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Simple Summary: Available studies suggest that radiomics and machine learning applied to PSMA-
radioligand avid primary prostate carcinoma have potential to serve as an alternative for non-invasive
Gleason score characterization, for the prediction of biochemical recurrence and to differentiate benign
from malignant increased tracer uptake. However, prior to their implementation in clinical practice,
additional, clinically relevant studies performed according to recently published guidelines and
checklists, offering full transparency, including large enough datasets as well as external validation,
are mandatory.

Abstract: Positron emission tomography (PET) using radiolabeled prostate-specific membrane anti-
gen targeting PET-imaging agents has been increasingly used over the past decade for imaging
and directing prostate carcinoma treatment. Here, we summarize the available literature data on
radiomics and machine learning using these imaging agents in prostate carcinoma. Gleason scores
derived from biopsy and after resection are discordant in a large number of prostate carcinoma pa-
tients. Available studies suggest that radiomics and machine learning applied to PSMA-radioligand
avid primary prostate carcinoma might be better performing than biopsy-based Gleason-scoring and
could serve as an alternative for non-invasive GS characterization. Furthermore, it may allow for
the prediction of biochemical recurrence with a net benefit for clinical utilization. Machine learning
based on PET/CT radiomics features was also shown to be able to differentiate benign from malig-
nant increased tracer uptake on PSMA-targeting radioligand PET/CT examinations, thus paving
the way for a fully automated image reading in nuclear medicine. As for prediction to treatment
outcome following 177Lu-PSMA therapy and overall survival, a limited number of studies have re-
ported promising results on radiomics and machine learning applied to PSMA-targeting radioligand
PET/CT images for this purpose. Its added value to clinical parameters warrants further exploration
in larger datasets of patients.

Keywords: PSMA; prostate carcinoma; radiomics

1. Introduction

Radiomics allows the extraction of quantitative parameters (radiomic features) from
segmented tumor lesions from medical images that cannot be appreciated visually [1–4]. Ra-
diomic feature extraction methods include the assessment of global tumor properties from
individual voxels, from the gray-level histogram, from the shape of the lesion studied, as
well as second-order statistics. Second-order statistics include the gray-level co-occurrence
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matrix (GLCM), which assesses how often gray levels occur together in neighboring pixels
within an image; the gray-level run length matrix (GLRM), which quantifies lengths in
number of pixels with the same gray-level value; the neighborhood grey-level difference
matrix (NGLDM); which assesses differences of gray levels between one voxel and all of
its directly neighboring voxels in three dimensions; and the gray-level zone length matrix
(GLZLM), which provides information on the size of homogeneous zones for each gray
level in three dimensions. Using available software radiomics algorithms, some of which
are freely available, e.g., LIFEx version 7.6.0 and PyRadiomics version 3.1.0, a large number
of features are often extracted, many of which are highly correlated (multicollinearity) and
thus redundant and need to be removed for further analysis. Approaches used to this
purpose include, amongst others, collinearity analyses based on Pearson and intra-class
correlation analyses, algorithm-based feature selection, and principal component analyses.
The remaining features, split up in a training and validation set, usually then serve as
input for machine learning. To date, the most frequently used type of machine learning
in medical imaging, related to usually limited available datasets, is supervised learning,
which requires a dataset that includes inputs and correct outputs, allowing a model to learn
over time and to minimize its error. Typical supervised learning algorithms are, e.g., linear
and logistic regression; support vector machines (SVMs), which construct a hyperplane
where the distance between two datasets is at its maximum; K-nearest neighbor (KNN),
which calculates the distance between data points and assumes that similar points can be
found near each other; and random forest (RF), which merges uncorrelated decision trees
reducing variance, thus creating more accurate data predictions [5,6].

Prostate carcinoma is one of the most malignant cancers worldwide and the fifth lead-
ing cause of cancer death [7]. Positron emission tomography using radiolabeled prostate
specific membrane antigen targeting PET-imaging agents such as 68Ga-PSMA-11, 18F-
PSMA-1007, and 18F-DCFPyl have been increasingly used over the past decade for imaging
and directing prostate carcinoma treatment [8,9]. Here, we summarize the available lit-
erature data on radiomics and machine learning using these imaging agents in prostate
carcinoma. A search was performed on PubMed using the search terms “prostate specific
membrane antigen”, “PSMA”, “folate hydrolase” in conjunction with “prostate”, “carci-
noma”, “cancer”, “radiomics”, “radiomic”, and “machine learning”. The methodological
quality of the studies with clinical relevance end-points was assessed using the recently pro-
posed METhodological RadiomICs Score (METRICS) [10,11]. METRICS includes 30 items
within various categories that were accorded different weights with a consensus threshold
of 75% by a group of 59 international radiomics experts. In descending order of importance,
the categories are study design, imaging data, image processing and feature extraction,
metrics, and comparison and testing. METRICS classifies the quality of radiomics studies
as very low, low, moderate, good, or excellent.

2. Methodological Studies

Image reconstruction, tumor or lesion segmentation, and preprocessing are well-
known parameters influencing radiomic feature values and stability. Furthermore, different
PSMA-targeting PET ligands have been reported to have different IC50 values, internal-
ization rates, and blood clearance rates, which may result in different feature values and
hamper their mixed use in clinical practice. Some of these issues have been addressed by a
number of authors (see Table 1). Fooladi et al. studied the impact of penalized likelihood
(Q.Clear) and ordered subset expectation maximization (OSEM) reconstruction on the ro-
bustness of 129 radiomic features derived from 30 68Ga-PSMA-11 avid metastatic prostate
carcinoma lesions (eight patients) situated in the abdominal and pelvic region using the
LIFEx software version 7.6.0 and a threshold of 41% of SUVmax for lesion segmentation [12].
For the OSEM reconstruction method, 15 s, 30 s, 1 min, 2 min, 3 min, 4 min, and 5 min
images were studied and for the Q.Clear reconstruction mode, Beta values between 100 and
700, at intervals of 100 and a duration of 2 min, were studied. When considering the Q.Clear
reconstruction method, only 23% showed a very small (COV < 5%) or small variation (COV
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5% < COV < 10%) across changes in beta value. Inversely, when considering OSEM, more
than half of the radiomic features showed a very small or small variation across the changes
in duration. Of interest, none of the morphological features were found to have a small or
a very small variability. Pasini et al. studied the robustness of radiomics to variations in
segmentation methods (manual, region growing, and thresholding (cut-offs used were not
specified)) of 78 18F-PSMA-1007 avid primary prostate carcinoma lesions (46 low-grade
and 35 high-grade lesions) [13]. A total of 1781 radiomic features were extracted for the
three datasets using PyRadiomics, 107 extracted from the original images, 744 from wavelet
decomposed images, and 930 from Laplacian of Gaussian (LoG) filtered images. Jaccard in-
dices for the paired-wise comparison of the three segmentation methods varied from 0.51 to
0.58. Shape features were proven to be the least reproducible (average intraclass correlation
coefficient (ICC): 0.27), and GLCM features were the most reproducible (ICC: 0.89). Further-
more, segmentation methods negatively impacted the wavelet-decomposed images (ICC
range: 0.49–0.56 for the different features subgroups studied). The authors also assessed
the impact of the lesion segmentation method on the accuracy of six machine-learning
models (LDA, SVM, KNN, RF, AdaBoost, and NN classifiers) for separating low-grade and
high-grade lesions. The region-growing-LDA model was found to be the most accurate
(AUC 79.2%). However, all models were based on retained/selected wavelet features
that showed the worst average ICC performance. Dutta et al. assessed the robustness of
radiomic features extracted from malignant involved prostates of 142 patients as defined
by 68Ga-PSMA-11 PET images on automated prostate volume delineation, applying the
publicly available nnU-Net model on simultaneously obtained T2 MRI images on the one
hand and the manually delineated clinical target volume (CTV) on the other hand [14].
The mean Dice coefficient (DC) between the CTV and the nnU-Net segmentation was 0.78
(range 0.02–092). To ensure significant spatial overlap, only patients with a DC > 0.6 were
used for analysis. Out of 1037 features extracted, 51 had an ICC > 0.9, and 148 > 0.75 and
<0.75. Approximately 88% of these features were wavelet-based and consisted mainly of
grey-level texture features. Kendrick et al. prospectively assessed inter- and intra-tracer
robustness of radiomic features in 18 metastatic prostate cancer patients that were ran-
domized to one of three rest–retest groups, intra-tracer 68Ga-PSMA-11 PET (five patients),
intra-tracer 18F-PSMA-1007 PET (three patients), and inter-tracer between 68Ga-PSMA-11
and 18F-PSMA-1007 PET (eight patients) [15]. Test–retest scans were taken within 2–7 days
from each other. Patient lesions were delineated manually, followed with a baseline global
3 SUVbw threshold applied to the PET images. Only lesions > 1.5 cm3 were used for
analysis, and 107 features were extracted from each lesion using PyRadiomics. For both
intra-tracer groups, the number of features extracted rated as excellent (ICC > 0.9) or good
(0.75 < ICC < 0.9) were comparable (69% for 68Ga-PSMA-11 and 66% for 18F-PSMA-1007),
with 68Ga-PSMA-11 having a higher percentage of excellent features relative to 18F-PSMA-
1007 (50% versus 38%). The most stable features identified were first-order statistics and
entropy-based features from the GLCM feature family. Applying filters to the data did not
improve their overall repeatability. Inversely, for the inter-tracer group, only 9% of features
were classified as either excellent or good. Finally, Werner et al. assessed repeatability of
29 radiomic features derived from 230 lesions (177 bone, 38 lymph nodes, and 15 others)
visualized on 18F-DCFPyl in 21 patients in a test–retest setting (PET scan acquired twice
in each patient within 7 days) [16]. Segmentation of the lesions was performed manually,
and features were extracted using the Interview software (the mean value of the Dice
coefficient was 0.48 (range 0.03–0.99)). An acceptable reproducibility was found for the
entropy and homogeneity (within subject coefficient of variation (wCOV) of 16% and 12.7%
respectively); for the remaining 27 features, the wCOV found were >21.7%.
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Table 1. Methodological studies.

Authors Tracer Nb of Lesions/Pts Methodology Results

Fooladi et al. [12] 68Ga-PSMA-11 30/8
Q.Clear vs.

OSEM/41%threshold/LIFEx
(129 features)

OSEM yields more
reproducible results

than Q.Clear

Pasini et al. [13] 18F-PSMA-1007 78/78 (primary)
Manual vs. region growing

vs. thresholding,
pyradiomics (1781 features)

GLCM features most
reproducible, shape

features least
reproducible

Dutta et al. [14] 68Ga-PSMA-11 142/142 (primary)
Automated versus manually

delineated, pyradiomics
(1037 features)

19% of features
proved reproducible

Kendrick et al. [15]
68Ga-PSMA-11 and

18F-PSMA-1007
18/75

Intra- 68Ga-PSMA-11 (5 pts),
intra-18F-PSMA-1007 (5 pts)

and inter-tracer (8 pts),
threshold-based,

Pyradiomics (107 features)

Most reproducible
features on intra-68Ga-
PSMA-11—inter-tracer

poorly reproducible

Werner et al. [16] 18F-DCFPyl 21/230
Manual delineation,
Interview software

(29 features)

Only entropy and
homogeneity

proved reproducible

OSEM = ordered subset expectation maximization, GLCM = gray-level co-occurrence matrix.

3. Primary Prostate Carcinoma Discrimination and Characterization

For the purpose of prostate carcinoma diagnosis, transrectal ultrasound-guided biopsy
(TRUS-GB) suffers from potential sampling error and interobserver variability; leads to the
over-detection of clinically insignificant cancer; and may cause procedure-related bleeding,
pain, and infection [17,18]. While multiparametric MRI may make it possible to avoid
a biopsy in up to one-third of patients, it suffers from a low specificity in very-low-risk
patients and from a poor sensitivity when confronted with small intraprostatic tumors,
especially when situated centrally. Furthermore, in spite of the introduction of the PI-RADS
version 2 scoring system, mp-MRI inter-reader reproducibility is suboptimal, and ISUP
(International Society of Urological Pathology) upgrading is reported in approximately
30% of mp-MRI-based biopsies [19]. PSMA-targeted PET imaging has a higher sensitivity
and specificity for the detection of primary prostate carcinoma when compared to MRI,
and limited results suggest that it may aid in clinical decision-making by eliminating the
further need for biopsies. However, in spite of this, in up to 10% of patients presenting
with increased PSA levels, primary tumor lesions remain undetected on PSMA-targeted
PET/CT, and up to 40% of these lesions are subsequently shown to be clinically significant
(ISUP > 1) [13,14]. Furthermore, prostate carcinoma is renowned for its multifocality. In
a study by Mouraviev et al. analyzing 947 prostatectomy specimens, 78% of specimens
contained multifocal prostate carcinoma with, on average, 2.24 lesions being identified
in these specimens [20]. When considering a safe implementation of focal therapies,
accurate assessment of the intraprostatic local disease extent is of paramount importance.
Accordingly, the authors studied the potential of radiomics applied to PSMA-targeting
PET/CT examinations to identify and characterize prostate tracer-avid lesions and to
predict the existence of visually undetectable intraprostatic carcinoma (see Table 2).
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Table 2. Characterization and discrimination.

Authors Tracer/M-Score Nb of ppc
Studied Methodology and Software Used Results

Zamboglou et al. [20]
68Ga-PSMA-11

/moderate 20/40 pts
2 × 2 × 2 mm3 voxels, wavelet filtered (ppc (40%),
entire prostate (CT), delta both volumes//versus

histology (volumetry)/in-house MATLAB software

ppc volume (40%) significantly
smaller than histologic

volumes/QSZHGE best
performing feature

Zamboglou et al. [21]
68Ga-PSMA-11

/Good 20/52 pts 2 × 2 × 2 mm3 voxels, locally binary filtering
(LBP), pyradiomics

Best-performing features were
LBP-SZNUN and LBP-SAE

Yi et al. [22]
68Ga-PSMA-11

/Good 64/36 Prostate manually segmented, 3 × 3 × 3 mm3,
pyradiomics 3.1.0

RF model (10 most perfoming
features), AUC = 0.903

Ghezzo et al. [23]
68Ga-PSMA-11

/Moderate 43 Prostate manually segmented, 2 × 2 × 2 mm3 voxels,
pyradiomics/ISUP prediction

LR, SVM, K-nearest neighbor,
best-performing model 87.6% acuracy

versus 85.9% for biopsy

Solari et al. [24]
68Ga-PSMA-11

/Moderate 101
Prostate manually segmented/fuzzy locally adaptive

Bayesian based segmentation, voxel-size not
mentionned, pyradiomics

SVM, ACC 87%

Yao et al. [25]
18F-PSMA-1007

/Moderate 173 Region growing 30%/40%/50%/60%, 2 × 2 × 2 cm3,
LIFEx software

LR-based models (50%, AUC 0.82)

Basso Dias et al. [26] 18F-DCFPyl/Moderate 89 2.3 × 2.3 × 5 mm3 voxels, 40% and 70%, LIFEx
software, PET and MRI LR-based models (AUC 0.85)

Cysouw et al. [27] 18F-DCFPyl/Good 76 2 × 2 × 2 mm3 voxels, 50% and 70%, RaCaT software
RF-models, AUC (0.86 (LN

involvemnet, 0.86 distant metastases,
ECE (0.76)

ppc = primary prostate carcinoma, ISUP = international society of urological pathology, LR = logistic regression,
SVM = support vector machine, ACC = accuracy, AUC = area under the curve, ECE = extra capsular extension,
LN = lymph node. In the first three studies, two patient cohorts were included. M-score = METRICS score.

3.1. 68Ga-PSMA-11

Zamboglou et al. studied a prospective cohort of 20 patients and a retrospective
validation cohort of 40 patients suffering from biopsy-proven prostate carcinoma sched-
uled to subsequently undergo radical prostatectomy and lymphadenectomy [20]. Three-
dimensional histologic assessment of the radical prostatectomy specimen was used as the
gold standard. Radiomics analysis was performed on 68Ga-PSMA-11 PET/CT images re-
sampled to obtain 2 × 2 × 2 mm3 voxels obtained prior to prostatectomy using an in-house
MATLAB- based software. For analysis, the entire prostate volume, defined using CT, was
subtracted by the tumor volume, assessed in three different manners, respectively, using
SUV-window leveling, a 40% threshold of SUV-max, and 3D histology. Radiomic features
were subsequently extracted from the three tumor volumes as well as non-tumor volumes
(subtraction volumes between the prostatic gland on CT scans and the three respective
tumor volumes). A wavelet band-pass filtering, as well as an equal-probability quantization
algorithm, were applied on the voxel intensities within the contours. As anticipated, SUV-
related features proved significantly different between PCa and non-PCa tissue. However,
the best-performing RF to differentiate between GS 7 and GS > 7 (pooled cohorts), as well
as between pNO and pN1 status, was the TF quantization algorithm + short zone high
gray-level emphasis (QSZHGE). Of interest, in their study, median volumes of GTV−40%
proved significantly smaller than median GTV histology volumes.

Zamboglou et al. subsequently reported on the same prospective cohort of 20 patients
and an external validation cohort of 52 patients from Nanjing, China, using a similar
study set-up, however, focusing solely on the prostate volume subtracted by the gross PET-
visible tumor volume, aiming to identify features that allowed identification of additional
microscopic sites of tumor involvement to the visible primary [21]. In this study, the
software PyRadiomics was used, and 152 features were extracted. A locally binary pattern
filter (LBP) was applied. Features that proved significantly different on visually non-PCa-
PET images that did or did not contain histologic prostate carcinoma were respectively
size-zone non-uniformity normalized (SZNUN), and small area emphasis (SAE) with ROC
AUC values of 0.8 were found for both features. In the training cohort, visual image
interpretation missed 134 lesions, with a median diameter of 2.2 mm, in 12 patients, 75% of
which had clinically significant PCA (ISUP > 1). In the validation cohort, PCa was missed
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in 26 patients, 77% of which possessed clinically significant PCa. In the validation cohort,
the sensitivities of LBP-SZNUN and LBP-SAE were ≥0.8.

Yi et al. studied 100 patients that were referred for 68Ga-PSMA-11 PET/CT imaging
to exclude primary prostate carcinoma in whom imaging proved negative and in whom
imaging results were subsequently shown to be truly or falsely negative through biopsy
or long-term follow-up [22]. Data from 64 patients, of which 39 proved malignant, were
used as the training set, whereas data from the remaining 36 patients, of which 21 proved
malignant, were used as validation set. The prostate was manually segmented into the right
and left lobe on the PSMA PET images using the corresponding CT scan, and 1781 features
extracted on both early and delayed PET images. Using the minimum redundancy max-
imum relevance method, the 10 best-performing features, one first-order feature, three
wavelet-based features, four Gaussian-based features, and one logarithm based feature
were selected and used to create three random forest machine learning models, one based
on early PET images, one on delayed PET images, and one on both standard and delayed
images. AUC values of the radiomics RF models proved significantly higher than those
of PSA density (0.903, 0.856 and 0.925 versus 0.662, respectively, p = 0.007, p = 0.045 and
p = 0.005).

Ghezzo et al. retrospectively studied 43 patients suffering from prostate carcinoma
in whom baseline 68Ga-PSMA-11 PET/CT was performed and that had diagnostic biopsy
(biopsy ISUP grades) and full radical prostatectomy (post-surgical ISUP grade) performed
as the sole therapy [23]. The whole prostate was manually segmented on co-registered
PET/CT images and used for radiomics feature extraction (a total of 103 IBSI compliant RFs
were extracted) using PyRadiomics 7.6.0 following resampling to 2 × 2 × 2 mm3 voxels.
SUVmean values were also obtained using a 41% threshold of SUVmax. The sample size
was split into four training sets and one validation set using stratified cross-validation
and oversampling where necessary, yielding a 1:1 proportion for the various ISUP classes.
Logistic regression, support vector machine, and K-nearest neighbor classifiers were trained
to predict psISUP. The most relevant non-redundant features extracted, defined using the
minimum redundancy maximum relevance algorithm, proved to be the GLSZM—zone
entropy, Shape—least axis length, first-order—minimum, and GLSZM—small area low
gray-level emphasis. The best performing model, using LR and GLSZM—zone entropy and
shape—least axis length as RFs, had a balanced accuracy of 87.6% versus 85.9% for biopsy.
Biopsy underestimated the aggressiveness of PCa in nine patients in whom ISUP < 4 was
later revised to be high-grade PCA. Using a similar study-set up, Solari et al. studied
101 patients using 68Ga-PSMA-11 PET/MRI, and 107 features were derived from PET and
MRI images [24]. Prostate segmentation was manually performed on MRI images and
using the Fuzzy Locally Adaptive Bayesian segmentation tool for PET. In addition to the
aforementioned features, six SUV-tumor based features were also included. Using SVM,
the best-performing model was the one that combined features from both highest single
modalities (PET + ADC, bACC: 82 ± 5%).

3.2. 18F-PSMA-1007

Yao et al. studied 173 histologically confirmed primary prostate carcinoma patients
who underwent radical prostatectomy without adjuvant therapy prior to 18F-PSMA-1007
PET imaging [25]. Tumor volumes of interest were generated using thresholds of 30%, 40%,
50%, and 60% of the SUVmax value. Radiomic features were obtained from these volumes
using the LIFEx software following voxel resampling to a size of 2 × 2 × 2 mm3. Features
were ranked using the mRMR method while minimizing the correlation between features,
and the top 10 GS-associated RFs were selected for each thresholding VOI. Prediction
models for ISUP ≥ 3 were constructed using SVM and optimal RFs as well as PSA levels.
The best predictive performance for ISUP-grade assessment as well as for the presence of
vascular invasion in training and testing cohorts were obtained using the 50% SUVmax
model (AUC 0.82 and 0.80 and 0.74 and 0.74, respectively). For predicting extracapsular
extension, the 40% SUV model proved the best performing (0.77, respectively).
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3.3. 18F-DCFPyl

Basso Dias et al. evaluated the value of PET and MRI radiomics for evaluation of
ISUP GG1-2 vs. ISUP GG ≥ 3 [26]. The authors retrospectively studied 89 triple-positive
(MRI-ADC- and T2w- and 18F-DCFPyl PET-positive) lesions in 86 treatment-naïve biopsy-
proven prostate carcinoma patients (one patient had three lesions, two patients had two
lesions, and the remaining patients had one lesion). PET tumor volumes were defined
using a background threshold, a peak threshold, and a threshold at 40% and 70% of
the SUVmax. On MRI, tumor contours were derived manually. Pet voxels size was
2.3 × 2.3 × 5 mm3. IBSI-compliant MRI- and PET-based radiomics features were extracted
from the tumor volumes using the LIFEx software and subsequently used together with
age, PSA levels, and lesions PROMISE (Prostate cancer Molecular Imaging Standardized
Evaluation) classification for model-building following normalization. After building single
models based on logistic regression, including features that maximized the Youden index,
different combinations of models were generated, and ROC AUC values of these were
models defined. The overall best model using two T2w-, two ADC-, and three PET-derived
features had an AUC of 0.85, whereas the best-performing PET-only model including six
features had an AUC of 0.79. Cysouw studied 76 patients with intermediate- to high-
risk prostate carcinoma scheduled for robot-assisted radical prostatectomy with extended
pelvic LN dissection that underwent pre-operative 18F-DCFPyl PET/CT [27]. The following
pathology proven outcomes were dichotomized for machine learning-based classification,
ISUP ≥ 4, the presence of ECE, pathology-proven LN involvement, and the presence of
distant metastases. Tumor volumes were grown with thresholds varying from 50% to
70% on 2 × 2 × 2 mm3 voxel-size resampled images. Radiomic features (480 in total)
were extracted from tumor volumes using the RaCaT software. Models were generated
using an RF Classifier. Dimension reduction was performed using principal component
analysis (retaining 95% of the variance), a recursive feature elimination approach, and
an ANOVA-based univariate selection method. The radiomics-based machine learning
models predicted LN involvement (AUC 0.86 ± 0.15), nodal or distant metastases (AUC
0.86 ± 0.14), ISUP ≥ 4 (0.81 ± 0.16), and ECE (0.76 ± 0.12). Dimension reduction had a
limited effect on mean AUCs, and there was no apparent benefit of using one approach
over the other. The most important textural features of ISUP prediction were zone size non-
uniformity, zone distance non-uniformity, and gray-level variance, whereas intensity-based
features were most important in the prediction of LNI. The use of a higher (70%) threshold
and PVC proved beneficial for the prediction of various outcome variables.

4. Predicting Biochemical Recurrence

Following radical prostatectomy (RP) or prostate cancer radiation therapy, 27–53%
of patients will develop a biochemical recurrence (BCR), defined as a PSA > 0.2 ng/mL,
following RP and a PSA > post-RT nadir + 0.2 ng/mL [28]. Patients at high risk for BCR
are ISUP groups 4 and 5 and pT3 patients with or without surgical margins who are
currently offered adjuvant treatment [29]. Optimized models, including radiomics-derived
information from PSMA-targeting PET examinations, could potentially provide a more
accurate risk estimation.

68Ga-PSMA-11

Papp et al. prospectively studied 52 patients that underwent baseline 68Ga-PSMA-11
PET/MRI and subsequently underwent radical prostatectomy. Tumor segmentation was
performed using three-dimensional iso-count VOIs and corrected manually if required,
resulting in 121 lesions in total [30]. Radiomic features with “very strong” or “strong”
consensus values as of the IBSI guidelines, 442 in total, were extracted from the 68Ga-
PSMA-11 (2 × 2 × 2 mm) PET, T2w, and ADC lesions by the MUW Radiomics engine.
SUVmax, SUVmean, SUVpeak, and SUVtlg were merged with the 442 features, yielding
a 446-long feature vector for each lesion. Feature reduction was subsequently performed
by removing all features with correlation coefficients >0.75, leaving 80 features for further
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analysis. Models predictive for BCR (Mbcr) and overall patient risk (OPR, Mopr) were
then built on random forest classifiers using training and validation lesion sets. During
follow-up (mean 41 months), 36 patients presented with a BCR, and 50 had overall patient
risk information available (high if BCR was positive or the node stage or metastases stage
(clinical or pathological) were positive). The cross-validation performance revealed an
average validation accuracy of 89% and 91% as well as an AUC of 0.90 and 0.94 for Mbcr
and Mopr. Respective accuracies for the standard clinical model were 69% for BCR and
70% for OPR.

5. Machine Learning for Hotspot Classification

Moazemi et al. studied 72 patients suffering from histologically proven prostate
carcinoma that underwent 68Ga-PSMA PET/CT imaging, with Gleason scores ranging
from 6 to 9 and serum PSA levels from 4 to 1840 ng/mL [31]. Sites of focal uptake beyond
the local background were identified (2419 in total), delineated manually, and classified
as malignant (1629) or physiologic/unspecific (790) by two experienced nuclear medicine
physicians (gold standard). For each site, 40 PET-based and 44-CT based radiomic features
were extracted using InterView Fusion software. Three feature groups were generated (PET
only, CT only, and combined PET-CT), and five different ML algorithms, respectively, linear
and radial basis function (RBF), polynomial kernel support vector machine, extra trees (ET),
and random forest (RF), were applied to each subset. Overall, ET and RF yielded the highest
accuracies for all three subsets (AUC ≥ 91%), with the combined use of PET and CT data
yielding an accuracy of 98%. Using the same dataset as the validation group, the authors
validated their results obtained using PET alone and an extended set of 77 extracted
radiomic features in a validation cohort of 15 patients. In the latter group, 125 of the
128 lesions classified as pathologic were correctly identified (sensitivity of 97%), whereas
specificity proved lower, 82%, respectively (overall accuracy of 0.98). The lower specificity
was predominantly due to difficulties encountered by the AI algorithm in classifying
sublingual and lacrimal glands (19/111 glands were identified as pathologic). Capobianco
et al. developed and evaluated a multi-task convolutional neural network trained on
68Ga-PSMA-11 PET and CT information for the identification and anatomical classification
of suspicious tracer uptake sites in the entire body [32]. The training set included image
data of 123 consecutive patients suffering from prostate carcinoma referred for primary
staging or for assessment of biochemical recurrence. The validation set consisted of a set of
50 patients referred for all kind of indications. Sites of increased uptake (5577 sites, of which
4520 were physiologic), were segmented using a 45% threshold of SUVmax. Inputs to the
neural network were 13 parameters extracted after resampling to 3 mm isotropic voxels.
The diagnostic accuracy of the neural network for separating malignant from benign sites
of increased uptake was 80.4%.

6. Predicting Treatment Response and Overall Survival
177Lu-PSMA-617/I&T is being increasingly used for treating mCRPC patients; how-

ever, in 35–55% of patients, a biochemical response is not achieved. Biomarkers associated
with response to 177Lu-PSMA therapy and outcome are thus of major clinical interest, given
they could identify those patients that will respond favorably to this type of treatment
upfront while avoiding unnecessary side effects to those who will not and reducing costs
for society [33]. In this regard, Khurshid et al. assessed the predictive value of tumoral
texture parameters in a series of 70 patients suffering from metastasized prostate carcinoma
scheduled to undergo 177Lu-PSMA-therapy. Sixteen patients had previously also received
223Ra treatment [34]. For each patient, three bone metastases, three tracer avid lymph
nodes, and liver, as well as other metastases when applicable, were manually delineated on
68Ga-PSMA-11 PET images. Subsequently, features were obtained from the histogram as
well as from the normalized gray-level co-occurrence matrix (nGLCM). Based on ROC anal-
ysis and using changes in PSA induced by 177Lu-PSMA therapy (42 responders) as a gold
standard, COV of the histogram, entropy, homogeneity, contrast, and size variation proved
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significantly correlated with changes in PSA, with entropy and homogeneity showing
the lowest p-values, respectively, of 0.006 and 0.008. Moazemi et al. manually delineated
2070 pathological hotspots on 68Ga-PSMA-11 PET/CT images obtained in 83 prostate
carcinoma patients, and for each hotspot 73 radiomic features (37 PET-based and 36 CT-
based), were obtained [35]. Out of these features, the five radiomic features that correlated
best with treatment-induced PSA changes were selected (respectively, PET SUVmin and
PET-Correlation and CT-min, CT-coarseness and CT-busyness). When combined with a set
of 14 clinical parameters and using an ML support vector machine classifier with radial
base function, an AUC value of 0.80 was obtained for separating responders from non-
responders. Using the same patient population and image analysis and the least absolute
shrinkage and selection operator (LASSO) method, SUVmin and kurtosis were identified
as the most relevant features related to overall survival. The latter two features were
than used to form a radiomics signature (SUVmin × 0.984 + Kurtosis × −0.118), which,
in the Kaplan–Meier analysis, proved significantly related to overall survival together
with Hb, CRP, and ECOG status. Likewise, Roll et al. evaluated the predictive value of
68Ga-PSMA-11 PET/MRI for response to 177Lu-PSMA-therapy in a series of 21 mCRPC
patients [36]. A threshold of 3.0 SUV was used to segment PSMA-positive lesions, out
of which 162 first order logic features and 216 GLCM features were extracted in addition
to standard SUV-metrics. Ten features, including three derived from PET, differentiated
well between responders and non-responders. However, within the final model, features
derived from MRI images proved more relevant than those derived from PET. Finally,
Assadi et al. retrospectively studied 33 mCRPC patients that underwent 177Lu-PSMA
treatment and in whom pretreatment 68Ga-PSMA-11 PET/CT scans were available [37].
All tracer-avid lesions, 2517 in total, identified on the 68Ga-PSMA-11 PET images were
segmented semi-automatically using 3D Slicer software, and images were resampled to a
voxel size of 2 × 2 × 2 mm3. Sixty-five features were extracted using the LIFEx software.
Based on ICC analysis, all but GLZLM features proved acceptable. In addition to three
clinical parameters, GLCM entropy (AUC 0.719) had an AUC value superior to 0.65 for
predicting responders (≥50% decrease in PSA-value) from non-responders.

7. Discussion

Resolution recovery techniques have gained wide access in positron emission tomog-
raphy imaging given they mitigate spatial resolution losses and related inaccuracies in
quantification using a model of the system’s point spread function during reconstruction
or post-processing. However, as shown by Fooladi et al. using 68Ga-PSMA-11 PET, their
use significantly reduces the number of reproducible radiomic features as compared to
standard reconstruction algorithms such as OSEM [12].

Interpolation allows for comparison of datasets spanning multiple centers with vary-
ing protocols using different voxel sizes, as well as the acquisition of isotropic rotation
invariant voxels for three-dimensional feature extraction. In most of the studies reported,
voxel size was reduced using interpolation, thus increasing the total number of voxels for
radiomic feature extraction, which is of relevance given a minimum of 64 voxels is required
for various texture features. The impact of interpolation on the robustness of radiomic
features has been previously addressed by Whybra et al. for 18-fluoro-deoxyglucose (FDG)
avid malignant lesions identified on 18F-FDG PET/CT [38]. Out of a series of 141 features,
only 93 features proved robust to interpolation in their study. Data on the effect of in-
terpolation on radiomic features extracted from PSMA-targeting-based PET-ligand avid
prostate carcinoma are currently lacking, and its effect on predictive models is unknown
and warrants further exploration.

As compared to FDG PET imaging, where region growing of 30–40% of the tumor’s
SUV-max values has been shown previously to approximate the true tumor volume as
assessed using histology, to the best of our knowledge, studies defining the threshold for
accurate prostate tumor volume delineation have not been reported using PSMA-targeting
ligands [39]. Thus, it is not clear whether radiomic features derived from prostate carcinoma
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lesions segmented using a semiquantitative technique, either the use of an SUV-cut-off
value as applied in a limited number of studies or thresholding to 40% of the maximum
SUV value as applied in the majority of studies reported, are representative for the total
tumor volume. In fact, in a study by Zamboglou et al., primary prostate carcinoma volumes
defined by region growing using a threshold of 40% proved significantly smaller than the
tumor volume as defined using histology (median 7.3 mL versus 2.7 mL, p ≤ 0.05) [20].
This finding is surprising, given histology and especially tissue fixation and processing are
known to shrink prostate carcinomata, requiring a compensation factor ranging from 1.14 to
1.55 depending on the histological technique used to obtain the true tumor volume [40,41].
Such a compensation factor was either not applied or reported in the study by Zamboglou
et al. [20]. Based on the findings by Cysouw et al., the use of a higher (70%) threshold is
likely to be more accurate given, in their study, this threshold proved more beneficial for
prediction of various histological outcome variables in prostate carcinoma when compared
to a 40% or 50% threshold [27]. Of interest, a number of authors have also extracted
radiomic features from a half-glandular or a full-glandular segmented prostate. As opposed
to segmenting the primary tumor only, this approach offers a number of advantages. First,
automatic and semi-automatic methods for segmentation of the full prostate are already
available and commonly used, e.g., in a radiotherapeutic setting. Second, when the standard
PET/CT camera settings include the use of isotropic voxels, interpolation, which reduces
feature reproducibility, may be avoided given the use of the entire prostate for radiomic
features extraction averts the risk of insufficient voxel-numbers. Furthermore, as shown
by Zambouglo et al. features extracted from the entire prostate subtracted by the tumor
volume may allow for the identification of missed small but clinically significant prostate
carcinoma in a relevant number of patients [21].

Importantly, as shown by Kendrick et al., radiomic features derived from the same
malignancy using different PSMA-targeting ligands are not interchangeable [15]. In their
study, the robustness of 18F-PSMA-1007 PET-derived features proved overall lower than
that of 68Ga-PSMA-11 PET-derived features, with inter-tracer robustness being the worst
of all. While both ligands have been reported to have a comparable affinity, the blood
clearance rate differs significantly, with 18F-PSMA-1007 being more slowly cleared, likely
resulting in a higher blood pool contribution to the radiomics features extracted. Further-
more, as suggested by other studies reporting on a higher number of false-positive bone
findings using 18F-labelled PSMA-targeting agents when compared to 68Ga-PSMA-11, de-
halogenation, the degree of which is patient and time variable, is also likely to contribute to
the higher variability reported. A poor robustness was also reported for radiomic features
extracted in a test-retest setting from 18F-DCFPyL [16].

As addressed previously, Gleason scores derived from biopsy and after resection
are discordant in a large number of prostate carcinoma patients. Radiomics analysis
and machine learning applied to PSMA-radioligand avid primary lesions may prove of
clinical utility in this regard given the available studies have suggested that it might be
better performing than biopsy-based GS scoring and thus could serve as an alternative for
non-invasive GS characterization in the future [19,27]. Furthermore, one study suggested
that radiomic signatures may allow for the prediction of biochemical recurrence with a
net benefit for clinical utilization [30]. How this finding can be incorporated into more
personalized therapy schemes, e.g., the administration of adjuvant therapy, will need to be
evaluated in prospective trials.

A limited number of studies further suggest that machine learning based on PET/CT
radiomics features can differentiate increased tracer uptake on PSMA-targeting radioligand
PET/CT examinations in malignant versus physiological or unspecific uptake, paving the
way for a fully automated image reading in nuclear medicine [31,32].

As for prediction to treatment outcome following 177Lu-PSMA therapy and overall
survival, the results of a limited number of studies, including a small number of patients,
have reported promising results on radiomics and machine learning applied to PSMA-
targeting radioligand PET/CT images for this purpose. Its added value as opposed to the
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clinical parameter, however, warrants further exploration in larger datasets of patients,
including multivariate analysis.

While promising, the currently published studies in the field of radiomics and PSMA-
targeted PET suffer from various shortcomings. First, the quality of their reporting may be
significantly improved as suggested by the recent Checklist for Evaluation of Radiomics
Research (CLEAR) guidelines endorsed by the European Society of Medical Imaging
Informatics (EuSoMII) [10,11]. EuSoMII more recently also endorsed the utilization of a
methodological Radiomics Score (METRICS), a quality scoring tool for radiomics research
that takes into consideration the study design, imaging data, imaging processing and
feature extraction, and metrics, as well as comparison and testing [11]. More specifically,
for references [20–27] (see also Table 2) and [30–37], including a histological or a well-
validated clinical gold standard, METRICS scores obtained were either moderate or good,
respectively, in 12 studies and 4 studies, leaving room for improvement. In several studies,
radiomic features known to bear a poor reproducibility were included, whilst such features
are not likely to be informative. Also, related to the software used, the range of number
of features extracted varies widely form one study to another, as well as the number of
features used for modeling. The higher the number of features included, the higher the risk
of model over-fitting is. The same problem exists when including low numbers of patients,
as was the case in some studies. Finally, in most of these studies, internal validation was
performed using cross-validation and not by splitting up the study sample at the beginning
of the study, likely related to the small number of patients included. Furthermore, external
validation was only performed in one study, and most studies did not systematically make
available their data via open sourcing.

8. Conclusions

This review determined that while promising, the limited available data on the use
of radiomics and PSMA-targeted PET in prostate carcinoma do not currently allow for
their implementation in routine clinical practice. Studies performed according to recently
published guidelines and checklists, offering full transparency, that are clinically relevant,
including large enough datasets as well as external validation, are mandatory.
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