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ABSTRACT 
 
This paper investigates utilising machine learning (ML) techniques to predict the five major 
parameters of track geometry in railway infrastructure. Track geometry and incurred 
vehicle acceleration measurements were collected on a railway line and matched 
according to their GPS coordinates. The data were then split into test/train and validation 
datasets and processed using various ML methods. The predictive results of each ML 
method were compared for each track geometry parameter and the best methods were 
highlighted. The quality of the results was mixed with accurate results obtained for cant 
and alignment but inaccurate results for gauge, profile and twist. Overall, this research 
paper contributes to the field of railway engineering by demonstrating the potential to 
utilise ML in the field by predicting track geometry parameters. The findings have practical 
implications for improving track maintenance and ensuring passenger safety and comfort 
in railway operations. The promising results of this paper warrant more research being 
conducted and potential methods for improvement are highlighted. 

 
1. INTRODUCTION 
 
Maintenance of railway infrastructure typically comprises over 70% of a track’s lifecycle 
costs (Heyns, 2006). One of the most important aspects of railway track maintenance is 
the identification and correction of poor track geometry conditions, known as track 
geometry irregularities (Li et al., 2006). These irregularities incur high vehicle vibrations 
which lead to poor ride quality as well as a greater risk of vehicle derailment (Hao et al., 
2023). Although it is understood that vehicle vibrations and track geometry have an 
underlying correlation, there has long been a history of unsuccessful research attempting 
to find a correlation between these metrics (Haigermoser et al., 2014). However, recent 
advancements in algorithms and computational power have enabled some success in this 
endeavour. For example, Odashima et al. (2016) have shown that by using a Kalman filter, 
vertical track geometry can be estimated within 1 mm numerical accuracy by knowing the 
speed and car-body accelerations of the train. 
 
ML is one of these recent technological innovations enabling advancement in engineering 
(AlHamaydeh et al., 2022) and in particular, railway engineering. These applications 
include, but are not limited to: image-based condition monitoring of track superstructure 
(Broekman & Gräbe, 2021); prediction of rail contact fatigue using image processing 
(Sysyn et al., 2019) and track geometry deterioration prediction using periodic 
measurement data (Lee et al., 2020). Hao et al. (2023) showed that by using a 
combination of ML techniques, the measured vertical and lateral accelerations as well as 
speed of the train could be used as inputs to predict the vertical profile of the rail as an 
output. However, research is still required outlining how the five major track geometry 
parameters (profile, alignment, gauge, cant and twist) can be predicted using the train’s 
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ride quality, as most research focuses on either predicting the combined track quality or 
identifying individual defects in the track (Liao et al., 2022). This research therefore aims to 
utilise ride quality data processed through ML techniques to predict the five major 
parameters of track geometry. 
 
1.1 Objectives 
 
The main objective of this study is to utilise ML techniques to determine algorithms that 
can utilise incurred vehicle accelerations and speed of the vehicle as inputs to predict the 
railway’s track geometry. 
 
In addition, the different algorithms derived from the different ML methods will be 
evaluated to determine which formula results in the smallest error when presented with a 
previously unseen set of input data, known as a validation dataset. 
 
2. LITERATURE REVIEW 
 
2.1 Track Geometry 
 
Track geometry is utilised to determine the roughness of the track and plays a crucial role 
in evaluating a track’s safety (Tsunashima et al., 2014). Track geometry is categorised in 
terms of the rail’s shape projected into four planes: horizontal; longitudinal vertical; 
transverse vertical and track. These projected shapes enable standardisation of track 
geometry for both design and maintenance operations. A summary of the planes utilised 
and the corresponding names of the track geometry measurements are shown in Table 1 
with a graphical description of the track geometry measurements shown in Figure 1. 
 

Table 1: Track geometry measurement descriptions 
 

Plane Name of 
Measurement(s) 

Description 

Longitudinal 
Vertical 

Vertical profile Vertical deviation in rail shape 

Horizontal Alignment Horizontal deviation in rail shape 

Transverse 
Vertical 

Cant Difference in elevation of rails 

Twist Change in cant over a distance known 
as a twist-base 

Track Gauge Distance between inside of rail 
heads, 15 mm below top of rail head 

 
 
The measurements shown in Table 1 and Figure 1 enable characterisation of the track’s 
geometry either by analysing each measurement individually or by combining the  
measurements into a Track Quality Index (El-Sibaie & Zhang, 2004). 
 



 

Figure 1: Track geometry measurements depiction (adapted from Liao et al., 2022) 
 
2.2 Vehicle Dynamics 
 
Together with track geometry, train dynamics play an important role in evaluating the 
safety of a railway operation. The dynamic behaviour of trains is significantly influenced by 
track geometry quality (Haigermoser et al., 2014) and thus track geometry contributes to 
passenger comfort and safety (Sresakoolchai & Kaewunruen, 2022). Higher train speeds 
incur higher vibrations, both wheel-axle and axle-body, in turn reducing ride quality (Liu et 
al., 2020). 
 
2.3 Machine Learning 
 
ML is a subset of artificial intelligence based on constructing predictive algorithms that 
describe a complex interaction between input and output variables in a dataset (Markou 
and Bakas, 2021). It can be explained as an algorithm that learns directly from a given 
dataset, without human assumptions or theory (Christodoulou et al., 2019). 
 
A commonly used type of ML technique is multiple linear regression, which aims to model 
the relationship between many input variables (features) and an output variable (target) 
using a linear relationship (Pandit et al., 2021). The underlying principle is based on the 
minimisation of residuals (bias) between predicted values and actual data. Multiple 
nonlinear regression is based on the same principle of multiple linear regression however, 
feature variables utilise nonlinear relationships to predict the target variables. 
 
Empirically-based ML algorithms also exist, such as random forests, decision trees and 
artificial neural networks (ANN) (Christodoulou et al., 2019). These algorithms are 
sometimes referred to as “black-box” models as it is not evidently clear how the algorithms 
model predictions. For example, the random forest algorithm is derived from a forest of 
decision trees which can utilise classification or regression to predict an output at a leaf 
based on decisions occurring at a node. ANNs utilise input and output layers with hidden 
layers in between which transform the features to match the target by passing the features 
through functions at the nodes (Markou et al., 2023). Deep learning is an extension of 
ANNs but is typically best suited for large datasets and where relationships between data 
are complex (Kelleher, 2019). This arises from deep learning’s ability to utilise more 
hidden layers between the input and output nodes, thus enabling modelling of more 
complex relationships between the feature and target variables (Muniasamy & Alasiry, 
2020). 



 

3. EXPERIMENTAL SETUP 
 
Data were collected on the railway line between Phalaborwa and Hoedspruit in South 
Africa’s Limpopo province. The data acquisition consisted of a road-rail vehicle (RRV), 
track geometry trolley (Krab) and inertial measurement and high-accuracy unit (IMU). An 
RRV is  a dual-purpose vehicle that can travel on both roadways and railways and is 
typically utilised for track maintenance purposes such as collecting track geometry data. 
Inside the cab of the RRV, the IMU was positioned in the place of a seat to capture 
accelerations reflecting the passenger ride quality, shown in Figure 2(a). Behind the RRV, 
a track geometry trolley was towed to capture the track geometry, shown in Figure 2(b). 
 

(a) (b) 
Figure 2: Experimental setup of (a) IMU in RRV cab and (b) track geometry trolley  

behind RRV 
 
The experimental setup allows for capturing incurred vehicle accelerations and 
subsequently capturing the corresponding track geometry causing these accelerations. All 
data for this research was captured at a low speed of approximately 10 km/h. 
 
4. DATA PREPROCESSING 
 
4.1 Matching Accelerations and Track Geometry Data 
 
As the data were captured from two separate apparatus, the data would have to be 
matched to ensure that the track geometry measurements were matched exactly with the 
incurred accelerations. The different sampling frequencies of the two apparatus led to 
a potential problem – one track geometry measurement had roughly 10 acceleration 
values associated with it. As both apparatus had built-in GPS capabilities, it was decided 
to match the track geometry measurement with the single closest acceleration value 
geographically using the Haversine formula. 
 
In an effort to negate erroneous acceleration and track geometry data experienced at 
turnouts, the matched accelerations and track geometry data were filtered to include all 
values above the 2nd percentile and below the 98th percentile of the final matched 
values. An example of   the matched values for cant and accelerations in the x- and y-
directions is shown in Figure 3. 
  



 

 

Test/Train Validate 
 

Figure 3: Example of matched track geometry and acceleration values 
 
Figure 3 confirms good matching of the datasets when comparing Acceleration Y and cant 
in the curves, represented by the peaks of the plots. These two curves exhibit peaks at the 
same track distance, both during and after the curve’s development in superelevation. 
These peaks are however of different magnitudes. 
 
The dataset was then split into two datasets – the test/train and validation datasets. The 
test/train dataset utilised data collected from kilometres 22 to 41 and was randomly split 
into a 20:80 ratio respectively. The test/train dataset is used to train the algorithms and 
subsequently evaluate the performance of the algorithms by utilising cross-validation so 
that the algorithm can learn from errors and improve on the following iteration. The 
validation dataset utilised data from kilometres 41-49 and represents the out-of-sample 
metrics for this experiment. The use of a validation dataset is important because as 
shown in Figure 3, the curves (represented by peaks in cant) in the test/train and 
validation portions of the dataset exhibit different lengths and rates of change of 
superelevation. Thus, the performance of the validation dataset is a good indicator of the 
robustness of the algorithms as it can potentially prove the algorithms’ abilities to adapt to 
track characteristics it was not explicitly trained on. 
 
4.2 Descriptive Statistics 
 
Before training the different ML algorithms, the feature and target variables of the dataset 
were compared using Pearson’s correlation coefficient, 𝑟 to determine if any underlying 
relationships existed between the feature and target variables. The formula to determine 
Pearson’s correlation coefficient is given in Equation 1. 

 

                                  𝑟 = 𝑛(∑ 𝑥𝑦)−(∑ 𝑥)(𝑛
𝑖=1 ∑ 𝑦)𝑛

𝑖=1
𝑛
𝑖=1

�𝑛(∑ 𝑥2)−(∑ 𝑥)2)(𝑛𝑛
𝑖=1 ∑ 𝑦2−𝑛

𝑖=1 ∑ 𝑦)2𝑛
𝑖=1

𝑛
𝑖=1

                               (1)   

 
To visualise the correlations of many feature and target variables, it is helpful to utilise 
correlation matrices. Figure 4 shows the Pearson correlations between all feature and 
target variables individually. As target and feature variable names have been abbreviated, 
a full list of explanations for these variables is given in Appendix A. 



 

 
 

Figure 4: Correlation matrices of (a) right alignment (b) left alignment (c) right profile  
(d) left   profile (e) gauge (f) cant and (h) twist 

 
The yellow and purple blocks in Figure 4 show very strong correlations between feature 
and target variables. For example, in Figure 4(a), the target variable (right alignment) 
shows a strong positive correlation with AY (acceleration in the y-direction) and strong 
negative correlations with ARD (angular rate down) and the vehicle’s roll, respectively. 
These strong correlations are indicative of good results when the data are processed using 
the ML algorithms. However, results shown in Figure 4(c) show a very weak correlation 
between features and the target variable of left profile, indicating that the ML algorithms 
will incur difficulty in predicting the target variable of right profile. 
 
5. APPLIED MACHINE LEARNING 
 
5.1 Error Metrics 
 
Various error metrics are used to evaluate the performance of a ML algorithm. These 
metrics compare the predicted target values with the actual target values to find the 
accuracy of the prediction. The different error metrics used for the purpose of this research 
work are shown in Appendix A. 
 
5.2 Results 
 
The ML algorithms used in this paper as proposed by Markou et al. (2023) are multiple 
linear regression, multiple nonlinear regression, random forest (RF), XGBoost, artificial 
neural networks by neighbour (ANNBN) and deep artificial neural networks (DANN). The 
use of many algorithms allows for the comparison of their respective accuracies and ability 
to predict target values. All utilised algorithms are courtesy of open-source code from 
Bakas et al. (2023) called nbml. The statistical results for the validation datasets for the 
various algorithms are shown in Table 2 and the graphical depiction of the results are 
depicted in Figure 5. 
  



 

Table 2: Statistical errors of ML algorithms for validation dataset 

Target Model 𝒓 MAPE MAMPE MAE RMSE 
Right 
Alignment 

ANNBN 0.915 Inf 0.353 5.277 6.839 
DANN 0.934 Inf 0.302 4.517 5.949 
Linear Reg. 0.906 Inf 0.261 3.897 4.997 
Nonlinear Reg. 0.923 Inf 0.256 4.530 6.388 
RF 0.930 Inf 0.254 3.793 5.356 
XGBoost 0.905 Inf 0.360 5.386 7.765 

Left 
Alignment 

ANNBN 0.907 Inf 0.368 5.500 7.243 
DANN 0.934 Inf 0.277 4.136 5.752 
Linear Reg. 0.908 Inf 0.259 3.870 4.968 
Nonlinear Reg. 0.928 Inf 0.320 4.636 6.462 
RF 0.930 Inf 0.256 3.824 5.402 
XGBoost 0.910 Inf 0.354 5.293 7.514 

Right 
Profile 

ANNBN 0.088 Inf 1.037 1.193 1.589 
DANN 0.001 Inf 1.000 1.151 1.549 
Linear Reg. 0.137 Inf 0.994 1.143 1.534 
Nonlinear Reg. 0.118 Inf 0.998 1.149 1.540 
RF 0.077 Inf 1.003 1.155 1.547 
XGBoost 0.032 Inf 1.221 1.405 1.849 

Left 
Profile 

ANNBN 0.123 Inf 1.023 1.327 1.721 
DANN 0.004 Inf 1.012 1.312 1.703 
Linear Reg. 0.190 Inf 0.983 1.275 1.656 
Nonlinear Reg. 0.158 Inf 0.988 1.294 1.677 
RF 0.012 Inf 1.001 1.298 1.687 
XGBoost 0.067 Inf 1.133 1.469 1.892 

Gauge ANNBN 0.293 Inf 0.687 2.330 3.139 
DANN 0.355 Inf 0.586 1.987 2.700 
Linear Reg. 0.613 Inf 0.633 2.146 2.585 
Nonlinear Reg. 0.320 Inf 0.662 1.918 2.522 
RF 0.419 Inf 0.623 2.113 2.779 
XGBoost 0.416 Inf 0.692 2.345 3.002 

Cant ANNBN 0.990 Inf 0.210 2.148 2.823 
DANN 0.994 Inf 0.174 1.783 2.197 
Linear Reg. 0.993 Inf 0.180 1.842 2.269 
Nonlinear Reg. 0.993 Inf 0.179 1.840 2.250 
RF 0.994 Inf 0.177 1.814 2.257 
XGBoost 0.993 Inf 0.173 1.770 2.234 

Twist ANNBN 0.012 Inf 1.220 1.495 1.962 
DANN 0.023 Inf 1.002 1.228 1.598 
Linear Reg. 0.040 Inf 1.005 1.231 1.600 
Nonlinear Reg. 0.024 Inf 1.004 1.261 1.630 
RF 0.030 Inf 1.094 1.340 1.730 
XGBoost 0.026 inf 1.247 1.527 1.941 

 



 

(a) 
 

(b) 
 

(c) 
 

(d) 
 

 (e) 
Figure 5: Graphical depiction of validation dataset’s ML results for (a) right  alignment (b) 

left alignment (c) right profile (d) left profile (e) gauge (f) cant and (h) twist 



 

(f) 
 

(g) 
Figure 5: Cont'd 

 
The results shown in Table 2 and Figure 5 are indicative of promising results for utilising 
ML to predict track geometry. The predicted alignments and cant show very accurate 
results, with low errors and graphs resembling the actual measured values. However, due 
to the lack of statistical correlations shown in Figure 4 - profile, gauge and twist produce 
very inaccurate results both statistically and visually. These sets of measurements are all 
centred about the x-axis, and therefore correlation can potentially be found by including 
more features centred about a common value. The simpler methods of multiple linear and 
nonlinear regression perform better for these metrics as the empirical methods incur 
difficulty in making accurate decision trees/hidden layers for values that vary about the x-
axis. 

The poor results for twist are expected as twist is defined as the change in cant along a 
distance of track. As the ML models only learn from each record of data and therefore 
cannot learn from previous entries, it is logical that the models cannot predict twist 
accurately. 

The infinite errors for the MAPE metric arise from its formula which has the actual 
measurement, 𝑦𝑡𝑟𝑖 as its denominator. Due to the fact that this experimental data contains 
values which cross the x-axis, the denominator tends to zero and thus division by zero 
occurs, leading to a mathematical error. 
 
In summary, the model performance varies across different target categories. DANN 
consistently achieves high correlations and relatively low MAE values across most 
categories, making it a strong performer. Multiple linear regression also shows strong 
correlations but can have slightly higher MAE values in some cases. ANNBN tends to 
have lower correlations and higher MAE values, making it less effective for these target 
categories. The high spikes of ANNBN around kilometre 45 indicate potential overfitting of 
the test/train dataset. RF and XGBoost generally perform well with strong correlations and 
moderate MAE values, while multiple nonlinear regression’s performance falls in between. 
 
  



 

6. CONCLUSIONS 
 
The main research aim of utilising ML techniques to predict track geometry showed mixed 
quality results. It has been shown that due to the strong statistical correlation between 
parameters, it is possible to yield a good prediction of alignment and cant values 
respectively. As little correlation exists between the selected features and the target 
variables of profile, gauge and twist, the ML techniques experienced difficulty in accurately 
predicting these track geometry parameters. The secondary research aim of comparing 
the different ML techniques shows that the two best techniques in terms of statistical 
correlation are linear regression or deep artificial neural networks (DANN), depending on 
the target variable being predicted. Further research is required to evaluate the training 
time and hyperparameter optimisation of the different methods, as these topics were 
beyond the scope of this study. 
 
This research contributes to the field of railway engineering through enabling easier 
operations of track maintenance. The use of a model trained on both vehicular ride quality 
data and corresponding track geometry data can enable track maintenance teams to 
perform future condition monitoring using ride quality data only as opposed to the 
combination of both ride quality data and track geometry data. This is beneficial in a time-
saving and operational efficiency aspect as track geometry data is typically more difficult to 
collect than ride quality data.  
 
As this paper forms part of ground-breaking research in the railway environment, this 
research will be extended in an attempt to decrease errors and improve predictions of 
gauge, cant and twist by utilising more feature variables as inputs and exploring data 
manipulation through the use of fast Fourier transforms and Kalman filters. As this 
research was not conducted in an actual train but rather an RRV, data captured from a 
moving train at high speeds (up to 160 km/h) is another area in which this project will be 
extended. In summation, this study presents encouraging preliminary findings, indicating 
significant potential for  advancements in this field. 
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APPENDIX A 
 

Table 3: All feature and target variables used for ML 
Variable 
Abbreviation 

Variable Name Description 

Speed Speed Speed of the RRV [𝑚/𝑠] 
AFF Acceleration filtered forward Moving average filter of accelerations in x-direction [𝑚/𝑠2] 
AFL Acceleration filtered lateral Moving average filter of accelerations in y-direction [𝑚/𝑠2] 
AFD Acceleration filtered down Moving average filter of accelerations in z-direction [𝑚/𝑠2] 
AX Acceleration X Accelerations in direction of rail [𝑚/𝑠2] 
AY Acceleration Y Accelerations in direction normal to rail [𝑚/𝑠2] 
AZ Acceleration Z Accelerations in vertical direction [𝑚/𝑠2] 
ARF Angular rate forward Angular forward velocity [𝑑𝑒𝑔/𝑠] 
ARL Angular rate lateral Angular lateral velocity [𝑑𝑒𝑔/𝑠] 
ARD Angular rate down Angular downwards velocity [𝑑𝑒𝑔/𝑠] 
Pitch Pitch Rotation about y-axis [°] 
Roll Roll Rotation about x-axis [°] 
Vel. Up Velocity up Upwards velocity in vertical direction [𝑚/𝑠] 
L. Alignment Alignment of left rail Vertical deviation of left rail [𝑚𝑚] 
R. Alignment Alignment of right rail Vertical deviation of left rail [𝑚𝑚] 
L. Profile Profile of left rail Vertical deviation of left rail [𝑚𝑚] 
R. Profile Profile of right rail Vertical deviation of right rail [𝑚𝑚] 
Gauge Track gauge Distance between inside of rail heads [𝑚𝑚] 
Cant Cant Difference in elevation of rails [𝑚𝑚] 
Twist Twist Change in cant along a twist-base of 3 m [𝑚𝑚] 

 
 

Table 4: Error formulae and descriptions 

 

Name Formula Description 
Root Mean 
Squared Error 𝑅𝑀𝑆𝐸 = �∑ 𝑦𝑡̂𝑟𝑖 − 𝑦𝑡𝑟𝑖)2

(𝑚
𝑖=1

𝑚
#(2) 

Square root of sum of biases squared divided 
by number of samples 

Mean Absolute 
Error 𝑀𝐴𝐸 =

∑ |𝑦𝑡̂𝑟𝑖 − 𝑦𝑡𝑟𝑖|𝑚
𝑖=1

𝑚
#(3) 

Sum of absolute biases divided by number of 
samples 

Mean Absolute 
Percentage  Error 𝑀𝐴𝑃𝐸 =

1
𝑚
�

|𝑦𝑡̂𝑟𝑖 − 𝑦𝑡𝑟𝑖|
𝑦𝑡𝑟𝑖

𝑚

𝑖=1

#(4) 
Sum of absolute percentage errors of dataset 
divided by number of samples 

Mean Absolute 
Mean Percentage 
Error 

𝑀𝐴𝑀𝑃𝐸 =
1
𝑚
�

|𝑦𝑡̂𝑟𝑖 − 𝑦𝑡𝑟𝑖|
1
𝑚∑ 𝑦𝑡𝑟𝑖𝑚

𝑖=1

   (5)
𝑚

𝑖=1

 
Sum of biases divided by average feature 
value, divided by number of samples 
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