

 (𝛼, 𝛽) = 𝛾
(

𝛽 − 𝛼
𝛼 + 𝛽

− (𝛽 + 𝛼)2
)

− (𝑑 + 1)𝑘2 (13)

and

(𝛼, 𝛽) =
(

𝛾
𝛽 − 𝛼
𝛼 + 𝛽

− 𝑘2
)

(

−𝛾(𝛽 + 𝛼)2 − 𝑑𝑘2
)

(14)

−
(

𝛾(𝛽 + 𝛼)2 − 𝑑𝑣𝑘2
)

(

−𝛾(
−2𝛽
𝛼 + 𝛽

) − 𝑑𝑢𝑘2
)

.

Note that in addition to depending on 𝑑 and 𝛾, the roots given by
(12) now depend also on the cross-diffusion coefficients namely 𝑑𝑢 and
𝑑𝑣. The influence of such dependence of  (𝛼, 𝛽) and (𝛼, 𝛽) on cross-
diffusion coefficients is thoroughly investigated and, in addition to the
necessary conditions proposed in [7], a set of sufficient conditions
are derived and presented in the form critical inequalities imposed on
the domain-size controlling parameter 𝐿 to determine the dynamical
properties of pattern formation modelled by (1). To verify the analytical
findings due to the influence of cross-diffusion coefficients, we demon-
strate by numerical computations that sub-regions for the proposed
dynamics of pattern formation exist within the admissible parameters
spaces (𝛼, 𝛽) ∈ R2

+.

2.1. Analysis for spatiotemporal pattern formation

We first analyse the characteristic polynomial (11), when the roots
are a pair of complex conjugate values. Note that the admissible
parameter spaces are partitioned by a curve satisfying the equation

 2(𝛼, 𝛽) − 4(𝛼, 𝛽) = 0, (15)

one side of which corresponds to 𝜆1,2 ∈ R and the other side corre-
sponds 𝜆1,2 ∈ C∖R. The numerical solution satisfying (15) is presented
in Section 3 on the top-right quadrant (𝛼, 𝛽) ∈ R2

+ using the numerical
method of polynomials illustrated in [22]. The eigenvalues 𝜆1,2 are
complex conjugate pair if (𝛼, 𝛽) ∈ R2

+ satisfy the inequality

 2(𝛼, 𝛽) − 4(𝛼, 𝛽) < 0, (16)

which leads to an immediate requirement that (𝛼, 𝛽) > 0. Before
proceeding to exploit this requirement note that adding cross-diffusive
terms imposes no change to the trace of the stability matrix, implying
that the domain-dependent conditions proven in the absence of cross-
diffusion presented in [22] will remain valid but only in the form
of necessary conditions on the domain-size. In the presence of cross-
4

diffusion, deriving sufficient conditions requires additional work in the
sense of exploring the positivity of (𝛼, 𝛽). This is because restricting
the analysis to exploitation of only the trace of the stability matrix will
lead to the same set of conditions obtained with and without cross-
diffusion. For the purpose of completeness, we recall the statements of
Theorems 1 and 2 in [22].

Theorem 1 (Condition for Hopf/transcritical Bifurcation). Let 𝑢 and 𝑣
atisfy the cross-diffusive reaction–diffusion system given by the Eq. (1) with

real positive parameters 𝛼 > 0, 𝛽 > 0, 𝑑 > 0, and 𝛾 > 0. For the system
o exhibit Hopf and/or transcritical bifurcation, the domain-size controlling
arameter 𝐿 must be large enough to satisfy,

2 ≥ (𝑑 + 1)(𝑚2 + 𝑛2)𝜋2

𝛾
, (17)

where 𝑚 and 𝑛 are positive integers representing the eigenmodes of the
Laplace operator in 𝛺, with homogeneous Neumann boundary conditions.

Proof. The proof of this theorem depends on the positivity of the
trace  (𝛼, 𝛽) of the stability matrix given by (9). Note that the trace
 (𝛼, 𝛽) of the stability of matrix (9) is independent of cross-diffusive
coefficients. Thus, the condition of this theorem for the cross-diffusive
system remains the same as that in the case of no cross-diffusion, the
proof of which is presented in [22]. □

Theorem 2 (Turing Diffusion-Driven Instability). Let 𝑢 and 𝑣 satisfy the
cross-diffusive reaction–diffusion system given by (1) with real positive
parameters 𝛼 > 0, 𝛽 > 0, 𝑑 > 0, and 𝛾 > 0. If the domain-size controlling
the parameter 𝐿 satisfies the condition

𝐿2 <
(𝑑 + 1)(𝑚2 + 𝑛2)𝜋2

𝛾
(18)

then, the instability of the cross-diffusive system (1) is restricted to Turing
type only, which means under this condition temporal periodicity in the
dynamics is forbidden. In (18), 𝑚 and 𝑛 denote positive integers representing
the eigenmodes of the Laplace operator on 𝛺, with homogeneous Neumann
boundary conditions.

Proof. The proof of this theorem is acquired through exploring the
real part of the eigenvalues 𝜆1,2 when the discriminant  2 − 4 of the
characteristic polynomial is negative. The surface  (𝛼, 𝛽) is investigated
within the range of the admissible unstable parameter spaces (𝛼, 𝛽) ⊂ R2

sing monotonicity and Hessian matrix which leads to condition (18).
he interested reader of this proof is referred to Theorem 2 in [22].
ur grounds for exploiting Theorem 2 of [22] in the current analysis

s due to the fact that the trace  (𝛼, 𝛽) of the stability matrix (9) is
ndependent of 𝑑𝑢 and 𝑑𝑣. □

emark. In the case of self-diffusive systems, Theorem 1 is the neces-
ary condition for the admissibility of temporal periodicity (Hopf/limit
ycle behaviour) in the dynamics, however it does not preclude the
xistence of spatial pattern (Turing type behaviour). Theorem 2, on
he other hand, admits the emergence of spatial pattern while totally
orbidding the existence of temporal periodicity in the dynamics. Both
heorems 1 and 2 are limited to serve only as necessary conditions for
he respected dynamical behaviours in the presence of cross-diffusion.
his means, to ensure the expected dynamical behaviours we need
urther conditions involving relationships between 𝐿, 𝑑𝑢, 𝑑𝑣 and 𝑑. Such
onditions are derived by requiring the positivity of the determinant
(𝛼, 𝛽) of the stability matrix (10).

The determinant of the stability matrix (10) is expanded and fac-
orised in the form of a product of a strictly positive quantity 1

𝛼+𝛽 with
a cubic polynomial in 𝛽 given by [37],

(𝛼, 𝛽) = 𝑝0 + 𝑝1𝛽 + 𝑝2𝛽2 + 𝑝3𝛽3, (19)

with

𝑝0 =
1 𝜅0(𝛼),
𝛼 + 𝛽
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𝑝1 =
1

𝛼 + 𝛽
𝜅1(𝛼),

2 =
1

𝛼 + 𝛽
𝜅2(𝛼),

3 =
1

𝛼 + 𝛽
𝜅3(𝛼).

ere, the 𝜅𝑖’s (𝑖 = 0, 1, 2, 3) are expressed in terms of all the remaining
arameters of the system written as

0(𝛼) = 𝛼3𝛾2 + 𝛼3𝛾𝑘2 + 𝛼𝑑𝑘4 − 𝛼𝑑𝑢𝑑𝑣𝑘4 + 𝛼𝑑𝛾𝑘2 + 𝛼3𝑑𝑢𝛾𝑘2,

𝜅1(𝛼) = 𝑑𝑘4 − 𝑑𝑢𝑑𝑣𝑘4 − 𝑑𝛾𝑘2 + 3𝛼2𝛾2 + 3𝛼2𝛾𝑘2 + 3𝛼2𝑑𝑢𝛾𝑘2 − 2𝑑𝑣𝛾𝑘2,

𝜅2(𝛼) = 3𝛼𝛾(𝑘2(𝑑𝑢 + 1) + 𝛾),

3(𝛼) = 𝛾𝑘2 + 𝛾2 + 𝑑𝑢𝛾𝑘2 = 𝛾(𝑘2(𝑑𝑢 + 1) + 𝛾).

Note that 𝛼 and 𝛽 are non-zero positive constants, hence we can assert
that requiring (𝛼, 𝛽) > 0 entails the positivity of the cubic polynomial
in 𝛽 given in (19). We start by writing the polynomial such that the
coefficient of 𝛽3 is unity, which means we can write

𝛽3 +
𝜅2(𝛼)
𝜅3(𝛼)

𝛽2 +
𝜅1(𝛼)
𝜅3(𝛼)

𝛽 +
𝜅0(𝛼)
𝜅3(𝛼)

> 0. (20)

The domain-size controlling constant 𝐿 is now a parameter of the
coefficients of (20). We exploit the following theorem from [49] to
deduce the conditions required for (20) to be positive in terms of the
parameters of our interest namely 𝐿, 𝑑, 𝑑𝑢, 𝑑𝑣, 𝛾, and the spectrum of
the Laplace operator.

Theorem 3 (Positivity of a Cubic Polynomial). Let (𝛽) = 𝛽3+𝑎𝛽2+𝑏𝛽+𝑐
be a non-degenerate cubic polynomial. For (𝛽) to be strictly positive, the
following conditions must be satisfied:

(i) 𝑐 > 0,
(ii) 𝑎, 𝑏 ≥ 0,
(iii) 𝛥(𝛽) = 𝑎2𝑏2 + 18𝑎𝑏𝑐 − 27𝑐2 − 4𝑎3𝑐 − 4𝑏3 ≤ 0,

where 𝛥(𝛽) represents discriminant of (𝛽).

Proof. Proof of this theorem is given in [49]. □

Requiring the three conditions on 𝑎, 𝑏 and 𝑐 in Theorem 3 leads to
three inequalities of the form

𝜅0(𝛼)
𝜅3(𝛼)

=
(𝑑 − 𝑑𝑢𝑑𝑣)𝛼𝑘4 + (𝛼3𝛾 + 𝛼𝑑𝛾 + 𝛼3𝑑𝑢𝛾)𝑘2 + 𝛼3𝛾2

𝛾𝑘2 + 𝛾2 + 𝑑𝑢𝛾𝑘2
> 0,

𝜅1(𝛼)
𝜅3(𝛼)

=
(𝑑 − 𝑑𝑢𝑑𝑣)𝑘4 − (𝑑𝛾 − 3𝛼2𝛾 − 3𝛼2𝑑𝑢𝛾 − 2𝑑𝑣𝛾)𝑘2

𝛾𝑘2 + 𝛾2 + 𝑑𝑢𝛾𝑘2
(21)

+
3𝛼2𝛾2

𝛾𝑘2 + 𝛾2 + 𝑑𝑢𝛾𝑘2
≥ 0,

𝜅2(𝛼)
𝜅3(𝛼)

=
3𝛼𝛾2 + 3𝛼𝛾𝑘2 + 3𝛼𝑑𝑢𝛾𝑘2

𝛾𝑘2 + 𝛾2 + 𝑑𝑢𝛾𝑘2
≥ 0. (22)

Proposition 1. Let the cubic polynomial (𝛽) in Theorem 3 be defined
as

(𝛽) = ℎ(𝛽)𝛽 + 𝑐, (23)

where ℎ(𝛽) = 𝛽2 + 𝑎𝛽 + 𝑏, for 𝑐 > 0 on 𝛽 ≥ 0. The nonnegativity of the
quadratic polynomial ℎ(𝛽) requires

𝑎 ≥ 0, 𝑏 ≥ 0,

or

𝑏 > 0, 4𝑏 ≥ 𝑎2.

This indicates that the cubic polynomial (𝛽) is strictly positive for all 𝛽 ≥ 0
5

when 𝑐 > 0 [49,50]. t
The relationship between the domain size controlling parameter 𝐿
and the cross-diffusive system parameters is stated in the following
theorem. The method, we follow in the proof of the next theorem
was also followed in the study [37]. However, the condition reached
in the study [37] is valid on a disc-shaped geometry, whereas the
condition obtained in this study is applied to the rectangular domain
and is original in terms of the relationship between domain size and
the system parameters.

Theorem 4 (Condition on 𝐿 for Spatiotemporal Pattern Formation). Let
𝑢 and 𝑣 satisfy the cross-diffusive reaction–diffusion system given by the
Eq. (1) with real positive parameters 𝛼 > 0, 𝛽 > 0, 𝑑 > 0, 𝛾 > 0 and
cross-diffusive parameters 𝑑𝑢 and 𝑑𝑣. For the cross-diffusive system to exhibit
patiotemporal pattern formation, domain-size controlling parameter 𝐿 must
atisfy the inequality

2 >
(𝑑 − 𝑑𝑢𝑑𝑣)(𝑚2 + 𝑛2)𝜋2

(7𝑑 + 8𝑑𝑣)𝛾
, (24)

where 𝑚 and 𝑛 are positive integers representing the eigenmodes of the
Laplace operator in 𝛺, with homogeneous Neumann boundary conditions.

Proof. Direct algebraic manipulation of inequality (22) leads to a
trivial requirement of the form 3𝛼 ≥ 0, since (𝛼, 𝛽) ∈ R2

+ in System
(1). Second condition in Proposition 1 leads to the following condition,

3𝛼2 +
(𝑑 − 𝑑𝑢𝑑𝑣)𝑘4 − (𝑑 + 2𝑑𝑣)𝛾𝑘2

(1 + 𝑑𝑢)𝛾𝑘2 + 𝛾2
≥ 9𝛼2

4
, (25)

with

𝛼2 +
(𝑑 − 𝑑𝑢𝑑𝑣)𝑘4 + 𝑑𝛾𝑘2

(1 + 𝑑𝑢)𝛾𝑘2 + 𝛾2
> 0. (26)

he conditions (25) and (26) can be simplified as,

4(𝑑 − 𝑑𝑢𝑑𝑣)𝑘4 − 4(𝑑 + 2𝑑𝑣)𝛾𝑘2

(1 + 𝑑𝑢)𝛾𝑘2 + 𝛾2
≥ −3𝛼2. (27)

and
3(𝑑 − 𝑑𝑢𝑑𝑣)𝑘4 + 3𝑑𝛾𝑘2

(1 + 𝑑𝑢)𝛾𝑘2 + 𝛾2
> −3𝛼2. (28)

Combination of equal case of (27) and inequality (28) gives the follow-
ing system,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

4(𝑑 − 𝑑𝑢𝑑𝑣)𝑘4 − 4(𝑑 + 2𝑑𝑣)𝛾𝑘2

(1 + 𝑑𝑢)𝛾𝑘2 + 𝛾2
= −3𝛼2

3(𝑑 − 𝑑𝑢𝑑𝑣)𝑘4 + 3𝑑𝛾𝑘2

(1 + 𝑑𝑢)𝛾𝑘2 + 𝛾2
> −3𝛼2.

(29)

ubstituting for −3𝛼2 from the second part (strict inequality) into the
ight-hand term of the first equality results in the following inequality

3(𝑑 − 𝑑𝑢𝑑𝑣)𝑘4 + 3𝑑𝛾𝑘2

(1 + 𝑑𝑢)𝛾𝑘2 + 𝛾2
>

4(𝑑 − 𝑑𝑢𝑑𝑣)𝑘4 − 4(𝑑 + 2𝑑𝑣)𝛾𝑘2

(1 + 𝑑𝑢)𝛾𝑘2 + 𝛾2
. (30)

Solving (30) for 𝑘2 will lead to a sufficient condition on the domain-
ize controlling parameter 𝐿 that will ensure the positivity of the cubic
olynomial (20) and in turn that of the determinant of the stability
atrix given by (19). For the derivation of the desired condition,

he sign of the denominator of both sides of (30) is exploited, which
equires the analysis to independently investigate the case when the
enominator on both sides of (30) is either positive or negative. Such
equirement enforces two independent cases to explore, namely 𝑑𝑢 > −1
nd 𝑑𝑢 < −1, subject to 𝑑 − 𝑑𝑢𝑑𝑣 > 0. Hence, the current analysis
dmits the concept of cross-diffusion for the activator species to be both
egative and positive. However, the determinant of the full matrix must
e positive to ensure the regularity of the partial differential system.
e exploit the experimental investigation conducted in [4] and results

herein, where negative (dimensional values) for cross-diffusion are
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demonstrated to give rise to Turing type behaviour in the dynamics.
Such experimental findings create the platform to analytically investi-
gate the cross-diffusive parameter 𝑑𝑢 across the full spectrum of the
real line in particular, both for the choice of negative and positive
real values. Therefore, exploiting such observations we first utilise the
constraint 𝑑𝑢 > −1, which entails the positivity of the denominator of
both sides of (30). This leads to the inequality

3(𝑑 − 𝑑𝑢𝑑𝑣)𝑘2 + 3𝑑𝛾 > 4(𝑑 − 𝑑𝑢𝑑𝑣)𝑘2 − 4(𝑑 + 2𝑑𝑣)𝛾 (31)

or

3𝑑𝛾 + 4(𝑑 + 2𝑑𝑣)𝛾 > (𝑑 − 𝑑𝑢𝑑𝑣)𝑘2. (32)

By rearranging the inequality (32), we write,

𝑘2 <
(7𝑑 + 8𝑑𝑣)𝛾
𝑑 − 𝑑𝑢𝑑𝑣

. (33)

Substituting 𝑘2 =
(𝑚2 + 𝑛2)𝜋2

𝐿2
gives the following condition of the

domain size 𝐿2 as
(𝑚2 + 𝑛2)𝜋2

𝐿2
<

(7𝑑 + 8𝑑𝑣)𝛾
𝑑 − 𝑑𝑢𝑑𝑣

(34)

or, by rearranging the last expression, we have

𝐿2 >
(𝑑 − 𝑑𝑢𝑑𝑣)(𝑚2 + 𝑛2)𝜋2

(7𝑑 + 8𝑑𝑣)𝛾
, (35)

which leads to the sufficient condition for the domain size 𝐿. □

Remark. The relationship between the main diffusion 𝑑 and cross-
diffusion parameters 𝑑𝑢 and 𝑑𝑣 is accepted to satisfy 𝑑 − 𝑑𝑢𝑑𝑣 > 0 for
the system to be well-posed. The proof of this relationship has been
presented in [7]. Therefore, the current analysis is based on the fact
that 𝑑 − 𝑑𝑢𝑑𝑣 > 0.

3. Numerical generation of the parameter spaces

In this section, numerical simulations of the parameter spaces sat-
isfying the conditions derived from the previous section are presented
on the plane (𝛼, 𝛽) ∈ R2

+. For illustrative purposes, all computations are
carried out on a unit square domain, unless stated otherwise. We will
explore the generation of parameter spaces when the domain length
and the modes 𝑚 and 𝑛 are varied (see Table 2 for details and finite
element simulations shown in Fig. 17). In addition, we demonstrate the
calculation of the implicit partition curves. The partitioning curves that
separate the real and imaginary parts must satisfy,

 2 − 4 = 0, (36)

which corresponds to the repeated roots of the eigenvalues. The change
of the sign of the discriminant  2−4 establishes the real and complex
regions, respectively. Moreover, solution of Eq. (36) determines the
boundary of these regions. On the other hand, solutions of Eq. (36)
can be represented implicitly by the following polynomial of order six
in 𝛽, where the coefficients depend on the other system parameters in
the form

𝜓(𝛼, 𝛽) = 𝑃0(𝛼𝑖) + 𝑃1(𝛼𝑖)𝛽 + 𝑃2(𝛼𝑖)𝛽2 + 𝑃3(𝛼𝑖)𝛽3

+𝑃4(𝛼𝑖)𝛽4 + 𝑃5(𝛼𝑖)𝛽5 + 𝑃6(𝛼𝑖)𝛽6, (37)

where

𝑃0 = 𝛾2𝛼6 + 2𝛾𝛼4(−𝛾 + (𝑑 − 2𝑑𝑢 − 1)𝑘2)

+𝛾2𝛼2 − 2𝑘2𝛼2(𝑑 − 1)𝛾 + 𝛼2(𝑑 + 4𝑑𝑢𝑑𝑣 − 2𝑑 + 1)𝑘4,

𝑃1 = 6𝛾2𝛼5 − 12𝛾2𝛼3 + 8𝛾𝛼3(𝑑 − 2𝑑𝑢 − 1)𝑘2

−𝛾2 − 4𝑑𝑣𝑘2 + (𝑑2 + 4𝑑𝑢𝑑𝑣 − 2𝑑 + 1)𝑘4

𝑃 = 15𝛾2𝛼4 − 24𝛾𝛼2 + 12𝛾𝛼2(𝑑 − 2𝑑 − 1)𝑘2
6

2 𝑢
Fig. 1. Classification of the parameter spaces for the stability regions of the reaction–
diffusion system in the presence of linear cross-diffusion with 𝑑 = 1, 𝑑𝑢 = 𝑑𝑣 = 0.1,
and 𝛾 = 100 (For interpretation of the references to colour in this figure legend, the
readeris referred to the web version of this article).

+𝛾2 + 2𝑘2(𝑑 + 4𝑑𝑣 − 1) + 𝛾 + (𝑑2 + 4𝑑𝑢𝑑𝑣 − 2𝑑 + 1)𝑘4,

𝑃3 = 5𝛼3𝛾 − 5𝛾2𝛼 + 8𝛾𝛼(𝑑 − 2𝑑𝑢 − 1)𝑘2

𝑃4 = 15𝛾2𝛼2 − 6𝛾2 + 2𝛾(𝑑 − 2𝑑𝑢 − 1)𝑘2

𝑃5 = 6𝛼𝛾2,

𝑃6 = 𝛾2.

The classification of parameter spaces on the (𝛼, 𝛽) plane is pre-
sented in Fig. 1 where the cross-diffusion parameters are now included.
In the regions in which the real part of the eigenvalues (whether
purely real or complex) is positive represent unstable regions whereby
the uniform steady state solution (𝑢𝑠, 𝑣𝑠) is asymptotically unstable,
while those regions where the real part of the eigenvalues is negative
represent stable regions for the uniform steady state solution. Regions
that allow for Turing pattern formation to occur are those associated
with the instability of the uniform steady state solution for the case
of real eigenvalues, while the case of complex eigenvalues will give
rise to oscillatory solutions. In Fig. 1, the curve that divides regions
given by green and magenta colours shows the boundary for real and
complex eigenvalues, in which the discriminant is  2−4 = 0. Regions
containing the complex eigenvalues are indicated with green and red
colours, and regions containing real eigenvalues are indicated by ma-
genta and blue colours. In addition, the boundary curve which divides
magenta and green regions, corresponds to the real repeated negative
eigenvalues. Model parameters chosen from these regions will result in
the reaction–diffusion system with linear cross-diffusion converging to
the uniform steady state. Here, the magenta colour region corresponds
to the real distinct negative eigenvalues, in which the choice of (𝛼, 𝛽)
within this region entails that the uniform steady state solution (𝑢𝑠, 𝑣𝑠)
becomes stable. The green region is also a stable region with complex
eigenvalues possessing negative real part. Again the choice of the
parameters from this region will ensure that the uniform steady state
solution is asymptotically stable. The curve that divides the green
and red regions represents the separation of the stable and unstable
parameter spaces. The red and blue regions (or spaces) are where the
uniform steady state solution is asymptotically unstable. Parameters
from this blue region have the potential to give rise to Turing patterns
under appropriate cross-diffusive driven instability conditions. The red



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 186 (2024) 115295W. Sarfaraz et al.
Fig. 2. Parameter spaces of the reaction–diffusion system in the presence of linear
cross-diffusion for different diffusion coefficients 𝑑 and fixed 𝑑𝑢 = 0.1, 𝑑𝑣 = 0.1 and
𝛾 = 100.

region is obtained when the eigenvalues are complex with a positive
real part, in which we have the Hopf bifurcation region. Furthermore,
the curve that separates the red and blue regions corresponds to the
eigenvalues that are real and repeated and the blue region is the region
where the eigenvalues are real and at least one of them is positive. The
domain size satisfying the condition given by Theorem 4 is provided in
the numerical simulations section for the selected parameter values.

Investigation of the spatial patterns, temporally periodic patterns
and limit cycle behaviour of the system are conducted through varia-
tions of the main diffusion coefficient 𝑑 and cross-diffusion parameters
𝑑𝑢 and 𝑑𝑣, all satisfying the conditions of theorems presented in Sec-
tion 2. In each of the figures illustrating the parameter spaces with
variation of each of the three parameters (𝑑, 𝑑𝑢, 𝑑𝑣), the curves 𝑏1
to 𝑏6 represent Turing space boundaries. In Fig. 2, parameter spaces
are presented for varying 𝑑 when the cross-diffusion parameters 𝑑𝑢
and 𝑑𝑣 are fixed. Results showing the Hopf bifurcation regions are
represented by 𝐻1-𝐻6, whereas the transcritical curves are shown by
𝑐1-𝑐6. Observations from Fig. 2 indicate that decreasing 𝑑 results in an
increase of the Hopf bifurcation region. We also observe that the limit
cycle curves shift from 𝑐1 to 𝑐6 as 𝑑 decreases. On the other hand, an
increase in 𝑑 results in an increase in Turing regions, unlike Hopf and
transcritical type of bifurcation regions.

Fig. 3(a) presents the regions for variations of 𝑑𝑢 when 𝑑 and 𝑑𝑣 are
fixed. Assuming the cross-diffusion coefficient 𝑑𝑢 > 0, increasing 𝑑𝑢 does
not change the limit cycle behaviour. On the other hand, an increase in
𝑑𝑢 results in the shrinking of the Hopf bifurcation regions downwards
from 𝐻1 to 𝐻6. From Fig. 3(a), we observe that Turing regions start to
invade the Hopf bifurcation regions gradually as 𝑑𝑢 increases.

Fig. 3(b) indicates the regions for variations of 𝑑𝑣 when 𝑑 and 𝑑𝑢
values are fixed. Variation of 𝑑𝑣 gives the same location of limit cycle
curve as in Fig. 3(a). Increase of parameters 𝑑𝑢 and 𝑑𝑣 results in as
expansion of Turing regions. This can be observed by Turing space
boundaries as 𝑑𝑣 values gets varied. Hence, we can conclude from
Fig. 3 that variations of positive cross-diffusion coefficients 𝑑𝑢 and 𝑑𝑣
do not affect the limit cycle behaviour, only the Turing parameter space
regions do change with variations in the cross-diffusion coefficients.

Next, we generate parameter spaces by considering negative cross-
diffusion coefficients 𝑑𝑢 and 𝑑𝑣. These spaces exists for the reaction–
diffusion system only in the presence of linear cross-diffusion. By taking
the principal diffusion coefficient 𝑑 = 1, we ensure that the reaction–
diffusion system in the absence of cross-diffusion does not give rise
7

to regions of instability. Fig. 4(a) shows the effect of negative cross-
diffusion on the regions corresponding to the Hopf/transcritical curves
for 𝑑𝑢 ∈ (−1, 0) satisfying the condition given by Theorem 4. As in
Fig. 3(a), the limit cycle curve does not change the position with
variations in 𝑑𝑢. However, the Hopf/transcritical bifurcation regions
decrease as 𝑑𝑢 gets closer to −1. In Fig. 4(b), the effect of negative
cross-diffusion on Turing spaces is presented for 𝑑𝑢 ∈ (−1, 0).

Remark. The parameter spaces provided in Figs. 1, 2, 3 and 4 and their
summary presented in Table 1 are generated using 𝐿 = 1 and varying
the self- and cross-diffusion coefficients 𝑑, 𝑑𝑢 and 𝑑𝑣, while keeping all
the remaining parameters and eigenmodes 𝑚 = 1 and 𝑛 = 1 fixed.

While the inequalities 𝑚 and 𝑛 suggest a theoretical range that
extends to infinity, this does not imply that 𝐿2 = ∞ is physically
meaningful or applicable within the context of the model defined in
System (1). The conditions we derived in Theorems 1, 2, and 4 are
valid and practical within the bounds of a finite domain where the
foundational assumptions for pattern formation and diffusion-driven
instability hold true. Once these assumptions are violated in the limits
of an infinite domain, the model itself becomes invalid for predicting
or generating Turing (spatial) or Hopf (spatiotemporal) patterns. Given
that these essential criteria are met, we have conducted simulations
across various parameter spaces to demonstrate both Turing-type and
Hopf bifurcations, which result in spatial and spatiotemporal pattern
formation in System (1). Table 2 specifically illustrates simulations for
larger eigenmodes, thereby validating the claims made in Theorems 1,
2, and 4. These figures in Table 2 clearly show that, under the appropri-
ate conditions, System (1) indeed undergoes the predicted instabilities
and pattern formation as stated in our theorems. Table 1 in conjunction
with Figs. 2 and 3 are novel results which succinctly summarises the
full classification of the admissible parameter space, and predicts the
expected dynamical properties of the RDS, provided that parameters
are selected from the given regions. These are in turn simulated for all
types of instabilities using the finite element method.

4. Finite element numerical simulations of the reaction-diffusion
system with linear cross-diffusion

In this section, we present numerical simulations of the model
System (1) to validate the theoretical findings by using the finite
element method. For details on the finite element method, theory and
applications, the interested reader is referred to the seminal work
in [51], and references therein. Simulations are all performed on a
rectangular domain using a uniform triangular mesh. Initial conditions
are chosen by considering small random perturbations around the
uniform steady-state, for example, in the form of [21,22],

𝑢0(𝑥, 𝑦) = 𝛼 + 𝛽 + 0.0016 cos(2𝜋(𝑥 + 𝑦)) + 0.01
8
∑

𝑖=0
cos (𝑖𝜋𝑥), and

𝑣0(𝑥, 𝑦) =
𝛽

(𝛼 + 𝛽)2
+ 0.0016 cos(2𝜋(𝑥 + 𝑦)) + 0.01

8
∑

𝑖=0
cos (𝑖𝜋𝑥).

In our numerical simulations, we select model parameters 𝛼 and 𝛽 from
the parameter spaces presented in Section 3. The parameter values used
in the numerical simulations are summarised in Table 1. In all our finite
element simulations, we take 8192 triangular elements, yielding 8450
degrees of freedom. To march forward in time, we use the 1st order
semi-implicit backward differential formula (1-SBEM) as presented and
validated in [52] with timestep 𝛥𝑡 = 0.0025. These parameters for
the finite element algorithm ensure stability and convergence of the
numerical method.

In our first example, we select model parameters outside the pa-
rameter spaces as 𝑑 = 2, 𝛾 = 100, 𝑑𝑢 = 𝑑𝑣 = 0.1, 𝛼 = 0.5 and
𝛽 = 1.5, such that no spatiotemporal patterns can emerge. The only
stable solution is the homogeneous uniform steady state. Fig. 5(a)
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Fig. 3. (a) Parameter spaces generated by the reaction–diffusion system with linear cross-diffusion when 𝑑𝑢 > 0 is varied positively for fixed 𝑑 = 2 and 𝑑𝑣 = 0.1 and 𝛾 = 100 (b)
Parameter spaces generated by the reaction–diffusion system with linear cross-diffusion when 𝑑𝑣 > 0 is varied positively for fixed 𝑑 = 1.2, 𝑑𝑢 = 0.1 and 𝛾 = 100.

Fig. 4. (a) Parameter spaces for the reaction–diffusion system with linear cross-diffusion exhibiting regions with hopf/transcritical bifurcations for negative cross-diffusion coefficient
𝑑𝑢 while the rest of the parameters are fixed as 𝑑 = 1, 𝑑𝑣 = 0.01 and 𝛾 = 100 (b) Turing spaces generated for the reaction–diffusion system with linear cross-diffusion coefficient 𝑑𝑢
varied and for fixed 𝑑 = 1.2, 𝑑𝑣 = 0.01 and 𝛾 = 100.

Fig. 5. (a) Finite element numerical solution corresponding to the 𝑢− component of the reaction–diffusion system (1) with linear cross-diffusion. A uniform steady state solution
is observed in complete agreement with theoretical predictions, with 𝑑 = 2, 𝛾 = 100, 𝑑𝑢 = 𝑑𝑣 = 0.1, 𝛼 = 0.5 and 𝛽 = 1.5. (b) The plot of the 𝐿2 norm of the discrete time-derivative
of the finite element solutions 𝑢 and 𝑣.
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Table 1
Full classification of parameter spaces for all types of bifurcations (USS: Uniform Steady-State).

Dynamics near USS (𝑢𝑠 , 𝑣𝑠) Convergence to USS
(No pattern
formation)

Spatial pattern formation Spatiotemporal pattern formation

Types of USS (𝑢𝑠 , 𝑣𝑠) Stable node/spiral Turing space boundaries
(Unstable star node)

Turing spaces
(Unstable node)

Hopf bifurcation spaces
(Unstable spiral)

Limit cycle curves
(Transcritical
bifurcation)

Varying
𝑑

Fig. 2

(𝑑, 𝑑𝑢 , 𝑑𝑣 , 𝛾) 𝜆1,2
0 > 𝜆1,2 ∈ R or
𝜆1,2 ∈ C∖R,Re(𝜆) < 0

𝜆1,2 ∈ R, 0 < 𝜆1 = 𝜆2 0 < 𝜆1 ∈ R or
0 < 𝜆2 ∈ R

𝜆1,2 ∈ C∖R, Re(𝜆1,2) > 0 𝜆1,2 ∈ C∖R, Re(𝜆1,2) = 0

(1.0, 0.1, 0.1, 100) R2
+∖𝑇1 ∪

⋃6
𝑖=1𝐻𝑖 Curve 𝑏6 𝑇1

⋃6
𝑖=1𝐻𝑖 Curve 𝑐6

(1.2, 0.1, 0.1, 100) R2
+∖

⋃2
𝑖=1 𝑇𝑖 ∪

⋃5
𝑖=1𝐻𝑖 Curve 𝑏5

⋃2
𝑖=1 𝑇𝑖

⋃5
𝑖=1𝐻𝑖 Curve 𝑐5

(1.4, 0.1, 0.1, 100) R2
+∖

⋃3
𝑖=1 𝑇𝑖 ∪

⋃4
𝑖=1𝐻𝑖 Curve 𝑏4

⋃3
𝑖=1 𝑇𝑖

⋃4
𝑖=1𝐻𝑖 Curve 𝑐4

(1.6, 0.1, 0.1, 100) R2
+∖

⋃4
𝑖=1 𝑇𝑖 ∪

⋃3
𝑖=1𝐻𝑖 Curve 𝑏3

⋃4
𝑖=1 𝑇𝑖

⋃3
𝑖=1𝐻𝑖 Curve 𝑐3

(1.8, 0.1, 0.1, 100) R2
+∖

⋃5
𝑖=1 𝑇𝑖 ∪

⋃2
𝑖=1𝐻𝑖 Curve 𝑏2

⋃5
𝑖=1 𝑇𝑖

⋃2
𝑖=1𝐻𝑖 Curve 𝑐2

(2.0, 0.1, 0.1, 100) R2
+∖

⋃6
𝑖=1 𝑇𝑖 ∪𝐻1 Curve 𝑏1

⋃6
𝑖=1 𝑇𝑖 𝐻1 Curve 𝑐1

Varying
𝑑𝑢

Fig. 3(a)

(𝑑, 𝑑𝑢 , 𝑑𝑣 , 𝛾) 𝜆1,2
0 > 𝜆1,2 ∈ R or
𝜆1,2 ∈ C∖R,Re(𝜆) < 0

𝜆1,2 ∈ R, 0 < 𝜆1 = 𝜆2 0 < 𝜆1 ∈ R or
0 < 𝜆2 ∈ R

𝜆1,2 ∈ C∖R, Re(𝜆1,2) > 0 𝜆1,2 ∈ C∖R, Re(𝜆1,2) = 0

(2, 2, 0.1, 100) R2
+∖𝑇1 ∪

⋃6
𝑖=1𝐻𝑖 Curve 𝑏1 𝑇1

⋃6
𝑖=1𝐻𝑖 Fixed

(2, 4, 0.1, 100) R2
+∖

⋃2
𝑖=1 𝑇𝑖 ∪

⋃5
𝑖=1𝐻𝑖 Curve 𝑏2

⋃2
𝑖=1 𝑇𝑖

⋃5
𝑖=1𝐻𝑖 Fixed

(2, 6, 0.1, 100) R2
+∖

⋃3
𝑖=1 𝑇𝑖 ∪

⋃4
𝑖=1𝐻𝑖 Curve 𝑏3

⋃3
𝑖=1 𝑇𝑖

⋃4
𝑖=1𝐻𝑖 Fixed

(2, 9, 0.1, 100) R2
+∖

⋃4
𝑖=1 𝑇𝑖 ∪

⋃3
𝑖=1𝐻𝑖 Curve 𝑏4

⋃4
𝑖=1 𝑇𝑖

⋃3
𝑖=1𝐻𝑖 Fixed

(2, 13, 0.1, 100) R2
+∖

⋃5
𝑖=1 𝑇𝑖 ∪

⋃2
𝑖=1𝐻𝑖 Curve 𝑏5

⋃5
𝑖=1 𝑇𝑖

⋃2
𝑖=1𝐻𝑖 Fixed

(2, 18, 0.1, 100) R2
+∖

⋃6
𝑖=1 𝑇𝑖 ∪𝐻1 Curve 𝑏6

⋃6
𝑖=1 𝑇𝑖 𝐻1 Fixed

Varying
𝑑𝑣

Fig. 3(b)

(𝑑, 𝑑𝑢 , 𝑑𝑣 , 𝛾) 𝜆1,2
0 > 𝜆1,2 ∈ R or
𝜆1,2 ∈ C∖R,Re(𝜆) < 0

𝜆1,2 ∈ R, 0 < 𝜆1 = 𝜆2 0 < 𝜆1 ∈ R or
0 < 𝜆2 ∈ R

𝜆1,2 ∈ C∖R, Re(𝜆1,2) > 0 𝜆1,2 ∈ C∖R, Re(𝜆1,2) = 0

(1.2, 0.1, 0.01, 100) R2
+∖𝑇1 ∪

⋃6
𝑖=1𝐻𝑖 Curve 𝑏1 𝑇1

⋃6
𝑖=1𝐻𝑖 Fixed

(1.2, 0.1, 0.11, 100) R2
+∖

⋃2
𝑖=1 𝑇𝑖 ∪

⋃5
𝑖=1𝐻𝑖 Curve 𝑏2

⋃2
𝑖=1 𝑇𝑖

⋃5
𝑖=1𝐻𝑖 Fixed

(1.2, 0.1, 0.21, 100) R2
+∖

⋃3
𝑖=1 𝑇𝑖 ∪

⋃4
𝑖=1𝐻𝑖 Curve 𝑏3

⋃3
𝑖=1 𝑇𝑖

⋃4
𝑖=1𝐻𝑖 Fixed

(1.2, 0.1, 0.31, 100) R2
+∖

⋃4
𝑖=1 𝑇𝑖 ∪

⋃3
𝑖=1𝐻𝑖 Curve 𝑏4

⋃4
𝑖=1 𝑇𝑖

⋃3
𝑖=1𝐻𝑖 Fixed

(1.2, 0.1, 0.41, 100) R2
+∖

⋃5
𝑖=1 𝑇𝑖 ∪

⋃2
𝑖=1𝐻𝑖 Curve 𝑏5

⋃5
𝑖=1 𝑇𝑖

⋃2
𝑖=1𝐻𝑖 Fixed

(1.2, 0.1, 0.51, 100) R2
+∖

⋃6
𝑖=1 𝑇𝑖 ∪𝐻1 Curve 𝑏6

⋃6
𝑖=1 𝑇𝑖 𝐻1 Fixed
Fig. 6. (a) Parameter space on which we choose 𝛼 = 0.06 and 𝛽 = 0.48 with the rest of the model parameters chosen fixed as 𝑑 = 1.2, 𝛾 = 100, 𝑑𝑢 = 0.1, and 𝑑𝑣 = 0.51 such that the
Turing diffusion-driven instability conditions are satisfied. (b) Finite element solution corresponding to the 𝑢(𝑡, 𝐱) variable illustrating the formation of a spatially time-independent
inhomogeneous stripe pattern. (c) A plot of the 𝐿2-norm of the discrete time-derivative of the solutions 𝑢 and 𝑣.
presents the effect of these parameter choices from the region where the
uniform steady state is the only stable solution, thereby giving rise to
no spatiotemporal patterns as expected. Fig. 5(b), presents the uniform
convergence to the steady state (𝑢𝑠, 𝑣𝑠) showing the 𝐿2-norm of the
discrete time derivatives of the solutions 𝑢 and 𝑣. The evolution of the
𝐿2 norm demonstrates the temporal evolution of the convergence of
the finite element method when solving the reaction–diffusion system
9

with linear cross-diffusion to the uniform steady state, with no growth
in the norm.

Next, we select model parameters from the Turing diffusion-driven
instability parameter space shown in Fig. 6(a). Fig. 6(b) illustrates the
formation of a time-independent spatially inhomogeneous solution of
the reaction–diffusion system for the selected model parameters. The
model parameters are chosen such that these satisfy the conditions
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Table 2
Generation of the cross-diffusion -driven parameter spaces varying 𝐿 and the modes 𝑚 and 𝑛.
given in Theorems 1 and 4. To demonstrate the temporal evolution
of the pattern forming process, we plot the discrete 𝐿2 norm of the
discrete time derivative of both finite element solutions as illustrated in
Fig. 6(c). At the early stages of the finite element simulation, diffusion
dominates, leading to a rapid and sharp decrease in the 𝐿2 norm. This is
followed by an exponential-like increase in the 𝐿2 due to the growing
excitable modes, leading to the formation of the spatial pattern. The
growth is finally bounded, whereby the nonlinear terms start to become
dominant, leading to a smooth decrease in the 𝐿2 norm. It is during this
last phase that the solutions converge to a time-independent spatially
inhomogeneous pattern [1,2].

To illustrate the validity of Theorems 1 and 4 (conditions (17) and
(24)), in Figs. 7–8–9, we exhibit periodic pattern formation when model
10
parameters are selected from the Hopf/transcritical bifurcation param-
eter spaces. The spatiotemporal dynamics of the reaction–diffusion
system with linear cross-diffusion exhibit temporal periodicity in their
𝐿2 norms that are of equal amplitudes. These clearly demonstrate the
limit cycle behaviour of the system. To further support this claim,
we have plotted snap shots of the spatial patterns at discrete time
intervals, picked appropriately to illustrate the formation of spatial
structure that is continuously evolving in time. For example, in Fig. 7,
at time approximately 0.175, at the time of the peak of the 𝐿2 norm,
a spot pattern is observed. However, this pattern only exists for a
short fixed finite time, before it looses its stability, with the system
converging to a spatially homogeneous steady state, when the 𝐿2 norm
decays to zero (see the uniform spatial pattern at time approximately
0.4). The spot pattern remerges again (or could be a different one as
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Fig. 7. Finite element simulations corresponding to the 𝑢-component of the reaction–diffusion system (1) with linear cross-diffusion. Parameter values are selected to satisfy
conditions (17) and (24) of Theorems 1 and 4, respectively, with 𝑑 = 12, 𝛾 = 320, 𝑑𝑢 = 0.001, 𝑑𝑣 = 2.8, 𝛼 = 0.075 and 𝛽 = 0.15.
Fig. 8. Finite element simulations corresponding to the 𝑢-component of the reaction–diffusion system (1) with linear cross-diffusion. Parameter values are selected to satisfy
conditions (17) and (24) of Theorems 1 and 4, respectively, with 𝑑 = 12, 𝛾 = 410, 𝑑𝑢 = 0.001, 𝑑𝑣 = 2.8, 𝛼 = 0.1 and 𝛽 = 0.1.
shown next) when the 𝐿2 norm is increasing, as illustrated at say,
time approximately 0.645. This cyclic behaviour in the model system
confirms the theoretical predictions stated in Theorems 1 and 4.

In Figs. 8–9 we exhibit similar cyclic behaviour; the plots of the
discrete 𝐿2 norm of the discrete time-derivative show periodicity in
pattern formation. Unlike the case of Fig. 7, different spot patterns are
converged to at different amplitudes of the 𝐿2 norm. We conjecture
that the reaction–diffusion system with linear cross-diffusion gains and
looses stability at different branches within the limit cycle behaviour,
with some solutions repeated periodically, while at times, these are not
repeated periodically (these could be out of phase for example).
11
In all the examples given by Figs. 7–9, once the spatially hetero-
geneous solution becomes unstable, the reaction–diffusion system with
linear cross-diffusion tends to converge to a spatially uniform steady
state. This uniform steady state is not unique, it depends on how close
the spatially heterogeneous solution is to the uniform steady state.
Further studies on the bifurcation pathways of the system given the
spatial pattern formation are required in order to fully understand the
transition modes during this cyclic behaviour.

Fig. 10 shows the simulation for the choice of parameter values
satisfying the conditions of Theorems 1 and 4, giving rise to the
spatiotemporal periodicity. The choice of the main diffusion coefficient
𝑑 = 1 admits that the eigenvalues to be complex with positive real
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Fig. 9. Finite element simulations corresponding to the 𝑢-component of the reaction–diffusion system (1) with linear cross-diffusion. Parameter values are selected to satisfy
conditions (17) and (24) of Theorems 1 and 4, respectively, with 𝑑 = 12.15, 𝛾 = 390, 𝑑𝑢 = 4, 𝑑𝑣 = 2.8, 𝛼 = 0.1 and 𝛽 = 0.1.
Fig. 10. Finite element simulations corresponding to the 𝑢-component of the reaction–diffusion system (1) with linear cross-diffusion. Parameter values are selected to satisfy
conditions (17) and (24) of Theorems 1 and 4, respectively, with 𝑑 = 1, 𝛾 = 155, 𝑑𝑢 = 0.01, 𝑑𝑣 = 0.55, 𝛼 = 0.085 and 𝛽 = 0.1.
part. One important observation of the selection of the parameter
𝑑 = 1 is that it is now possible to have patterns in the dynamics
only in the presence of cross-diffusion. The plot of 𝐿2 for the discrete
time-derivative shows the temporal patterning with equal amplitudes.
Unlike the previous cases shown in Figs. 7–9, we observe the transition
of spatially inhomogeneous solutions for each stage. Limit cycles are
observed for long term dynamical behaviour of the system.

Fig. 11 exhibits the Hopf type of bifurcation for the choice of
parameter spaces satisfying the conditions of Theorems 1 and 4. In this
particular example, we select the main diffusion coefficient as 𝑑 = 1 in
the presence of the negative cross-diffusion. One other difference of this
experiment from the example shown in Fig. 10 is the usage of larger 𝛾
values, giving rise to larger positive values in the trace of the stability
matrix meaning that the positive real part of the complex eigenvalues
is larger. The plot of 𝐿2 norm of the discrete time derivative shows
the spatiotemporal patterning with a decaying amplitude. In the long
12
term dynamics, we observe temporal cycles are getting smaller. The
decay in amplitude reflects the fact that the reaction–diffusion system
with linear cross-diffusion is converging to spatially inhomogeneous
solutions in a time-periodic fashion.

4.1. Exploration of the parameter spaces and their impact on pattern
formation

In this section, we aim to investigate the effect of parameter choice
on the analysis of the pattern formation in light of the theoretical
observations related to the domain size and the cross-diffusive system.
We present the full model parameters and their choices and the type of
pattern the model system exhibits, in the captions of each Figure.

We begin with the case when the domain size 𝐿2 satisfies Theo-
rems 2 and 4 (i.e. the domain size fulfils conditions (18) and (24)). In
this numerical experiment we observe that the type of instability for
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Fig. 11. Finite element simulations corresponding to the 𝑢-component of the reaction–diffusion system (1) with linear cross-diffusion. Parameter values are selected to satisfy
conditions (17) and (24) of Theorems 1 and 4, respectively, with 𝑑 = 1, 𝛾 = 192, 𝑑𝑢 = −0.01, 𝑑𝑣 = 0.5, 𝛼 = 0.085 and 𝛽 = 0.1.
Fig. 12. (a)–(c) Finite element simulations corresponding to the 𝑢-component of the reaction–diffusion system (1) with linear cross-diffusion. Model parameter values are selected
to satisfy Turing diffusion driven instability conditions as in Theorems 2 and 4, with 𝑑 = 16.5, 𝛾 = 340, 𝑑𝑢 = 4, 𝑑𝑣 = 4, 𝛼 = 0.075 and 𝛽 = 0.3. (d) Plot of the 𝐿2 norms of the
discrete time-derivatives of the solutions 𝑢 and 𝑣. The norms decay rapidly, with the model system converging to a spatially inhomogeneous solution stable over time.
the cross-diffusive system is limited to Turing type only. Fig. 12(a)–
(c) indicates the numerical simulations at certain time levels showing
the agreement with the conditions presented by Theorems 2 and 4.
The convergence in the 𝐿2 norm is presented in Fig. 12(d). The model
system exhibits spatially inhomogeneous spot patterns, with smaller
radii.

Fig. 13 shows Turing type of instability satisfying the conditions in
Theorems 1 and 4 for a different set of parameters. The evolving profile
of the component 𝑢 can be well-captured in Fig. 13(a)–(f), starting with
13
spatially inhomogeneous stripe patterns which evolved with time to
spatially inhomogeneous spot patterns, with a relatively large radii. The
convergence in the 𝐿2 norm of the successive time steps is observed in
Fig. 13(g).

Similarly, Fig. 14 exhibits the Turing type of instability satisfying
the conditions in Theorems 1 and 4. The transient solutions from
random initial conditions show stripe patterns during the early stages
of the formation of the spatially inhomogeneous solution, then, these
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Fig. 13. (a)–(f) Finite element simulations corresponding to the 𝑢-component of the reaction–diffusion system (1) with linear cross-diffusion. Model parameter values parameters
are chosen to satisfy Turing’s diffusion-driven instability conditions as Theorems 1 and 4, with 𝑑 = 2.8, 𝛾 = 310, 𝑑𝑢 = 0.001, 𝑑𝑣 = 0.41, 𝛼 = 0.025 and 𝛽 = 0.55. (h) Plot of the
𝐿2 norms of the discrete time-derivatives of the solutions 𝑢 and 𝑣. The plot exhibits the three phases described earlier, rapid decay due to the effects of diffusion, followed by
exponential growth due to the positivity of the real part of the eigenvalues for the excitable wave numbers and lastly rapid decay leading the model system to converge to a
spatially inhomogeneous solution stable over time.
transform into spatially inhomogeneous spot patterns with very large
radii.

Fig. 15 presents the spatial pattern formation for the parameters
selected from the Turing instability region, particularly to see the
effect of negative cross-diffusion as well as 𝑑 = 1. It has been shown
in [7] that, in the absence of the cross-diffusion, selection of the main
diffusion coefficient as 𝑑 = 1, cannot produce any kind of patterns. In
this particular experiment, we observe the spot type patterns and the
system is uniformly converging to inhomogeneous solution confirming
the theoretical predictions given by Theorems 1 and 4.

In Fig. 16, we confirm that the effect of the choice of model
parameters on the formation of spatial patterns is not limited only to
spatially inhomogeneous, time-independent patterns but that spatially
periodic time-dependent spot patterns can be obtained with large radii.
For illustrative purposes, we carry out simulations using the parameters
from the Hopf/transcritical region. In each case, the 𝐿2 norms of the
discrete time derivatives show the temporal periodical behaviour as
predicted by Theorems 1 and 4.

In the conditions stated by Theorems 1, 2, and 4, the eigenmodes 𝑚
and 𝑛 appear in the numerator of the rational expressions on the right-
hand side of the inequalities. This implies that increasing the values of
𝑚 and 𝑛 requires a larger domain size to demonstrate spatiotemporal
dynamics, which comes at a significant computational cost. In all simu-
lations shown in Figs. 5–16, we have chosen the domain-size parameter
as 𝐿 = 1. For illustration, we have included a simulation shown
in Fig. 17 for modes higher than the first excitable wavenumber to
demonstrate the robustness of our results. We select model parameters
14
as 𝑑 = 1, 𝛾 = 100, 𝑑𝑢 = 𝑑𝑣 = 0.1, 𝛼 = 0.5 and 𝛽 = 1.5 with the domain-
size parameter as 𝐿 = 10. We observe that on this large domain size
(ten times the unit square), spot-patterns form that have much smaller
radii. It is evident that taking larger and large domain size, the spot
patterns will become so small that a spatially homogeneous solution
will start to emerge. Hence, for very large domains, the ability of the
reaction–diffusion system to form patterns is greatly reduced. This is
consistent with previous findings by Turing and Murray [1,9].

5. Conclusion

Reaction–diffusion systems with cross-diffusion play a pivotal in
the area of pattern formation and are applied in many physical prob-
lems in cellular and developmental biology as well as to problems in
material and plant sciences. Understanding the role of domain size
is crucial in understanding the spatiotemporal behaviour of solutions
under different regimes of the parameters. In this study, we have
extended substantially our previous analysis of reaction–diffusion sys-
tems to study simultaneously domain-size and the presence of linear
cross-diffusion, where we have analytically quantified and computed
parameter spaces under Turing diffusion-driven instability as well as
characterising spaces associated with Hopf and transcritical bifurca-
tions. Conditions for the system to exhibit instability of the uniform
steady state (Turing or otherwise) are analytically derived, these ensure
that the reaction–diffusion system with linear cross-diffusion gives rise
to either time-independent spatially inhomogeneous solutions (a spatial
pattern) or time-dependent period solutions (spatial patterning that is
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Fig. 14. (a)–(d) Finite element simulations corresponding to the 𝑢-component of the reaction–diffusion system (1) with linear cross-diffusion. Model parameter values are chosen to
satisfy Turing’s diffusion-driven instability conditions as Theorems 1 and 4, with 𝑑 = 10, 𝛾 = 750, 𝑑𝑢 = 0.001, 𝑑𝑣 = 0.5, 𝛼 = 0.02 and 𝛽 = 0.75. (e) Plot of the 𝐿2 norms of the discrete
time-derivatives of the solutions 𝑢 and 𝑣. Similarly, the plot exhibits the three phases described earlier, rapid decay due to the effects of diffusion, followed by exponential growth
due to the positivity of the real part of the eigenvalues for the excitable wave numbers and lastly rapid decay leading the model system to converge to a spatially inhomogeneous
solution stable over time.
periodic in time). These conditions for pattern formation relate the
domain size and system parameters. Parameter spaces of the model
system are computed through the use of linear stability theory, close to
bifurcation points. To support theoretical findings, appropriate choices
of model parameters were determined (from the computed parameter
spaces) and used in the finite element numerical method to com-
pute approximate numerical solutions to the reaction–diffusion system
with linear cross-diffusion. Finite element solutions exhibit Turing and
Hopf/transcritical spatially inhomogeneous time-independent (for the
case of Turing patterns) and time-periodic patterns (for Hopf and
transcritical).

To demonstrate the role of cross-diffusion in the formation of pat-
terns, as a mechanism for pattern formation, we generated parameter
spaces that are only induced by cross-diffusion. For example, in the
absence of cross-diffusion, it is well-known in the theory of Turing
diffusion-driven instability that the diffusion coefficients of the activa-
tor and the inhibitor must differ substantially. In particular, the classi-
cal paradigm for pattern formation involves long-range inhibition and
short-range activation, which entails that the diffusion coefficient of
the inhibitor must be a lot larger compared to the diffusion coefficient
of the activator [1,9]. This widely accepted key necessary condition
for Turing-type patterning can be relaxed or violated by simply taking
equal diffusion coefficients. Under this assumption or restriction, cross-
diffusion becomes a dominant factor in driving instability or symmetry
breaking of the spatially homogeneous solution, giving rise to the
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formation of spatial structure. Now, coupling cross-diffusion and the
domain size, we generate cross-diffusion induced parameter spaces
by taking the non-dimensional diffusion coefficient 𝑑 = 1, where
𝑑 = 𝐷𝑣

𝐷𝑢
, with 𝐷𝑢 and 𝐷𝑣 the dimensional diffusion coefficients of the

activator and inhibitor respectively. Furthermore, we demonstrate the
ability of cross-diffusion to induce patterns by generating parameter
spaces for positive and negative cross-diffusion coefficients. The only
restriction enforced on the diffusion coefficients is the positivity of the
determinant of the full diffusion tensor matrix, i.e. 𝑑 − 𝑑𝑢𝑑𝑣 > 0. Also
the values of the cross-diffusion coefficients must be selected to en-
sure the well-posedness of the semi-linear parabolic partial differential
system [8,11]. These parameter spaces do not exist in the absence of
cross-diffusion, hence the importance of cross-diffusion as a candidate
mechanism for pattern generation.

Our theoretical findings when pattern formation is induced by cross-
diffusion are then supported by finite element simulations. We exhibit
cross-diffusion induced: (i) spatially inhomogeneous patterns (time-
independent), (ii) time-dependent constant-amplitude periodic spa-
tially inhomogeneous patterns and (iii) time-dependent non-constant
amplitude periodic spatially inhomogeneous patterns. The time-
dependency and time-periodicity are illustrated by computing and
plotting the discrete 𝐿2 norm measure of the discrete time-derivative.
Hence, numerical experiments confirm the existence of pattern for-
mation that can only be possible as a result of and driven by cross-
diffusion.
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Fig. 15. (a)–(e) Finite element simulations corresponding to the 𝑢-component of the reaction–diffusion system (1) with negative cross-diffusion. Model parameter values are chosen
to satisfy Turing’s diffusion-driven instability conditions as Theorems 1 and 4, with 𝑑 = 1, 𝛾 = 500, 𝑑𝑢 = −0.1, 𝑑𝑣 = 0.41, 𝛼 = 0.02 and 𝛽 = 0.6. (f) Plot of the 𝐿2 norms of the
discrete time-derivatives of the solutions 𝑢 and 𝑣.
Our work so far has been restricted to understanding the role of do-
main size and parameters when studying the mechanism for symmetry
breaking of a reaction–diffusion system in the presence of linear cross-
diffusion on stationary rectangular domains. Natural extensions of our
work involve the following open problems:

• Understanding the role of domain-size during growth develop-
ment for reaction–diffusion systems with linear cross-diffusion

• What is the role of nonlinear cross-diffusion as a mechanism
for pattern formation? In this case, weakly nonlinear bifurcation
analysis must be a candidate technique for analytical purposes.
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Fig. 16. (a)–(e) Finite element simulations corresponding to the 𝑢-component of the reaction–diffusion system (1) with linear cross-diffusion. Model parameter values are selected to
satisfy Hopf/Transcritical bifurcation given in Theorems 1 and 4, with 𝑑 = 7, 𝛾 = 150, 𝑑𝑢 = 0.01, 𝑑𝑣 = 2.5, 𝛼 = 0.075 and 𝛽 = 0.15. (f) Plot of the 𝐿2 norm of the discrete time-derivative
of the solutions 𝑢 and 𝑣. The 𝐿2 norms behave differently, these exhibit unequal amplitudes at regular periodic time. The time-evolution of the spatially inhomogeneous solutions
appears to alternate between regular horizontally oriented spot patterns and zigzag oriented spot patterns. This could be due to re-orientation in patterns during transitions from
spatially uniform homogeneous steady states to spatially inhomogeneous solutions. However, the number of spots remain relatively constant.
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Fig. 17. Finite element simulations corresponding to the 𝑢-component of the reaction–diffusion system (1) with linear cross-diffusion. Parameter values are selected to satisfy
conditions (17) and (24) of Theorems 1 and 4, respectively, with 𝐿 = 10, 𝑑 = 1, 𝛾 = 155, 𝑑𝑢 = 0.01, 𝑑𝑣 = 0.55, 𝛼 = 0.085 and 𝛽 = 0.1.
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