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ABSTRACT 
 

Road maintenance is a crucial process for pavement management systems. South African 
local roads managed by lower road authorities (municipality, etc) are in critical condition, 
and their management is not at optimum level which is evident from their poor condition. 
The aim of this paper is to provide a Machine-Learning algorithm to assist road authorities 
to provide optimal maintenance strategies. The objective of the study was to determine the 
most effective condition index for management of flexible pavements. This is achieved by 
conducting descriptive and inferential statistical analysis of two case studies (Low volume 
roads and High-volume roads). Statistical analysis indicated that the visual condition index 
(VCI) has inconsistencies compared to the deduct point surface condition index (CISURF) 
and deduct point pavement condition index (CIPAVE) found in TMH 22. Four machine 
learning models were created which included the Gradient Boosting Classifier, Random 
Forest Classifier, Support Vector Machine Classifier, and Decision Tree Classifier. Of the 
four models explored, the model with the greatest potential for deployment was the 
Gradient Boosting Classifier (GBC) model. The GBC model had an accuracy of 74 %, 85 
% and 93 % in relation to the VCI, CISURF & CIPAVE respectively. The CISURF and CIPAVE was 
identified as the most effective index for use in flexible pavements. 
 
1. INTRODUCTION 
 
A Pavement Management System (PMS) is a set of defined procedures for collecting, 
analysing, maintaining, and reporting pavement data, to assist the decision makers in 
finding optimum strategies for maintaining pavements in serviceable condition over a given 
period of time for the least cost. Key components of a PMS include, but are not limited to 
(Sabita, 2020):  
 
• Road inventory. 
• Pavement condition surveys. 
• Database for information recording. 
• Analysis schemes. 
• Decision criteria. 
• Implementation procedures. 
 
The decision criteria and implementation procedures are dependent on the information 
collected as part of the road inventory and pavement condition surveys. This paper 
addresses the Machine Learning (ML) component of the analysis schemes within PMS. 
Having effective ML tools to analyse road data can advance the sector in making critical 
decision on the maintenance and rehabilitation (M & R). 
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Balaram (2022) exposed the shortcomings of manual visual assessment methods which has 
been used in industry which slowed production and performance of various organisations. 
The study further highlighted the evolution to the existing Pavement Management System 
through technology. The contribution technology can make creating an effective and efficient 
Pavement Management System whereby synergising the components of the PMS life cycle 
creating an integrated solution for South Africa (SA). This includes Designs, Construction, 
and a fixed Asset evaluation of the road network for forecasting and budget allocation at 
government level which in the future can dissolve the maintenance backlog that is 
experienced. 
 
As the road indices contribute to decision making for M & R, they must be accurate and a 
true reflection of road conditions, since delayed M & R can be detrimental financially. It is 
important to note that M & R activities are not solely based on road visual condition indices, 
but also other factors such as traffic, funding, type of road class, etc. Nonetheless, visual 
condition indices contribute significantly to M & R.  A critical evaluation of indices is 
necessary to determine if the visual condition indices methods are still precise as pavement 
engineering is in an ever-changing state due to increase vehicle loadings and climate (which 
can alter pavement distress needs and importance). For example, in South Africa increasing 
temperatures can necessitate distresses such as rutting to be more crucial than freeze 
thawing. Thus, such methods require continuous research and evaluation to ensure the 
design of resistant flexible pavements. Discrepancies in the methods affects road 
maintenance plans, and budgets. Improvement in the methods can result in better road 
infrastructure maintenance and contribute positively to the economy as roads are the most 
important transportation mode for any country (Rampersad et al., 2023).  
 
In South Africa, the Visual Condition Index (VCI), Condition Index Surfacing (CISURF), and 
Condition Index Pavement (CIPAVE) are the main indices used (Committee of Transport 
Officials, 2013). The main objective of the study is to investigate the most effective index for 
the management of flexible pavements. Rampersad et al. (2023) noted that there were 
discrepancies in the methods. The VCI uses arithmetic aggregating (weights and averages 
all present distresses), while both the CISURF and CIPAVE use a deductive point method 
(subtracts the 6 highest distress from 100) (Committee of Transport Officials, 2013). Both 
methods have their advantages and disadvantages, and must be used accurately, so that 
pavement networks can be managed efficiently.   
 
The VCI is a good indicator of the pavement overall condition trend. It suffers from averaging 
disadvantages such as not providing localised values (a portion/part of a section with poor 
condition can be classified as good since it can be improved by other good sections), and it 
uses unrelated data combinations. The deduct point method provide localised values as per 
the dominant distress and extent. A disadvantage occurs when one distress is visible and 
significant enough to qualify as a very poor condition, that it recommended that for the index 
must be less than 50 % for action to be taken (Van Zyl & Van Der Gryp, 2013). In 2013, Van 
Zyl & Van Der Gryp proved how the VCI had shortcomings and adapted the deduct point 
condition index method in SA. However, the VCI is still used to avoid changes in condition 
trends of pavements constructed prior to 2013. This highlights a gap into determining the 
relationship and effects of the two methods. This will be determined by quantitative statistics 
analysis, and the use of Machine Learning (ML) to test which method works best with 
Artificial Intelligence (AI) technology. 
 
Pavement management is in an ever-changing state, with methods needing to be constantly 
evaluated and improved to cater for increasing traffic, changes in the environment, climate 
change and new materials. This study provides correlation analysis and a transformative 



philosophical view on the use of ML to develop a tool to be incorporated into a PMS using 
ML. Thus, using ML for M & R can identify trends and relationships that may be overlooked 
by manual operations. A model was developed which can reduce data processing and 
evaluation time by categorising road section according to their conditions in timeously 
manner. 
 
1.1 Aim of Paper 
 
The aim of this paper is to provide ML algorithms to assist road authorities to provide 
maintenance strategies. The aim can be achieved by illustrating how ML methods can be 
used to determine the pavement performance based on South African pavements condition 
indices (VCI and CI). The second aim is to determine which of the condition index methods 
is the true reflection of road conditions. Thus, a conclusion can be inferred from descriptive, 
inferential data analysis and the applicability of ML models for this purpose. 
 
1.2 Problem Statement 
 
The transport network system plays a crucial role in the daily life of the citizens and the 
economy, as it provides employment, connects places, provide government income 
(Tollgates) and the mobility of people and goods. The replacement of the South African road 
network is estimated to cost over R2 trillion which includes flexible, rigid, block and unpaved 
pavements (Tetley, et al., 2022). The current replacement cost of SA’s paved roads is R1.1 
trillion rands, with about 160 000 km paved roads (Tetley, et al., 2022). Since most South 
African roads are in critical conditions, it is crucial that condition rating methods are 
evaluated and innovated to better service delivery as roads play an integral part to the public 
and the economy. 
 
Maintenance and rehabilitation must be determined by effective methods, as funds, time 
and specialist labour are limited. The correct M & R must be determined at the accurate 
location and time. Neglecting to provide M & R in the early stages of deterioration can lead 
to higher future cost and provide excessive M & R needs, which is unwarranted and not 
economical. Thus, the conducted study aims at providing solutions to the identified problem. 
In addition, this work is in line with the current South African National Road Agency Ltd 
(SANRAL) research priority projects. The South African National Roads Agency (SANRAL) 
(2024) has initiated a research panel for academics and researchers to address road-related 
problems as well as innovation in the field. Several topics were prioritized by the research 
panel as being critical. Due to the dynamic nature of ML and its time-dependent relevancy, it 
is important to relate the research to the activities of the industry.  
 
The SANRAL priority projects are related and share the same research interest with the 
study, which proves its relevancy. The following is the list of SANRAL current priority 
projects related to this study: 
 

• Pavement testing & performance: Artificial intelligence / Machine learning modelling 
to create self-learning models for pavement performance prediction, based on LTPP 
and APT data.  

• Pavement testing & performance: LTPP/APT/Lab/Field correlation modelling using AI 
and ML techniques; data mining; data correlation analysis.  

• TRH6: Nomenclature and methods for describing the condition of asphalt pavements. 
Latest tools which need to be incorporated.  

• TMH9: Pavement Visual Condition Assessment Manual Update, and linkage with 
TRH6.   

• TMH22: Road asset manual update.   



2. LITERATURE REVIEW 
 
2.1 Background 
 
The deduct point method was developed in the early 2010s due to the VCI no longer being a 
true reflection of the road condition (Van Zyl & Van Der Gryp, 2013). Van Zyl and Van der 
Gryp localized the deduct point method in a PMS of the Western Cape provincial 
government, which was later adopted to be used nationally, included in TMH 22 (2016). 
Although the VCI results worked considerably well in the past, as time progressed it failed 
due to road networks deteriorating at a higher rate and coupled with insufficient 
maintenance (Van Zyl & Van Der Gryp, 2013). The CISURF and CIPAVE were illustrated to 
correctly determine funding needs, prioritizing projects, reflect true current condition of road 
sections and road networks, and identifying specific distress for M & R (Van Zyl & Van Der 
Gryp, 2013).  
 
The VCI provides a basis for the development of new indices. The VCI uses weights (Wn) of 
all present distresses, and factors to calculate the index, which were provided by expert 
panels in SA. The CI method provide a deduct point per defect in relation to the extent and 
degree, then the 6 dominant distresses are multiplied by their constants to get the total 
deduct point which is subtracted from 100.The difference between the VCI and CISURF is that 
the weighting of surfacing distresses in CISURF have higher weighting compared to VCI 
surfacing distresses. The difference of the CIPAVE compared to the VCI is that surfacing 
drainage has a higher weighting, while in the VCI surfacing drainage is the 4th lowest 
weighting (3) out of 22 distresses (Committee of Transport Officials, 2013). 
 
The average design life of roads is about 20 years for asphalt pavements, meaning that 
changing the rating indices will lead to inconsistency for pavement built prior to the early 
2010’s. This makes the VCI still relevant. According to a study by Balaram & Mostert (2014), 
the deduct point method was found to have a strong correlation with the International 
Roughness Index (IRI). This indicates that the deduct point method is consistent. Due to the 
study being specific for South Africa, literature on statistical analysis among VCI, CISURF and 
CIPAVE was limited. Literature based on other pavement indices, such as Pavement 
Condition Index (PCI), Overall Pavement Condition Index (OPCI), and Pavement 
Serviceability Index (PSI), will be used as an analysis guide, source for methodology, and 
criteria on how to determine the most effective method (VCI/CI) (Mubaraki & Sallam, 2021).   
 
In a study conducted by Mubaraki & Sallam (2021) to investigate the most effective index for 
pavement management for urban road networks in Jazan city in the Kingdom of Saudi 
Arabia, it was concluded that the first choice to use was the PSI, and the second choice was 
the Urban Distress Index (UDI). The two indices were compared with the IRI, and the 
Present Serviceability Rating (Mubaraki & Sallam, 2021). The PSI was reported to be a very 
good index (measuring 3 major distress, namely (i) cracking, (ii) rutting, and (iii) patching), 
while the UDI measured all the road distresses (Mubaraki & Sallam, 2021).  Figure 1 
illustrates the correlation of the methods. It is shown that the UDI has a higher correlation 
compared to the PSI. The reason to recommend the PSI however, was because the UDI 
was deemed to be inefficient (requires all pavement distress types), and the PSI indicates 
an accurate index efficiently. Multiple literature sources recommended using an index that 
focus mainly on structural capacity (rutting, cracking, & patching) failure as they are more 
detrimental to the pavement health (Suma et al., 1998; Shah et al., 2013). 

 



  

Figure 1: A comparison of pavement indices (Mubaraki & Sallam, 2021) 

A study conducted to develop an overall pavement condition index for maintenance 
strategy, illustrated that it is crucial to analyse the index results with the type of M & R at 
each condition class (Kumar & Suman, 2022). When keeping other parameters constant 
(control variable), an index must not be conservative or overestimated. This can 
exponentially increase the cost when the extent of M & R is conducted unnecessarily or is 
not done, leading to an increase in future M & R costs. The constant parameters are factors 
such as available funding, traffic demand, and road class (importance). Pavement 
management requires the correct M & R at the right location and time since most of the time 
M & R funding is limited from the government or road authority (Ahmed, et al., 2017). Figure 
2 illustrates how different index methods can be analysed in relation to M & R actions. 
Figure 2 and Table 1 illustrates how different methods can provide different M & R 
strategies. 
 

Table 1: Maintenance Strategies linked with PCI/OPC 
PCI/OPCI Rating Strategy 
85-100 Excellent Routine Maintenance (RM) 
70-85 Very Good Preventative Maintenance (PM) 
55-70 Good Minor Rehabilitation (MIR1) 
40-55 Fair Minor Rehabilitation (MIR2) 
25-40 Poor Major Rehabilitation (MAR) 
10-25 Very Poor Reconstruction (RC1) 
0-10 Failure Reconstruction (RC2) 

 

 
Figure 2: M & R strategies (Rajnish & Suman, 2022) 

  



2.2 The Use of Machine for Pavement Performance Index 
 
Machine learning (ML) is defined as a developed algorithm designed to mimic human 
processes/methods for analysis of certain problems by allowing the machines to 
automatically develop its own algorithms to solve problems (Alpaydin, 2020). Numerous 
studies have been published which were aimed at utilising machine learning methods to 
predict pavement performance. Table 2 highlights the investigated ML models. This 
approach has been used since the 1990s (Roberts & Attoh‐Okine, 1998). Figure 3 presents 
the methodology used to develop models, by considering data inaccuracies, data 
preprocessing, and the evaluation of models. In each stage, the objectives (OBJ) are 
identified, and procedure/mitigation methods (M) are provided. The process is not linear, as 
it is dictated by the performance of the model. If the performance is low, it requires the 
methodology used in Stage 2 to be reevaluated and updated. When the performance still 
does not improve, Stage 1 must be reevaluated and updated.  Incorrectly sourced and pre-
processed data will result into poor model performance. This highlights the importance of 
Stage 1. 
 

Table 2: ML models used for pavement condition indices prediction 

Source Type of Index (Model) Type of Data Results 

(Issa, et al., 2022) PCI 
ANN Models* 

Road Distresses 
Extent Distresses 

ML was capable of 
pavement performance 

prediction. 
Accuracy of 0.9975 

(Hossain, et al., 2017) IRI 
ANN Model 

Climate Data 
Traffic Data 

IRI Data 

The model had a RMSE** 
of 0.012 

(Low error) 
(Hanandeh, 2022) SR*** 

PSR 
ANN, MLR & GA**** 

SR and PSR Data 
Pavement Age 

Training Accuracy was 
0.94-0.98. 

GA performed best 
*Artificial Neuron Network (A subset of machine learning ‘deep learning model’)  
** Root Mean Square Error 
***Surface Rating- Minnesota Department of Transportation crack and surface distress index 
**** MLR- Multiple Linear Regression & GA-Genetic Algorithm. 
 
Figure 3 is an author illustration which was used to guide the process of the current study for 
the use machine learning. The process was grouped into 3 stages, the stages consider the 
objective (OBJ), Methods/Techniques (M), and Benefits (B). Stage 1 deals with data 
sourcing and preprocessing with the goal of obtaining high quality data. Stage 1 objectives 
are to identify and rectifying data inaccuracies, and data preprocessing to obtain high quality 
input data. The accuracy of data is crucial as the model performance is based on the data 
quality, hence erroneous data will output low performance and inaccurate results. Numerous 
engineering criteria were utilised such as the T-test method (treating the models’ predictions 
as an assessor) sourced from THM 9-part b (2016). The T-test determine whether two sets 
of data are significantly different. The ML model’s results in a Tvalue < T95 the significance 
level rating is Non-Significant (NS). Stage 2 deals with the model development with a goal of 
developing models with high accuracy, this is achieved by utilising numerous different ML 
techniques (further discussed in section 3- Methodology). Stage 3 is model evaluation and 
deployment with a goal of improving methods and deploying models with the highest 
accuracy and performance efficiency. Stage 3 is used to refine, evaluate and identifying 
potential models for deployment and includes the objectives, methods, and benefits of the 
models in society.  
 



 
Figure 3: Author illustration on the use of ML in pavement condition prediction 

*These are methods to limit the model overlearning/under-learning the data (fitting), and statistical approaches to reduce the 
error of the models. 
* *These are different types of methods to measure the accuracy of models 
 
3. METHODOLOGY 
 
The data used in the study was collected from two case study projects, Case Study 1 was 
the visual condition data of a low traffic volume network spanning 8 km with each section 
ranging from 50 m to 200 m (2 way, 1 lane) (169 points) and Case Study 2 was the visual 
condition data from a national road (high volume roads) spanning 33 km (2 lanes, 2 way), 
with each point representing a 100 m section. Case study 1 comprises of 50 m flexible 
pavement parking lots and 500 m – 2 km major roads in a residential/business complex. 
Case study 2 had 1348 points (337 per lane).  
 
The assessment was made with reference to TMH 9-part A and B for flexible pavements 
(Committee of Transport Officials, 2016). The case studies were sourced from past projects 
and the authors had no means of increasing the data to be of equal size. The simulation of 
data to increase the sample size was abandoned, since data simulation can lead to road 
distress combinations which can result in conflicting combination rating as stated in TMH 22 
(2013), appendix J-4. The calculation of indices was guided by THM 22, for all the methods 
(VCI, CISURF and CIPAVE) (Committee of Transport Officials, 2013). Table 4 highlights the 
data combination of the combined case studies. 



 
As per TMH 9, road distresses are divided into engineering assessment (surfacing and 
structural distresses) and functional assessment (distresses for riding quality). Each distress 
is rated based on degree (0-5) and extent (1-5), and the product of these two aspects was 
used as a road distress parameter. The product is named the road defect quantity rating 
(Author’s concept). This means that the range of the inputs is from 0 to 25. The degree 
rating is a measure of the severity of the distress (Committie of Transport Officials, 2016). 
Degree 0 is used when the distress is absent, 1-5 with 1 being slight increasing to 5 for 
warning-severe degrees. The extent rating is a measure of how widespread the distress is 
observed in relation to the total length of the assessed road section. Extent rating range 
from 1-5 (isolated occurrence to extensive occurrence).  
 
Equation 1 illustrates the equation for the road defect quantity rating. This was done to 
reduce the complexity of the parameters which would make the model architecture more 
complex. See equation 1.  The novelty of the study is that weights, and constant factor are 
not used to determine the index, as the ML algorithm will develop its own procedure to 
deduct the relationship between road defect rating and the index. The algorithm is only 
given the road defect rating (input), and the index (output), from which it finds an efficient 
method to predict the index by learning underlying relationships of the input and output. 
Pavement management is in an ever-changing state, requiring methods to be constantly 
evaluated and improved to cater for increasing traffic, changes in the environment, climate 
change and new materials. Thus, using ML algorithms for M & R can identify trends and 
relationships which may be overlooked by humans. With the continuous training of the 
models, necessary changes in weights/importance of certain distresses can be found easily 
and the model will adapt to future current needs. 
 

𝑅𝑜𝑎𝑑 𝑑𝑒𝑓𝑒𝑐𝑡 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑟𝑎𝑡𝑖𝑛𝑔 = 𝐷𝑒𝑔𝑟𝑒𝑒 (𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦) ∗ 𝐸𝑥𝑡𝑒𝑛𝑡 (𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒)             (1) 
 
Table 4 present the data summary of the study. The data combination indicates a class 
imbalance for the very poor/reconstruction class. The very good class data distribution is 30 
%, 50 %, & 54 %, and the very poor class data distribution is 17 %, 4 % and 7 % in relation 
to the VCI, CISURF and CIPAVE respectively. This will create a problem for ML use in the CI 
method as the data is imbalanced, it will overlearn the very good class and can result in poor 
performance. For CIPAVE, the imbalance would be tested by under-sampling (reducing data 
distribution percentage in relation to the total data percentage used) the very good class, to 
increase the percentage of the very poor class and test the effect of the overfitting/ 
underfitting when using ML. Overfitting is a scenario whereby the model overlearns the data, 
and not learn the principle relationships in the data. The resultant model will perform poor 
when encountering instance of the classes with the small data size in relation to the total 
data size. Underfitting occurs when a very small class in terms of total data size, will result in 
the model not having enough data to learn all the relationships/characteristics of the class to 
successfully differentiate the class from other classes in the data. Underfitting is when the 
model training did not reach the global minimum (state of balance between training and 
testing accuracy), overfitting is when there is a high mean square error meaning the model 
overpassed the global minimum. The CIPAVE mainly measure structural distresses, thus 
under-sampling it will not affect the result extensively, since the CISURF is the index closely 
related to the VCI. The results were analysed using descriptive and inferential statistics 
concepts, which will be discussed in section 4.1. This was done to summarize, understand 
the main features of the dataset, and to draw conclusions about the population. 
 
 
  



Table 4: VCI, CISURF & CIPAVE Data Summary 

Maintenance and Rehabilitation guide based on Condition 
Index VCI CISURF CIPAVE 

Type of M & R Action Category Range Points Data 
% Points Data 

% Points Data 
% 

Reconstruction Design a new 
Road Very Poor 0-30 255 17 64 4 104 7 

Major 
Rehabilitation 

Structural 
Enhancement Poor 30-50 245 16 148 10 179 12 

Minor 
Rehabilitation 

Non-structural 
Enhancement Fair 50-70 293 19 268 18 234 15 

Preventative 
Maintenance 

Retard future 
deterioration Good 70-85 264 17 272 18 177 12 

Routine 
Maintenance 

Day-to-Day 
Activities Very Good 85-100 459 30 764 50 822 54 

TOTAL 1516 100 1516 100 1516 100 
 
Figure 4 refers to the methodology followed while using ML. Data pre-processing aspect of 
ML is not yet a precise science, instead it has a rule of thumb that at least all class have a 
minimum of 5-10 % of the total data to avoiding underfitting or overfitting (Hanandeh, 2022). 
 
Pre-processing techniques to solve overfitting and underfitting (Alpaydin, 2020): 
 
• Increase data quality (having highly informative information of the minority class) 
• Chosen algorithms (some algorithms are more robust to imbalance dataset, e.g. 

decision tress, random forests, gradient boosting) 
• The use of cross-validation (helps to ensure that performance is constant) 
 

 
Figure 4: Author’s Illustration of the Methodology for using ML 

Supervised learning is a technique of ML that train the model by utilising the input data 
(ratings), and output (index), to learn relationships between the two and predict the output 
for new data. A MinMax scaler is a standardization method for the features to have a similar 
range (Alpaydin, 2020). The selection of the algorithm was because these types of 
algorithms can handle data imbalance, and a majority of literature source suggests that they 
perform better for pavement conditions index prediction (Ahmed, et al., 2017; Hanandeh, 
2022; Issa, et al., 2022).   



Table 5 present a guideline on how to use the developed model in relation to the 
suggested activities M & R activities. The output of the model is the type of M & R strategy, 
which is linked to the suggested type of actions. It is important to note that M & R of 
pavement depends on other factors such as traffic demands, financial budgets, etc. The 
type of M & R to be used depends on other factors not solely dependent on the road 
condition indices. It is key that the correct action be implemented at the correct location 
and time, thus making the accuracy of the indices methods to be important, and constantly 
need improvement. These guidelines were made with reference to the methodology by 
Rajnish & Suman (2022), localised for SA road condition classes, and pavement 
management principles. 
 

Table 5: Model use guideline 
Maintenance and Rehabilitation guide based on Condition 
Index Suggested Action 
Type of M & R Action Category Range 

Reconstruction Design a new 
Road 

Very 
Poor 0-30 Full depth reconstruction, Full depth reclamation, New design 

Major 
Rehabilitation 

Structural 
Enhancement Poor 30-50 Thick overlay, Mill & Overlays, Full depth patching, Premix 

carpet 
Minor 
Rehabilitation 

Non-structural 
Enhancement Fair 50-70 Chip seal, Micro-surfacing, Thin overlay, Fog seal 

Preventative 
Maintenance 

Retard future 
deterioration Good 70-85 Patching, Pothole filling, Crack sealing 

Routine 
Maintenance 

Day-2-Day 
Activities 

Very 
Good 85-100 Drain Unblocking, Vegetation control, Paint, and signage 

replacement 

 
4. RESULTS AND DISCUSSION 
 
Figure 5 represents the type of M & R strategy found from the VCI and CI methods 
(combination of both studies). It is seen that the VCI contain more road sections in the 
reconstruction class, indicating that the method can lead to decisions which require more 
funding for M & R as reconstruction is expensive. Another class which had significant 
differences in the methods is the routine maintenance class. This indicates that the VCI 
method is conservative (gives lower ratings), with fewer sections recommended for routine 
maintenance, which will cost more if defects were not addressed early. The CI methods 
promotes the need for routine maintenance, which is more advantageous as the method 
promotes proactive maintenance. This can result in cost savings, as expensive M & R future 
needs are reduced. 
 

 
Figure 5: M & R Strategy 
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4.1 Statistical Analysis 
 
Table 6 presents the descriptive data results. When considering the mean, the CI indices 
have higher mean values indicating that these methods produce higher average values than 
the VCI. The standard deviation (SD) of the VCI is higher indicating more significant 
variability or dispersion of the data. The lower coefficient of variation (COV) of CISURF and 
CIPAVE indicated that the methods provide more consistent results. From this analysis the 
VCI performance is considered inferior. 
 

Table 6: Descriptive Statistics of the Indices (Rampersad, et al., 2023) 

 VCI C-SURF CI-PAVE VCI CI-SURF CI-PAVE 

Case study 1 Case study 2 

Mean 38 54 56 67 81 84 

SD 22 20 20 29 21 21 

COV 57 37 36 42 26 25 

 
Table 7 presents the inferential statistics results. Another measure of comparison used was 
the average differences (d, average absolute value difference per section) per road 
condition index class. The coefficient of determination (R2) of VCI VS CI-SURF confirms the 
initial hypothesis, that CISURF is more related to the VCI, than CIPAVE. The average difference 
between the methods is highest for the very poor class (high variation as seen in Table 7). 
The results indicate a higher difference in rating (d) in Case Study 2 compared to Case 
Study 1. This suggests that the VCI and CI methods vary more for high volume roads.  
 

Table 7: Inferential statistics of the Indices (Rampersad, et al., 2023) 

Index Correlation d (Average difference between ratings) 

Class Case Study 1 Case Study 2 

VCI VS CISURF Case Study 1 R² = 0.75 VCI VS 
CI-Surf 

VCI VS 
CI-Pave 

VCI VS 
CI-Surf 

VCI VS 
CI-Pave Case Study 2 R² = 0.79 

 0-30 22 25 28 32 

VCI VS CIPAVE Case Study 1 R² = 0.72 30-50 12 13 24 29 

 Case Study 2 R² = 0.70 50-70 11 12 18 23 

 70-85 9 14 14 18 

85 – 100 5 5 7 10 
 
 
When comparing the overall pavement conditions, the VCI tends to be more closely related 
to the overall pavement conditions, refer to Figure 6. The overall pavement condition is 
based on TMH 9-Part B (Table B.27), [very good (1) - very poor (5)]. This is due to the VCI 
considering all the distresses, rather than the CISURF method that considers only the 6 
dominant distresses. The 6 dominant distresses are specific to the distress present on site 
for the road section. 
 



 
Figure 6: VCI/CI (%) VS Overall Condition (Rampersad, et al., 2023) 

4.2 Use of ML 
 
The accuracies of the models were validated by considering the predictions of the models 
and assuming the models as trainee assessors compared to the results obtained by 
approved assessors using traditional methods to calculate the indices as per TMH 9 (2016) 
T-test method. The model predictions indicated an overall Tvalue < T95 for the 95% and 99% 
significant difference confidence interval. The data size was divided into 80 % training data 
and 20% testing data (performance validation). The performance of the models was tested 
using the unweighted and weighted accuracy averages, precision, recall and F1-Score 
(Refer to figure 7 for the concept definitions). The overall testing accuracy ranged from 67 -
93 %, with the VCI performing low and the CIPAVE having the highest accuracy performance. 
 
Figure 7 and 8 illustrates the classification report of the VCI and CISURF, respectively. The 
high accuracy in the models indicates, that ML can be used successfully in determining the 
indices. The model with the highest accuracy is the GBC (74 - 85%). This model can be 
improved and deployed by increasing the data quantity, using deep learning, and improving 
the data quality. The imbalance of the very poor, can be the reason the models did not have 
an accuracy above 95%. The minor rehabilitation class had the lowest average accuracy for 
the VCI, and the preventative maintenance class had the lowest accuracy for the CISURF. 
Figure 9 illustrates the classification report of the CIPAVE index. The hypothesis test for the 
models trained with the under-sampled data (1138 sections), did not give a clear reason for 
solving the data imbalance. The model with the full dataset (1517 sections) performed on 
average like the under-sampled. The under-sampled data for the VCI and CISURF had low 
accuracy, which were immediately scrapped. This can be due to factors such as loss of 
information, biased representation, loss of rare patterns and dependence on random 
sampling. The poor performance indicates that data imbalance can be solved in this case by 
performing parameter turning, cross validation, sampling techniques, the choice of models 
such as GBC which is more robust to imbalanced datasets. However, the models trained 
with the CIPAVE index performed better compared to the other indices with the GBC recording 
an accuracy of 93%. This can be due to the CIPAVE mainly focusing on structural defects, 
making it less complex compared to an index that considers all the defects.  
 
The aim and objectives of the study were answered by the results which highlighted that ML 
can be used for South African condition indices methods. The deployment proposed model 
can be used to successfully assist road authorities to determine M & R with a high accuracy 
and 95 & 99 % confidence interval. The CI methods was identified to be the most accurate 
method, and is compatible which machine learning methods, which can assist road 
authorities predict the necessary M & R to achieve satisfactory road condition. 

 



 

Figure 7: Classification report of the VCI, (a) RFC (b) SVM (c) DTC (d) GBC 

Precision = (Positive prediction/ True positive + False positives) - How accurately the model identifies classes 
(models’ ability to avoid false positives) 
Recall = (True Positives/ True Positives + False Negatives) - How accurately the model predicts M & R for all 
scenarios (Mode’s ability to identify all instances) 
F1-Score = (2 / (1/Precision) + (1/ Recall)) - A balanced parameter to evaluate the overall performance of the classes 
Macro avg = (Macro average of the Precision, Recall, F1-Score) - provides the average of all the classes as an  
unweighted measure for all classes 
Weighted avg = (Weighted average of the Precision, Recall, F1-Score) - provides the average of all the classes  
according to class weights, considers class distribution (useful for data with data containing class imbalance)  
 

 

Figure 8: Classification report of the CISURF, (a) RFC (b) SVM (c) DTC (d) GBC 

The performance of the SVM was 67, 85 & 88%, similar to the accuracies of the DTC with 
71, 79 & 89% in relation to the VCI, CISURF, and CIPAVE respectively. The performance of 
the RFC was 73, 83 & 88%, similar to the accuracies of the GBC with 74, 85 & 93% in 
relation to the VCI, CISURF, and CIPAVE respectively. The average accuracy of the methods 
was 84% for the GBC, 81% for the RFC and 80% for both the SVM and DTC.  

 



 

 
Figure 9: Classification report of the CIPAVE, (a) RFC (b) SVM (c) DTC (d) GBC 

Figure 10 presents the Area Under the Receiver Operating Characteristic (ROC) Curve 
(AUC). The ROC AUC is a performance metric which compares the positive class (each 
class) versus other classes (false positive). It indicates how well the models identify each 
classification category (Alpaydin, 2020). The results can be summarized by noting that in the 
four developed models, the GBC has a higher accuracy for all the indices evaluated. The 
ROC curve also indicates that the class data imbalance does not affect the accuracy of the 
GBC for class identification (AUC = 97%). In addition, the GBC has a higher accuracy in 
identifying the critical classes that are the major and minor rehabilitation which requires 
immediate attention as the road would been in a critical condition and rapid mitigation is 
required. 
 

 
Figure 10: Area Under the Receiver Operating Characteristic (ROC) Curve (AUC) for models 



5. CONCLUSIONS 
 
It can be concluded from the results that ML can be successfully incorporated into a PMS 
when considering South African indices. The benefit of ML is that it can improve the 
pavement management methodology, reduce visual condition assessment time and cost, 
and can remove human error in the calculations. This ultimately will improve the economy 
as roads are critical for freight and traveling. The final chosen model (GBC) had an accuracy 
of 74, 85 and 93 %, in relation to the VCI, CISURF, and CIPAVE respectively. The GBC also 
had the second highest AUC which was 97 %.  When considering all the performance 
metrics, the GBC performed better, followed by RFC, SVM, and DCT respectively. The ROC 
curve indicates that the models have developed a systematic process and do not give 
random guesses. 
 
Based on statistical analyses, it can be concluded that the VCI indicates excessive 
inconsistencies, which will result into higher spending on M & R. The average difference 
amongst the classes can be as high as32 %, and this will likely push road sections to the 
upper classes (e.g., meaning a road classified as very poor class using VCI can be a fair 
class for the CI indices). It was concluded that the most effective index is the deduct point 
condition indices (CIPAVE) and (CISURF). Since not all distress combinations or possible 
combination were available, increasing the dataset to refine the models, will potentially 
increase the model accuracies because there was a data imbalance. The VCI M & R will 
result into less routine maintenance, as about 10 % more sections were suggested for major 
rehabilitation compared to the CISURF and CIPAVE. The CI method works best as it is specific 
for surface and pavement conditions. This will give the pavement engineer a precise mode 
of failure whether surfacing or pavement distress need attention, and maintenance solution 
can be specific. Incorporating the GBC model can help to assist road authorities to predict M 
& R needs. 
 
6. RECOMMENDATIONS 
 
The following recommendations are made: 
 
• Further investigation is needed to improve the accuracy to at least above 98 %.  
• Increasing the data availability of pavement sections so that the model can learn 

more relationship with the extent, distress, and the condition indices. 
• More studies are needed which will utilize other types of algorithms/models to identify 

which model performs more accurately. 
• More advanced methods should be utilized to better either overfitting/underfitting 

such as regularization and ensemble methods. 
• There should be more collaboration with the data science industry and pavement 

engineering sector to increase the ideas generation for pavement management. 
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