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Abstract

Vehicle telemetry data is becoming more ubiquitous with increasingly sensorised vehicles, but
making sense of the vehicles’ purpose remains challenging without additional context. Clustering
the vehicle activity data and identifying the underlying facilities where the activities occur reveals
much insight, particularly for logistics planning. Unfortunately, current research typically only
looks at a single point in time. This paper contributes by matching geospatial patterns, each
representing a facility where trucks perform activities over multiple periods. The contribution
is a necessary first step in studying how urban freight movement and its underlying inter-firm
networks of connectivity change over time. We demonstrate how to overcome three challenges.
Firstly, the complexity of identifying facilities from non-regular geometric polygons. Secondly, the
challenge associated with the scale of comparing more than 200 000 facilities on a month-to-month
basis over a multi-year period. Finally, overcoming the computational challenge of the workflow
and getting the required performance on a consumer-grade laptop. The paper evaluates various
machine learning algorithms, highlighting a support vector machine that outperforms more popular
deep learning and neural network alternatives, with a mean average accuracy of 96.9%.

Keywords: Geospatial feature engineering, machine learning, shape comparison, multiperiod
lineages, geospatial clustering

1. Introduction

As cities keep expanding, so does the density of consumption and waste produced. Heavy goods
vehicles are best suited for both the supply of goods and services and the collection and removal of
waste. While transporting goods and service personnel, these heavy goods vehicles frequently stop
to perform activities. The locations where these vehicles perform stops suggest some economic or
value-adding activity.

Furthermore, the movement of vehicles between facilities is a helpful proxy for business re-
lations between the associated firms (Joubert & Axhausen, 2013). Therefore, identifying these
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facility locations accurately is vital to better understanding the firms and their relationships with
one another. Gathering detailed information about commercial vehicles’ movement and activity
schedules takes a lot of work, especially at the urban scale.

Using ubiquitous large-scale global navigation satellite system (GNSS) telemetry data, it is
possible to derive both facility locations, a proxy for actual firm locations, and transport relation-
ships between firms. It is only a proxy because the actual locations where vehicles stop differ each
time, and the limited accuracy of the GNSS means the actual stop position is also not precise. The
reader should note that with stops, we imply a trip-end (Sharman & Roorda, 2011) that typically
involves the vehicle’s ignition switched off, and not stops associated during travel, for example,
at traffic intersections. To overcome the challenge of imprecise data, we can identify facilities by
clustering vehicle stop locations for a given period. In the context of this paper, each single period
is referred to as an epoch in the remainder of the paper. Each facility is then represented as a
geospatial polygon, a concave hull of the associated vehicle stop locations.

But activities and freight relationships change over time. Since the clustering results are used
as a proxy for facility location, the same facility might be represented by a differently shaped
polygon in different epochs. An outstanding issue is the accurate identification of facilities between
subsequent epochs, referred to as inter-epoch changes. This translates into the problem of large-
scale matching of complex and irregular geospatial polygons in epoch t to those in epochs t + 1,
t+2, etcetera. This challenge is depicted in Figure 1. When density-based clustering is performed

? ?

Figure 1: Example of inter-epoch facility polygons from sample data. Clustered telemetry data results in different
polygons in each epoch.

to identify the facilities from the telemetry data, each epoch’s data is clustered independently.
After the density-based clustering, a unique facility number is assigned arbitrarily to each cluster
as an identifier. As a result, the facility numbers in one epoch have no relationship to the facility
numbers in any other epoch; if they have, it is entirely coincidental. Concerning Figure 1, one can
ask, “Is the polygon representing facility 668 in epoch 2 the same facility as the polygon representing
facility 561 in epoch 3?” Similarly, “Is the polygon representing facility 561 in epoch 3 the same
facility as the polygon representing facility 645 in epoch 4?” While this might seem trivial to the
human mind to resolve, automating the task on a large-scale data set using machine learning is
more challenging.

2



If we can track the facilities over time, we can also track how their connections with other
facilities, a proxy for business intensity, change over time. Accurate inter-epoch facility identifica-
tion allows for the creation of a linked time series of facility networks with one network per epoch,
enabling the investigation of:

• the birth of new facilities (first occurrence in time series);

• the death of facilities (last presence);

• the merging of smaller facilities into larger facilities;

• the split of larger facilities into smaller facilities;

• the age of facilities (firm longevity); and

• the facility relationships as they change over time (inter-firm connectivity).

In this work, we report on resolving the inter-epoch facility identification question. We de-
scribe the use of a metric space approach to geospatial feature engineering. This extracts machine
learning-friendly features from the geospatial polygons in each epoch. Employing the engineered
features, the paper evaluates several machine learning models for accuracy and potential use in
matching intra-epoch polygons. The most accurate machine learning model, a support vector ma-
chine (SVM), is then deployed to identify intra-epoch facilities in a sample dataset. From this,
we derived some preliminary insights on applying this approach to study the evolution of facilities
over time.

This paper is structured as follows. Section 2 reviews related and ongoing work on facility iden-
tification, geospatial polygon similarity, and machine learning. Section 3 describes the data, feature
engineering methodology, and data tagging for machine learning. The section also introduces the
City of Cape Town study area. Section 4 reports on the experimental results. It also addresses a
broader context of ongoing research and briefly touches on potential future work on facility lineage
research. The paper concludes with some final remarks and future work in Section 5.

2. Literature review

This review addresses four particular themes. Firstly, identifying facility locations is an essential
aspect of understanding logistic movements. Secondly, the review positions the geospatial shape
matching within the broader body of knowledge. Thirdly, the review looks at feature engineering
as an essential step in machine learning for shape matching. Finally, we also briefly touch on
computational complexity.

2.1. Identifying facility locations

Establishing where commercial or freight vehicles perform their activities remains a challenge.
Conducting detailed travel diaries through surveys is expensive and labour-intensive. In comparing
different methodologies to detect and quantify logistics sprawl— the migration of facilities dealing
with freight outwards, away from the economic centres — Trent & Joubert (2022) reflect on the
challenges in establishing a unified approach in what is considered a facility. In more developed
contexts, detailed land-use data is available, but these data typically fail to reflect the intensity of
freight movement. A representative freight-specific survey is available only on rare occasions, like in
Japan’s Tokyo Metropolitan Freight Surveys (2003 and 2013). To protect privacy, the data is then
disseminated at an aggregate level. Researchers have turned to another source of data: location
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traces collected through GNSS or other location service providers. In the case of commercial and
freight vehicles, the telemetry data is frequently collected through onboard units. Such spatial data
is becoming ubiquitous but brings its own challenges because the spatial breadcrumbsit leaves tell
us something about their movement between facilities and little to nothing about the facilities
where the actual activities occur. This section deals with the branch of literature concerned with
using vehicular movement data to understand the activities and associated locations where freight
vehicles conduct their business.

The use of density-based clustering to derive location information from geospatial point data
is well established (Ansari et al., 2021; Shi & Pun-Cheng, 2019; Malzer & Baum, 2020; Nurmi,
2009). This allows for identifying places of interest such as a coffee shop from, e.g., a collection
of geospatially co-located payment transaction data points (Zhou et al., 2004). From a transport
perspective, clustering trip stop locations from transport geospatial data enable the identification
of facilities and potential places of transport-related economic activity (Joubert & Axhausen, 2011).
Sharman & Roorda (2011) and Cich et al. (2016) both extract trips and stops from continuous
GNSS traces. Without additional data, vehicle stop locations suggest being involved in an activity,
such as loading or unloading, which has economic value. Facilities result from activity clustering
for a given period (epoch). Linking these facilities to one another allows for creating a network
structure describing the transport relationships between facilities, albeit only for that particular
epoch (Joubert & Axhausen, 2013; Joubert & Meintjes, 2016). This facility network allows for
using complex network analysis in studying the facility relationship structure (Háznagy et al.,
2015; Newman, 2018). For instance, a facility’s connectivity to other facilities might be used as a
proxy for its importance in the transport network: the higher the connectivity, the more important
the facility. It is thus clear that there is a significant dependence on accurate underlying facility
identification or accurate activity clustering. Recent work addressed this aspect through large-scale
evolutionary programming to optimise activity clustering accuracy (De Beer & Joubert, 2022). As
a result, location identification can be efficiently automated.

Given a sequence of facility networks, with one network per epoch, what remains outstanding
is the accurate linking of facility polygons between networks in subsequent epochs. This translates
into the accurate large-scale matching or linking of geospatial polygons between epochs, with simi-
larity influenced by both polygon shape and location (as illustrated in Figure 1). Solving this will
allow us to answer a question like “How does the movement of urban freight vehicles change over
time?”

2.2. Shape matching

The ability to identify and compare complex shapes informs several fields. In copyright protec-
tion, identifying features are generated from digital images and compared to potential copyright
infringements of said images (Daoui et al., 2021). In archaeology, pottery shapes and tool mor-
phology are classified and compared (Wang et al., 2018; Cardillo, 2010). Plant morphology is used
in botany to compare cultivars (Kupe et al., 2021). Medicine compares and categorises skeletal
structures such as human mandibles (Schmittbuhl et al., 2001). Astronomy is interested in the
categorisation and comparison of distant galaxies based on galaxy shape, sometimes in an invariant
manner to shape rotation, scale, and translation (Cecotti, 2018; Tramacere et al., 2016). In various
human behaviour-related fields, posture analysis is used, for example, to identify sign language sym-
bols (Espejel-Cabrera et al., 2021; Fernando & Wijayanayake, 2020) and dance postures (Anami
& Bhandage, 2019). Computer vision processing, underscoring recent advances in visual machine
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learning, requires detecting, identifying and comparing shapes and objects in visual scenes (Peters,
2017).

In geospatial transport analysis, the optimisation of intra-epoch facility identification compares
polygons manually defined by humans to polygons resulting from automated clustering (De Beer
& Joubert, 2022). While manual human input and insight may be considered repeatable (Joubert
& Meintjes, 2015), they are slow and expensive. In response, efforts are invested in automating the
matching process. Hausdorff distance measures are used in logistics facility analysis to compare and
identify logistics facility polygons over time (Trent et al., 2020). Geospatial geometry classification
employs machine learning to identify building classes based on the comparison between vector
polygons (Veer et al., 2018) and shape similarity to classify aerial entities in geographical vector
data (Fu et al., 2018).

2.3. Feature engineering

Most cases reported in the previous subsection use some form of feature extraction or engi-
neering (Domingos, 2012; LeCun et al., 2015). Feature extraction is also called location-encoding
in geospatial processing (Mai et al., 2022). Feature engineering transforms complex shape infor-
mation into smaller sets of, sometimes fixed, well-defined features that can be used to classify and
compare shapes. Well-engineered features also render the classification and comparison problem
more friendly to machine learning approaches (Zheng & Casari, 2018). Three types of features are
common in the literature:

• geometric features;

• elliptical Fourier descriptors (EFDs) (Kuhl & Giardina, 1982); and

• Hu moments (Hu, 1962).

De Beer & Joubert (2022) and Veer et al. (2018) extract intuitive geometric features such as polygon
circumference, area, centroid location, and the number of polygon vertices. The prior work utilises
these simplistic features to calculate the delta (difference) between feature values of two polygons,
such as the distance between centroids and the difference between circumferences. These deltas are
then input for penalty calculation as a similarity measure. The latter work uses the basic features
as an additional input into machine learning models.

In their work, Veer et al. (2018) and Wang et al. (2018) extract EFDs. Along with geomet-
ric features, these are used as input into machine learning or for further analysis. EFD analysis
disassembles a complex closed curve into a sequence of sine or cosine functions of increasing fre-
quencies (Godefroy et al., 2012). For each i ∈ {1..n}, with n the number of harmonics, or level of
required accuracy, four coefficients, ai, bi, ci and di are derived that affect the sine or cosine func-
tions. These coefficients are called EFDs. Summing the sine or cosine functions leads to a complex
ellipse approximating the original closed curve. As such, EFDs describe the original closed curve
and are used in shape comparisons (refer to Figure 2). When one deals with complex polygons, as
in our paper, the number of EFDs can become prohibitively large.

In the classification and comparison of galaxies (Tramacere et al., 2016) and aerial entities in
geographic vector data (Fu et al., 2018), the authors of both contributions extract Hu moments (Hu,
1962) for use as features. Briefly, Hu moments are geometric moments invariant to translation,
scaling and rotation. Regardless of the size of the geometric shape under investigation, there are
always only seven Hu moments for the shape. For example, in Figure 3, the Hu moments of a
square image for the letter ‘K’ and those of another image for the same letter but which is rotated,
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Figure 2: Elliptic Fourier reconstruction of a complex polygon (Adapted from Kuhl & Giardina (1982) and Veer
et al. (2018)).

scaled and shifted to the right-hand side of the image square, will be very similar, approaching
equality. But the Hu moments for an image of the letter ‘T’ would be significantly different (orders
of magnitude) from the Hu moments for the image of the letter ‘K’. Hu moments are therefore
used to compare and classify images, polygons and contours.

A well-established practice for using Hu moments with vector images is to rasterise the vector
image into a two-dimensional raster image up to a required level of accuracy. In support of their
argument for using EFDs, Veer et al. (2018) state that this rasterisation approach leads to a loss
of information. In their choice against using EFDs in favour of Hu moments, the present authors
will address this concern later in this paper. For a detailed description of Hu moments, refer
to Appendix A.1.

Many authors combine one or more of the different types of features. For example, Tramacere
et al. (2016) utilise Hu moments, geometric features and morphological features while Veer et al.
(2018) employs geometric features with EFDs as part of their analysis.

Once feature engineering is completed, most authors utilise some form of machine learning for
the classification task. A detailed description of all these machine-learning approaches lies outside
the scope of this paper. Veer et al. (2018) evaluate several shallow and deep learning models across
three geometry classification tasks:

1. Predicting the number of inhabitants compared the national median based on neighbourhood
geometry.

2. Using a building’s contour polygon to predict a building class.

3. Predicting an archaeological feature type using its geometry.

The models evaluated were:

• k-nearest neighbour classifier (kNN);

• Logistic regression;

• Support Vector Machine (SVM) with Radial Basis Function (RBF) kernel;
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Figure 3: Hu moments for three different images. (Source: Authors.)

• Decision tree classifier;

• 7-layer Convolutional neural network (CNN); and

• Long short term memory (LSTM) Recurrent neural network (RNN).

The reported accuracy on the three tasks across all models evaluated falls within [0.608, 0.683],
[0.328, 0.408] and [0.555, 0.624], respectively. Tramacere et al. (2016) utilise two ensemble classifi-
cation models in their galaxy morphology classification task:

• Random forest; and

• Gradient boosting.

2.4. A brief look at computing complexity

Processing complexity with big data is especially acute in the case of geospatial data sets.
This due to the need to process data in the context of space and time (Li, 2020), the need to
address complex dataset architectures (Zhao et al., 2016), the interaction of data (Poux et al.,
2016) and potential data segmentation (Ruan & Liu, 2020). A matter made worse when having
to compute machine learning models from the data, in many instance requiring special procession
equipment such as GPUs (Teri et al., 2022). To overcome this complexity, a well established
approach is through sampling, to experiment and evaluate model applicability, the embedding
of spatial properties, apply potential parameter optimisation and implementing any additional
algorithm enhancements deemed relevant (Du et al., 2020; De Beer & Joubert, 2022; Mai et al.,
2022; Zheng & Casari, 2018). After which the models are then employed in a scaled-up production
environment.
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3. Methodology

3.1. Data, study area and initial preparation

The primary data source for this paper is derived from a comprehensive commercial vehicle trip
telemetry dataset for South Africa from January 2010 to May 2014. More than 10 000 commercial
vehicles subscribing to the Digicore Fleet Management services, using onboard tracking devices,
travelled across South and Southern Africa. As described by Joubert & Axhausen (2013), the
telemetry dataset was processed to derive a total of 50 862 385 activities which were then optimally
clustered (De Beer & Joubert, 2022) into 504 198 unique facilities. The data’s potential selection
bias and representativeness are described in more detail in Joubert & Axhausen (2011). The
methodology presented in this paper remains valid across different scales of data representation.

Switching off a vehicle indicated the start of an activity and vice versa. Consecutive activities
were grouped into activity chains. Facilities were extracted by clustering the activities into facility
clusters based on density and proximity.

Aggregating the trips of all vehicles over time results in a network of connectivity.
In previous research, facility clustering was done on a per-month basis. In the context of

this current paper, each month is referred to as an epoch. This resulted in 53 networks, one per
epoch, with descriptive statistics over all epochs provided in Table 1. The resulting sequence of

Table 1: Descriptive statistics for facility clustering and network building process (Nepochs = 53).

Item µ σ min q25 q50 q75 max

Activities 959 667.6 180 300.5 195 389 883 008 990 877 1 085 937 1 215 748
Facilities 9 512.2 1 441.7 2 982 8 968 9 813 10 395 11 515

facility networks represents a time series of facility transport relationships. Each facility network
is recorded in two datasets: facilities (i.e. vertices) and links between facilities (i.e. edges). Of
primary concern for the work reported in this paper were the facilities datasets, which provided
the following data items:

• Id : The unique (intra-epoch) id of the facility assigned during clustering;

• Birth : The epoch, e ∈ {0, 1, . . . , 52}, in which the facility originated as a result of clustering;

• Long, Lat : The longitude and latitude polygon centroid coordinates;

• Count : The number of activities clustered together;

• Circum : The facility polygon circumference in m;

• Area : The facility polygon area in m2;

• NumPts : The number of polygon points (complexity of polygon); and

• Polygon : The sequence of longitude and latitude points making up the facility polygon.

To obtain an id for facilities that is unique across epochs, we combined the Id field with the Birth
field. For example f123,9 is facility 123 that originated in epoch 9.

Along the time dimension, the dataset was reduced to include only the 5 epochs, from 2 (March
2010) to 6 (July 2010), both inclusive. The choice of months is arbitrary and reflects a period that
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is considered an average business period. The extended Cape Town area, South Africa, was selected
along the spatial dimension. All facilities not located within this study area were filtered out. The
remaining facility data for the different facility networks were then merged into a single facility
dataset with the above fields, with Birth used to determine the epoch each facility belongs to.

To facilitate sampling, we decided to bin the data spatially. Utilising the open source H3 library
from Uber (Uber Engineering Team, 2022), the study area was divided into hexagonal bins of H3
resolution 8. This resulted in 6 997 bins with a reported average edge length of 461.4m, the closest
resolution to an intuitive edge length of 500m. Using hexagons is practical since circles cannot be
used to tessellate the surface without gaps or overlaps. Hexagonal binning allows us to tile the
surface with minimum bin perimeter/area ratios as close to that provided by circles whilst reducing
bias resulting from edge effects (Hales, 2001; Birch et al., 2007). This is depicted in Figure 4.

Figure 4: Tessellation of the surface and dimensions of hexagon bins. (Source: Authors)

Facilities were allocated to the hexagonal bins based on whether the facility’s centroid fell within
a bin.

We applied a kernel density estimate (KDE) of facilities in the study area. Informed by the
selection bias present in the original vehicle data3, our reasoning for this was that KDE would
enable better estimation of the actual facility density. Next, we applied two-step sampling. As the
first step, using uniform sampling weighted by the estimated facility density, we obtained 20 initial
bins. We ordered the highest to lowest density bins and selected the top 10 bins with the highest
density, B = {b0, b1, ..., b9}. This two-step approach balanced fair-weighted sampling with a slight
bias towards increased facility density. This was done in anticipation of the planned application of
machine learning later to maximise the number of training cases available in the sample. Refer to
Tables 2 and 3 for descriptive statistics of B.

Figure 5 shows the study area with the underlying density map, superimposed bins and 10
selected sample bins. Figure 6 provides an enlarged view of sample bin b1 with the outlines of all

3Although acknowledging sampling measures taken to reduce bias in collating the original longitudinal vehicle
telemetry dataset, we remain cognisant of the single source of the data and the potential for selection bias this might
represent. For this paper, where the focus is matching polygonal shapes over time, the bias has no effect.
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Table 2: Descriptive statistics for sampled facility counts per epoch (Epoch ∈ [2, 6]).

Item EpochEpochEpoch2 EpochEpochEpoch3 EpochEpochEpoch4 EpochEpochEpoch5 EpochEpochEpoch6 Total

Facilities per epoch 168 140 151 155 173 787

Table 3: Descriptive statistics for sampled pan-epoch facility counts over sampled bins (Nbins = 10).

Item µµµ σσσ min q25q25q25 q50q50q50 q75q75q75 max

Facilities per bin 78.7 24.9 34.0 62.0 80.0 95.3 117.0

Figure 5: Extended Cape Town study area with density map, superimposed bins and sample bins. (Source: Authors)
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Figure 6: Enlarged view of sample bin b1 with facility polygon outlines for epochs 2 to 6. (Source: Authors)

facility polygons for epochs 2 to 6, stacked on top of one another to illustrate the potential link
between facilities over multiple epochs.

3.2. Data tagging

As per prior work presented in Section 2, we opted to utilise supervised machine learning to
assist with the inter-epoch comparison of facility polygons. For this, we required accurately tagged
data to train and evaluate machine learning models. To tag the data, we compared all facilities in
an epoch to those in a previous epoch to find polygon pairs representing the same facility. Each
comparison between two facility polygons, fx,t in epoch t and fy,t−1 in epoch t − 1, is referred to
as a training case. For t ∈ [3, 6], the range of cases covers all inter-epoch comparisons for epochs
2 to 6. Training cases are either positive or negative. In a positive case, fx,t represents the same
facility in the current epoch t as that described by facility fy,t−1 in the previous epoch t − 1. In
this instance, we refer to fy,t−1 as the parent of fx,t and, inversely, to fx,t as the child of fy,t−1. In
a negative case, fx,t in the current epoch t is deemed to not represent the same facility as fy,t−1 in
the previous epoch t− 1.

To obtain cases, we only compared facilities within a sample hexagon bin, bi ∈ B, to facilities
in the same bin over all the sample bins. The average number of facilities in each bin over 5 epochs
is µ = 78.8 (Table 3). For any two epochs, t and t − 1, the average number of per-bin cases is
78.8 × 78.8 ≈ 6 209. Over 4 inter-epoch comparisons for the 5 epochs and 10 sample bins, this
represents an average total of 248 360 potential cases. To reduce the number of possible cases,
we investigated the distribution of facility polygon size to obtain a sensible cut-off distance for
inclusion. Utilising minimal rotated bounding boxes (Chan & Tan, 2001) for the facility polygons
and the maximum axis lengths of these bounding boxes, we experimentally obtained a cut-off of
150m. Excluding all cases where the closest points on the polygon edges of the two facilities are
further apart than this cut-off distance resulted in a total of 2 122 cases.

To then tag each case as positive or negative, the QGIS (QGIS Development Team, 2019) open-
source geospatial processing platform was used. An expert manually tagged all cases, comparing
the two geospatial facilities in QGIS for each case (similar to what was illustrated in Figure 1).
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Figure 7: Different scenarios for positive cases. Each grey polygon, denoted with fn,t, refers to facility n in epoch t.
(Source: Authors)

The use of human experts to tag geospatial data is well established (Zhou et al., 2004; De Beer
& Joubert, 2022). Although manual tagging of data remains subjective (Bruce & Wiebe, 1999),
repeatability and reproducibility of the approach have been illustrated by Joubert & Meintjes
(2015).

The above tagging approach resulted in 460 positive and 1 662 negative cases. Per example, a
positive case might be where facility f123 in epoch 5 was identified as being the same facility as
f456 in epoch 4. A negative case for the same facility f123 in epoch 5 might be where it was deemed
by the expert not to be the same facility as f890 also in epoch 4.

Although the tagging approach is based on a case basis, comparing only a single facility from
epoch t to a single facility in epoch t − 1, doing so over all the facilities in both epochs, this
approach does capture a range of inter-epoch facility dynamics. Figure 7 highlights combinations
of the following three scenarios for positive cases that may (and have) arisen as part of tagging.

In scenario 1, facility fy,1 in epoch t = 1 could only be matched to a single facility fx,0 in epoch
t = 0. As such, this results in a single positive case. In scenario 2, both facility fy,1 and fz,1 in
epoch t = 1 could be matched with a facility fx,0 in epoch t = 0. This represents the case where a
facility polygon seemingly splits into two (or more) smaller facilities in the next epoch. This will
result in two (or more) positive cases, one for each “split line”. Scenario 3 is the inverse of scenario
2, where two (or more) facilities merge into a single facility. This scenario also results in two (or
more) positive cases, one for each “merge line”.

These scenarios later play a role in deriving the lineages for facilities.

3.3. Feature engineering

To prepare our tagged data set for machine learning, we conducted feature engineering (Zheng
& Casari, 2018) and, in line with the earlier literature review, we use geometric and Hu moments
as feature types. We further distinguish between two groups of features, primary features and delta
features. Primary features are derived utilising one or more of the three main types of features
above. Delta features are derived via further processing of primary features.

For primary features, we settled on combining geometric features and Hu moments. The former
is chosen to build on our ongoing work with geometric features. The latter given reported levels
of accuracy achieved (Tramacere et al., 2016) and that there are always only 7 Hu moments for
each polygon, regardless of complexity. This allows for more deterministic computational needs
and fixed a priori complexity in comparing two facility polygons.

We decided against using EFDs due to the potential varying and large number of EFDs required
to adequately fit some of the facility polygons in our population. Some polygons in our population
require harmonics of 8 and up, resulting in 8× 4 = 32 features per polygon.

Extending concepts from our work on optimisation (De Beer & Joubert, 2022), we also derive
delta features from the primary features. We represent feature i, of polygon p by φi,p. Given two
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Figure 8: Features for facility f1 094,5. (Source: Authors)

polygons, x and y, we experimentally settled on calculating delta features as:

δi,(x,y) = |φi,x − φi,y| ≥ 0 (1)

Intuitively, delta features represents the distance between two feature values, such that


i δi,(x,y)
indicates the overall difference between x and y, and where


i δi,(x,y) = 0 =⇒ x = y.

We first obtained the primary features for each unique facility polygon in the tagged dataset.
The following geometric features were either calculated or obtained from the input facility network
data:

• centroid latitude;

• centroid longitude;

• polygon area (m2);

• polygon circumference (m2);

• polygon points count;

• minimum rotated bounding box (MRBB) angle (θ ∈ [0◦, 180◦]);

• MRBB minimum edge length (m2); and

• MRBB maximum edge length (m2).

Of the above, the angle of the minimum rotated bounding box (Chan & Tan, 2001) requires
clarification. As implemented, this is the angle, in degrees, between the horizontal line and the
edge with the maximum length of the minimum rotated bounding box. In Figure 8, we illustrate
the geometric primary features obtained for facility f1 094,5.

We then calculated the 7 Hu moments for each polygon. To do this, we first had to rasterise the
vector polygon for each facility. Rasterisation (Popescu & Rosen, 2006) is a well-established process
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Figure 9: Visually scaled rasterisation at different accuracy levels for facility f1 094,5.
(Source: Authors using OpenCV (OpenCV team, 2022)).

whereby a vector image is converted into a two-dimensional raster image of required accuracy. For
rasterisation, we used the highly optimised and well-established OpenCV library (OpenCV team,
2022). Veer et al. (2018) state that rasterisation is a lossy process in that there is a reduction in
information and, thus, accuracy when converting a vector to a raster. This is indeed true when
using a coarse resolution for the raster. We see this instead as an engineering trade-off between
preferred accuracy and ease of use. Figure 9 illustrates this for facility f1 094,5 (visually scaled).
The lossy nature of the process is illustrated when comparing raster image A to raster image D.
At lower accuracy, raster image A depicts two polygons, which is not the case when looking at the
higher accuracy raster image D. This represents a loss in information. Experimentally, we settled
on an accuracy of 1m per pixel for computational purposes. Our facility polygons are only black-
and-white, with 0 or 1 per pixel. This allowed us to use bit arrays to store rasterisation results.
Each of our polygons fits into a maximum area of 228 pixels× 228 pixels = 51 984 pixels. At 1 bit
per pixel, this represents a maximum storage requirement of 6.35 KB per polygon, or 4.88 MB for
all 787 polygons.

The set of 15 primary features per polygon p is thus represented as φi,p, i ∈ [1, 15] (where the
square brackets imply a range of values, both extremes included). For geometric features, i ∈ [1, 8]
and for Hu moments, i ∈ [9, 15].

Using the primary features, we subsequently calculated the delta features for each case. Given
a case that compares polygon x and y, the delta features for that case, δj,(x,y), j ∈ [1, 14], were
calculated using equation 1 with φi,x and φi,y as input. Instead of calculating a delta feature
between the centroid longitudes and separately the centroid latitudes of two polygons, we calculated
the actual geographic distance between the two centroids in m. This was done due to the more
intuitive concept of geographic distance when compared to separate delta values for the longitudes
and latitudes. As such, there are only 14 delta features. We appreciate that this geographic
distance calculation deviates somewhat from the other feature delta calculations. For software and
data structure design purposes, we decided not to treat it differently and simply use the calculated
feature as feature 14 with the same indexing approach.

On a per-case basis comparing two polygons, we thus ended up with 15 × 2 = 30 primary
features and 14 delta features, for a total of 44 features to consider during the next research stage.

14



Table 4: ML models selected for evaluation (Nmodels = 11).

Model Id Non-Default Configuration

Convolutionary Neural Network CNN 100 training epochs & Figure A.18
Fully Connected Neural Network FNN 100 training epochs & Figure A.18
Logistic Regression LOR Max iterations 200
Nearest Centroid NEC -
Linear Discriminant Analysis LDA -
Quadratic Discriminant Analysis QDA -
Support Vector Machine SVMlin Linear kernel
Support Vector Machine SVMrad Radial kernel
Random Forrest Classifier RFC 20 estimators
Ada Boost Classifier ABC 20 estimators
k-Nearest Neighbours kNN 5 neighbours

4. Results and discussion

4.1. Experimental configuration

We had three objectives with our experimental setup:

• to solve for inter-epoch geospatial polygon comparison (Section 1);

• to evaluate effectiveness of delta features vs. primary features (Section 3.3); and

• to compare relevant ML approaches in achieving the above.

The first experimental objective relates to the main aim of this paper: can we link the underlying
facilities, each represented by a polygon, with one another over time? The second experimental
objective relates to the second aim of the paper: finding machine learning-friendly features for
geospatial polygons. Finally, the third experimental objective relates to the third aim of the
paper: evaluating different machine-learning algorithms’ ability to achieve our overall goal of linking
facilities over time.

We started by identifying a range of ML models to evaluate. Note that a comprehensive
discussion of the different ML approaches referenced within this paper lies outside the scope of the
work reported. To select models, we let ourselves be guided by related work (Veer et al., 2018;
Tramacere et al., 2016). Consequently, we settled on 11 different ML models. Wherever possible,
we used the default configuration provided by the underlying library for each model instance for the
given model type. We also tagged each model with a short label for easier reference. Table 4 lists
the models selected, labels, and all non-default configurations for each. Table A.12 in Appendix
A.2 provides relevant references for all 11 models. In the spirit of repeatability, the interested
reader is referred to Appendix A.3 for a more detailed configuration of the convolutionary neural
network (CNN) and fully connected neural network (FNN) models.

We then grouped these models into two sets:

• neural networks,
Mnet ← {CNN, FNN}; and
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• non-neural networks,
Mclassic ← {LOR, NEC, LDA, QDA, SVMlin, SVMrad, RFC, ABC, KNN}.

ForMnet models we utilised the TensorFlow2 (Abadi et al., 2016) library. And for models inMclassic

the SciKitLearn (Pedregosa et al., 2011) library was used. The full set of models evaluated, M, is
thus defined as M ← Mnet ∪Mclassic.

Let the set of all polygons in the tagged dataset be defined as P. For all cases in the tagged
dataset comparing polygon x to polygon y, x ∈ P and y ∈ P, the set of primary features are given
by Dprimary ← {φi,x,φi,y|i = 1 to 15, x ∈ P, y ∈ P}, with φi,x and φi,y as defined in Section 3.3.
While the delta features are given by Ddelta ← {δi,(x,y)|i = 1 to 14, x ∈ P, y ∈ P}, with δi,(x,y) also
as defined in Section 3.3. The full set of training data used during evaluation, D, is defined as
D ← Dprimary ∪Ddelta

To evaluate all m ∈ M for D, we defined function Evaluate(), as described in more detail
in Appendix A.4. Evaluate() is derived from the well-established sample-train-test ML pattern
supported by SciKitLearn (Pedregosa et al., 2011). It allows for training a set of models, evaluating
models during training (i.e., in-sample evaluation), and evaluating best-trained models against
unseen data (i.e., out-of-sample evaluation).

On completion, function Evaluate() returns holdBest containing the overall best instance of
m ∈ Min based on accuracy against a hold-out dataset over nhold rounds, as well as all in-training
and post-training evaluation scores for analysis.

4.2. Experimental Results

All experimentation and analysis have been done within a Jupyter Notebook environment (Kluyver
et al., 2016) using the Python (Van Rossum & Drake, 2009) programming language. A consumer-
grade laptop with an Intel i7-1185G7 (at 3GHz) CPU with eight logical cores and 32 GB of RAM
was used as a processing platform.

To evaluate the complete set of m ∈ M,M ← Mnet ∪Mclassic over both Dprimary and Ddelta,
Evaluate() was executed four times with relevant parameter sets as per Table 5. The values for

Table 5: Parameter sets of Evaluate() overall ML models selected (NparamSets = 4).

No. Min Din nhold nround nepochsNN

1 Mnet Dprimary 20 4 100
2 Mnet Ddelta 20 4 100
3 Mclassic Dprimary 20 10 -
4 Mclassic Ddelta 20 10 -

nhold, nround and nepochsNN were chosen to provide adequate training and evaluation whilst bearing
in mind potential computational limitations. In reference to Algorithm 1, for each execution of
Evaluate(), the inner loop executed nhold × nround times and the outer loop nholds times. As
such, for each m ∈ Mnet, a total of 4 × 20 = 80 instances of each m have been trained up to
100 training epochs (Abadi et al., 2016) and evaluated against in-training data, with the best 20
(highest accuracy score) evaluated against hold-out datasets. Similarly, for each m ∈ Mclassic, a
total of 10 × 20 = 200 instances of each m have been trained and evaluated against in-training
data, with the best 20 evaluated against hold-out datasets.
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Tables 6 and 7 present our results for hold-out evaluation across all m ∈ M. To assist with
comparison of results, we grouped the results forMnet together and the results forMclassic together.
For each m the following values are presented:

• the accuracy mean, µprimary, and standard deviation, σprimary, for training with Dprimary;

• the accuracy mean, µdelta, and standard deviation, σdelta, for training with Ddelta; and

• the difference between above items, µdiff ← µdelta − µprimary and σdiff ← σdelta − σprimary.

For pragmatic reasons informed by encouraging results using Ddelta, the fact that Ddelta is derived
from Dprimary and the simpler experimental configuration by only evaluating these two options,
the evaluation of M over a combined Ddelta and Dprimary has not been included in this work.

Table 6: Evaluation results of evaluation sets 1 and 2 (Nmodels = 2).

Id µprimary σprimary µdelta σdelta µdiff σdiff

CNN 0.778 0.020 0.955 0.011 0.177 -0.008
FNN 0.782 0.019 0.969 0.008 0.187 -0.010

AverageAverageAverage 0.780 0.019 0.962 0.010 0.182 -0.009

Table 7: Evaluation results of evaluation sets 3 and 4 (Nmodels = 9). The shading of the cells reflect how close a
value came to the best value: the darker a cell, the better it performed.

Id µprimary σprimary µdelta σdelta µdiff σdiff

LOR 0.788 0.015 0.968 0.007 0.180 -0.008
NEC 0.649 0.014 0.834 0.022 0.185 0.007
LDA 0.783 0.014 0.951 0.006 0.168 -0.008
QDA 0.916 0.011 0.950 0.011 0.034 -0.000
SVMlin 0.787 0.015 0.969 0.007 0.181 -0.008
SVMrad 0.800 0.016 0.958 0.008 0.158 -0.008
RFC 0.760 0.023 0.956 0.015 0.196 -0.007
ABC 0.752 0.041 0.962 0.009 0.210 -0.032
kNN 0.774 0.014 0.939 0.006 0.164 -0.008

AverageAverageAverage 0.779 0.018 0.943 0.010 0.164 -0.008

The model with the highest accuracy, highlighted in bold, is SVMlin trained with Ddelta, which
forms part of parameter set no. 4, Mclassic with Ddelta. Narrowing our scope, we then performed a
5-fold cross-validation (Kohavi, 1995; Pedregosa et al., 2011) over the tagged data for parameter set
no. 4. These results, with the highest average accuracy again highlighted in bold, are presented in
Table 8. Again, the model with the highest average accuracy score reported is SVMlin with Ddelta.
With the cross-validation results reinforcing our findings thus far, we again narrowed our scope
and used SVMlin with Ddelta to classify the tagged data for further analysis. Table 9 provides this
classification’s resulting confusion matrix (Kohavi & Provost, 1998). In this table, TP stands for
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Table 8: 5-fold cross validation results of accuracy for parameter set 4 (Mclassic with Ddelta) (Source: Our data with
Kohavi (1995); Pedregosa et al. (2011)).

Id µ σ

LOR 0.969 0.004
NEC 0.820 0.020
LDA 0.948 0.005
QDA 0.948 0.006
SVMlin 0.970 0.004
SVMrad 0.960 0.006
RFC 0.964 0.004
ABC 0.960 0.009
kNN 0.946 0.006

AverageAverageAverage 0.943 0.007

Table 9: Confusion matrix for SVMlin trained with Ddelta (Source: Our results applying Kohavi & Provost (1998)).

SVMlin +Ddelta Classified: Not Same Classified: Same

Actual: Not Same TN = 1622 FP = 40 1 662
Actual: Same FN = 15 TP = 445 460

1 637 485 2 122

true positive, TN for true negative, FP for false positive and FN for false negative. Table 10 presents
the classification report for this classification as generated using SciKitLearn’s library (Pedregosa
et al., 2011).

Table 10: Classification report for SVMlin with Ddelta (Source: Our results applying Pedregosa et al. (2011)).

SVMlin +Ddelta Precision Recall f1-score Support

Class 0 : Not Same 0.991 0.976 0.983 1 662
Class 1 : Same 0.918 0.967 0.942 460

Accuracy 0.974 2 122
Macro avg 0.954 0.972 0.963 2 122
Weighted avg 0.975 0.974 0.974 2 122

From the tagged dataset in Section 3.2 with 2 122 cases, |Din| = |Dprimary| = |Ddelta| = 2122.
Note that Dprimary and Ddelta only differ in the selection of features (columns) for the same number
of cases (rows). Algorithm 1 stipulates |Dhold| = 0.3 × |Din| = 0.3 × 2 122 = 636.6 ≈ 637,
which is the number of tagged cases in the hold-out dataset for evaluation of best models from
the inner loop. While |Dround| = |Din| − |Dhold| = 1485 is the number of cases passed into
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the inner loop for training and (in-sample) evaluation. Inside the inner loop, after sampling,
|Xtest| = 0.3 × |Dround| = 0.3 × 1 485 = 445.5 ≈ 446, which is the number of cases in the (in-
training) test set. While |Xtrain| = |Dround| − |Xtest| = 1039 is the number of cases used for
training each time.

Over the 4 parameter sets, the recorded execution times for Evaluate() are presented in Ta-
ble 11.

Table 11: Execution times for Evaluate() over all ML models selected (NparamSets = 4).

No. Min Din Execution Time

1 Mnet Dprimary 16 min 48 sec
2 Mnet Ddelta 12 min 21 sec
3 Mclassic Dprimary 2 min 31 sec
4 Mclassic Ddelta 1 min 5 sec

4.3. Discussion

Our results are promising, given the primary objective of our work, which is to solve for inter-
epoch polygon comparison adequately. As reported in Tables 6 and 7, the highest average accuracy
score against hold-out data, µ = 0.969 (σ = 0.007), was achieved by SVMlin, trained with Ddelta.
The full range of average accuracy scores achieved for all m ∈ M over D ← Dprimary ∪ Ddelta is
µ ∈ [0.6493, 0.9686] (σ ∈ [0.0059, 0.0408]). A total of 4 models achieved average accuracy scores
of µ ≥ 0.96, with accompanying variance σ ≤ 0.01. A 5-fold cross-validation (Kohavi, 1995)
for all m ∈ Mclassic trained with Ddelta reinforced our findings. As per Table 8, cross-validation
resulted in accuracy of µ ∈ [0.8204, 0.9703] (σ ∈ [0.0035, 0.0198]), which is similar to µdelta and
σdelta values in Table 7. This time a total of 6 models achieved an average accuracy score of
m ≥ 0.96, with accompanying variance σ ≤ 0.01. The model with the highest average accuracy
was again reported as SVMlin, with µ = 0.9703 (σ = 0.0038). We then proceeded with the SVMlin
model trained with Ddelta and classified the tagged dataset for further analysis. As per confusion
matrix (Kohavi & Provost, 1998) in Table 9, this resulted in an accuracy of 0.9741. From the
classification report (Pedregosa et al., 2011) in Table 10, the average precision is 0.9542, and the
average recall is 0.9717. The balanced results for precision and recall are better at 0.9749 and
0.9741, respectively.

Looking at the results from a Dprimary vs Ddelta perspective tells an insightful story. Overall
m ∈ M, our results indicate that training with Ddelta leads to higher average accuracy scores. For
10 models there were an increase of µdiff ∈ [0.158, 0.210]. The remaining model, QDA, still reported
an increase of µdiff = 0.034. Future work will investigate the nature of this difference. For now, we
surmise that Ddelta solves particular challenges a priori which the ML models trained with Dprimary

have to overcome as part of training. This possibly includes pairing related features and deriving
the correct relation between paired features. For instance, δarea,(x,y) already ‘paired’ φarea,x with
φarea,y and already related the two features via a distance calculation, δarea,(x,y) ← |φarea,x−φarea,y|,
the difference in areas of x and y. Training with Dprimary places the burden on the ML model to
first pair and then calculate the differences between paired features.

From a Mnet versus Mclassic perspective, our results indicate similar average accuracy results
for both. With similarly higher results for training with Ddelta compared to training with Dprimary.
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Figure 10: Two examples of true positive cases. (Source: Authors)

Although the best overall model, SVMlin, came from Mclassic, its average accuracy only surpassed
that of the second highest overall model, FNN, which came from Mnet, by 0.0001, or 0.01%. As
per summary lines in Tables 6 and 7, the averages of µdelta for each of Mnet and Mclassic differs by
0.962− 0.943 = 0.019 ≤ 0.02.

Given these results, the polygon comparison problem can be adequately addressed with non-
neural Network and non-deep Learning models such as those in Mclassic. An influencing factor for
this outcome might very well be the relatively small number of features engineered and records
sampled. As part of further research, comparing our presented approach and employing Deep
Learning models on the non-clustered underlying noisy GPS trail data might provide further insight
into this.

Furthermore, although we did not conduct an extensive processing study, our results (Table 11)
indicate that training of Mnet, with |Mnet| = 2 took between 8× and 10× longer than Mclassic,
with |Mclassic| = 9.

Next, we looked at the classification results of the tagged data using the best model: SVMlin
trained with Ddelta. Table 9 presents specific instances of TP, TN, FP and FN cases. Figure 10
presents 2 examples of true positive outcomes across 3 epochs, for a total of 4 (epochs 2 to 3 and
3 to 4 in each example) correctly classified cases. In example 1, facility f668,2 from epoch 2 was
correctly identified as the same as facility f561,3 in epoch 3. The same for f561,3 in epoch 3 and
f645,4 in epoch 4. Example 2 follows the same logic. As can be seen from both examples, successful
matching appears to be resistant to variation in polygon morphology. Given our selected feature
set, this is within our expectations (Section 3.3). Furthermore, both examples show a tendency
towards polygon overlap to some extent. Further investigation of the larger TP set confirmed at
least some overlap or touching of polygons. Remaining mindful of the potential for overfitting,
a possible future improvement could be the addition of an overlap feature (De Beer & Joubert,
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Figure 11: Example of a true positive case with a split. (Source: Authors)

Figure 12: Example of a true positive case with a merge. (Source: Authors)

2022).
Regarding Section 3.2 and Figure 7, these two examples are scenario 1, ‘single’ matching in-

stances. In all 4 cases, each facility in epoch t matches only one in epoch t− 1. Figure 11 presents
an instance of scenario 2, a ‘split’ matching. Facility f1 006,4 in epoch 4 was correctly matched to
both facilities f1 160,5 and f1 094,5 in epoch 5. This represents a split of f1 006,4 into 2 facilities in
the next epoch. Figure 12 presents an instance of scenario 3, a ‘merge’ matching. Facilities f1 677,3
and f1 687,3 in epoch 3 were both matched to facility f1 928,4 in epoch 4. This represents a merge of
f1 677,3 and f1 687,3 into a single facility in the next epoch.

Figure 13 presents 4 examples of true negative outcomes. In example 1, facility f1 013,2 from
epoch 2 has been correctly identified as not the same as facility f1 078,3 in epoch 3. The same logic
applies for examples 2, 3 and 4. All 4 examples indicate no overlap of polygons. On investigation
of the full TN set, not overlapping was found to be a strong indicator of negative outcome. This
reinforces the potential benefit of an overlap feature as per the TP discussion above.

Figure 14 presents 4 examples of false-negative outcomes; true matches are incorrectly classified
as not matching. The first observation is that in all 4 examples, the two facilities overlap to some
extent, in line with the TP cases described above. This confirms the potential benefit of using an
overlap feature for future improvement.

Figure 15 provides 4 examples of false positives, cases tagged as not matching but classified as
matched. Again, the observation holds that facilities of true negative cases mostly do not overlap.
Only in example 4 do facilities f1 266,4 and f1 0883 overlap.
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Figure 13: Four examples of true negative cases. (Source: Authors)

Figure 14: Four examples of false negative cases. (Source: Authors)
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Figure 15: Four examples of false positive cases. (Source: Authors)

In attempting to interpret the above false positive and false negative cases, we acknowledge that
the accuracy of our results depends on the data tagging process described in Section 3.2. Further-
more, our current experimental approach does not utilise contextual information, e.g. geospatial
land use data. These two aspects represent potential areas of further investigation to improve the
accuracy and the interpretation of results.

Accurately matching facility polygons inter-epoch enables us to derive what we call facility
lineages or lines. Recall that facilities are nodes in a complex facility network per epoch. Facility
lines, in effect, link these complex networks together and enable us to study potential change over
time of both the embedded facilities and the network structures concerning these lines.

Although this facility lineage work primarily resides outside the scope of the work reported
here, briefly consider the following as an indication of capability and expected results. Figure 16
serves as an example. In this figure, there is one facility line over 3 epochs. This line was obtained

Figure 16: Concepts of facility lineage. (Source: Authors)

by linking relevant true positive cases from classification. In this instance, facility f631,2 in epoch
2 was matched to facility f602,3 in epoch 3, which in turn was matched to facility f644,4 in epoch 4.
From this line, we can derive some features for further analysis. For example, in any epoch, we can
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determine how long a line will still exist in the data by looking at the delta between the current
and largest epoch values in the line. To determine how long a line has been present in the data
in any epoch, in effect, the age of the line, we look at the delta between the current and smallest
epoch in the line.

Considering the line in the context of linking a sequence of complex facility networks can address
several network-related questions. For example, Figure 17, which extends the symbolic example
in Figure 16 of an actual line, illustrates how one can now investigate the evolution of network
attributes such as in-degree (deg−) and out-degree (deg+) connectivity (Newman, 2018), or more
advanced metrics such as the vulnerability of the networks (Viljoen & Joubert, 2016, 2018), or the
evolution of microcomunities (Viljoen & Joubert, 2019).

Figure 17: Studying facility and complex network evolution over time. (Source: Authors)

These are the number of directional links into and from a facility, indicative of transport
economic relationships with other facilities. From this diagram, we can, for instance, see that over
the 5 epochs, the facilities in the line mostly remain more active in an outward-focussed manner
than an inward-focussed manner; this is due to the consistently higher out-degree over the epochs.

5. Conclusion

Over the last decade, research has made good progress in studying connectivity and vulnera-
bility of freight movement using network theory, albeit mainly within a single epoch. This paper
contributes to the body of knowledge by providing a rigorous and highly accurate methodology
for identifying facilities from ubiquitous GNSS traces, global positioning system (GPS) specifically
in this case, over multiple periods. To accomplish this, we addressed the underlying problem of
accurately matching two-dimensional geospatial polygons associated with facilities. A non-neural
network, non-deep learning SVM with a linear kernel model (Boser et al., 1992) achieved the best
results with a mean average accuracy of µ = 0.969 (σ = 0.007) on a consumer-grade computing
platform. The paper also introduced the concept of delta features, which contributed 0.181 to this
accuracy score.

A couple of immediate next steps remain. Firstly, expand the current multi-epoch approach so
that consecutive epochs overlap. For example, say a single epoch represents a four-week month,
then the first epoch is calculated from data spanning weeks 1 through 4. The next epoch, also
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representing a month, should span weeks 2 to 5 instead of the current non-overlapping approach,
where the second epoch covers weeks 5 through 8. Smoother and overlapping transitions may yield
improvements in ML accuracy. Overlapping epochs can represent rolling horizons in practice, a
concept well-established in logistics planning.

Secondly, the question remains about why the delta features result in higher accuracy. Inves-
tigating this phenomenon may provide future insight into network structure dynamics. Finally,
another area to consider is moving away from purely anonymous geospatial features and combining
the enriched data with more contextual characteristics such as land-use data.
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Espejel-Cabrera, J., Cervantes, J., Garćıa-Lamont, F., Ruiz Castilla, J. S., & D. Jalili, L. (2021). Mexican sign
language segmentation using color based neuronal networks to detect the individual skin color. Expert Systems
with Applications, 183 , 115295. doi:10.1016/j.eswa.2021.115295.

Fernando, M., & Wijayanayake, J. (2020). Novel approach to use Hu moments with image processing techniques for
real time sign language communication. arXiv preprint arXiv:2007.09859 , . doi:10.48550/ARXIV.2007.09859.

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to
boosting. Journal of computer and system sciences, 55 , 119–139. doi:10.1006/jcss.1997.1504.

Fu, Z., Fan, L., Yu, Z., & Zhou, K. (2018). A moment-based shape similarity measurement for areal entities in
geographical vector data. ISPRS International Journal of Geo-Information, 7 . doi:10.3390/ijgi7060208.

Godefroy, J. E., Bornert, F., Gros, C. I., & Constantinesco, A. (2012). Elliptical fourier descriptors for contours in
three dimensions: A new tool for morphometrical analysis in biology. Comptes Rendus Biologies, 335 , 205–213.
doi:10.1016/j.crvi.2011.12.004.

Hales, T. (2001). The honeycomb conjecture. Discrete and Computational Geometry., 25 , 1–22. doi:10.1007/
s004540010071.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: data mining, inference, and
prediction. volume 2. Springer. doi:10.1007/978-0-387-21606-5.
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Appendix A. Additional information

Appendix A.1. Hu Moments

This section provides additional conceptual background information on Hu moments. It has
been adapted from Hu (1962) and Tramacere et al. (2016).

Hu moments are geometric moments invariant to rotation, scaling and translation. In the
simplest terms, a geometric moment is some form of weighted average over a given data structure.
In the calculation of Hu moments, data entries are weighted by the content of the data structure
(values) as well as the location of the data in the data structure (value location).

Formally, the geometric moment of order (p+ q) for a M ×N two-dimensional distribution of
points (xi, yj) with xi ∈ Z and yj ∈ Z is defined by (A.1).

mp,q =

M−1

i=0

N−1

j=0

(xi)
p(yj)

q (A.1)

In the case of a two-dimensional digital image with the same parameters and with pixel intensity
given by f(xi, yj), (A.1) becomes (A.2).

mp,q =

M−1

i=0

N−1

j=0

(xi)
p(yj)

qf(xi, yj) (A.2)

Note that for the work reported in this paper, pixel intensity is either 0 or 1 for strictly black and
white images, thus f(xi, yj) ∈ {0, 1}. The centroid is given by (x̄, ȳ) with

x̄ =
m1,0

m0,0
(A.3)

and

ȳ =
m0,1

m0,0
(A.4)

respectively. The central moment is defined by (A.5).

µp,q =

M−1

i=0

N−1

j=0

(xi − x̄)p(yj − ȳ)q (A.5)
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For the two-dimensional image case the central moment is defined by (A.6).

µp,q =

M−1

i=0

N−1

j=0

(xi − x̄)p(yj − ȳ)qf(xi, yj) (A.6)

From the above, normalised central moments are obtained by (A.7).

ηp,q =
µp,q

µ
1+ p+q

2
0,0

(A.7)

Building on the above, Hu (1962) developed the following moments that are invariant under
scaling, translation and rotation:

Hu1 = η2,0 + η0,2 (A.8a)

Hu2 = (η2,0 − η0,2)
2 + 4(η1,1)

2 (A.8b)

Hu3 = (η3,0 − 3η1,2)
2 + 3(η0,3 − 3η2,1)

2 (A.8c)

Hu4 = (η3,0 + η1,2)
2 + (η0,3 + η2,1)

2 (A.8d)

Hu5 = (η3,0 − 3η1,2)(η3,0 + η1,2)[(η3,0 + η1,2)
2 − 3(η0,3 + η2,1)

2]

+ (3η2,1 − η0,3)(η0,3 + η2,1)[3(η3,0 + η1,2)
2 − (η0,3 + η2,1)

2] (A.8e)

Hu6 = (η2,0 − η0,2)[(η3,0 + η1,2)
2 − 7(η0,3 + η2,1)

2] + 4η1,1(η3,0 + η1,2)(η0,3 + η2,1) (A.8f)

Hu7 = (3η2,1 − η0,3)(η3,0 + η1,2)[(η3,0 + η1,2)
2 − 3(η0,3 + η2,1)

2]

+ (η3,0 − 3η1,2)(η0,3 + η2,1)[3(η3,0 + η1,2)
2 − (η0,3 + η2,1)

2] (A.8g)

Appendix A.2. Selected Machine Learning Model References

This section provides references for machine learning models selected for evaluation.

Table A.12: ML models selected for evaluation (Nmodels = 11).

Model Id Reference

Convolutionary Neural Network CNN LeCun et al. (2015)
Fully Connected Neural Network FNN Bebis & Georgiopoulos (1994)
Logistic Regression LOR Cox (1958)
Nearest Centroid NEC Hastie et al. (2009)
Linear Discriminant Analysis LDA Kim et al. (2011)
Quadratic Discriminant Analysis QDA Kim et al. (2011)
Support Vector Machine SVMlin Boser et al. (1992)
Support Vector Machine SVMrad Boser et al. (1992)
Random Forrest Classifier RFC Breiman (2001)
Ada Boost Classifier ABC Freund & Schapire (1997)
k-Nearest Neighbours kNN Cover & Hart (1967)
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Appendix A.3. Detailed configuration of the neural networks

Even though our features differed from those of Veer et al. (2018), we opted for a CNN con-
figuration similar to theirs. Through subsequent experimentation, we settled on the configuration
depicted in Figure A.18. For the FNN, we selected a fully connected feed-forward network, also
depicted in Figure A.18.

Figure A.18: Configuration of neural network models FNN and CNN. (Source: Authors)

Appendix A.4. Pseudocode and evaluation explanation

To evaluate all m ∈ M for D, we defined function Evaluate(), as described in pseudocode
in Algorithm 1. Evaluate() is derived from the well-established sample-train-test ML pattern
supported by SciKitLearn (Pedregosa et al., 2011). It allows for the training of a set of models,
the evaluation of models during training (i.e. in-sample evaluation), as well as the evaluation of
best-trained models against unseen data (i.e. out-of-sample evaluation). The algorithm takes as
input 5 parameters:

• The set of models, either neural networks or classic models, Min ∈ {Mnet,Mclassic};
• Tagged dataset (i.e. cases) with either the primary or delta features, Din ∈ {Dprimary,Ddelta};
• Number of repetitions to evaluate against hold-out unseen data, nhold;

• Number of repetitions to train and evaluate against training data, nround; and

• Number of neural network training epochs, nepochsNN for training of all m ∈ Mnet.

The decision to separately evaluate Mnet and Mclassic is informed by the availability of a ‘number
of epochs’ parameter with neural network training (Abadi et al., 2016). This is the number of
training cycles TensorFlow will execute during the training of the model in an attempt to improve
its accuracy. Setting this parameter, nepochsNN, to 100, we were able to reduce the number of inner
loop executions, nround, for evaluation of Mnet.

Evaluate() returns as output a data structure containing the best instance of each model
m ∈ Min, along with all evaluation scores collected during and post-training for each m. The best
instance of m is deemed as each m with the highest average accuracy score obtained over several
post-training evaluations against hold-out datasets.
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Algorithm 1 Evaluation function Evaluate

1: function Evaluate(Min,Din, nhold, nround, nepochsNN) ⊲ Evaluate ∀m ∈ Min with Din

2: holdBest ← {} ⊲ New key:value dictionary
3: for i = 1 to nhold do ⊲ Hold-out evaluation loop
4: Dhold ← sample(Din, 0.3) ⊲ Randomly sample 0.3 of cases
5: Dround ← Din −Dhold ⊲ Remaining 0.7 of cases
6: roundBest ← {} ⊲ New key:value dictionary
7: for j = 1 to nround do ⊲ Inner training loop
8: Xtest ← sample(Dround, 0.3) ⊲ Randomly sample 0.3 of cases
9: Xtrain ← Dround −Xtest ⊲ Remaining 0.7 of cases

10: Xtrain,Xtest ← scale(Xtrain,Xtest) ⊲ Scale training and testing feature data
11: for m ∈ Min do ⊲ For each ML model type
12: m ← newInstance(m) ⊲ New instance of ML model m
13: if m ∈ Mnet then
14: m ← train(m,Xtrain, nepochsNN) ⊲ Fit ML model m ∈ Mnet to training data
15: else
16: m ← train(m,Xtrain) ⊲ Fit ML model m ∈ Mclassic to training data
17: end if
18: s ← test(m,Xtest) ⊲ Test ML model m with training data
19: roundBest ← update(roundBest,m, s) ⊲ Update roundBest with m and scores s
20: end for
21: end for
22: Dhold ← scale(Dhold) ⊲ Scale hold-out data
23: for m ∈ roundBest do ⊲ For each best-of-round model instance
24: p ← predict(m,Dhold) ⊲ Use m to predict unseen hold-out cases
25: s ← evaluate(p,Dhold) ⊲ Evaluate predictions p against hold-out data
26: holdBest ← update(holdBest,m, s) ⊲ Update holdBest with m and scores s
27: end for
28: end for
29: return holdBest ⊲ Return evaluation results with best case models
30: end function

The algorithm consists of two loops, an outer hold loop and an inner round loop. Briefly, the
inner loop trains and evaluates (in-sample) all m ∈ Min. While the outer loop evaluates all trained
m ∈ Min from the inner loop against an out-of-sample hold-out dataset.

As the first step, a data structure holdBest is initialised, storing hold-out accuracy scores and
the best overall models during processing.

For each cycle in the outer loop, the algorithm first samples (without replacement) 30% of Din

as a hold-out unseen dataset, Dhold. The remaining 70% of Din, Dround ← Din −Dhold, is deemed
training data. Along with a record-keeping data structure roundBest, Dround is passed into the
inner loop for model training and (in-sample) evaluation.

The inner loop starts by sampling (without replacement) 30% of Dround as in-training test set,
Xtest. The remaining 70% of Dround, Xtrain ← Dround − Xtest, is deemed training data for the
current cycle.

Next, both Xtrain and Xtest are scaled. Machine learning models generally benefit from scaling
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of training data (Pedregosa et al., 2011), with both ML libraries used in our work advising for the
use of scaling (Buitinck et al., 2013; Abadi et al., 2016). Two types of scaling are of relevance.
Normalisation, that scales values into a range, typically xscaled ∈ [0.0, 1.0], and standardisation, that
scales values to have µscaled = 0.0 and σscaled = 1.0. We experimentally settled on standardisation
for m ∈ Mclassic (SciKitLearn’s StandardScaler) and normalisation for m ∈ Mnet (SciKitLearn’s
MinMaxScaler). To avoid data leakage (Lones, 2021), the scaling configuration is obtained by only
using Xtrain, but applied to both Xtrain and Xtest once configured.

Once the data has been scaled, the algorithm iterates over all m ∈ Min. For each m, a new
instance is obtained per default configuration for the underlying library and non-default configu-
ration per Table 4 and Figure A.18. Each m is then trained (m’s fit() or equivalent function as
per relevant library) with the scaled Xtrain and evaluated (m’s evaluate() or equivalent function
as per relevant library) against the scaled Xtest for accuracy. All accuracy scores of m are then
added to roundBest. If the current m’s accuracy score is higher than the best instance of m stored
in roundBest from a previous cycle, it is replaced with the current m.

The inner loop then repeats the above up to nround times. Each time roundBest is updated
with all accuracy scores and the best instance of each m. At the end of the inner loop, roundBest
contains the best overall instance for this training round of each m ∈ Min as well as all accuracy
scores accumulated.

The outer loop continues processing. As first step, Dhold is scaled, with scaling only informed
by Dhold itself to avoid data leakage (Lones, 2021). The type of scaling applied is the same as in
the inner loop, either normalisation for Mnet or standardisation for Mclassic.

For each m ∈ roundBest, which represents the best m over the previous nround inner rounds,
m is used with the scaled Dhold to predict the case outcomes in Dhold. The predictions are then
compared to the actual case outcomes as per tagged data and evaluated for accuracy. holdBest is
then updated with the hold-out accuracy scores for m. If the current m scored better than the
previously stored best m, it is replaced with the current m.

The outer loop will then repeat the above up to nhold times, evaluating trained models against
a hold-out dataset that was not used for training or in-training evaluation.
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