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Abstract. By a suitable extension of incidence matrices, orbit matrices, and

submatrices of orbit matrices of weakly p-self-orthogonal 1-designs, in this pa-
per we describe a construction of LCD codes over a finite field. To illustrate

the construction, we determine some binary LCD codes from self-orthogonal

1-designs which are invariant under the transitive non-regular action of the al-
ternating group of order 60. With the described construction, we have obtained

6 optimal codes and 3 near-optimal codes.

1. Introduction. LCD codes (linear codes with complementary dual) are linear
codes whose intersection with their dual codes is trivial. This particular type of
code was introduced by Massey in [25], and over time a number of applications
have been brought to light, particularly in communication systems, electronics, and
cryptography. In addition, Massey showed that this class of codes provides an
optimal linear coding solution for a binary adder channel with two users. It is
known that LCD codes can be used for protection from side-channel attacks (SCA)
and fault injection attacks (FIA), see [6]. In [20], Dougherty, Kim, Ozkaya, Sok,
and Solé constructed binary LCD codes using self-dual codes, orthogonal matrices,
and block designs. In [7], Carlet, Mesnager, Tang, and Qi described the general
construction of LCD codes from linear codes and showed that any linear code over
Fq (q > 3) is equivalent to a Euclidean LCD code, and every linear code over
Fq2 (q > 2) is equivalent to a Hermitian LCD code. For binary codes and for some
lengths n and dimensions k, there is no optimal linear [n, k] LCD code. The bounds
for minimal distance of binary and ternary LCD codes are more restrictive than
those for linear codes in general, since LCD codes satisfy more conditions. Recently,
in [5], Bouyuklieva extended the classification of optimal linear binary LCD codes
up to length 40. In [13], Crnković, Egan, Rodrigues, and Švob constructed LCD
codes using weighing matrices, including Paley conference matrices and Hadamard
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matrices, and extended their construction to obtain Hermitian LCD codes over the
field F4.

In [27], Tonchev described some extensions of the incidence matrix of a weakly
self-orthogonal design to obtain self-orthogonal codes, and in [15] the authors stud-
ied similar extensions of orbit matrices and submatrices of orbit matrices of 1-designs
to construct binary self-orthogonal codes from Held’s simple group He. In [26], the
authors constructed self-orthogonal codes from weakly p-self-orthogonal 1-designs
by defining suitable extensions of incidence matrices, orbit matrices, and subma-
trices of orbit matrices of 1-designs. In this paper, we use similar extensions of
incidence matrices (Section 3.1), orbit matrices (Section 3.2.1), and submatrices of
orbit matrices (Section 3.2.2, Section 3.2.3) of 1-designs and construct LCD codes
over finite fields. In Section 4, we give some examples of known infinite families
of weakly p-self-orthogonal designs and examples of LCD codes constructed from
these designs.

2. Preliminaries. Our notation for designs and groups will be standard, and it is
as in [1] and the ATLAS [10].

An incidence structure D = (P,B, I) with point set P, block set B, and incidence
I is a t-(v, k, λ) design, and if |P| = v, every block B ∈ B is incident with precisely
k points, and every t distinct points together are incident with exactly λ blocks. An
incidence matrix of a t-(v, k, λ) design D with b blocks is a b×v matrix M = [mi,j ],
where mi,j = 1 if the point Pj is incident with the block Bi and 0 otherwise. If
b = v, the design is called symmetric.

With Mp we denote the matrix obtained from the matrix M such that all entries
of Mp are entries from M modulo p. With M [i] we denote the i-th row of the matrix
M .

A t-(v, k, λ) design is called weakly self-orthogonal if all block intersection
numbers have the same parity. A design is self-orthogonal if it is weakly self-
orthogonal and if the block intersection numbers and the block size are even num-
bers. A design is weakly p-self-orthogonal if all block intersection numbers give
the same residue modulo p. A weakly p-self-orthogonal design is p-self-orthogonal
if the block intersection numbers and the block sizes are multiples of p.

An isomorphism from one design to another is a bijective mapping from points
to points and from blocks to blocks that preserves incidence. An isomorphism from
a design D on itself is called an automorphism of D. The set of all automorphisms
of D forms its full automorphism group, which is denoted by Aut(D).

The code CF(D) of the design D over the finite field F is the space spanned
by the incidence vectors of the blocks over F. A code C over a field of order q
with length n, dimension k, and minimum weight d is denoted by an [n, k, d]q code.
If q = 2, we denote the code C by an [n, k, d] code. The dual code C⊥ is the
orthogonal under the standard product, i.e. C⊥ = {v ∈ Fn | vc = 0 for all c ∈ C}.

A code C is optimal if for given n, k its minimum distance meets the theoretical
bound. A code C is near-optimal if its minimum distance is one less than the min-
imum distance of an optimal code with the same parameters n, k. The optimality
of LCD codes with length up to 40 is examined in [5] and in [21] for other lengths.

A code C is self-orthogonal if C ⊆ C⊥, self-dual if C = C⊥, and LCD if
C ∩ C⊥ = 0. If D is a self-orthogonal design, then the binary code of the design
D is self-orthogonal. The all-one matrix of dimension n is denoted by Jn and is
the n× n matrix with all entries equal to 1, and the all-one vector is denoted by 1
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and is the constant vector with all coordinate entries equal to 1. Two linear codes
are equivalent if they can be obtained by multiplying the coordinate positions
with non-zero field elements or by permutation of the coordinate positions. An
automorphism of a code C is an isomorphism from C to C. The full automorphism
group is denoted by Aut(C). If the code CF(D) is a linear code of a design D over
a finite field F, then the full automorphism group of D is contained in the full
automorphism group of the code CF(D).

A graph G is a strongly regular graph with parameters (v, k, λ, µ) if G is a k-
regular graph with v vertices such that every two adjacent neighbours λ are common
neighbours and every two non-adjacent neighbours µ are common neighbours. An
adjacency matrix of a graph is the v × v matrix A = [ai,j ], where ai,j = 1 if vertex
vi and vj are connected, and 0 otherwise.

3. Methods for constructing LCD codes from weakly p-self-orthogonal
1-designs.

3.1. Constructions of LCD codes from incidence matrices. In the following,
we discuss the construction method we used to obtain the LCD codes presented in
this article. But, first we state the following lemma, the proof of which follows from
a standard computation.

Lemma 3.1. Let a and d be real numbers. Then

det(dJn + (a− d)In) = (a− d)n−1[a+ (n− 1)d].

Proof. Follows by induction on n.

Remark 3.2. Let M be the b×v incidence matrix of a 1-design D with parameters
1-(v, k, λ) and b blocks x1, . . . , xb. Denote by Bi,j the size of the intersection of two
distinct blocks xi and xj , for i, j ∈ {1, . . . , b}. Then, the following holds.

1. MMT =


B1,1 B1,2 · · · B1,b

B2,1 B2,2 · · · B2,b

...
...

. . .
...

Bb,1 Bb,2 · · · Bb,b

 .

2. [M,xIb][M,xIb]
T = MMT + x2Ib.

3. [M,y1][M,y1]T = MMT + y2Jb.
4. [M,xIb, y1][M,xIb, y1]

T = MMT + x2Ib + y2Jb.

Corollary 3.3. Let q = pl be a prime power and let M be the b × v incidence
matrix of a weakly p-self-orthogonal 1-design such that k ≡ a mod p and Bi,j ≡ d
mod p, and let x and y be non-zero elements of the field Fq. Then, considering
matrix multiplication in the field Fq, with respect to 0 being the addition neutral
and 1 being multiplication neutral, the following holds:

1. det(MMT ) = (a− d)b−1[a+ (b− 1)d];
2. det([M,xIb][M,xIb]

T ) = (a− d+ x2)b−1[a+ (b− 1)d+ x2];
3. det([M,y1][M,y1]T ) = (a− d)b−1[a+ (b− 1)d+ by2];
4. det([M,xIb, y1][Mp, xIb, y1]

T ) = (a− d+ x2)b−1[a+ (b− 1)d+ x2 + by2].

Proof. The proof follows by a direct application of Lemma 3.1 and Remark 3.2.

The following theorem can be deduced from the fact that a full rank matrix M is
a generator matrix of an LCD code over the field Fq if and only if det(MMT ) ̸= 0.



4 V. MIKULIĆ CRNKOVIĆ, I. TRAUNKAR AND B. G. RODRIGUES

Theorem 3.4. Let q = pl be a prime power and let M be the b×v incidence matrix
of a weakly p-self-orthogonal 1-design such that k ≡ a mod p and Bi,j ≡ d mod p,
and let x and y be non-zero elements of the field Fq. Then, the following holds.

1. If a = d = 0, then
(a) the matrix [M,xIb], and
(b) the matrix [M,xIb, y1] for x2 + by2 ̸= 0,
generate an LCD code over the field Fq.

2. If a = 0 and d ̸= 0, then
(a) the matrix M if rows of M are linearly independent, and b− 1 ̸= 0, and
(b) the matrix [M,xIb] for x2 − d ̸= 0 and x2 + (b− 1)d ̸= 0,
(c) the matrix [M,y1] if rows of M are linearly independent, and for by2 +

(b− 1)d ̸= 0,
(d) the matrix [M,xIb, y1] for x2 − d ̸= 0 and x2 + by2 + (b− 1)d ̸= 0,
generate an LCD code over the field Fq.

3. If a ̸= 0 and d = 0, then
(a) the matrix M if rows of M are linearly independent, and
(b) the matrix [M,xIb] for x2 + a ̸= 0,
(c) the matrix [M,y1] if rows of M are linearly independent, and for by2+a ̸=

0,
(d) the matrix [M,xIb, y1] for x2 + a ̸= 0 and x2 + by2 + a ̸= 0,
generate an LCD code over the field Fq.

4.1. If a ̸= 0, d ̸= 0, and a = d, then
(a) the matrix [M,xIb] for x2 + ba ̸= 0, and
(b) the matrix [M,xIb, y1] for x2 + by2 + ba ̸= 0
generate an LCD code over the field Fq.

4.2. If a ̸= 0, d ̸= 0, and a ̸= d, then
(a) the matrix M if rows of M are linearly independent, and for a+(b−1)d ̸=

0,
(b) the matrix [M,xIb] for x2 + a− d ̸= 0 and x2 + a+ (b− 1)d ̸= 0,
(c) the matrix [M,y1] if rows of M are linearly independent and for by2 +

a+ (b− 1)d ̸= 0,
(d) the matrix [M,xIb, y1] for x2 + a− d ̸= 0 and x2 + by2 + a+(b− 1)d ̸= 0,
generate an LCD code over the field Fq.

Remark 3.5. Notice that, if the rows of M are not linearly independent, we can
use a maximal linearly independent set of incidence vectors as rows of a matrix M ′,
and expand such matric in order to generate a p-ary LCD code.

Examples. Recall that each t-design with t ≥ 1 is also 1-design. As a result we
deduce the following.

1. Let D be a symmetric (v, k, λ) design and letM be its incidence matrix. Then,
the following hold:
(a) if the rows of M are linearly independent, k is odd, and λ is even, M and

MT generate a binary LCD [v, v]-code;
(b) if the rows of M are linearly independent, k is even, and λ is odd, then

both [M,1] and [MT ,1] generate a binary LCD [v + 1, v]-code;
(c) if k and λ are even, then [M, Iv] and [MT , Iv] generate a binary LCD

[2v, v]-code;
(d) if k and λ are odd, then [M, Iv,1] and [MT , Iv,1] generate a binary LCD

[2v + 1, v]-code.
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2. Let D be a 2-(v, k, λ) design and let M be its incidence matrix. Let r be the
replication number of the design D, i.e. the number of blocks containing a
given point. The dual design of D is a 1-design with block size r, intersection
numbers equal to λ, and incidence matrix MT . Then, the following assertions
hold:
(a) if the rows of M are linearly independent, r is odd, and λ is even, then

MT generates a binary LCD [b, v]-code;
(b) if the rows of M are linearly independent, r is even, and λ is odd, then

[MT ,1] generates a binary LCD [b+ 1, v]-code;
(c) if r and λ are even, then [MT , Iv] generates a binary LCD [b+ v, v]-code;
(d) if r and λ are odd, then [MT , Iv,1] generates a binary LCD [b+ v+1, v]-

code.
3. Let G be a strongly regular graph with parameters (v, k, λ, µ) and let A be its

adjacency matrix. Then, A is the incidence matrix of a 1-(v, k, k) design with
intersection numbers λ and µ. Then, the following holds:
(a) if the rows of A are linearly independent, k is odd, and λ and µ are even,

then A generates a binary LCD [v, v]-code;
(b) if the rows of A are linearly independent, k is even, and λ and µ are odd,

then [A,1] generates a binary LCD [v + 1, v]-code;
(c) if k, λ and µ are even, then [A, Iv] generates a binary LCD [2v, v]-code;
(d) if k, λ and µ are odd, then [A, Iv,1] generates a binary LCD [2v + 1, v]-

code.

3.2. LCD codes from orbit matrices of weakly p-self-orthogonal designs.
LetD be a 1-design with nontrivial automorphism groupG. For every prime number
p that divides |G|, there is a cyclic group P < G isomorphic to Zp. Then, P acts
on the set of points and the set of blocks of the design D in orbits of length 1
and p, and one can define an orbit matrix of the design for this action. In this
section, we introduce methods for constructing LCD codes using orbit matrices and
submatrices of orbit matrices of weakly p-self-orthogonal designs.

3.2.1. Orbit matrices of a 1-design.

Remark 3.6. Let D be a 1-(v, k, r) design, and let G ≤ Aut(D) be an automor-
phism group of the design. Let v1 = |V1|, . . . , vn = |Vn| be the sizes of point orbits
and b1 = |B1|, . . . , bm = |Bm| be the sizes of block orbits under the action of the
group G. Note that each block from a block orbit Bi is incident with the same
number of points from an orbit Vj , for any i, j. We define an orbit matrix under the
action of G as an m× n matrix

a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n
...

...
. . .

...
am,1 am,2 . . . am,n

 ,

where ai,j is the number of points of an orbit Vj incident with a representative of
the block orbit Bi.

Now, it can be deduced from [15] that the orbit matrix is well-defined and that
k =

∑n
j=1 ai,j , and for x ∈ Bs, by counting the incidence pairs (P, x′) such that x′ ∈

Bt and P is incident with the block x, we obtain
∑

x′∈Bt
|x∩ x′| =

∑n
j=1

bt
vj
as,jat,j .
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Remark 3.7. Let D be a 1-(v, k, r) design such that k ≡ a mod p and |Bi∩Bj | ≡ d
mod p, for all i, j ∈ {1, . . . , b}, i ̸= j, where Bi and Bj are two blocks of the design
D. Let G ≤ Aut(D) be an automorphism group of the design which acts on D with
n point orbits of length w and block orbits of lengths b1, b2, . . . , bm, and let O be the
orbit matrix of the design D under the action of the group G. From Remark 3.6,
for x ∈ Bs and s ̸= t, one deduces bt

wO[s]O[t] =
∑n

j=1
bt
w as,jat,j =

∑
x′∈Bt

|x∩x′| so
that bt

wO[s]O[t] ≡ btd mod p.

Now, for x ∈ Bs and s = t, we obtain bt
wO[s]O[s] =

∑
x′∈Bs

|x ∩ x′| = |x ∩ x| +∑
x′∈Bs, x ̸=x′ |x ∩ x′| so that bs

wO[s]O[s] ≡ a+ (bs − 1)d mod p.

Let D be a 1-(v, k, r) design, and let G ≤ Aut(D) be an automorphism group
of D acting with f1 fixed points and n point orbits of length q, and with f2 fixed
blocks and m block orbits of length q. We define the matrices OM1 and OM2 to
be, respectively, the matrices

a1,1 a1,2 . . . a1,f1
a2,1 a2,2 . . . a2,f1
...

...
. . .

...
af2,1 af2,2 . . . af2,f1

 and


af2+1,f1+1 af2+1,f1+2 . . . af2+1,f1+n

af2+2,f1+1 af2+2,f1+2 . . . af2+2,f1+n

...
...

. . .
...

af2+m,f1+1 af2+m,f1+2 . . . af2+m,f1+n

 ,

where the columns 1, 2, . . . , f1 correspond to the fixed points, and the rows 1, 2, . . . , f2
correspond to the fixed blocks.

Remark 3.8. (a) If B1 and B2 are blocks fixed under the action of group G on
the design, then B1, B2, and B1 ∩B2 are unions of some G-orbits of the point
set.

(b) Let Bt and Bs be block orbits of size q under the action of the group G on the
design. It follows from Remark 3.6 that∑

x′∈Bt

|x ∩ x′| =
f1∑
j=1

bt
vj

as,jat,j +

f1+n∑
j=f1+1

bt
vj

as,jat,j = q

f1∑
j=1

as,jat,j +

f1+n∑
j=f1+1

as,jat,j .

3.2.2. LCD codes from the orbit matrix of weakly p-self-orthogonal designs for a
fix-point-free action. As immediate consequence of the results presented in the pre-
ceding sections, we obtain the following theorems which outline the construction of
LCD codes from orbit matrices.

Theorem 3.9. Let q = pl be a prime power and let Fq be the finite field of order
q. Let D be a 1-(v, k, λ) design such that k ≡ a mod p and |Bi ∩ Bj | ≡ d mod p,
∀i, j ∈ {1, . . . , b}, i ̸= j, where Bi, Bj are blocks of the design D. Let G ≤ Aut(D)
be an automorphism group of the design D acting on the set of points of D with n
orbits of length w, and acting on the set of blocks of D with m orbits of length w.
Let O be the m × n orbit matrix under the action of the group G. Let x and y be
non-zero elements of the field Fq.

1. If a = d, then the following statements holds:
(a) if x2 + mwd ̸= 0, then the linear code over Fq generated by the matrix

[Op, xIm] is an LCD code;
(b) if x2 + my2 + mwd ̸= 0, then the linear code over Fq generated by the

matrix [Op, xIm, y1] is an LCD code.
2. If a ̸= d, then the following statements holds:

(a) if d − a −mwd ̸= 0 and if the rows of Op are linearly independent, then
the linear code over Fq generated by the matrix Op is an LCD code;
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(b) if x2 − d + a ̸= 0 and x2 + mwd − d + a ̸= 0, the linear code over Fq

generated by the matrix [Op, xIm] is an LCD code;
(c) if mwd+my2 − d+ a ̸= 0 and if the rows of Op are linearly independent,

then the linear code over Fq generated by the matrix [Op, y1] is an LCD
code;

(d) if x2 − d+ a ̸= 0 and x2 +mwd+my2 − d+ a ̸= 0, then the linear code
over Fq generated by the matrix [Op, xIm, y1] is an LCD code.

Proof. 1. Using Remark 3.7, we obtain that ∀s, t ∈ {1, . . .m}, s ̸= t, Op[s]Op[t] =
wd and Op[s]Op[s] = wd. Using Lemma 3.1, it follows that

det([Op, xIm][Op, xIm]T ) =

∣∣∣∣∣∣∣∣∣
wd+ x2 wd . . . wd

wd wd+ x2 . . . wd
...

...
. . .

...
wd wd . . . wd+ x2

∣∣∣∣∣∣∣∣∣
= x2m−2(x2 +mwd),

det([Op, xIm, y1][Op, xIm, y1]T ) =

∣∣∣∣∣∣∣∣∣
wd+ x2 + y2 wd+ y2 . . . wd+ y2

wd+ y2 wd+ x2 + y2 . . . wd+ y2

...
...

. . .
...

wd+ y2 wd+ y2 . . . wd+ x2 + y2

∣∣∣∣∣∣∣∣∣
= x2m−2(x2 +my2 +mwd).

2. Using Remark 3.7, we obtain that ∀s, t ∈ {1, . . .m}, s ̸= t, Op[s]Op[t] = wd
and Op[s]Op[s] = a+ (w − 1)d. Using Lemma 3.1, it follows that

det(OpO
T
p ) =

∣∣∣∣∣∣∣∣∣
a+ (w − 1)d wd . . . wd

wd a+ (w − 1)d . . . wd
...

...
. . .

...
wd wd . . . a+ (w − 1)d

∣∣∣∣∣∣∣∣∣
= (a− d)m−1(a− d+mwd),

det([Op, xIm][Op, xIm]T )

=

∣∣∣∣∣∣∣∣∣
a+ (w − 1)d+ x2 wd . . . wd

wd a+ (w − 1)d+ x2 . . . wd
...

...
. . .

...
wd wd . . . a+ (w − 1)d+ x2

∣∣∣∣∣∣∣∣∣
= (a− d+ x2)m−1(a− d+ x2 +mwd),

det([Op, y1][Op, y1]
T ) =

∣∣∣∣∣∣∣∣∣
a+ (w − 1)d+ y2 wd+ y2 . . . wd+ y2

wd+ y2 a+ (w − 1)d+ y2 . . . wd+ y2

...
...

. . .
...

wd+ y2 wd+ y2 . . . a+ (w − 1)d+ y2

∣∣∣∣∣∣∣∣∣
= (a− d)m−1(a− d+mwd+my2),

det([Op, xIm, y1][Op, xIm, y1]
T
)
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=

∣∣∣∣∣∣∣∣∣∣
a + (w − 1)d + x2 + y2 wd + y2 . . . wd + y2

wd + y2 a + (w − 1)d + x2 + y2 . . . wd + y2

.

.

.
.
.
.

. . .
.
.
.

wd + y2 wd + y2 . . . a + (w − 1)d + x2 + y2

∣∣∣∣∣∣∣∣∣∣
= (a − d + x

2
)
m−1

(a − d + x
2
+ my

2
+ mwd).

3.2.3. LCD codes from submatrices of the orbit matrix of weakly p-self-orthogonal
designs for an action with fixed points.

Theorem 3.10. Let q = pl be a prime power and let Fq be the finite field of order
q. Let D be a 1-(v, k, λ) design such that k ≡ a mod p and |Bi ∩ Bj | ≡ d mod p,
∀i, j ∈ {1, . . . , b}, i ̸= j, where Bi, Bj are blocks of the design D. Let G ≤ Aut(D)
be an automorphism group of the design D that acts on the set of points of D with
f1 fixed points and n orbits of length pα, 1 ≤ α ≤ l, and acts on the set of blocks of
D with f2 fixed blocks and m orbits of length pα. Let x and y be non-zero elements
of the field Fq.

1. If a = d, then the following statements hold:
OM1) (a) if x2 + f1a ̸= 0, then the linear code over Fq generated by the

matrix [OM1p, xIf1 ] is an LCD code;

(b) if x2+f1y
2+f1a ̸= 0, the linear code over Fq generated by the matrix

[OM1p, xIf1 , y1] is an LCD code.
OM2) (a) A linear code over Fq generated by the matrix [OM2p, xIm] is an

LCD code;
(b) for x2 + my2 ̸= 0, the linear code over Fq generated by the matrix

[OM2p, xIm, y1] is an LCD code.
2. If a ̸= d, then the following statements hold:

OM1) (a) if the rows of the matrix OM1p are linearly independent, then the
linear code over Fq generated by the matrix OM1p is an LCD code;

(b) for x2 + a ̸= 0, the linear code over Fq generated by the matrix
[OM1p, xIf1 ] is an LCD code;

(c) if the rows of the matrix OM1p are linearly independent and a+f1y
2 ̸=

0, then the linear code over Fq generated by the matrix [OM1p, y1] is
an LCD code;

(d) if x2 + a ̸= 0 and x2 + f1y
2 + f1a ̸= 0, then the linear code over Fq

generated by the matrix [OM1p, xIf1 , y1] is an LCD code.
OM2) (a) if the rows of the matrix OM2p are linearly independent, then the

linear code over Fq generated by the matrix OM2p is an LCD code;

(b) if x2+a−d ̸= 0, then the linear code over Fq generated by the matrix
[OM2p, xIm] is an LCD code;

(c) if the rows of the matrix OM2p are linearly independent and a −
d + my2 ̸= 0, then the linear code over Fq generated by the matrix
[OM2p, y1] is an LCD code;

(d) if x2 + a− d ̸= 0 and x2 +my2 + a− d ̸= 0, then the linear code over
Fq generated by the matrix [OM2p, xIm, y1] is an LCD code.

Proof. 1. Let a = d.
OM1) Since k ≡ a mod p, each block contains pβ + a fixed points for some

non-negative integer β, and since |Bi ∩ Bj | ≡ a mod p, for all i, j ∈
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{1, . . . , b}, i ̸= j, the intersection of each two distinct blocks contains
pγ + a fixed points for some non-negative integer γ,
Using Remark 3.8, we obtain OM1p[s]OM1p[s] = a and OM1p[s]OM1p[t]
= a for every s, t ∈ {1, . . . , f1}, s ̸= t. Furthermore, Lemma 3.1 shows
that

det(OM1pOM1
T
p ) =

∣∣∣∣∣∣∣∣∣
a a . . . a
a a . . . a
...

...
. . .

...
a a . . . a

∣∣∣∣∣∣∣∣∣
f1×f1

= 0.

det([OM1p, xIf1 ][OM1p, xIf1 ]
T ) =

∣∣∣∣∣∣∣∣∣
x2 + a a . . . a

a x2 + a . . . a
...

...
. . .

...
a a . . . x2 + a

∣∣∣∣∣∣∣∣∣
f1×f1

= (x2)f1−1(x2 + f1a)

det([OM1p, y1][OM1p, y1]
T ) =

∣∣∣∣∣∣∣∣∣
a+ y2 a+ y2 . . . a+ y2

a+ y2 a+ y2 . . . a+ y2

...
...

. . .
...

a+ y2 a+ y2 . . . a+ y2

∣∣∣∣∣∣∣∣∣
f1×f1

= 0,

and

det([OM1p, xIf1 , y1][OM1p, xIf1 , y1]
T )

=

∣∣∣∣∣∣∣∣∣
a+ x2 + y2 a+ y2 . . . a+ y2

a+ y2 a+ x2 + y2 . . . a+ y2

...
...

. . .
...

a+ y2 a+ y2 . . . a+ x2 + y2

∣∣∣∣∣∣∣∣∣
f1×f1

= x2f1−2(x2 + f1y
2 + f1a).

OM2) For s ̸= t, since Bt is an orbit of length pα, by Remark 3.8 we obtain∑
x′∈Bt

|x ∩ x′| ≡ pαa ≡ 0 mod p, and for s = t we have
∑

x′∈Bs
|x ∩

x′| = |x ∩ x|+
∑

x′∈Bs, x ̸=x′ |x ∩ x′| ≡ a+ (pα − 1)a ≡ 0 mod p. Hence,

OM2p[s]OM2p[s] = 0 for every s ∈ {1, . . . ,m}.
Now, using Lemma 3.1, we show that

det(OM2pOM2p
T ) =

∣∣∣∣∣∣∣
0 . . . 0
...

. . .
...

0 . . . 0

∣∣∣∣∣∣∣
m×m

= 0

det([OM2p, xIm][OM2p, xIm]T ) =

∣∣∣∣∣∣∣∣∣
x2 0 . . . 0
0 x2 . . . 0
...

...
. . .

...
0 0 . . . x2

∣∣∣∣∣∣∣∣∣
m×m

= x2m
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det([OM2p, y1][OM2p, y1]
T ) =

∣∣∣∣∣∣∣∣∣
y2 y2 . . . y2

y2 y2 . . . y2

...
...

. . .
...

y2 y2 . . . y2

∣∣∣∣∣∣∣∣∣
m×m

= 0,

and

det([OM2p, xIm, y1][OM2p, xIm, y1]T ) =

∣∣∣∣∣∣∣∣∣
x2 + y2 y2 . . . y2

y2 x2 + y2 . . . y2

...
...

. . .
...

y2 y2 . . . x2 + y2

∣∣∣∣∣∣∣∣∣
m×m

= x2m−2(x2 +my2).

2. Let a ̸= d.
OM1) Since k ≡ a mod p, each block contains pβ + a fixed points for some

non-negative integer β, and since |Bi ∩ Bj | ≡ d mod p, for all i, j ∈
{1, . . . , b}, i ̸= j, the intersection of any two distinct blocks contains
pγ + d fixed points for some non-negative integer γ.
Using Remark 3.8, we obtainOM1p[s]OM1p[s] = a andOM1p[s]OM1p[t] =
d, for every s, t ∈ {1, . . . , f1}, s ̸= t.

OM2) For s ̸= t, since Bt is an orbit of length pα, by Remark 3.8 we obtain∑
x′∈Bt

|x ∩ x′| ≡ pαd ≡ 0 mod p, and for s = t we have
∑

x′∈Bs
|x ∩

x′| = |x ∩ x| +
∑

x′∈Bs, x ̸=x′ |x ∩ x′| ≡ a + (pα − 1)d ≡ a − d mod p.

Thus, we have OM2p[s]OM2p[s] = a− d and OM2p[s]OM2p[t] = 0 for all
s, t ∈ {1, . . . ,m}, s ̸= t.
Finally, using Lemma 3.1 once more, we show that

det(OM2pOM2p
T ) =

∣∣∣∣∣∣∣∣∣
a− d 0 . . . 0
0 a− d . . . 0
...

...
. . .

...
0 0 . . . a− d

∣∣∣∣∣∣∣∣∣
m×m

= (a− d)m

det([OM2p, xIm][OM2p, xIm]T ) =

∣∣∣∣∣∣∣∣∣
x2 + a− d 0 . . . 0

0 x2 + a− d . . . 0
...

...
. . .

...
0 0 . . . x2 + a− d

∣∣∣∣∣∣∣∣∣
m×m

= (x2 + a− d)m

det([OM2p, y1][OM2p, y1]
T ) =

∣∣∣∣∣∣∣∣∣
y2 + a− d y2 . . . y2

y2 y2 + a− d . . . y2

...
...

. . .
...

y2 y2 . . . y2 + a− d

∣∣∣∣∣∣∣∣∣
m×m

= (a− d)m−1(a− d+my2),

and

det([OM2p, xIm, y1][OM2p, xIm, y1]T )
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=

∣∣∣∣∣∣∣∣∣
x2 + y2 + a− d y2 . . . y2

y2 x2 + y2 + a− d . . . y2

...
...

. . .
...

y2 y2 . . . x2 + y2 + a− d

∣∣∣∣∣∣∣∣∣
m×m

= (x2 + a− d)m−1(x2 + a− d+my2).

Remark 3.11. Determining the minimum distance of the codes and weight distri-
bution remains a challenging quest and we keep this as an open question.

4. Examples of LCD codes constructed from weakly p-self-orthogonal 1-
designs.

4.1. Some known families of weakly p-self-orthogonal designs and LCD
codes.

• Symmetric designs.
We mention some of the infinite families of symmetric designs which are

weakly p-self orthogonal for some prime p. The reader could find more exam-
ples of such families in [9, Chapter 6.8.].
1. Point-hyperplane designs. Recall that such designs have parameters v =

(qm+1−1)
q−1 , k = qm−1

q−1 , λ = qm−1−1
q−1 , q = pl a prime power, and m ≥

2. Points and blocks of the designs are points, and hyperplanes of the
projective geometry PG(m, q).
Note that these designs are weakly p-self-orthogonal since k ≡ 1 mod p
and λ ≡ 1 mod p.
For example, the point-hyperplane design of the projective space PG(3, 2)
is a 2-(15, 7, 3) weakly self-orthogonal design. By applying Theorem 3.4
(case 4.1.), a [31, 15, 4] LCD code with automorphism group A8 can be
obtained.

2. Menon designs.
The parameters of the design are v = 4t2, k = 2t2 − t, and λ = t2 − t. A
design with these parameters exists if and only if there exists a regular
Hadamard matrix of order 4t2. It is conjectured ([9]) that these designs
exist for all values of t. The incidence matrix of a Menon design is given
by M = 1

2 (J4t2 −H), and H is a regular Hadamard matrix in which the
sum of every row is equal to 2t. In [11], the author gave a construction
of Menon designs for p and 2p− 1 prime powers and p ≡ 3 mod 4.
Note that these designs are p-self-orthogonal for every prime p dividing t.
For example, if we take matrix H to be the first matrix (labeled 36a)
in https://documents.uow.edu.au/~jennie/matrices/H36/36R.html

and replace all −1 with 0 we obtain a point-block incidence matrix of a
Menon design with 36 points which is 3-self orthogonal. Now, applying
Theorem 3.4 (case 1), we obtain [72, 36, 6]3 and [73, 36, 6]3 LCD codes.

• Quasi-symmetric designs.
1. In [3], Blokhuis and Haemers constructed an infinite family of quasi-

symmetric 2-(q3, q2(q − 1)/2, q(q3 − q2 − 2)/4) designs with block inter-
section numbers q2(q − 2)/4 and q2(q − 1)/4, where q is a power of 2.
For q > 2, these designs are self-orthogonal since k ≡ 0 mod 2 and the
block intersection numbers are even.

https://documents.uow.edu.au/~jennie/matrices/H36/36R.html
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2. In [24], the authors found many new quasi-symmetric 2-(28, 12, 11) and 2-
(36, 16, 12) designs. In [23], one can find a table of known quasi-symmetric
designs along with their incidence matrices.
For example, if we consider the first incidence matrix of a 2-(28, 12, 11)
quasi-symmetric design with intersection numbers 4 and 6, we observe
that this design is self-orthogonal, and so using Theorem 3.4 (case 1), we
obtain a [91, 63, 3] LCD code.

• Strongly regular graphs.
1. The triangular graph T (n) is a graph whose vertices are 2-element subsets

of an n-elements set, two pairs being adjacent if and only if they have an
element in common. T (n) is a strongly regular graph with parameters((

n
2

)
, 2(n− 2), n− 2, 4

)
.

If n > 2 is even, the adjacency matrix of T (n) is the incidence matrix of
a self-orthogonal 1-design since k ≡ 0 mod 2 and the block intersection
numbers are even.
For example, T (4) is a strongly regular graph with parameters (6, 4, 2, 4)
whose adjacency matrix is an incidence matrix of a 1-(6, 4, 2) self-
orthogonal design. Applying Theorem 3.4 (case 1), we obtain a [9, 6, 2]
LCD code with automorphism group Z2 × S4.

4.2. LCD codes constructed from weakly self-orthogonal 1-designs invari-
ant under the transitive action of the group A5. In this section, we present
LCD codes constructed using the method described in Theorem 3.4 from weakly
self-orthogonal 1-designs that admit a transitive action of the alternating group A5.
We constructed the 1-designs by applying the following construction introduced in
[16].

Theorem 4.1. Let G be a finite permutation group acting transitively on the sets
Ω1 and Ω2 of size m and n, respectively. Let α ∈ Ω1 and ∆2 =

⋃s
i=1 δiGα, where

δ1, · · · , δs ∈ Ω2 are representatives of distinct Gα-orbits. If ∆2 ̸= Ω2 and B =

{∆2g : g ∈ G}, then B is set of blocks of a 1 − (n, |∆2|, |Gα|
|G∆2 |

∑s
i=1 |αGδi |) design

with m·|Gα|
|G∆2

| blocks. The group H ∼= G/
⋂

x∈Ω2
Gx acts as an automorphism group

on the design transitively on points and blocks of the design. If ∆2 = Ω2, then the
set B consists of one block.

Recall that any transitive action of a group G on a set Ω is equivalent to the
action by left (or right) multiplication of the group G on the set of cosets G/P ,
where P is a stabiliser of an element of Ω for the given action.

Let G be a group isomorphic to the alternating group A5. To obtain 1-designs
that admit a transitive action of G, we apply Theorem 4.1 as follows:

• Consider faithful transitive action of the group G of degree n, i.e. n ≤ |G|.
Without loss of generality, we define Ω2 as {1, . . . n}. Note that this action
of G on Ω2 is equivalent to the action of G on G/P by multiplication where
P = G1 and n = [G : P ].

• Consider the subgroup H < G, H ̸= {1G}, and define ∆2 =
⋃s

i=1 δiH for all
combinations of representatives of different H-orbits on Ω2. Note that in this
case Ω1 = G/H and G acts transitively on Ω1 by multiplication. If P = H,
then b ≤ v.

Note that by using conjugate subgroups of G, one will obtain isomorphic 1-designs.
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Applying the steps described above, we constructed 1-designs from all transitive
actions of the permutation group G ∼= A5, and for each, up to conjugation, H <
G, H ̸= {1G}, and we single out the weakly-self orthogonal designs. We have
constructed exactly 182 weakly self-orthogonal 1-designs that are invariant under
the action of G. The following table lists weakly self-orthogonal 1-designs from
which we constructed optimal and near-optimal LCD codes.

The table contains number of points of the constructed design, i.e. |Ω2|, sub-
group H < A5 used to obtain the base block of the design, parameters of the weakly
self-orthogonal 1-design, parameters of the corresponding binary LCD code, and the
structure of automorphism group of the code. Minimum distances and automor-
phism groups of the codes are computed using the computational algebra system
MAGMA ([4]). Optimal codes are marked with *, near-optimal codes with **.

n H < A5 Design C Aut(C)
20 Z2 1-(20, 12, 3) [25, 5, 11]∗ E24 : (E24 : S5)

20 Z2 1-(20, 14, 7)
[30, 10, 9] ∗ ∗

S5[31, 10, 10]∗

20 Z5 1-(20, 15, 9)
[20, 12, 4]∗

Z2 × S5[21, 12, 4] ∗ ∗
12 D10 1-(12, 10, 5) [18, 6, 6] ∗ ∗ (E25 : A6) : E22

10 Z2 1-(10, 6, 3) [11, 5, 4]∗ S5

10 Z2 1-(10, 5, 3)
[10, 6, 3]∗

S5[11, 6, 4]∗

Table 1. Optimal and near-optimal binary LCD codes con-
structed from WSO 1-designs from group A5

Tables with the parameters of all LCD codes constructed from weakly self-
orthogonal 1-designs, as well as all constructed designs can be found here: https:
//www.math.uniri.hr/~inovak/LCD/

4.3. Examples of LCD codes constructed from orbit matrices of weakly p-
self-orthogonal 1-designs, p ∈ {3, 5}. Using Theorem 4.1, we constructed exam-
ples of weakly 3-self-orthogonal designs and weakly 5-self-orthogonal designs from
the permutation representation of the group S4(9) on 1640 points. The orbit ma-
trices of the constructed designs were obtained under the action of the cyclic group
of order 5, which acts on the points of the design, i.e. in orbits of length 5. Using
Theorem 3.9, we constructed LCD codes over the finite fields of order 3 and 5,
with at least one example for each case described in the theorem. Table 2 lists the
constructed LCD codes and the corresponding 1-designs.

The following tables are be ordered by five cases of weakly p-self-orthogonal
designs as follows:

Case 1. Codes obtained from p-self-orthogonal designs.
Case 2. Codes obtained from weakly p-self-orthogonal designs such that a = 0,

d ̸= 0.
Case 3. Codes obtained from weakly p-self-orthogonal designs such that a ̸= 0,

d = 0.
Case 4.1 Codes obtained from weakly p-self-orthogonal designs such that a = d ̸= 0.
Case 4.2 Codes obtained from weakly p-self-orthogonal designs such that a ̸= 0,

d ̸= 0, a ̸= d.

https://www.math.uniri.hr/~inovak/LCD/
https://www.math.uniri.hr/~inovak/LCD/
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Design C Case
1-(1640, 729, 729) [657, 328, 2]3 1

1-(1640, 1458, 729)
[492, 164, 2]3 1
[493, 164, 2]3

1-(1640, 1638, 819) [329, 164, 1]3 2

1-(1640, 2, 1)
[328, 164, 2]3 3
[329, 164, 3]3

1-(1640, 182, 91) [493, 164, 4]3 4.1
1-(1640, 911, 911) [656, 328]3 4.1

1-(1640, 1458, 729)

[328, 164, 2]5

4.2
[492, 164, 12]5
[493, 164, 12]5
[329, 164, 3]5

1-(1640, 1638, 819)
[493, 164, 3]5 4.2
[493, 164, 4]5

Table 2. LCD codes obtained from p-self orthogonal designs, p ∈
{3, 5}, using Theorem 3.9

Using weakly 3-self-orthogonal 1-designs constructed from the group S4(9) on
1640 points, we have constructed LCD codes using Theorem 3.10. The orbit matri-
ces of the designs are obtained under the action of a cyclic group of order 3 acting
on the points of the designs of lengths 1 and 3. The following table lists the LCD
codes constructed using Theorem 3.9 as indicated above. It also presents the cor-
responding 1-designs, with construction examples given for 4 of the 5 cases of the
weakly p-self-orthogonal designs described.

Design C Case

1-(1640, 182, 91)

[57, 19, 1]3

1
[58, 19, 2]3
[1068, 534]3
[1069, 534]3

1-(1640, 729, 729)
[76, 38, 1]3

1
[801, 267]3
[802, 267]3

1-(1640, 1638, 819)
[39, 19, 1]3

2[534, 267, 2]3
[535, 267, 3]3

1-(1640, 2, 1)
[38, 19, 2]3

3[534, 267, 2]3
[535, 267, 3]3

1-(1640, 182, 91)
[58, 19, 2]3

4.1[801, 267]3
[802, 267]3

1-(1640, 911, 911)

[76, 38, 2]3

4.1
[77, 38, 2]3
[1068, 534]3
[1069, 534]3

Table 3. LCD codes obtained from weakly 3-self orthogonal de-
signs using Theorem 3.9
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matrices of 2-designs, Adv. Math. Commun., 7 (2013), 161-174.
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