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ABSTRACT 
 
Effective road law enforcement is a vital part of transportation systems. Escalating traffic 
congestion and widespread illegal road usage pose fresh hurdles for law enforcement 
systems. An intelligent law enforcement system that aims to reduce illegal road use must 
enable immediate intervention on a tactical level without disrupting the flow of legal 
vehicles. To achieve a fast tactical response, strategic level information, such as location 
and identity, is required to ensure law enforcement officials are in the right place at the 
right time. This paper presents a system that equips authorities with the right information to 
act against illegal road users while maintaining normal flow of traffic. The proposed system 
improves upon existing solutions by combining Radio Frequency Identification (RFID) and 
Computer Vision (CV) data to detect and identify illegal vehicles. The authorities can 
leverage this information to identify and remove such vehicles from the road without 
affecting the legal road user’s experience. This paper will investigate the performance 
criteria for such a system within a real-world environment and will determine which 
combination of data fields can enable accurate vehicle identification within a practical 
setup. Practical measurements were performed to verify that theoretical requirements can 
be achieved in practice. 

 
1. INTRODUCTION 
 
Road transport systems support sustainable growth across society and the economy. 
However, increasingly congested traffic conditions and the illegal use of roads pose 
challenges to optimally managing road networks (Pretorius, Hoffman, and Wang, 2015). 
Intelligent Transportation Systems (ITS) aim to improve the user experience by increasing 
traffic safety and reducing congestion and illegal road use (Marais, Grobler and Holm, 
2013). To achieve this, ITS systems must focus on effective law enforcement that can be 
reconciled with streamlined traffic flows within a traffic management system.  
 
1.1 Aim of Paper 
 
This paper investigates a new system for traffic law enforcement that combines two 
different technologies to overcome some of the challenges that existing approaches face. 
By embedding RFID tags in vehicle license plates, a unique identifier can be assigned to 
each vehicle, creating a "fingerprint" for the vehicle. This information can be used to 
uniquely identify vehicles and track them as they move. Computer Vision is used to extract 
vehicle identification information from traffic surveillance data.  
 
Combining these technologies will enable multi-factor verification of the true identities of 
suspicious vehicles. It will also provide a means of detecting vehicles that do not conform 
to the regulatory marking requirements. The system will equip authorities with strategic-
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level information to achieve immediate intervention on a tactical level. 
Previous research (Hoffman and Pretorius, 2015), (Pretorius, Hoffman, and Wang, 2015) 
described an intelligent vehicle monitoring system based on in-road RFID readers. It 
defines the technical requirements for such readers to successfully detect RFID-enabled 
license plates mounted on in-traffic vehicles. This paper extends that research by 
practically investigating the performance criteria of the proposed system. 
 
1.2 Problem Statement 
 
Currently the primary means of identifying suspicious vehicles is through static 
checkpoints. Ad Hoc static checks on a selected number of vehicles through roadblocks 
provide offenders with a chance to escape law enforcement by leaving vehicle queues 
approaching road blocks. The variability of human nature also exposes this approach to 
bribery and dishonest behaviour from law enforcement officials (Hoffman, Geldenhuys, 
and Pretorius, 2013). Most law enforcement actions require legal vehicles to be identified 
by a license plate. However, the license plates used in most countries are relatively easy 
to clone, and criminals buy these illegal plates from dealers or re-use scrapped legal 
plates (Hoffman and Pretorius, 2015). 
 
Traffic cameras present an effective way to monitor traffic flow and enforce speed laws 
without disrupting traffic flow. Traffic cameras use license plates to identify vehicles; 
however, these systems cannot distinguish between legal and illegal license plates. Road 
users can also remove, obscure, and falsify plates to evade camera detection (Hoffman, 
Geldenhuys, and Pretorius, 2013).  
 
It is therefore clear that current approaches to traffic law enforcement are not effectively 
combatting illegal road use. Consequently, there is a pressing need for a fool-proof system 
that can accurately detect and respond to illegal road use without compromising the 
experience of legal road users. 
 
1.3 Scope of Paper 
 
The aim of this study is not to develop a system that automatically detects and deters 
criminal activity by issuing tactical and strategic interventions to law enforcement, but 
rather to identify the critical technical components and investigate their potential within 
such a system. Therefore, the scope of the project includes the development of a 
combined RFID and camera-based system to uniquely identify vehicles. This entails the 
extraction of vehicle features from traffic cameras to serve as a digital fingerprint, storing 
this data on an RFID tag embedded in the license plate of a vehicle, and encrypting the 
data for security purposes. Furthermore, it includes deploying an operational RFID/camera 
system using in-road RFID readers and tagged number plates and testing the system to 
evaluate its potential in a traffic environment. 
 
2. ELECTRONIC VEHICLE IDENTIFICATION (EVI) 
 
The previous section provided evidence that reliable positive vehicle identification is 
required to allow law enforcement officials to act against perpetrators. This section will 
evaluate two existing technologies that may contribute to an improved vehicle identification 
system. EVI (Electronic vehicle identification) is a sub-system of ITS that uniquely 
identifies a vehicle electronically and stores identification information digitally. In this 
paper, we will focus on combining two distinct methods for EVI, namely RFID and 
Computer Vision. 



2.1 RFID 
 
Radio frequency identification (RFID) is an automatic wireless data collection technology 
used to identify objects (Ho and Li, 2023). RFID systems are composed of RFID readers 
and tags. There are two types of RFID systems, namely active and passive. Active RFID 
uses batteries to power tags, whereas passive RFID tags are powered by the reader's 
energy field. Active RFID supports longer read ranges than passive RFID, which may not 
be suitable for reliable identity verification. A longer read range means many objects 
outside the detection zone will be visible to the reading device, which affects the reliability 
of identifying a specific tagged object. Active tags are also more expensive and bulkier, 
making it difficult to integrate with existing regulated vehicle identifiers, e.g., license plates. 
UHF (ultra-high frequency) passive RFID supports read ranges of up to 10m, which makes 
it ideal for identifying vehicles moving in traffic.  
 
RFID systems can accurately identify a vehicle but cannot automatically verify that the tag 
belongs to the vehicle. RFID should therefore be combined with imaged-based techniques 
to link the true identity with the detected identity. It must furthermore use cryptography to 
ensure that tag data can be authenticated (Hoffman, Geldenhuys & Pretorius, 2013). 
 
2.2 Computer Vision 
 
Video surveillance cameras are widely used in traffic scenarios to monitor traffic 
conditions, implement electronic tolling, or monitor criminal activities. Surveillance data can 
accurately depict reality; however, analysing this large amount of data can be nearly 
impossible on a human level. Visual processing techniques can easily be used to 
recognize and analyse patterns in data for more advanced tasks such as vehicle 
classification and ANPR (Automatic License plate Recognition) (Albini, Gutoski & Lopes, 
2020). 
 
License plate recognition has become an important part of ITS and has gained a lot of 
interest with the improvement of digital cameras and the increase in data processing 
capacity (Besbes, 2021). ANPR systems aim to uniquely identify vehicles through their 
license plates. These systems are composed of cameras that can detect and recognize 
license plates in a real-view scene. Claimed accuracies of ANPR systems are as high as 
98%; however, in a real-world setting, this may be different. Weather, lighting conditions, 
and viewing angles all affect the accuracy of these systems (Dilek & Dener, 2023). 
 
Furthermore, undesirable and illegal vehicle behaviour (e.g., obscuring the license plate) 
makes it nearly impossible for the ANPR system to accurately identify vehicles. 
Considering these factors, ANPR accuracies can decrease to less than 70%. A low ANPR 
accuracy reduces the proportion of correctly detected offenders and results in a high rate 
of false positive detections that must be manually filtered. Even if license plates are 
detected with 100% accuracy, the ANPR system cannot detect cloned or migrated license 
plates. 
 
It is therefore clear that ANPR on its own may not provide the required reliability to identify 
vehicles' presence and legal status. ANPR data must be combined with other vehicle 
identification features to increase the system's reliability. Although ANPR may have low 
accuracy, it can detect anomalous vehicle behaviour, e.g., obscuring license plates. A 
vehicle with a failed detection can be flagged, and information such as colour, make, and 
model can be reported. This information can then be combined with RFID vehicle 
identification data to alert law enforcement officials of a suspicious vehicle.  



 
In addition to ANPR, a Computer Vision system can be used to detect the make and 
model of a vehicle. Vehicle Make, and Model Recognition (VMMR) can be used to 
complement ANPR, especially in the case of intentional detection avoidance. A neural 
network can be trained to accurately detect vehicle make and model. A challenge with 
make and model recognition is that the variations between different models from the same 
manufacturer are so subtle that a normal feature extractor struggles to differentiate 
between them. Vehicle make and model recognition requires both fine-grained and 
coarse-grained classification (Besbes, 2021). 
 
3. PERFORMANCE REQUIREMENTS 
 
The previous section discussed the set of technologies that can provide the required 
functions of a vehicle identification system; however, because the system will be deployed 
in an inherently challenging environment, we need to carefully consider the technical 
challenges of each technology building block. This section discusses some of the 
performance requirements for successfully deploying the proposed vehicle identification 
system. 
 
3.1 Reader Antenna Radiation Pattern 
 
To provide sufficient tag illumination and counteract the blinding effect caused by a 
vehicle, it is necessary to have a directional pattern that maximizes radiation towards the 
travel path of the license plate tag, in contrast to the standard upward radiation of a patch 
antenna (Pretorius, Hoffman & Wang, 2015). Figure 1 depicts the ideal radiation pattern 
and contrasts it with the radiation pattern of an inroad patch antenna, which is the 
conventional antenna type for RFID readers. Additionally, according to (Pretorius, Hoffman 
& Wang, 2015), it has been observed that there are a maximum of five legally positioned 
license plate tags within the reading zone at any given moment, and it takes approximately 
80 milliseconds to read all five UHF RFID tags. This means that tags travelling at 180 km/h 
require around 4m of illumination to complete the reading cycle. Our measurements will 
verify if this can be achieved in practice. 
 

 
Figure 1: Desired radiation pattern 

 
3.2 Computer Vision Model 
 
Usually, CV models are trained naively with datasets representing controlled 
environments. This will result in an apparently high recognition accuracy but will be of no 
practical value. Instead, the model must be exposed to all possibilities within the real traffic 
environment to achieve accurate and repeatable results.  



 
Confidence threshold - ANPR and VMMR each have their own confidence levels. A 
confidence threshold is used to determine whether an identification action was successful. 
An overly sensitive threshold will result in many false positives and unnecessary 
interventions; this will cause an inefficient allocation of law enforcement resources and 
traffic disruptions. Conversely, if the threshold is too insensitive, it can result in false 
negatives, i.e., some illegal vehicles will go undetected.  
 
Vehicle data - Training a computer vision model for vehicle identification requires a 
dataset of historical observations that represents all vehicle makes, models, and license 
plates. Vehicle and license plate manufacturers each year release new or updated 
versions of previous models. This implies that the computer vision model may encounter 
new types of vehicles and license plates that it has not encountered before. Therefore, 
regularly updating the training dataset with currently available data is necessary.  
 
External factors - In a real-world scenario, factors such as weather and lighting conditions 
cannot always be controlled. For example, rain or sunlight can create 'noise' in a camera 
system, making it challenging to perform feature extraction (Rio-Alvarez et al., 2019). 
Camera positioning must ensure vehicles are visible within the field of view long enough to 
capture and successfully read the vehicle attributes. The human factor is also important, 
as some drivers often go to great lengths to avoid detection, especially when involved in 
criminal activities. Drivers intentionally obscure the identities of their vehicles and very 
often mask themselves as legal vehicles. 
 
4. VEHICLE MONITORING POINT 
 
With the requirements known, we can design a system that meets the requirements for 
reliable vehicle identification. Vehicles are fitted with RFID tags in a typical in-motion 
identification system, which carries information linked to vehicle identification features. As 
vehicles pass an RFID monitoring point, tag data is read wirelessly. This allows for high-
reliability vehicle identification. In addition to RFID stations, intelligent traffic cameras will 
monitor the traffic scene to extract useful identification features from real-time traffic 
footage. The three prominent features that will be extracted are the vehicle's make, model, 
and registration number. These potential features will provide three outputs, each with a 
specific reliability factor, that can be compared against the corresponding information read 
from the RFID tag. 
 
4.1 RFID System Overview 
 
4.1.1 Vehicle Tags 
An RFID tag acts as a unique vehicle identifier, and its placement plays a vital role in the 
reliability and feasibility of the system. Passive RFID tags can be integrated into currently 
regulated vehicle identifiers in license discs (windshield) and license plates; however, this 
study will exclusively focus on the latter. RFID tags embedded in license plates provide a 
long lifecycle and can be easily managed through regulatory license plate life cycle 
processes. These tags can also easily be adapted to comply with country-specific 
requirements and registration systems. An example of an RFID-enabled license plate tag 
is the IDePLATE produced by TÖNNJES (Tönnjes International Group).  
 
4.1.2 RFID Reader and Antenna 
By scanning their designated RFID tags, RFID reader units can detect moving vehicles 
and determine their identities. There are three options for reader placement: overhead, 



roadside, and in-road. Overhead gantry readers can detect tags on vehicle windshields but 
struggle to read tags on number plates. Roadside readers can detect both tags, but their 
coverage is limited to a single lane due to distance limitations and vehicles obscuring tags 
in distant lanes. Conversely, in-road readers can be deployed in each lane, giving a clear 
line of sight to numberplate tags.  
 
Moreover, in-road deployments incur only a fraction of the expenses associated with 
overhead deployments (LicenSys). Therefore, in-road placement of readers can overcome 
most of the challenges related to overhead and roadside placements.  
 
The RFID system used for this work includes a small form factor RFID reader (ThingMagic 
M6E Micro) and a custom-designed RFID antenna by LicenSys (LicenSys, 2018), which 
can be embedded in the road and used to read tagged license plates. When used in 
combination with a 2m diameter ground plane, the radiation pattern of the antenna 
conforms to the desired pattern shown in Figure 1. The ground plane bends the radiation 
pattern upwards to increase the field strength around the level of the license plate 
(LicenSys, 2018).  
 
4.2 Intelligent Camera Monitoring Point 
 
Computer Vision enabled traffic cameras will include firmware that can detect and 
recognize vehicle license plates and classify vehicles based on their make and model. 
 
4.2.1 License Plate Recognition 
The first step in license plate recognition is detecting the plate from the input image. The 
detection step involves localizing the bounding box containing the license plate from the 
input image. In Masood et al. (2017), the researchers use a deep CNN pipeline for license 
plate detection under different lighting conditions and with a variety of license plates using 
traffic camera image data. License plate recognition occurs after the plate has been 
extracted from the input image. In Besbes (2021), an end-to-end approach is proposed for 
detecting and recognizing license plates. The system is composed of two stages: the plate 
detection stage and the plate recognition stage. For the detection stage, a YOLOv2 
network detects the license plate from the whole raw input image and then outputs the 
cropped plate image to the second stage. A CNN and RNN (Recurrent Neural Network) is 
used for the recognition stage and does not require character segmentation.  
 
The system proposed in this paper utilizes cutting-edge open-source techniques to 
develop a robust ANPR pipeline consisting of multiple stages. Specifically, the first stage 
uses YOLOv7 for efficient and accurate detection, while the second stage employs Paddle 
OCR (optical character recognition) for reliable recognition. 
 
4.2.2 Vehicle Make and Model Classification 
As previously mentioned, accurately recognizing vehicle make and model entails detecting 
subtle inter-class variations. One approach is to extract features from individual vehicle 
parts. The researchers in Besbes (2021) proposed a robust methodology to extract local 
(parts-based) and global feature representations for make and model recognition. The 
system uses YOLO (Redmon et al., 2016) to detect vehicle parts, while a VVG16 model is 
used to extract both local and global feature representations in a multi-stream approach. 
Finally, a dynamic fusion layer combines the outcomes to form a final prediction.  
 
Manually annotating vehicle parts is very challenging and labour-intensive. Therefore, 
another approach will be used. BCNNs (Bilinear Convolutional Neural Networks) consist of 



two CNNs whose outputs are combined using a bilinear pooling layer. The bilinear pooling 
layer multiplies the outputs using the outer product at each location and pools them across 
the locations to arrive at an image descriptor (Lin, RoyChowdhury & Maji, 2015). Bilinear 
pooling considers the combination of features between the channels. For example, the 
combination of grill shape and headlight position will likely uniquely identify a vehicle 
model. The proposed system will use VGG16 models in a bilinear fashion for vehicle make 
and model recognition. 
 
5. IMPLEMENTATION AND TESTING 
 
This section delves into the implementation details of the previously described vehicle 
monitoring system. First, the RFID system underwent initial testing in an outdoor 
environment on the NWU campus in Potchefstroom, North-West Province, South Africa, 
with minimal external interference. Subsequently, the system was further evaluated on 
actual roads to assess its performance in a real-world scenario. Tests were conducted on 
3 different roads: a road on the NWU campus; a SANRAL test road on the campus of UP 
in Pretoria; on an offramp linking the N4 highway with the N1 highway in Pretoria. 
 
5.1 RFID Lab Tests 
 

 
 

Figure 2: RFID field test setup 
 
Figure 2 displays the lab test setup used to measure the RFID signal illumination area in 
the horizontal plane. The setup consisted of an in-road RFID reader, IDePLATE. The 
reader housing is placed in a cavity in the ground with the antenna on top of a 2.4m x 
2.4m aluminium gauze sheet that forms a ground plane. The plate is positioned 1m from 
the reader and 400mm above the ground (typical license plate heights are 200mm - 1.3m). 
The illumination area is determined by measuring the maximum tag read range for 
different angles relative to the reader; see Figure 3 (the tag approaches the reader parallel 
to the 0 - 180-degree line while the tag face is kept parallel to the 90 - 270-degree line). 
The maximum read range is given by (1), where 𝑟 is the distance between the reader and 
tag in meters and 𝐸𝐼𝑅𝑃 is the average transmit EIRP required to activate the tag in dBm 
(GS1.org, 2008). 
 

𝑅𝑒𝑎𝑑 𝑟𝑎𝑛𝑔𝑒(𝑚) = 𝑟 × 10
(35−𝐸𝐼𝑅𝑃��������)

20           (1) 
 
From the plot in Figure 3, we can determine the effective, readable distance as a function 
of the travel path with a lateral offset from the reader position. Figure 4 graphs this 
relationship, assuming a standard lane width of 3.5m and a reader placed in the centre of 
the lane. It is clear from the graph that a vehicle travelling along different lateral lines has 
at least 7m of illumination in each direction. Consequently, the detection system satisfies 
the required 4m reading zone defined in (Pretorius, Hoffman & Wang, 2015). 



 
Figure 3: RFID signal illumination area. Source: Author 

 

 
Figure 4: Effective reading distance vs. lateral vehicle offset. Source: Author 

 
5.2 RFID In-Road Tests 
 
Figure 5 displays the RFID reader installation in a section of pavement on the North-West 
University campus. The reader is placed in a cavity with a 2.4m x 2.4m ground plane. 
Various tests were performed to verify if the system meets the theoretical requirements. 
These tests were conducted on a stretch of road about 300 m in length, allowing a 
maximum vehicle speed of 70km/h. 
 

 
 

Figure 5: RFID reader in-road setup. Source: Author 
 



Reader mode test: The specific EVI application requires rapid reading of data from the tag. 
The ISO18000-6C specification provides different read modes that can optimize the 
readability of a tag for a particular application. Three different read modes are given in 
Table 1. The reader mode test aimed to identify the optimal reader mode for maximizing 
data retrieval from a tag moving at various speeds. In this experiment, a single tag was 
mounted on a vehicle 400mm above the road surface, passing directly over the reader. 
The reader's output power remained fixed at 30dBm.  
 

Table 1: RFID reader modes 
 

Reader mode Modulation TARI PIE BLF M DR 
High throughput DSB-ASK 6.25 1.5 640 1 64/3 
Dense mode M4 PR-ASK 25 2 250 4 64/3 
Dense mode M8 PR-ASK 25 2 250 8 64/3 

Source: ISO 18000-3C Standard 
 
Figure 6 graphs the relationship between the number of successful reads and the vehicle 
speed for different reader modes. The experiment was repeated for different data read 
sizes; however, the graph only displays the results for 96 bits. From this data, we can 
easily determine the RFID signal illumination distance. According to the High throughput 
mode (Fast Search Mode) setting of the ThingMagic M6E micro reader, the read rate is 
about 750 tags/sec for 96-bit tags. The graph in Figure 6 demonstrates that a tag moving 
at 20km/h can be successfully read 735 times in High throughput mode. This indicates that 
the vehicle tag received illumination for a duration of 0.98 seconds. Therefore, considering 
the vehicle speed, the effective tag illumination distance is calculated to be 5.4 meters. 
This conforms with the requirement of 4m as stated in (Pretorius, Hoffman, and Wang); 
however, it is still lower than the read range determined in the RFID lab test.  
 

 
 

Figure 6: Reader mode test results. Source: Author 
 
Multi-tag test: (Pretorius, Hoffman, and Wang) found that a reader will have to interrogate 
a maximum of five legal tags visible to the reader at one time. The multi-tag test 
determined how much data could be read when five tags were in the reading zone. The 
reader was set to High throughput mode with a tag height of 400mm. Figure 7 displays the 
results of a tag interrogation with four other tags also moving through the reading zone. 
We can see the reduction in read rate compared to Figure 6.  
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Figure 7: Multi-tag test results. Source: Author 
 
Tag height test: The Tag Height test investigated the difference in tag performance for 
various license plate heights. Typical license plate heights range from 200mm - 1.3m; 
however, for this test, the height was limited to 0.6m. The reader operated in high 
throughput mode, and tests were conducted for various data sizes. Figure 8 depicts the 
relationship between the number of successful reads and vehicle speed, considering 
different tag heights and a data read size of 96 bits. The graph demonstrates that a height 
of 400mm above the ground yields the most favourable results. 
 

                                

Figure 8: Tag Height test results. Source: Author 
 
Vehicle lateral offset test: A standard lane width of 3.5m means the furthest vehicle offset 
relative to the reader is 1.75m (assuming the placement of a reader in the centre of each 
lane). The test revealed the in-road system’s ability to detect a tagged vehicle for different 
lateral offsets. The reader operated in High throughput mode at 30dBm output power with 
a tag height of 400mm above the ground. The graph in Figure 9 displays the number of 
successful reads for different lateral offsets at incremental vehicle speeds. Performing a 
similar calculation as in the Reader mode test, it can be found that the illumination 
distance is 4.9m for a 1m offset and 4.2m for a 1.75m offset. Thus, the reader meets the 
theoretical requirement of a 4m reading zone. 
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Figure 9: Vehicle lateral offset test results 
 
Multi-reader test: In the field, multiple readers will be deployed in close proximity at 
different sections of a roadway. Tag-to-Reader interference can occur as a result of 
multiple readers trying to access the same tag. This can also lead to additional ‘dead’ time 
between reads. It is critical to achieve as low as possible interference, while maintaining a 
high read rate. 
 

                                          

Figure 10: Multi-reader test results 
 
Figure 10 represents a standard test with an additional reader positioned in a neighbouring 
lane. Comparing this graph with Figure 6, we can clearly see a reduction in the reading 
rate. Although the neighbouring reader is unable to read any tags, its mere presence 
affects the RUT's read rate. To counter this interference, adjusting reader placement from 
a collinear to a zigzag fashion may minimize radiation pattern overlap, expanding the 
detection zone's coverage. The zigzag spacing test forms part of future work. 
 
5.3 Computer Vision Test 
 
Fig. 11 demonstrates the output of the vehicle identification pipeline for a frame containing 
the tagged vehicle. The model accuracies for the validation datasets are displayed in 
Table 2.  The ANPR model was pre-trained on the ImageNet dataset and fine-tuned using 
a custom ANPR dataset containing thirty thousand license plate images. These results 
closely resemble accuracies presented in (Besbes, 2021) on similar vehicle datasets. 
Vehicle make and model recognition was achieved using BCCNs consisting of two VGG16 
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networks whose outputs are combined using a bilinear pooling layer. The model was 
trained on a truncated version of the Stanford Cars dataset and contained 2,000 vehicle 
images from 196 different classes. The parts-based model described in (Besbes, 2021) 
achieved an average validation accuracy of 80.88%, having been trained on the 
CompCars dataset containing 136,727 images capturing the entire vehicle and 27,618 
images capturing vehicle parts. This demonstrates the significant impact the size of a 
training set can have on a model's accuracy. 
 

Table 2: Computer Vision model accuracies 
 

Model Accuracy (%) 
LP detection 98.80 
LP recognition 88.33 
VMMR 77.25 
Source: Author 

 

                              

Figure 11: Vehicle imaging road test Source: Author 
 

5.4 Data Fusion 
 
An RFID-enabled license plate tag that is issued to a vehicle owner will contain a unique 
identifier and additional vehicle information such as make, model, and registration number. 
When a vehicle enters the detection zone, an edge controller extracts the data from the 
RFID and traffic camera sub-systems and links it to a specific time slot (time slot sync). 
The vehicle registration number is cross-referenced within the designated time slot, and 
the vehicle's visual characteristics are compared. The connected edge controller can 
detect anomalies, such as mismatches or missed detections. Once an anomaly is 
identified, the edge controller reports it to an approved and controlled connected service 
using a best-practice access method. It is important to note that the specific details of this 
access method are not included in this study. 
 
6. CONCLUSIONS 
 
This study focused on designing and implementing a vehicle identification system that 
integrates two established object identification technologies. The aim is to detect and 
identify illegal vehicles while minimizing any impact on the experience of lawful road users. 
An in-road RFID reader and license plate tag provides an effective way to detect and 



identify in-traffic vehicles. At the same time, Computer Vision enabled traffic cameras can 
verify if the detected identity is true. Various tests performed on the in-road RFID system 
revealed that it complies with the theoretical requirements for reliable vehicle identification. 
 
Additionally, the study verified that ANPR and VMMR achieved the anticipated levels of 
accuracy. However, it was observed that VMMR necessitated fine-grained classification for 
accurate vehicle model recognition. Future work includes further investigation of the 
system performance when additional readers are introduced in neighbouring lanes, testing 
the system in a high-density traffic environment with speeds up to 180km/h, and finally 
compiling a more extensive training dataset for both ANPR and VMMR, to enhance 
identification accuracy. 
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