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Simple Summary: Medullary thyroid carcinoma (MTC) is a rare but aggressive form of thyroid cancer
accounting for over 10% of deaths related to thyroid malignancies. MTC can be either hereditary
or sporadic. Although it can be cured if it is detected early and completely removed, most patients
with MTC are diagnosed when the cancer has already spread beyond the thyroid gland, making it
difficult to treat. Managing MTC is complex, despite the availability of newer treatment options like
targeted therapy, which works in less than 30% of cases and can lead to severe side effects in some
patients. MTC behaves differently in each patient, making the selection of appropriate treatments
challenging, even for multidisciplinary teams of experts. This article aims to describe the challenges
faced during the diagnostic workup and management of MTC patients. It highlights how holomics,
which is an integrated approach combining various biological data types, and artificial intelligence
(AI) can assist in improving patient outcomes. By simultaneously analyzing and integrating findings
from biochemical, radiological, and histological investigations, genetic studies, and other sources,
along with the personal information of a patient, AI can enhance decision-making processes. This
innovative approach has the potential to personalize and optimize treatment strategies, leading to
better management and improved outcomes for patients with MTC.

Abstract: Background/Objective: Medullary thyroid carcinoma (MTC) is a rare yet aggressive form
of thyroid cancer comprising a disproportionate share of thyroid cancer-related mortalities, despite its
low prevalence. MTC differs from other differentiated thyroid malignancies due to its heterogeneous
nature, presenting complexities in both hereditary and sporadic cases. Traditional management
guidelines, which are designed primarily for papillary thyroid carcinoma (PTC), fall short in pro-
viding the individualized care required for patients with MTC. In recent years, the sheer volume
of data generated from clinical evaluations, radiological imaging, pathological assessments, genetic
mutations, and immunological profiles has made it humanly impossible for clinicians to simulta-
neously analyze and integrate these diverse data streams effectively. This data deluge necessitates
the adoption of advanced technologies to assist in decision-making processes. Holomics, which is
an integrated approach that combines various omics technologies, along with artificial intelligence
(AI), emerges as a powerful solution to address these challenges. Methods: This article reviews
how AI-driven precision oncology can enhance the diagnostic workup, staging, risk stratification,
management, and follow-up care of patients with MTC by processing vast amounts of complex
data quickly and accurately. Articles published in English language and indexed in Pubmed were
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searched. Results: AI algorithms can identify patterns and correlations that may not be apparent
to human clinicians, thereby improving the precision of personalized treatment plans. Moreover,
the implementation of AI in the management of MTC enables the collation and synthesis of clinical
experiences from across the globe, facilitating a more comprehensive understanding of the disease
and its treatment outcomes. Conclusions: The integration of holomics and AI in the management
of patients with MTC represents a significant advancement in precision oncology. This innovative
approach not only addresses the complexities of a rare and aggressive disease but also paves the way
for global collaboration and equitable healthcare solutions, ultimately transforming the landscape
of treatment and care of patients with MTC. By leveraging AI and holomics, we can strive toward
making personalized healthcare accessible to every individual, regardless of their economic status,
thereby improving overall survival rates and quality of life for MTC patients worldwide. This global
approach aligns with the United Nations Sustainable Development Goal 3, which aims to ensure
healthy lives and promote well-being at all ages.

Keywords: artificial intelligence; holomics; medullary thyroid carcinoma; precision oncology

1. Introduction

Medullary thyroid carcinoma (MTC) constitutes less than 5% of primary malignant
tumors of the thyroid gland but more than 10% of the deaths from thyroid cancer [1].
Approximately 25% of MTC is hereditary and part of either multiple endocrine neoplasia
type 2A or 2B (MEN 2A or MEN 2B) [2,3]. Eighty percent of hereditary MTC occurs in
individuals with the classical variant of MEN 2A, while 5% occurs in those with MEN
2B. Variants of MTC in MEN 2A include the classical type in 80% and Hirschsprung’s
disease and cutaneous lichen amyloidosis-associated disease in 1% each. Close to 15%
of hereditable MTC is part of the familial medullary thyroid carcinoma (FMTC) variant
of MEN 2A [3–5]. Around 53% and 20% of patients with sporadic MTC carry mutually
exclusive somatic mutations of the rearranged during transfection (RET) and rat sarcoma
virus (RAS) genes, respectively.

Aberrant splicing is a crucial factor in the development and progression of cancers,
including MTC. Splicing removes introns from pre-mRNA and joins exons to form ma-
ture mRNA, which is a process regulated by the spliceosome and various splicing factors.
Disruption of this regulation can result in abnormal mRNA isoforms that contribute to can-
cer [6]. The spliceosome consists of small nuclear RNAs (snRNAs) and associated proteins,
with key splicing factors including serine/arginine-rich (SR) proteins and heterogeneous
nuclear ribonucleoproteins (hnRNPs). The SR proteins usually promote exon inclusion,
while hnRNPs can repress splicing or enhance exon skipping [7,8].

Medullary thyroid carcinoma is often associated with mutations in the RET proto-
oncogene, which encodes a receptor tyrosine kinase involved in cell growth and differen-
tiation. In addition to point mutations, alternative splicing of RET can produce different
isoforms with varying oncogenic potentials. For example, the inclusion or exclusion of
specific exons in the RET transcript can influence kinase activity, cellular localization, and
interaction with signaling partners [9]. In MTC, aberrant splicing of the RET gene has been
observed, leading to the expression of RET isoforms that contribute to the malignancy.
Studies have identified splicing variants of RET that lack the entire exon 11 or 12, resulting
in constitutively active forms of the receptor that promote uncontrolled cell growth [10].
Additionally, the aberrant splicing of other genes involved in cell cycle regulation, apop-
tosis, and metastasis has been implicated in MTC pathogenesis [11]. Targeting aberrant
splicing represents a promising therapeutic strategy for MTC. Several approaches are being
explored, including small molecules that modulate splicing factor activity and antisense
oligonucleotides (ASOs) that correct splicing defects. For instance, spliceosome inhibitors
like spliceostatin A and E7107 have shown potential in preclinical studies by inducing
apoptosis in cancer cells with splicing abnormalities [12]. ASOs can be designed to bind to
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specific RNA sequences and modify splicing patterns, potentially restoring normal gene
expression [13].

Recent advances have also explored the use of CRISPR/Cas9 technology to target
and correct splicing mutations at the genomic level, offering another potential avenue for
therapeutic intervention [14]. Aberrant splicing plays a significant role in the pathogenesis
of MTC, particularly through the dysregulation of the RET proto-oncogene. Understanding
the mechanisms underlying splicing abnormalities in MTC can reveal novel therapeutic
targets and strategies, offering hope for more effective treatments for this aggressive cancer.

A diagnostic workup of patients with suspected MTC starts with a clinical assessment
followed by a thyroid function test, ultrasound, measurement of serum level of Ctn, fine-
needle aspiration cytology (FNAC), CT scan, and MRI [1]. The choice and timing of
treatment and follow-up plans depend on the type of MTC, stage and grade of a tumor,
mutational status, and serum levels of Ctn and CEA and their doubling time [1,3,15].
Chemotherapy, radiotherapy radioactive iodine, and other radionuclide therapies are not
effective in the treatment of MTC [1,16]. Targeted therapy using multi- or selective tyrosine
kinase inhibitors is effective in a few patients with MTC.

The management of patients with MTC is often not individualized, and a one-size-fits-
all approach is followed, although MTC is known to be a highly complex and heterogeneous
disease. The American Joint Committee on Cancer tumor node metastasis (TNM) stag-
ing system cannot accurately quantify the volume of the disease to enable personalized
management of patients with MTC [17].

The level of serum Ctn is generally useful for screening, risk stratification, and postop-
erative monitoring following curative resection of MTC [18–21]. Other parameters for the
prognostication of MTC include the age and gender of the patient, the size of the tumor, the
existence of extra-thyroidal spread, lymph node metastasis, and levels of serum Ctn and
carcinoembryonic antigen (CEA) [1,22]. The mutational landscape of a tumor, alterations in
the expression of non-coding RNAs, and the molecular profile of the tumor may influence
the clinical behavior and outcome of patients with MTC [23–32].

Medullary thyroid carcinoma is curable if surgical treatment is instituted when it is
still confined to the thyroid gland and is completely removed [21,33–37]. A patient with
MTC is considered cured if there is no structural evidence of residual disease and serum
levels of Ctn and CEA are either normal or not detectable. However, the majority of patients
with MTC present when the tumor is larger than 2 cm and there are metastases to lymph
nodes, lungs, bones, or liver [21,38–45]. The prognosis in the majority of patients with MTC
remains poor despite the introduction of newer diagnostic modalities and targeted therapy
and the involvement of multidisciplinary teams in decision-making and management.

2. Management of Medullary Thyroid Carcinoma

The mainstay of the treatment of MTC is total thyroidectomy with central lymph node
dissection [36,38]. Radioactive iodine, thyroid stimulating hormone (TSH) suppression,
external beam radiotherapy, standard chemotherapy, and immunotherapy are not effective
in the treatment of MTC [16,36,38,46]. Medullary thyroid carcinoma, especially if it is larger
than 1 cm in size, may overexpress programmed cell death-ligand 1, which may make it
amenable to treatment with PD-L1 inhibitors [47]. External beam radiotherapy is used to
treat residual or recurrent disease in the neck that is not amenable to resection [1,16]. The
tumor microenvironment (TME) of MTC, like most thyroid cancers, is less immunogenic;
thus, immunotherapy is usually not effective [44]. Like targeted therapy with selective
tyrosine kinase (TKIs and multi-kinase inhibitors (MKIs)), immunotherapy may slow down
the progression of MTC and palliate symptoms like diarrhea in the case of metastatic
MTC [48,49]. Occasionally, TKIs, when used as neo-adjuvant therapy, may lead to a signifi-
cant reduction in the size of the tumor in patients with locally advanced and irresectable
MTCs and make it amenable to a resection [50].
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2.1. Extent of Thyroidectomy for Medullary Thyroid Carcinoma

Total thyroidectomy is indicated in all patients with hereditary MTC, as the tumor is
likely to be multifocal or bilateral [51,52]. A thyroid lobectomy with prophylactic central
lymph node dissection is sometimes appropriate in patients with a low-risk MTC. A low-
risk MTC must be sporadic, unifocal, low-grade, and less than 1 cm in maximum diameter.
To be low-risk, an MTC must also be intra-thyroidal and not harbor a high-risk muta-
tion [36,53]. Additionally, the serum levels of both Ctn and CEA must normalize within
1–3 months after the lobectomy [54]. Among the concerns regarding thyroid lobectomy for
the curative treatment of MTC include the possibility of mistaking late-onset hereditary
MTC with the sporadic type. Furthermore, an MTC that is less than 2 cm may already have
metastasized to regional lymph nodes or distant sites [53]. Furthermore, the serum level of
Ctn is not always useful, as some patients with MTC may have normal levels or levels that
are discordant with CEA results [5].

2.2. Extent of Cervical Lymphadenectomy

Medullary thyroid carcinoma should preferably be diagnosed preoperatively, and
the patient should be offered total thyroidectomy and appropriate lymph node dissection
as completion or re-do surgery, which is associated with a higher rate of postoperative
complications and poorer outcomes [55]. If MTC was missed during the preoperative
investigation, and the diagnosis is made following a diagnostic lobectomy, subsequent
management may be observation with serial measurements of serum Ctn and CEA or
completion thyroidectomy [33,53,54,56]. Although most experts would recommend a com-
pletion thyroidectomy, some do not deem it always necessary, as the incidence of bilateral
disease in sporadic MTC is less than 10% [53]. The need for a completion thyroidectomy is
however not debatable if the tumor has high-risk features like lymph node metastases, a
markedly elevated serum level of Ctn, or mutations associated with aggressive disease [53].
Other markers of an aggressive MTC that would strengthen the need for a completion
thyroidectomy include patient factors like male gender and older age and high-grade tumor
on histology [4]. High-risk histological features include evidence of necrosis in the tumor,
mitotic count above 4 per 2 mm2, and a Ki67 index greater than 4% [56,57]. Most experts,
however, insist that a total thyroidectomy with central lymph node dissection should be
the minimum treatment in any patient with MTC, regardless of the level of serum Ctn and
the stage, grade, or mutational status of a tumor [36,51].

Patients with an MTC that is less than 4 cm in diameter and no clinical and/or radio-
logical evidence of cervical lymph node involvement should have a total thyroidectomy
and prophylactic central lymph node neck dissection [36,52,58]. Central lymph node dis-
section implies the removal of lymph nodes bearing tissues from the hyoid bone to the
brachiocephalic vein inferiorly and laterally bordered by the right and left medial aspects of
the internal jugular veins [51]. The clearance of central lymph nodes, even in patients with
no evidence of metastatic involvement on clinical examination, in preoperative imaging
investigations, and during surgery, increases the likelihood of cure and reduces the risk of
local recurrence and the need for re-do surgery [51,59–61]. Some patients with MTC have
metastasis to cervical lymph nodes that are missed during the clinical examination and
imaging with investigations [62,63].

Although most surgeons routinely include central lymph node dissection during total
thyroidectomy for MTC, some omit it if serum Ctn is less than 20 pg/mL in patients whose
tumor is smaller than 1 cm in diameter and there is no evidence of lymph node involvement,
as the likelihood of occult metastasis is low [39,64]. There are surgeons who would add
a prophylactic central and ipsilateral lateral neck dissection if the preoperative Ctn level
is above 20 pg/mL [20]. Additionally, prophylactic contralateral lateral cervical lymph
node dissection is advised in patients with MTC and preoperative serum Ctn between
200 pg/mL and 1000 pg/mL, as the likelihood of achieving a biochemical cure in this
group of patients is around 50% [49–51]. Biochemical cure is a postoperative level of serum
Ctn that is not detectable or normal at least 1–3 months after surgery [65]. A normalized
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or undetectable level of Ctn without structural evidence of disease following surgery in
patients with MTC is associated with 98% 10-year survival and a recurrence rate below
5% [66].

2.3. Management of Locally Advanced or Metastatic Medullary Thyroid Carcinoma

Treatment goals in patients with irresectable MTC are locoregional control and pal-
liation of symptoms resulting from excess hormones like Ctn, pain management, and
prevention or relief of airway compression [35]. Extensive surgery is generally discour-
aged in patients with MTC with extensive extra-thyroidal extension. The palliative resec-
tion of MTC may be necessary if the tumor is locally advanced but there is impending
life-threatening involvement of the upper aerodigestive tract [35,67]. Among the surgi-
cal options in patients with irresectable MTC are debulking, laryngectomy, esophagec-
tomy, laryngo-esophagectomy, and metastectomy [35,36]. Although there are isolated
reports of the successful use of TKIs as neo-adjuvant therapy, there is generally no role for
neo-adjuvant therapy in the management of locally advanced and irresectable MTC [50].
Metastectomy for palliation is justifiable in patients with MTC and isolated symptomatic
metastatic lesions that are progressively enlarging [51,52]

Targeted therapy with RET or VEGFR-2 inhibitors is currently the first-line therapy
for the management of patients with metastatic MTC [35,36,52,68]. Cabozantinib and
vandetanib were the first drugs to be approved by the Food and Drug Administration
(FDA) as first-line TKIs for managing locally advanced or metastatic MTC [67]. Both
cabozantinib and vandetanib can improve progression-free survival in patients with locally
advanced or metastatic MTC [67]. The efficacy of XL184 (Cabozantinib) in the Advanced
Medullary Thyroid Cancer (EXAM) trial showed that it improved median progression-free
survival of around four months in the placebo to 11.2 months in the treatment group (95%
CI 0.19–0.40) [67]. Due to the high risk of adverse events and toxicity of TKIs and MKIs,
patient selection is crucial. Treatment with TKIs or MKIs should be limited to patients with
high tumor burden with symptomatic disease or rapidly progressing disease and favorable
proteo-metabolic status [67–69].

Other options for the management of locally advanced or metastatic MTC include pep-
tide receptor radionuclide therapy [56], external beam radiotherapy [57], radiofrequency
ablation, cryoablation, and embolization [35,36,51,52,68]. Medullary thyroid carcinoma is
not sensitive to standard chemotherapeutic agents [51]. Similarly, external beam radiother-
apy does not improve survival in patients with irresectable or residual tumors in patients
with locally advanced MTC with extra-thyroidal extension [16]. The assessment of the
stability of advanced MTC uses either the trend of biochemical markers like serum Ctn
and/or the response evaluation criteria in solid tumors (RECIST) criteria [35,51,52,67,68].

2.4. Postoperative Follow-Up

Patients with MTC should be assessed clinically every 3–6 months following surgery [1].
Serial serum Ctn and CEA measurement is performed every 6 months for two years and
yearly subsequently; if there is no evidence of recurrent disease, an ultrasound of the neck
should be performed every 3 to 12 months. Persistently elevated postoperative serum
Ctn levels indicate residual disease, and the magnitude of the elevation influences further
evaluation and management [44]. If after 2 to 3 months following surgery, the level of
Ctn is above 150 pg/mL, there is a high likelihood that the patient has metastatic disease,
which necessitates a metastatic workup that should include a CT scan of the neck and ab-
domen [36,70,71]. Metastases from MTC are usually small and may be missed by a CT scan.
Other imaging investigations like a bone scan, MRI, and 18F-FDG-PET/CT should be added
if metastases are suspected but not visible on ultrasound and CT scan [21,36,51,72–74]. Nev-
ertheless, 18F-FDG-PET/CT is recommended in patients with MTC and serum levels of
Ctn of at least 500 to 1000 pg/mL with no structural evidence of metastases on ultrasound
and CT scan [73,74].
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2.5. Management of Persistent or Recurrent Disease Medullary Thyroid Carcinoma

Persistent or recurrent MTC includes a biochemical incomplete response or recurrence
and a structurally incomplete response or recurrence [35,52,72]. A biochemical incomplete
response is characterized by a high or rising serum level of serum Ctn after at least 3 months
post-surgical resection without anatomical evidence of the disease [35,52,68]. Factors that
influence treatment selection in patients with persistent or recurrent MTC are the nature of
the symptoms, sites of the disease, burden of disease, levels of serum Ctn and CEA, and
rate of progression of structural disease [35]. Local or systemic treatment is not advised
in patients in whom serum Ctn and/or CEA levels remain elevated following surgery
but there is no evidence of structural disease [52,68]. Patients with persistently elevated
serum Ctn and/or CEA following total thyroidectomy with prophylactic or therapeutic
lymphadenectomy without evidence of structural disease should undergo surveillance with
measurement of serum calcitonin and CEA levels every 3–6 months to determine doubling
times and an ultrasound of the neck every 6–12 months [35,38,68]. However, additional
investigations are indicated if the Ctn or CEA doubling time is less than 24 months, as this
is suggestive of an aggressive disease [35,51,52].

Patients with biochemical incomplete responses need to be investigated, and the extent
of the investigation depends on the level of serum Ctn [35,51,52]. While neck ultrasound
alone is adequate if the level of serum Ctn is not above 150 pg/mL, patients with MTC in
whom the level is higher require additional investigations like a CT, MRI, laparoscopy, and
bone scan [72]. Patients with structurally residual MTC are categorized as having either
stable or unstable disease, and those with stable disease should undergo active surveillance
with monitoring of serum levels of Ctn and CEA with imaging by at least an ultrasound
every 3–6 months [35,52]. A repeat lymph node dissection followed by external beam
radiotherapy (EBRT) or intensity-modulated radiation therapy should be considered in
patients with resectable residual in the neck [35]. Furthermore, patients with unstable but
resectable disease may also be considered for surgical resection followed by EBRT [35]. In
patients with unstable and irresectable disease, as evidenced by worsening symptoms and
RECIST-confirmed progression, treatment modalities like radiofrequency ablation, TKIs,
cytotoxic chemotherapy, and radio-immunotherapy may be used [35,52,68,72].

3. Challenges Associated with the Management of Medullary Thyroid Carcinoma

Medullary thyroid carcinoma is a complex and highly heterogeneous disease. The
complexity of MTC spans the entire continuum from its presentation, diagnosis, staging, risk
stratification, management, and follow-up of a patient following treatment [21,34,49,56,75,76].
Some of the complexities are generic and applicable to all patients with MTC regardless of
the subtype, while others are specific to hereditary or sporadic MTC. Generic challenges
linked to the evaluation of suspected or confirmed MTC include the value of routine
measurement of the serum Ctn level during the workup of nodular goiter, variable cut-off
levels of serum Ctn used for diagnosis and to guide management, the inability of the
TNM to accurately quantify the amount of the disease, and the justifiability of thyroid
lobectomy as a definitive treatment in patients with low-risk sporadic MTC [71]. The
appropriateness of a potentially debilitating surgery for locally advanced or metastatic
disease is another challenge. A study by Liu et al. (2024) showed that some patients with
metastatic MTC might benefit from resection of the primary tumor, but there is not yet
guidelines for selection of individuals for whom it is appropriate [77]. Other problems
include how to tailor treatment and follow-up of patients with Ctn-negative MTC. Another
dilemma is patients whose serum Ctn level is persistently elevated after curative surgery
without structural evidence of residual or recurrent disease.

3.1. Serum Calcitonin

Normal serum Ctn level is less than 10 pg/mL, and a level above 100 pg/mL is
diagnostic of MTC [78,79]. In a significant proportion of patients with MTC, the serum
level is in the “gray-zone” of 10–100 pg/mL, as it may be seen in healthy individuals or
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patients with benign diseases like chronic thyroiditis, hyperparathyroidism, or kidney
dysfunction [79]. The level of serum Ctn is also higher in healthy adult males compared
to females and children [65]. The tumor in some patients with MTC may not secrete high
levels of Ctn, even if the tumor stains positive on immunohistochemistry. Occasionally,
serum levels of both Ctn and CEA may be normal [80–82]. In 2015, the ATA task force
could not reach a consensus on the utility of serum Ctn level in the general workup of
a patient with nodular disease of the thyroid gland [65]. Trimboli et al. investigated the
usefulness of routine serum Ctn levels testing during nodular goiter diagnostic workup to
exclude MTC over 14.5 years [83]. Predetermined Ctn reference ranges were stipulated for
the risk of MTC and included 10–20 pg/mL, 20–100 pg/mL, and greater than 100 pg/mL.
The levels of serum Ctn in 170 of the patients were in the upper limit of normal, and
50 underwent thyroidectomy. The final histology in most patients who had elevated serum
levels of Ctn showed benign disease, a few of them had PTC, and none had confirmed
MTC. Preoperative FNAC is diagnostic in less than 60% of patients with MTC [84–87].
Trimboli et al. (2022), in a meta-analysis spanning over 10 years, found that FNAC on
its own accurately detected MTC in 56.8% of patients and subsequently recommended
that FNAC must be utilized in combination with other tools to improve its diagnostic
value. The types of cells that constitute MTC are variable and have been described as
epithelioid, plasmacytoid, and spindle shape, among others, which may explain the high
rate of misdiagnosis [84,88].

3.2. Hereditary MTC

Decisions regarding the management of patients with MEN 2B are less complex if the
diagnosis is made timeously and the tumor is still intra-thyroidal, as it would be limited to
a search for co-existent pheochromocytoma [72,89]. The other decision involves the appro-
priate time to perform a total thyroidectomy and the extent of a lymphadenectomy [90].
Unlike other manifestations of MEN 2B that are expected in all the affected individuals,
phaeochromocytoma develops in half of the cases [89]. The genomic landscape of MEN
2B is uniform and only involves the germline mutation of the RET Met918Thr. Of concern
is that mutations that drive hereditary MTC in patients with MEN2B occur de novo in
some cases, and some patients have no family history and are the first to be affected [91].
Although MTC in patients with classical MEN 2A is less aggressive compared to FMTC-
and MEN 2B-associated disease, it is complex to manage as it is heterogeneous with a vast
mutational landscape and variable clinical presentations [69,90–93]. The categorization
of hereditary MTC into moderate, high, or highest risk based on the codon of the RET
proto-oncogene mutated is relevant when the tumor is early, but not when it is advanced, as
the outcome is similar for advanced stages of the disease [94]. The occurrence of additional
manifestations of MEN 2A, such as hyperparathyroidism and phaeochromocytoma, is vari-
able, which may lead to it being mistaken with sporadic MTC [72,90,95]. The appropriate
time to perform a thyroidectomy for the variants of MTC in patients with MEN 2A also
varies, and the sequencing of surgery for associated endocrinopathies is also essential [90].

3.3. Sporadic MTC

Sporadic MTC is more unpredictable than the MEN 2A- and MEN 2B- associated
variants [53,69,84]. For still unknown reasons, some cases of sporadic MTC may remain
indolent and associated with a higher 10-year survival despite distant metastases [25].
Serum level of Ctn is not always useful, as it is normal or marginally elevated in some
patients with sporadic MTC [96,97]. Most patients with sporadic MTC present like other
thyroid tumors and undergo the same diagnostic tests, which include s-TSH, ultrasound,
and FNAC. Ultrasound and FNAC are, however, less helpful in the diagnostic workup
of sporadic MTC when compared with other malignancies of the thyroid gland except
FTC [87]. Thyroid nodules in sporadic MTC may resemble benign disease on ultrasound,
which may lead to an erroneous decision to prescribe serial observation or offer an inap-
propriate initial surgery [98]. The staging of sporadic MTC mirrors that of PTC, although



Cancers 2024, 16, 3469 8 of 25

stage-for-stage, MTC is more aggressive and is responsible for a disproportionate number
of deaths due to thyroid cancer, despite its relative rarity [69]. A sporadic MTC, even when
its maximum diameter is less than 1 cm, is likely to have metastasized to lymph nodes or
systemically [53]. The current TNM/AJCC staging system for differentiated thyroid cancer
is therefore often not adequate, as it often underestimates the extent and complexity of
sporadic MTC [17]. Strategies that have been used to risk-stratify patients with sporadic
MTC include segregating the tumors using the levels of Ctn and/or other markers, such
as CEA, procalcitonin, pro-gastrin-releasing peptide, and carbohydrate antigen 19.9 (CA
19.9) [53,71]. Other measures include the detailed analysis of ultrasound images and other
imaging findings, such as CT results, FNAC slides, and genetic, epigenetic, proteomic, and
metabolomic landscapes [99–101].

3.4. Targeted Therapy

Management options for stable locally advanced or metastatic disease include surgery,
external beam radiotherapy, radiofrequency, ablation, and stereotactic radio-guided
surgery [43,46]. The surgical resection of locally advanced or metastatic MTC is, how-
ever, inappropriate if it leads to significant postoperative complications, such as bilateral
recurrent laryngeal nerve injury and permanent hypoparathyroidism without survival
benefit [55,102]. The other options for advanced MTC are targeted therapy with tyrosine
kinase inhibitors [44,48,100]. Targeted immunotherapies are expensive and may lead to
significant side effects, such as nausea, diarrhea, hypertension, bleeding, thrombosis, skin
changes, and weight loss [44].

4. Artificial Intelligence in the Healthcare Industry

The use of machines to simulate human actions was first proposed by Alan Turing
in 1950, and John McCarthy introduced the term artificial intelligence in 1956 [103]. The
subfields of AI include machine learning (ML), artificial neural networks (ANN), and
deep learning (DL) [104]. In ML, machines are trained to accomplish what historically
could only be performed by a human being, whereas ANN and DL are more complex
and require advanced computing. Various algorithms are used for the classification of
features in ML, including logistic regression (lR), random forest (RF), decision tree (DT),
support vector machine (SVM), k-nearest neighbors (KNN), gradient-boosting machine
(GBM), and extreme gradient boosting (XGBoost) [101]. Data extraction and classification
may be fully supervised, partially supervised, or unsupervised. Using computer software,
variables that are deemed relevant are selected by experts and fed into the ML algorithms to
develop a prediction model. The comparison of the performance of different AI models is
based on their accuracies and values of the area under the receiver operating characteristic
curve. In DL, computers extract, analyze, and interpret quantitative features without
supervision [104]. Deep learning is more complex than ANN, as it has multiple hidden
layers [105–109]. For the arrangement of AI options according to levels of complexity, see
Figure 1.

The adoption of AI in the healthcare industry has been slow, and its use in diagnostic
investigation and the risk stratification, management, and follow-up of patients is lim-
ited [110,111]. The use of AI to assist in decision-making is useful in managing cancer, as
cancer is a heterogeneous disease, the heterogeneity and complexity of which are often
missed by the traditional methods of staging the disease [110,112,113]. The interpretation of
imaging and cytological or histological findings in a patient suspected to have MTC relies
on expertise, which is not universally available [104,111,114]. Data collected during the
evaluation of patients with suspected MTC include family history and lifestyle, exposure
to environmental risk factors, the results of imaging investigation(s), and the histological
findings, genomics, epigenomics, proteomics, and metabolomics of a cancer [115–121].
Incorporating AI allows for the extraction of a vast amount of quantitative information and
integrating them for decision-making.
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Several authors have reported on the usefulness of radiomics [122], pathomics [123],
genomics [69,124], and other omics in the management of thyroid cancers [121]. ML
and the convolutional neural network (CNN) version of DL are utilized extensively in
other branches of medicine that rely on imaging and the evaluation of pathological speci-
mens for screening, diagnosis, staging, risk stratification, treatment selection, and follow-
up [101,109,118]. The commonly used ML algorithms for computer-aided decision-making
the healthcare industry include SVM, RF, GBM, DT, KNN, Bayesian networks (BN), lean six
sigma (LSS), and natural language processing [NLP] [101,125–136]. The benefits of using
AI during the evaluation and management of patients with MTC include the enhancement
of the ability to distinguish MTC from other causes of goiter, standardizing procedures
for sample collection, and data integration to reduce variability [136]. Some AI algorithms
can classify MTC patients based on genetic mutations and protein expression profiles or
predict patient outcomes and treatment responses based on clinical, genetic, and proteomic
data [128,129]. Additionally, AI can integrate and simultaneously analyze data from labo-
ratory and imaging investigations performed during the evaluation and management of
patients with MTC [130,133,135]. Table 1 contains lists of various models of AI algorithms
available for use during computer-aided decision-making in the management of patients
with MTC, including their application, function, and potential benefits.

Several studies have proven the beneficial role of AI in the diagnostic workup and
management of various diseases, including thyroid cancer [107,108,111,114,115,118]. Most
studies on the role of AI in thyroid cancer focused solely on PTC. The rarity of MTC and
the limited availability of expertise may not allow for the accumulation of enough data for
the training and testing of AI models [118,124]. However, fundamental to the appropriate
management of MTC is a diagnosis when the tumor is small, the exclusion of lymph nodes
and distant metastases, determining the completeness of surgical resection, and the timely
detection of recurrence. The other key issues are establishing the genomic variant and
molecular subtype of MTC, especially if the tumor is locally advanced or metastatic and
treatment with target therapy is being considered.
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Table 1. List of AI intelligence options for processing and integrative analysis of tumors.

Algorithm Application Function Example

CNN [125,126] Image analysis (ultrasound,
CT, MRI)

Automatically identify features
indicative of MTC

Distinguish between benign and
malignant thyroid nodules with
high accuracy

SVM [127] Classification of thyroid
lesions

Find the optimal hyperplane that
separates different classes of data
points

Classify MTC patients based on
genetic mutations and protein
expression profiles

RF [128] Classification and regression
Build multiple decision trees and
merge them to improve predictive
accuracy

Predict patient outcomes and
treatment responses based on
clinical, genetic, and proteomic data

KNN [129] Classification and regression Classify a data point based on the
classification of its neighbors

Classify thyroid nodules based on
ultrasound features to determine
the likelihood of malignancy

ANN [130] Complex pattern recognition Process data in layers to learn
intricate patterns

Integrate multi-omics data to
predict disease progression and
patient survival

GBM [131] Classification and regression
Build models sequentially, each
correcting errors of the previous
ones

Predict recurrence risk in MTC
patients by analyzing clinical and
molecular data

RNN [130] Time-series prediction and
sequential data analysis

Maintain a memory of previous
inputs to predict future outcomes

Analyze longitudinal patient data
to predict future disease
progression and treatment
outcomes

Autoencoders
[132]

Data dimensionality reduction
and feature extraction

Compress data into a
lower-dimensional representation
and reconstruct it back

Identify key features in genetic and
proteomic data that are most
indicative of MTC

BN [130] Probabilistic inference and
decision-making

Represent variables and their
conditional dependencies through
directed acyclic graphs

Model relationships between
genetic mutations, environmental
factors, and MTC development

NLP [133] Process and analyze
unstructured clinical texts

Extract relevant information from
EHRs, pathology reports, and the
scientific literature

Extract patient data and clinical
outcomes related to MTC,
integrating with omics data for
comprehensive analysis

Geolocation [134] Epidemiology and public
health planning

Mapping the geographical
distribution of MTC cases to
identify environmental and genetic
risk factors; planning targeted
screening programs and resource
allocation

Identifying regions with higher
incidence rates of MTC to
implement targeted screening
programs and allocate resources
effectively; correlating regional
dietary habits and environmental
exposures with MTC incidence

Survival Analysis
[135]

Prognostic predictions and
patient stratification

Estimating time until events
(disease progression, recurrence,
death) and identifying prognostic
factors

Developing risk stratification
models based on clinical, genetic,
and demographic variables to
predict patient outcomes and tailor
follow-up and monitoring strategies

Lean Six Sigma
[136]

Process optimization and
efficiency in clinical
workflows

Streamlining clinical processes,
reducing diagnostic errors, and
improving treatment workflows by
eliminating inefficiencies

Standardizing procedures for
sample collection and data
integration to reduce variability and
improve the reliability of holomic
analyses; ensuring consistent
follow-through on diagnostic and
treatment protocols
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5. Application of AI during the Investigation of Medullary Thyroid Carcinoma

The majority of cases of MTC present as thyroid nodules, and thyroid nodules are
found in around 7% of the general population following clinical examination and up to 70%
following ultrasound examination [136]. Most thyroid nodules are benign and do not re-
quire surgery unless they are toxic or cause compression symptoms [137]. Using a computer
program to extract and subsequently combine demographic data, lifestyle, environmental
factors, clinical findings, ultrasound results, and FNAC can assist in differentiating a benign
thyroid nodule from a malignant thyroid nodule [104,105,108,117].

5.1. Radiomics

Radiomics is the process of extracting quantitative information from imaging investi-
gations beyond the capability of a human eye. Any imaging investigation, including an
ultrasound, CT scan, MRI, or radioisotope scan, is amenable to the use of AI to extract
quantitative data. The results of radiomics alone or combined with clinical information
and other omics (holomics) are useful for diagnosis, risk stratification, and prognostication
in patients with cancer and other diseases [109,126]. Radiomics may be applied following
any imaging investigations, including ultrasound, CT scan, MRI, and PET/CT [100,109].
The six main steps in radiomics are the acquisition of an image, processing, marking areas
of interest (segmentation), the extraction of key features, the development of a predictive
model, and verification [109,138]. The selection of area of interest may be performed by
experts in the field or automatically by the computer. Similar steps are followed during the
development of training, validation, and testing models. Imaging results for training and
validation may be sourced from archived results.

The interpretation of findings following an ultrasound examination of the thyroid
gland is influenced by the experience of the sonographer [104,116,137]. Features that
are suggestive of malignancy and are assessed during an ultrasound evaluation of a
thyroid nodule include whether a nodule is cystic or solid and the echogenicity, vascularity,
existence of calcifications, even-ness of its border, shape, and stiffness [78,87,139]. An MTC
may however appear benign or resemble PTC on ultrasound [32]. Additionally, changes
critical for the diagnosis of MTC may not be visible to the naked eye. Adding an AI-aided
analysis of thyroid nodules enables a detailed evaluation of the nodule and outperforms less
experienced radiologists in differentiating benign from malignant lesions [104,111,117,137].
An artificial intelligence-guided analysis of ultrasound images can differentiate MTC from
PTC. Whereas PTC that is less than 1 cm (microcarcinoma) maximum in low-risk patients
may be observed, the same cannot be said of MTC, as it may be hereditary or harboring
aggressive features.

The integration of demographic information, clinical findings, and ultrasound and CT
scan results using AI technology can more accurately differentiate benign from malignant
nodules in patients whose FNAC result is indeterminate [105,106,140]. Another potential
benefit of digital imaging, whole-slide imaging, and the application of AI is the ability
to non-invasively identify the underlying mutation driving the cancer [141]. Radiomics
may also be repeated after the administration of contrast or during follow-up after the
initiation of treatment; the so-called delta radiomics can improve the diagnostic ability of
an investigation or guide the timeous adjustment of therapy [142]

Although not yet explicitly utilized in MTC, an AI-guided analysis of findings from
other imaging investigations can be used to characterize a thyroid nodule following
Bethesda III or IV FNAC results and predict the probability of metastasis to the lymph
nodes and predict the mutational status of the tumor [105,140,143]. For example, AI-guided
interpretation of CT scan findings is more accurate than radiologists in distinguishing
benign from malignant thyroid nodules with indeterminate cytology results [118]. Using
AI technology allows for the segmentation of lesions and the mining of a vast amount of
quantitative information beyond what a human can accomplish, regardless of experience,
even when working in a multidisciplinary team [140]. A dual-energy CT scan is among



Cancers 2024, 16, 3469 12 of 25

the simple versions of AI-guided analysis that is useful for differentiating benign from
malignant lesions in thyroid nodules in which the FNAC result is indeterminate [144].

5.2. Pathomics

The interpretation of FNAC specimens of suspected MTC may be complex and require
experience. It is not uncommon for MTC to be mistaken for PTC, FTC, poorly differentiated
thyroid carcinoma (PDTC), anaplastic thyroid carcinoma (ATC), lymphoma, and benign
conditions [114]. The ability to create digital slides and whole-slide imaging allows for the
application of the AI-aided diagnosis of thyroid cancer [123,145]. The sequence followed
during pathomics includes the digital conversion of cytology or histopathology slides,
whole-slide imaging, supervised or unsupervised, of the region of interest, analysis, and
classification [138,145]. The steps that are followed in radiomics are like those used during
pathomics. Similarly, the first step is the acquisition of an image using an ultrasound,
CT scan, MRI, or PET/CT, followed by the segmentation and selection of the region of
interest [141]. Ideally, samples for both pathomics and radiomics should be divided into
training, testing, and validation sets. Radiomics may be repeated during follow-up with a
patient after treatment. For a comparison of the steps that are followed during radiomics
and pathomics, see Figure 2.
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The ability to share the slides for a second opinion and segmentation of the slides with
the selection of the region of interest is likely to lead to a more detailed assessment of a tumor
and its environment, leading to accurate preoperative grading of cancer [101,104,146–148].
The artificial intelligence-aided analysis and interpretation of FNAC can accurately diag-
nose the subtype, differentiation, grade, and genomic profile of a cancer and predict the
likelihood of metastasis and recurrence [113,145].

5.3. Epigenomics

The application of epigenomics in a workup of thyroid cancer is firmly established. Epi-
genetics include histone modification and alteration of the expression of lnRNA and miRNA.
Under- or over-expression of miRNAs is associated with the development and progression
of MTC in some patients [30,106,149–153]. The levels of some miRNAs, including miR-34a,
miR-144, and miR-375, can distinguish MTC from other causes of goiter [30,149–152]. Some
of the miRNAs that are potentially useful for distinguishing hereditary from sporadic
MTC include miR-9, miR-183, and miR-375 [30,149,150,153]. Additionally, a change in
the level of expression of some miRNAs, including miR-21, miR-127, miR-224, miR-375,
and miR-597, may be useful for the risk stratification of patients with MTC, including the
prediction of lymph node metastasis. The inclusion of the pattern of change in miRNA
expression may potentially improve decision-making during the treatment of patients with
MTC [5,30,148–151]. For a summary of changes in the levels of miRNA seen in patients
with MTC, see Table 2.

Table 2. Change in miRNA expression in medullary carcinoma and the implications.

Name of miRNA Expression Consequences References

miR-375 Overexpressed Diagnosis, lateral lymph nodes predicted, worse prognosis.
Distinguishing hereditary from sporadic MTC. [30,149,150]

miR-127 Underexpressed Aggressive sporadic disease. [149,151]

miR-429 Overexpressed Not yet specified [149]

miR-592 Overexpressed Poor prognosis. [106]

miR-224 Underexpressed Poor prognosis [30]

miR-199-5p Underexpressed Not yet specified [149]

miR-199a-3p Underexpressed Not yet specified [149]

miR-34a Underexpressed Biomarker of MTC [152]

miR-9 Underexpressed Distinguishing hereditary versus sporadic [153]

miR-21 Overexpressed Prediction of lymph node and distant metastasis [30]

miR-144 Overexpressed Biomarker of MTC [152]

miR-183 Overexpressed
Prediction of lateral lymph node involvement, distant

metastasis, and high mortality and distinguishing
hereditary from sporadic MTC.

[30,153]

5.4. Other Omics for the Investigation and Management of Cancer

Other AI-assisted diagnostic strategies shown to be useful in patients with other ma-
lignancies of the thyroid, including PTC, are proteomics, metabolomics, glycomics, and
lipidomics [31,32,105,112,154–156]. Among the processes involved in the post-translational
modification of proteins is glycosylation, which involves the addition of carbohydrate
chains [145]. Proteins that are glycosylated may be intracellular or extracellular. A change
in the levels of glycosylation is seen in several cancers, including thyroid cancers. Cal-
citonin, CEA, and CA 19.9 are among the glycosylated proteins that are relevant for the
screening, diagnosis, and treatment of MTC. A change in the expression of genes that code
glycosylated proteins, epigenetic modification, or the glycans themselves may lead to the
development of cancer and influence its progression or response to treatment [157]. A
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study of the pattern of change in the glycosylated products (glycomics) in the tumor, TME,
or blood is useful for screening, diagnosis, the selection of treatment, and the prediction
of response to treatment and the likelihood of recurrence in patients with various cancers,
including thyroid cancer.

The analysis of fluid (fluidomics), such as blood, saliva, or ascitic fluid, for molecules
other than Ctn and CEA may provide valuable information for the screening, diagnosis,
risk stratification, and follow-up of patients with MTC. Among the predisposing factors of
cancer is chronic inflammation, which does not cease to be active even after the cancer has
developed but continues and has an influence on the progression, metastatic potential, and
recurrence of the tumors [158]. Markers of inflammation that are commonly monitored
include the neutrophil-to-lymphocyte ratio (NLR), lymphocyte-to-monocyte ratio (LMR),
mean platelet volume (MPV), and platelet distribution width (PDW). There are conflicting
reports on the usefulness of NLR, LMR, and PDW for the prediction of the local spread,
lymph node metastasis, and the possibility of biochemical cure of MTC [159,160].

Combining the level of inflammatory markers with results from genomics, epige-
nomics, metabolomics, and other omics may further enhance decision-making during the
management of MTC. There is still a paucity of evidence regarding the use of the other
omics other than proteomics, metabolomics, radiomics, or pathomics during the investiga-
tion of patients with confirmed or suspected MTC [28,29,138,161]. The results of a study by
Jajin et al. using gas chromatography-mass spectrometry-based untargeted metabolomics
showed that MTC is associated with a change in the plasma levels of amino acids and lipid
metabolites, among others [154]. They found that patients with MTC had lower levels
of leucine than healthy individuals. The use of AI can improve diagnostic accuracy for
MTC by analyzing imaging data, integrating multiple data sources, including imaging,
genetic, and clinical, and identifying subtle features indicative of MTC. The other benefits
of AI-aided decision-making are accurate staging and better characterization of the disease,
including its genomic landscape, risk stratification, prediction of treatment response, and
timeous detection of progressive disease [101,162–165]. Data from the different omics can
be integrated and analyzed simultaneously for individualized management of a patient
with MTC [165]. Using AI may improve access to expertise by patients and healthcare
workers in low- and middle-income countries by using, for example, mobile devices and
whole-slide imaging and digital slides [166]. Table 3 is a summary of the potential applica-
tions of AI in patients with MTC using a combination of findings from laboratory, imaging,
and genetic analysis.

Table 3. Summary of potential applications and benefits of AI in patients with MTC.

Application Description Examples/Impact

Enhanced diagnostic accuracy [101,162]

AI improves diagnostic accuracy for
MTC by analyzing imaging data,
integrating multiple data sources,
including imaging, genetic, and clinical,
and identifying subtle features indicative
of MTC. Traditional methods like
ultrasound and fine-needle aspiration can
be inconclusive.

AI-powered image recognition systems
distinguish between benign and
malignant thyroid nodules more
accurately than human radiologists,
leading to an early and accurate
diagnosis, which is essential for the
effective treatment of MTC.

Personalized treatment plans [163]

AI personalizes treatment plans by
analyzing genetic and molecular data to
identify specific mutations and
biomarkers associated with MTC. It
predicts patient responses to targeted
therapies, optimizing treatment efficacy
and minimizing side effects. AI updates
treatment recommendations as new data
become available.

AI guides the selection of targeted
therapies, such as tyrosine kinase
inhibitors, ensuring that patients with
MTC receive the most current and
effective treatments based on their
unique genetic profile.
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Table 3. Cont.

Application Description Examples/Impact

Prognostic predictions [164]

AI develops predictive models to
estimate disease progression and patient
outcomes by integrating diverse data
points like the stage of cancer, genetic
mutations, and the patient’s
characteristics. Machine learning
algorithms analyze historical patient data
to identify patterns and risk factors
associated with recurrence or metastasis.

AI helps clinicians stratify patients into
different risk categories and tailor
follow-up and monitoring strategies,
providing more accurate prognostic
information and improving the long-term
management of MTC.

Holomic integration [165]

Holomics integrates various omics data
to provide a holistic view of MTC at the
molecular level. AI analyzes and
interprets complex datasets to identify
gene expression patterns, detect protein
biomarkers, and analyze metabolic
profiles, offering a more complete
understanding of the disease.

AI-enabled holomics uncovers novel
insights into MTC pathogenesis and
identifies new therapeutic targets,
leading to better diagnostic and
therapeutic strategies.

Comparative insights in HICs versus
LMICs [166]

AI application varies between
high-income countries (HICs) and low-
and middle-income countries (LMICs).
HICs benefit from advanced healthcare
infrastructure and cutting-edge
technologies, while LMICs face
challenges like limited resources and
insufficient training. AI can bridge these
gaps by deploying diagnostic tools via
mobile health platforms and optimizing
resource use.

AI-driven diagnostic tools enable remote
diagnosis and expert consultations in
resource-limited settings, making
high-quality cancer care more accessible
and efficient. This reduces disparities
between HICs and LMICs in MTC
management.

Future prospects [167]

The future of AI in MTC investigation is
promising, with continued advancements
in AI algorithms and the growing
availability of comprehensive holomic
datasets. Collaborative efforts among
researchers, clinicians, and AI experts
will develop and validate tailored AI
tools. The development of interpretable
AI models will be crucial for clinical
acceptance.

Expanding AI applications to other areas
of thyroid cancer research, such as risk
stratification and the discovery of novel
therapeutic targets, holds great potential
for improving patient outcomes. AI will
play an increasingly integral role in the
investigation and management of MTC,
transforming the landscape of thyroid
cancer care.

6. Application of AI in MTC

Most patients with sporadic MTC have metastases to central and or lateral cervical
lymph nodes at presentation and are not cured if treated only with a lobectomy or thy-
roidectomy [100,168]. The size of the primary tumor and serum level of Ctn are not always
useful for predicting central, ipsilateral, and/or contralateral lateral cervical lymph node
metastasis [61,169]. The application of AI facilitates the structuring of big data and the
analysis and integration of findings from various investigations for improved quantifi-
cation of the burden of the disease, risk stratification, and tailoring of treatment of MTC
(101). Guo et al., 2023, in a study involving the records of 2049 patients from the publicly
available Survival, Epidemiology, and End Results Reporting (SEER) Database, found that
ML algorithms could accurately predict the existence of distant metastases in patients with
MTC [101]. The study showed that the RF model outperformed other ML algorithms in
the prediction of metastases, with an AUC above 0.8. The model found that a combination
of male gender, age above 55 years, size greater than 4 cm, multifocality, extra-thyroidal
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extension, and lymph node metastases increased the likelihood of distant metastases in
patients with MTC.

6.1. Metastatic Workup of Medullary Thyroid Carcinoma

A study by Zhang et al. (2024) involving patients with early MTC found that AI
algorithms combining clinical and ultrasound findings accurately predicted the existence
of metastatic cervical lymph nodes [168]. Similarly, Li et al., (2020) reported that the
AI-enabled extraction of quantitative data from ultrasound images of thyroid cancer can
accurately predict the involvement of regional lymph nodes [105]. Zhang et al. (2023)
used ML algorithms to develop a nomogram for early detection of distant metastases in
patients with MTC to address the unreliability of symptoms and serum Ctn and CEA
levels for monitoring following surgery [81]. The abovementioned study utilized 1901
records of patients with MTC from the SEER database for training and testing, while
111 records for validation were from their hospital, the First Hospital of Jilin University.
The study used RF, LR, GBDT, and SVM to select features that were predictive of distant
metastasis. Key findings from Zhang et al. (2023) included that RF performed the best,
with an AUC of 0.8786 (95%CI, 0.870–0.9503), and that a combination of the patient’s
age, larger tumor size, non-total thyroidectomy, and involvement of the cervical lymph
node was predictive of distant metastasis [81]. Computed tomography-based AI models
can also accurately predict metastasis to the central and lateral cervical lymph nodes
in patients with PTC [105]. Large tumor sizes greater than 4 cm [169], high levels of
Ctn, high CEA [18,100,101], high CA19.9 [53,115], high-grade tumors [115], tumors with
areas of desmoplastic reaction [44,170] or lympho-vascular invasion [169], and/or RET
proto-oncogene mutations increase the likelihood of distant metastasis [171]. However,
distant metastasis may be small and missed during preoperative investigations, only to be
suspected when the level of Ctn does not normalize or become not detectable following
curative surgery [72]. The use of various ML and CNN programs combining personal
tumor location and size and ultrasound findings can accurately predict the existence of
distant metastasis [106–108,163].

6.2. Risk Stratification of MTC

The TNM/AJCC, MTC grading system and serum levels of Ctn and CEA do not suffi-
ciently risk-stratify MTC [4,15,17]. Furthermore, MTC is often missed during preoperative
investigations and diagnosed following diagnostic lobectomy or inappropriate surgical pro-
cedures, which may negatively affect the outcome [35,71]. Locally advanced or metastatic
MTC may be, in some patients, unexpectedly indolent and not warrant aggressive and
sometimes debilitating surgery [25]. Guo et al. (2023), in a retrospective study based on
the records of patients who had MTC, demonstrated that AI can accurately predict the
existence of cervical lymph node metastasis in patients with clinically and radiological
node-negative disease.

6.3. Treatment of Locally Advanced and Metastatic MTC

The application of AI can guide the extent of thyroidectomy and lymphadenectomy in
patients with MTC [168]. The available treatment options are not uniformly suitable for all
patients with MTC and are dependent on the anatomical extent of the disease, serum level
of Ctn and CEA, and genomic landscape of the tumor, among others [172–176]. Genetic
and molecular analyses are expensive and are not universally available. The mutational
landscape and molecular profile can sometimes be determined following a liquid biopsy,
a virtual biopsy using ultrasound, other imaging modalities [99], and a cytopathological
analysis [113,139,164]. Findings of genomic studies with or in combination with radiomics,
proteomics, and metabolomics may support the diagnosis of MTC [104,160,165,177]. Table 4
contains a summary of possible combinations of omics that could be combined and simul-
taneously analyzed to improve accuracy in the diagnosis, staging, risk stratification, and
follow-up of patients with MTC.
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Table 4. List of omics options available for use during screening, investigation, management, and
follow-up of patients with MTC.

Target Omics Option References

Diagnosis

Fluidomics [4]
Genomics [165]
Glycomics [162]

Metabolomics [160]
Pathomics [12,145]
Proteomics [177]
Radiomics [104,111]

Transcriptomics [5]

Staging

Fluidomics [4,178]
Metabolomics [155]

Radiomics [111,156,173]
Pathomics [146,147]

Transcriptomics [5]

Risk stratification

Transcriptomics [5,12,55]
Fluidomics [4,99,173,176]
Genomics [94]
Glycomics [177]

Immunomics [47,174]
Pathomics [146,147,156]
Radiomics [173]

Selection of treatment

Fluidomics [176]
Genomics [99]

Immunomics [47]
Pathomics [147]
Radiomics [141]

Transcriptomics [5,8,12]

Follow-up

Delta radiomics [143]
Fluidomics [4]
Genomics [176]

Metabolomics [155]

There is a need for the development of a risk stratification system that would simultane-
ously integrate and harmonize findings from demographic and clinical assessment [22,108,115],
imaging [121], histopathology or cytopathology [29,113,126], genomics [29,100], epige-
nomics [31], proteomics and metabolomics [32,101,117], and fluidomics [4] to guide decision-
making to enable the appropriate management of patients with MTC.

Among the limitations of the AI-aided management of MTC is restricted availability
due to high-cost infrastructure for modern computing, especially in low- and middle-
income countries. Developing algorithms for training and testing AI models requires
expertise and an adequate sample size for training, validation, and testing, which may be
a challenge as MTC is rare, and there is not enough expertise, especially in LMIC [179].
Small sample sizes for use in developing a training or validation process may lead to
over-fitting and lead to a generation of models that do not accurately reflect the actual
situation. The rarity of MTC, however, encourages worldwide collaboration that would
augment the already available data. Another strategy that can be used to mitigate the
small sample size and limited availability of validation samples includes the so-called
transfer learning, during which findings from complementary tests are combined and fed
into ML algorithms [180]. The inability to scientifically explain some of the decisions after
applying ML algorithms, the so-called “blackbox”, is common to all AI programs. Among
the concerns of patients regarding the use of AI is the potential violation of privacy by
making personal information accessible to the public [181].
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7. Conclusions and Perspectives

Medullary thyroid carcinoma (MTC), despite its rarity and stable prevalence, poses
a significant challenge due to its aggressive nature and high mortality rate compared to
other thyroid malignancies. Its heterogeneity, whether hereditary or sporadic, complicates
treatment approaches not adequately addressed by guidelines tailored for papillary thyroid
carcinoma (PTC). The extensive data collected during MTC investigation and management
spanning clinical, radiological, pathological, mutational, and immunological domains
overwhelms manual analysis and integration capabilities. To overcome this, integrating
artificial intelligence (AI) and holomics emerges as a pivotal solution. AI, in conjunction
with holomics, offers a transformative approach across MTC’s diagnostic, staging, risk
stratification, management, and follow-up phases. By swiftly processing diverse data types
and uncovering nuanced patterns, AI enhances precision in treatment planning beyond
human capability. Furthermore, this approach fosters global collaboration by synthesizing
worldwide clinical experiences, thereby enriching understanding and refining therapeutic
strategies for MTC.

The future of AI in MTC investigation is promising, with continued advancements
in AI algorithms and the growing availability of comprehensive holomics datasets. Col-
laborative efforts among researchers, clinicians, and AI experts will develop and validate
tailored AI tools. The development of interpretable AI models will be crucial for clinical
acceptance. Expanding AI applications to other areas of thyroid cancer research, such as
risk stratification and the discovery of novel therapeutic targets, holds great potential for
improving patient outcomes. AI will play an increasingly integral role in the investigation
and management of MTC, thereby transforming the landscape of thyroid cancer care.

Moreover, deploying AI aligns with Goal Number 3 of the United Nations Sustainable
Development Goals (SDG) for 2030, aiming to ensure universal access to personalized
healthcare. This synergy underscores AI’s potential to revolutionize MTC management,
enhancing survival rates and quality of life globally. In summary, integrating holomics
and AI into MTC management represents a paradigm shift in precision oncology. This
innovative approach addresses the unique challenges of MTC, promotes global healthcare
equity, and promises improved outcomes for patients worldwide. As AI continues to
evolve, its synergy with holomics holds promise for personalized, effective, and accessible
care, setting a new standard in oncological practice.
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