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ABSTRACT 
 
Traffic speed prediction using deep learning neural networks has been the topic of many 
studies, mostly using data sets that were collected from static sensors.  Floating vehicle 
data offers a more flexible alternative, as it can be obtained for any roads travelled by GPS 
tracked vehicles. In this paper we compare the performance of leading traffic speed 
prediction techniques when applied to both static sensor and floating vehicle data sets.  
Data sets were collected for the road networks serving Johannesburg, representing South 
Africa’s most congested roads. Based on prediction accuracy, training time and robustness 
the Graph WaveNet method produced the best results.  We found that the static sensor 
and floating vehicle data sets, representing traffic movements on the same sets of roads, 
produced comparable results, providing evidence that static sensor data can be 
complemented and, in some cases, replaced by floating vehicle data.  This will enable 
traffic speed prediction for roads where no static sensors are installed, resulting in 
significant cost savings.  Extending traffic speed prediction to all major roads will result in 
improved traffic management strategies for the overall road network, leading to less 
congestion and an improved road user experience. 

1. INTRODUCTION 

Traffic speed prediction is an important part of managing metropolitan traffic networks 
(Kumar & Raubal, 2021).  The high costs associated with congestion in big cities is one of 
the main reasons for the recent interest traffic speed prediction (Mena-Oreja & Gozalvez, 
2020), (Polson & Sokolov, 2017). From a recent study the revenue lost in some Australian 
cities due to traffic congestion was approximately $16.5 billion (Tedjopurnomo, 2022). 
Traffic congestion can be alleviated by better traffic management (United States 
Department of Transportation, 2020) and can be accomplished by implementing an 
Intelligent Transportation System (ITS) to regulate traffic. An integral part of an ITS is 
traffic speed prediction (Wang et al., 2019).  
 
Models like auto-regression and conventional supervised neural networks have been used 
for traffic speed forecasting but display limited accuracy according to (Wang, 2016). Deep 
learning neural networks have been one of the most successful techniques used for time 
series prediction and many approaches have been published (Mena-Oreja & Gozalvez, 
2020). Speed prediction methods are evaluated using performance measures such as 
prediction accuracy, robustness under various conditions, computational intensity of the 
learning process and others (Mallick et al., 2021).  
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1.1 Historical Experimentation 

Historic datasets play a vital role in developing models as well as improving existing 
models for traffic speed prediction. These datasets should include enough relevant 
information to train the model and to be considered a benchmark dataset for integration 
into other models or traffic networks. Two datasets namely the METR-LA and PEMS-BAY 
have been widely used as baseline datasets to evaluate methods used to predict future 
traffic speeds. The METR-LA dataset which is located primarily on the Los Angeles 
highway uses traffic data from 207 sensors across March 1st, 2012, to June 30th, 2012, 
and the PEMS-BAY dataset has 325 sensors collecting data across January 1st, 2017, to 
May 31st, 2017. For both datasets the data is captured in 5 minute intervals (Li et al., 
2017). These two datasets have their sensors spread on certain road segments as shown 
in Figure 1 below. 
 

 
Figure 1: All the sensors located on the road segments for (a) METR-LA and (b) PEMS-BAY 

datasets adapted (Li et al., 2017) 
 
To establish a performance reference conventional ARIMA (autoregressive integrated 
moving average) prediction methods as well as a DCRNN (diffusion convolutional 
recurrent neural network) method, a recurrent neural network that does not use a graph 
method to incorporate spatial dependencies, were applied to the data. The prediction 
results achieved with these methods were compared against the results produced by the 
Graph WaveNet method (Wu et al., 2019). These results for the METR-LA and PEMS-
BAY datasets are displayed in Table 1 and Table 2 and are adapted from various sources 
that used different prediction techniques. The metrics used in testing to measure the 
results are the Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and the 
Mean Absolute Percentage Error (MAPE). 

As seen in Table 1 and Table 2, the Graph WaveNet technique achieved the best results 
on the METR-LA and PEMS-BAY datasets. By using these datasets as benchmarks, the 
performance of the Graph WaveNet technique when applied to South African datasets can 
be measured.  

 
  



Table 1: Results for the METR-LA dataset (Papers with code, 2024a) 

Models 15 min 30 min 60 min 
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE 

ARIMA 3.99 8.21 9.60% 5.15 10.45 12.70% 6.90 13.23 17.40% 
DCRNN 2.77 5.38 7.30% 3.15 6.45 8.80% 3.60 7.60 10.50% 
Graph 
WaveNet 

2.69 5.15 6.90% 3.07 6.22 8.37% 3.53 7.37 10.01% 

 
Table 2: Results for the PEMS-BAY dataset (Papers with code, 2024b) 

Models 15 min 30 min 60 min 
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE 

ARIMA 1.62 3.30 3.50% 2.33 4.76 5.40% 3.38 6.50 8.30% 
DCRNN 1.38 2.95 2.90% 1.74 3.97 3.90% 2.07 4.74 4.90% 
Graph 
WaveNet 

1.30 2.74 2.73% 1.63 3.70 3.67% 1.95 4.52 4.63% 

 
2. RESEARCH PROBLEM STATEMENT 
 
Traffic congestion is problem that incurs many unnecessary costs. These costs can be 
reduced by managing traffic more effectively using Intelligent Transportation Systems 
(ITSs). An integral part of these ITSs involves traffic speed prediction. Deep learning 
neural networks have been proven to be successful at predicting traffic speeds using static 
sensor data. The problem is that not all roads can be equipped with static sensors due to 
budget constraints. The ability to gather speed information per road segment using vehicle 
GPS data makes it possible to extend traffic speed prediction to roads not equipped with 
static sensors. Traffic speed data gathered from GPS tracking data is called floating 
vehicle data (FVD). 
   
The aim of this paper is to compare the Graph WaveNet technique on static sensor and 
floating vehicle datasets gathered on South African roads. The Graph WaveNet technique 
produced satisfactory results when tested on the California Transportation Agencies 
(CalTrans) Performance Measurement System (PEMS) dataset as well as the Los 
Angeles Metropolitan Transportation Authority (METR-LA) dataset, which are regarded as 
benchmark datasets.  
 
The aim was to determine if the same techniques that provide satisfactory results on the 
benchmark static sensor datasets will also be useful when applied to a static sensor 
dataset collected from SANRAL static sensors as well as on a floating vehicle dataset 
acquired from the company INRIX, both datasets being recorded at the same locations 
and for similar time frames. These results could indicate whether static sensor datasets 
can be complemented by floating vehicle datasets to achieve wider coverage when 
implementing intelligent traffic management. 

3. DATA 

The datasets that were used in testing are the floating vehicle INRIX dataset and the static 
sensor SANRAL dataset. The METR-LA and PEMS-BAY datasets were collected mainly 
on highways, thus only data collected on highways were used in the INRIX and SANRAL 
datasets.  
 



3.1 INRIX Data 
 
An INRIX road segment is a basic element of a road network used to measure the speeds 
and detect incidents on a road. INRIX uses two types of segments, namely XD Segments 
and TMC segments. TMC segments are an encoding of TMC location tables onto the 
linear road network and were used in this experiment. TMC tables are typically created 
and maintained by various third-party entities at a country level. The international 
standards body, TISA, reviews and certifies these location tables. The INRIX dataset used 
for this study consists of 357 road segments in the Johannesburg area as shown in  
Figure 2.  
 

 
Figure 2: INRIX Johannesburg Road Segments used for this study 

 
The data received from INRIX uses 5-minute sampling intervals and is based on tracking 
data obtained from approximately 10% of all the vehicles travelling on the respective road 
segments at that time. It had to be formatted to be suitable for training the Graph WaveNet 
model. Examples of the received and formatted data can be seen in Figure 3 and Figure 4. 
 
 



 
Figure 3: INRIX Received Data Format 

 

 
Figure 4: INRIX Formatted Data 

 
3.2 SANRAL Data 
 
For the SANRAL dataset, CTO (Comprehensive Traffic Observations) data gathered from 
static sensors that exist along the same road segments as for the INRIX data was used. 
The data that was made available by SANRAL is for the first 4 months of 2022, thus that 
timeframe was also used for the INRIX data.  One important difference is that the SANRAL 
data used a 15-minute sampling interval. While the Sanral speed data was differentiated 
between passenger and heavy vehicles, we lumped these together, as the INRIX data did 
not differentiate between vehicle classes. 
 
The SANRAL data suffered from a significant fraction of missing values.  As a prediction 
model requires complete time series for training purposes, we calculated weekly speed 
profiles for each SANRAL sensor. Missing values were replaced by the corresponding 
values for the same day of week and time of day obtained from the weekly profiles for the 
respective sensors. This ensured that the replacement data would not result in 
discontinuities when training the model. 
 
Similar to the INRIX data, the SANRAL data also had to be formatted from the received 
format to the required format for use in the Graph WaveNet model. Samples of the 
received and formatted data can be seen in Figure 5 and Figure 6. Only 28 of the 
SANRAL static sensors coincided with the available INRIX data, as shown in Figure 7. 
 

 
Figure 5: SANRAL Received Data Format 



 
Figure 6: SANRAL Formatted Data Format 

 

 
Figure 7: SANRAL Johannesburg Static Sensor Stations 

 



4. TESTING 

To be able to perform the computationally intensive calculations as required to train the 
Graph WaveNet model on the different datasets, access was obtained to the CHPC high-
performance computing cluster. Firstly, training data was generated for the model by 
running a program that created a file in the required format from the SANRAL and INRIX 
datasets. 70% of the data is selected for training, 10% is used for validation testing and 
the remaining 10% is for testing purposes. Once all the files were created the model ran 
multiple training sequences multiple times by using the generated training data and 
performing sweeps to obtain the best hyperparameters for the sweeps over all the data. 
The hyperparameters used for the sweeps are displayed in Table 3.  
 

Table 3: Hyperparameter Sweep Variables 

Parameter Distribution Min Max 
Nhid (number of hidden layers) int_uniform 10 110 

Batch_size int_uniform 10 100 
Learning_rate uniform 0.0001 0.01 

Dropout uniform 0.01 0.6 
Weight decay uniform 0.00001 0.001 

Epochs uniform - 50 
 

These sweeps were performed and visually showcased with an external tool named 
Weights & Biases (Weights & Biases, 2023), where multiple sweeps can be done with 
different parameters for specific experimentation purposes. The train loss is displayed in 
Figure 8 where multiple sweeps were completed to obtain the best epoch for 
hyperparameter selection. As seen in Figure 8 the sweeps produced improved results as 
the model was trained multiple times over 50 epochs.   
 

 
Figure 8: SANRAL training loss for multiple sweeps 

 



 
After each epoch, the validation loss is calculated to determine the best performance of 
the model. The hyperparameters corresponding to the lowest validation loss value will be 
used for testing the model on the unseen data. A Bayes sweep was performed in all 
cases; this sweep method is based on a Gaussian process that utilizes the relationship 
between the model parameters and the model metric to optimize the probability for model 
improvement (Weights & Biases Docs, 2023). Other sweeping methods included a grid 
sweep that iterates over the parameter values and uses all possible combinations from 
these parameters. Another sweep method was the random sweep, that uses random 
parameter values for each iteration when doing multiple sweeps. As mentioned, the Bayes 
sweep was the best method to use for hyper parameter optimization. 
 
After the Graph WaveNet model was trained on the datasets the best hyperparameters 
were determined, the model was tested with using code provided by (Zhan, 2023) to 
obtain the performance results displayed below. Model performance was based on the 
values of the MAE (mean absolute error), RMSE (root mean square error), and MAPE 
(mean absolute percentage error). The MAE is the mean of the absolute values of the 
residuals (the differences between the predicted values and the target values from the 
dataset). The RMSE value is the square root of the sum of the squared error values 
calculated from the residuals. The MAPE is the MAE expressed as percentage of the 
actual values are calculated. To illustrate the progressively improving model during training 
the MAPE is displayed in Figure 9.  

 
Figure 9: SANRAL training MAPE for multiple sweeps 

 
A typical prediction result is displayed in Figure 10 below. The training data is displayed in 
green, the actual results for the testing period in blue and the predicted results for the 
testing period in red. It can be observed that the prediction closely follows the actual speed 
behaviour. 
 



 
Figure 10: Predicted speed for SANRAL station 17445 

5. RESULTS 

The same performance metrics used for the METR-LA and PEMS-BAY datasets, namely, 
the Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and the Mean Absolute 
Percentage Error (MAPE), were also used for the INRIX and SANRAL datasets. 

5.1 INRIX Data Results 

Similar to the prediction results for the METR-LA and PEMS-BAY datasets, we produced 
predictions over 15-minute, 30 minute and 60 minute intervals for the INRIX dataset, i.e. a 
maximum prediction horizon equal to 12 sampling periods. The results obtained by 
applying the Graph WaveNet model to the INRIX data can be seen in Table 4. 
 

Table 4: INRIX Graph WaveNet Results 
Dataset 15 min 30 min 60 min 

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE 
INRIX 
JHB 

7.4225 10.2261 10.29% 7.6923 10.6453 11.02% 7.917 11.0624 11.73% 

 
5.2 SANRAL Data Results 
 
For the SANRAL data, the sampling period is 15 minutes, thus prediction over a horizon of 
12 sampling periods, as for the INRIX data, results in a 3-hour prediction horizon. The 
results can be seen in Table 5, where 45-minute, 90-minute and 180-minute predictions 
were made by the Graph WaveNet model.  
 
 



Table 5: SANRAL Graph WaveNet Results 
Dataset 45 min 90 min 180 min 

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE 
SANRAL JHB 2.7812 5.1486 3.92% 3.0596 5.8622 4.46% 3.3437 6.3891 4.94% 

 
5.3 Comparisons 
 
This section compares the Graph WaveNet results for the South African data sets with the 
results obtained from the METR-LA and PEMS-BAY datasets. The comparisons include 
the MAE, RMSE, and MAPE values from all the datasets and can be seen in Table 6.  In 
all cases the prediction horizons are defined over 3, 6 and 12 sampling periods.   
 
It is observed that the prediction accuracy for the SANRAL data is similar to that obtained 
for the PEMS-BAY data, which is also based on static sensors. The predictions obtained 
for the INRIX floating vehicle data are somewhat less accurate. This could be expected as, 
in contrast to the other data sets, the INRIX data is based on only a fraction of the total 
vehicle population traveling on the respective roads during the period of data collection.  It 
is however still close to the accuracy obtained for the METR-LA data and can thus be 
regarded as good enough for practical use. 
 
Table 6: Comparison of INRIX, SANRAL, METR-LA and PEMS-BAY Graph WaveNet Results 

Dataset 3 Sampling Periods 6 Sampling Periods 12 Sampling Periods 
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE 

INRIX 7.4225 10.2261 10.29% 7.6923 10.6453 11.02% 7.917 11.0624 11.73% 
SANRAL 2.7812 5.1486 3.92% 3.0596 5.8622 4.46% 3.3437 6.3891 4.94% 
METR-LA 2.69 5.15 6.90% 3.07 6.22 8.37% 3.53 7.37 10.01% 
PEMS-BAY 1.30 2.74 2.73% 1.63 3.70 3.67% 1.95 4.52 4.63% 
 
6. CONCLUSIONS AND FUTURE WORK 
 
The Graph WaveNet technique performed similarly on the static SANRAL dataset 
compared to the benchmark PEMS-BAY and METR-LA datasets but did not fare as well 
on the INRIX floating vehicle dataset. This may be the result of data gathering methods 
influencing the results. The static sensors record data for all vehicles that pass over the 
respective roads, while the floating vehicle data is extracted from only a fraction of all the 
vehicles. It would be interesting to study the effect of the percentage of vehicles used to 
extract floating vehicle data on the accuracy of traffic speed predictions. 
 
While the floating vehicle data results are worse than the static sensor data results, it 
offers the benefit that it can be gathered on a larger scale compared to using static 
sensors at no extra cost in terms of installed infrastructure. Thus, it could prove to be 
useful as a supplement to static sensor data, enabling traffic speed prediction for roads 
where no static sensors are installed, and resulting in significant cost savings.  Extending 
traffic speed prediction to all major roads will result in improved traffic management 
strategies for the overall road network, leading to less congestion and an improved road 
user experience. 
 
Since this research was performed, some new techniques have emerged in the traffic 
speed prediction space. Future work will involve testing such techniques to determine if 
they perform better on floating traffic data than the Graph WaveNet technique. It could 
also be useful to compare the results for the INRIX data set to results obtained for other 
floating vehicle datasets using multiple prediction techniques to obtain further insights. 
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