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Abstract
Mountainous regions typically harbour high plant diversity but are also characterised by low sampling intensity. Coarse-scale 
species distribution models can provide insights into the distribution of poorly sampled species, but the required bioclimatic 
data are often limited in these landscapes. In comparison, several environmental factors that vary over relatively fine scales 
in mountain environments (e.g. measures of topography) can be quantified from remotely-sensed data, and can potentially 
provide direct and indirect measures of biologically-relevant habitat characteristics in mountains. Therefore, in this study, 
we combine field-sampled floristic data with environmental predictors derived from remotely-sensed data, to model the 
ecological niches of 19 montane plant species in the Maloti-Drakensberg mountains, South Africa. The resulting models 
varied considerably in their performance, and species showed generally inconsistent responses to environmental predic-
tors, with altitude and distance to watershed being most frequently included in models. These results highlight the species-
specificity of the forb species’ environmental tolerances and requirements, suggesting that environmental change may result 
in re-shuffling of community composition, instead of intact communities shifting along gradients. Furthermore, while the 
relatively high importance of altitude (a proxy for temperature) and topographic wetness index (a proxy for soil moisture) 
suggest that the flora of this region will be sensitive to shifts in temperature and rainfall patterns, several non-climatic envi-
ronmental variables were also influential. Our findings indicate that local response to climate change in mountains might be 
especially constrained by soil type and topographic variables, supporting the important influence of non-climatic factors in 
microclimatic refugia dynamics.
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Introduction

To effectively protect biodiversity, it is important to identify 
areas where high numbers of rare, localised or endangered 
species are concentrated (Myers 2003). For plant biodi-
versity, the majority of these areas are located in montane 
regions (Muellner-Riehl et al. 2019), likely reflecting how 
mountains contain steep environmental gradients, often har-
bour unique geological strata, and have complex topography, 
which leads to a large diversity of niches within relatively 
small areas (Antonelli et al. 2018; Rahbek et al. 2019). Addi-
tionally, many individual mountain tops act as islands in 
the landscape because of their distinct climatic conditions 
and are thereby drivers of evolutionary radiation (Riebesell 
1982). However, despite their relative isolation, montane 
ecosystems may face threats in the form of mining, over-
grazing and climate change (Schmeller et al. 2022).
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Our knowledge of plant diversity in mountains depends 
on herbarium collections gathered over many years. How-
ever, mountain regions are often poorly sampled as the 
terrain can be largely inaccessible, resulting in large parts 
of these areas remaining under-explored (Clark et al. 2006; 
Li et al. 2011; Sainge et al. 2017; Wursten et al. 2017). 
As a result, these herbarium collections can describe a 
regions’ overall species diversity and inform broadly about 
the occurrence of rare and endemic species, but they only 
partially reveal distribution patterns in mountain envi-
ronments, without actually characterising species envi-
ronmental requirements, which is necessary for effective 
conservation efforts (Greve et al. 2016).

Conservation planning often considers rarity and ende-
mism as criteria for target identification, but this approach 
overlooks important aspects of plant life in mountains. 
Accurate assessments of ecosystems must also include the 
distribution of common species since the functioning of 
many ecosystems and the associated ecosystem services 
are only directly influenced by rare species when they are 
locally abundant or their ecological role is unique (Dee 
et al. 2019). A focus on common plant species is thus 
necessary if we want to understand how plant species and 
their niches are distributed within mountain regions and 
how these species affect the ecological functioning on a 
larger scale. Such information will help in understand-
ing plant distributions, but also in monitoring vegetation 
changes and predicting future floristic responses to climate 
change (Silveira et al. 2019). In addition, since species 
distributions are shaped by complex interactions between 
individual biological traits (e.g., growth forms, morpho-
logical adaptations, phylogenetic niche conservatism) and 
environmental constraints (Carscadden et al. 2020), com-
paring drivers of distribution across multiple species with 
different traits can provide important insights of how these 
components determine range size and niche breadth.

Ecological niche modelling is a tool used to predict 
suitable environments for a species on the basis of incom-
plete occurrence data by extrapolating the information 
from those limited occurrence data to the entire sampled 
region (Weber et al. 2017). This approach makes use of 
different statistical modelling algorithms and can be uti-
lised even when complete data (including absence data for 
a species) is unavailable. It does, however, require detailed 
environmental data so that the occurrence of the species 
can be linked to environmental conditions, allowing pro-
jecting the species occurrence throughout space and time 
(Pearman et al. 2008). In the Drakensberg, previous efforts 
to apply niche models to understand species distributions 
(Bentley et al. 2019; Gwate et al. 2023) were mainly based 
on presence-only models, which can limit model evalua-
tion and calibration (Drake 2014), and coarsely interpo-
lated climatic data only, which may fail in representing the 

topographical climate variation at the microhabitat level 
(Franklin et al. 2013).

Climatic conditions are among the most important 
explanatory factors that determine the distribution of plants 
in any environment at broader scales (Punyasena et  al. 
2008). Climate plays a particularly large role in mountain 
environments because there is a high amount of local vari-
ation in rainfall, temperature, evapotranspiration and wind 
direction and speed (Leuschner 2000; Scherrer and Körner 
2011; Körner 2021). However, there is a lack of detail in cli-
matic data in the mountains, as weather stations are sparse, 
and climatic gradients are very steep and not easily modelled 
(Barry 1992). Therefore, when extrapolations of climatic 
data are done for mountainous environments, they are typi-
cally coarse estimates and often not very reliable (Schmitt 
et al. 2013; Shahgedanova et al. 2021).

Topography has a large impact on local climatic con-
ditions in mountains, across both large (e.g. temperature 
variation across elevation) and smaller scales (temperature 
variation on adjacent north vs. south-facing slopes; Kattel 
et al. 2015). For example, temperature generally declines 
with elevation (Montgomery 2006), but sheltering and shad-
ing in deep valleys and the effect of anabatic and katabatic 
airflows may strongly modify this pattern locally (Sturman 
1987). Rainfall can have a complex pattern of local varia-
tion too, as it depends on the interaction of topography and 
prevailing wind directions. The effect of air forced to rise 
up mountain slopes often creates unstable conditions and 
orographic rainfall, but how this rainfall is distributed over 
different slopes depends on fine details in topography and 
air movement through valleys (Barry 1992; Neiman et al. 
2002). Air movement in mountains is extremely complex 
as it involves daily fluctuations in air pressure as a result of 
differential heating of slopes and valleys, and this, in turn, 
has an effect on potential evaporation and temperature. In 
consequence, while we understand that climatic conditions 
can vary strongly across short distances within mountains, 
the characterization of this finer scale variation in tempera-
ture, rainfall and other variables is in practice limited by data 
availability and the development of microclimatic models 
(although see, e.g. Kearney et al. 2020).

As a result of the climatic and topographic heterogeneity, 
it is a particular challenge to provide realistic assessments of 
plant distributions within mountain ranges at the landscape 
scale. In this study, therefore, we link plant distributions 
directly to fine-scale topographical information that can be 
obtained from data layers that are directly available from 
satellite imagery or large-scale maps, assessing (1) the accu-
racy with which species distributions can be modelled using 
widely available environmental data in a region with limited 
botanical survey data and (2) which environmental variables 
are most frequently related to species occurrence patterns. 
By understanding the distributions of common species in 
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mountains, we can enhance our understanding of the envi-
ronmental drivers affecting the occurrence of plants across 
mountain environments.

Methods

Study area

Our study region is the northern Maloti-Drakensberg moun-
tains in eastern South Africa, adjacent to Lesotho, at the 
border of the Free State and KwaZulu-Natal provinces. This 
region is characterised by a temperate climate with warm 
summers and cold winters that are dry with regular frost and 
occasional snowfalls. It also experiences summer rainfall in 
the form of thunderstorms that arise from convective and 
orographic cloud formation.

The Drakensberg massif is an erosional mountain range 
that represents the remaining areas of basalt that were depos-
ited after a period of massive volcanic activity following the 
breakup of Gondwanaland (McCarthy and Rubidge 2005) 
This mountain range has very steep slopes towards its east-
ern face, where it rises c. 2000 m above the coastal province 
of KwaZulu-Natal. The Free State province is situated on an 
inland high-altitude plain in the interior of South Africa that 
was formed during a period of uplift at the end of the Creta-
ceous. The eastern escarpment of the plateau intersects with 
the Drakensberg escarpment (Fig. 1), and the area around 
this intersection, therefore, has a topography that is charac-
terised by plains of three different elevations intersecting: 
inland KwaZulu-Natal at about 1200 m altitude, the east-
ern Free State at around 1700 m altitude and the Lesotho 
Highlands at around 3000 m altitude. Rainfall in this area 
is primarily orographic, coming from the Indian Ocean in 
the east. Less commonly, cold fronts also sweep in from 
the west. There are weather stations in several towns in the 
foothills of the mountains, but only a single weather station 
in the high mountains (around Sentinel Peak) that was run 
for a short period of time (Nel et al. 2010). For most of the 
area, the weather is complex and unpredictable.

Field sampling

Thirty common grassland forbs were chosen for this study 
(Table 1; Fig. 1). These species were selected using the fol-
lowing criteria: (1) they should be found regularly in the 
area, and their distribution should not be confined to a single 
mountain or valley, (2) they should have a high detectability 
and be reliably identified, without any confusion with other 
forbs in the area, and (3) they should remain in this recognis-
able state throughout the flowering season, either because 
they flower for a long period, or because their vegetative 
form is conspicuous and easily recognised. These species 

covered a broad range of growth forms, including geophytes, 
succulent forbs and dwarf shrubs. Of the 30 target species, 
only 19 species were recorded in more than 10 plots, with 
subsequent data analysis limited to this subset of species.

Transects were laid out in the mountains around the town 
of Phuthaditjhaba, either following contour lines or moving 
upslope in valleys or along ridges between 1800 and 2600 m 
a.s.l. These transects were accessed by foot during the sum-
mer growing seasons (November to March) of 2016, 2017 
and 2020, and a 10 × 10 m plot was surveyed every 100 m 
along each transect, in which the occurrence of each of the 
thirty target species was recorded. Altitude, rock cover, veg-
etation cover, vegetation height, slope angle and slope aspect 
were additionally quantified in the field for each plot. Prior 
to analysis, slope aspect was decomposed into a measure of 
northness (i.e. 1 = north-facing, − 1 = south-facing, 0 = east- 
or west-facing) and eastness (following, e.g., Guisan et al. 
1999). This means there are six predictor variables that were 
assessed in the field. A total of 231 plots were surveyed 
along eight transects.

Desktop predictor variables

Additional predictor variables were assessed from desktop 
studies: solar radiation, topographic wetness index, distance 
from watershed, and the categorical variable soil type.

To determine the solar radiation potentially received at 
each plot in the study area, the “solar radiation analysis tool” 
from ArcGIS 10:8.2 (ESRI 2023) was used. The tool maps 
the potential incident solar radiation over a geographic area 
for specific time periods. It accounts for atmospheric effects, 
site latitude and elevation, slope steepness and aspect, daily 
and seasonal shifts of the sun’s angle, and effects of shad-
ows cast by surrounding topography (ESRI 2023). The tool 
requires a Digital Elevation Model (DEM) of the study 
area. Therefore, a 30 m DEM for South Africa and Lesotho 
was obtained from the Shuttle Radar Topography Mission 
(SRTM; Drusch et al. 2012) and clipped to the study area. 
The “solar radiation analysis tool” with the following param-
eters was selected: output files were created for each month; 
a sky value of 512 (which is recommended as sufficient for 
calculations at point locations where calculation time is less 
of an issue and where you are using monthly averages); a 
viewshed of 32 (due to the complexity of the landscape in 
the study area); 32 calculation directions (due to the complex 
terrain); and finally, ground level was selected for reading 
height.

Topographic wetness index (TWI) was calculated follow-
ing the methods of Dadjou (2021). The TWI shows a meas-
ure of wetness conditions at the catchment scale. It combines 
local upslope contributing area and slope using the digital 
elevation model to represent increased soil moisture where 
the landscape area contributing runoff is large and slopes 
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are low. This process also uses the SRTM-DEM developed 
for the solar radiation calculation. Once the TWI layer was 
calculated the survey points were overlayed and a TWI value 
for each survey plot could be determined.

Soil data were obtained from the Soil and Terrain data-
base for Southern Africa (SOTERSAF version 1.0) at a scale 
of 1:2 million (Batjes 2004). The vector layer was imported 
into ArcMap in order to obtain the data appropriate for each 
plot. This led to the categorization of soils as one of three 
types: Lithic leptosols, Eutric leptosols or Paraplinthic 
Acrisols.

The distances for each plot from the both watersheds 
(Lesotho border and Free State-KwaZulu-Natal border) 
were calculated because these are a proxy for orographic 
rainfall, with the distant plots receiving less rainfall than 
the proximate plots. The tool for calculating this distance 
was gDistance() function from the rgeos R package version 
0.6-2 (Rundel and Bivand 2013), using a base raster layer 
of 30 m resolution.

Species distribution models

All continuous environmental variables were examined for 
collinearity using Pearson correlation tests. Due to strong 
collinearity between potential incident solar radiation 
across most months, only solar radiation values for June 
and December were retained for subsequent analyses. Vari-
ance inflation factors (VIF) showed that soil type (the only 
categorical predictor) was not strongly correlated with any 
of the other predictors. After removing vegetation cover and 
distance from the Lesotho border, there were 11 candidate 
predictor variables retained, all with r < |0.6| and VIF < 2.2 
(see Online Appendix; Fig. A1). Vegetation height was log-
transformed prior to analyses.

To test if quadratic terms should be considered for each 
of the continuous predictor variables (i.e. to account for 
non-linear and/or unimodal species–environment relation-
ships), each predictor was fitted to each species’ occurrence 
data using a generalised linear model with a binomial dis-
tribution. Two models were fitted for each species-predictor 
combination, a linear model and a quadratic model, and a 
quadratic term was only considered useful when the quad-
ratic model had a lower AIC score than the associated 
linear model and the quadratic model improved the devi-
ance explained (% DE) by the linear model for the species 
by > 5%. Quadratic terms only met these two criteria for > 1 

species for altitude, rock cover and distance from watershed. 
As a result, quadratic terms were only considered further for 
these three predictor variables.

A best subsets model building approach was then used to 
identify the best combination of predictor variables (from 
11 predictors and 3 quadratic terms) for each species, with 
transect identity included as a random effect to account for 
the spatial structure of the sampling design. Species occur-
rence was modelled using a generalised linear mixed effect 
model with a binomial distribution, with all resulting models 
ranked using AIC. Model fit was assessed using the area 
under the curve of a receiver operating characteristic plot 
(AUC; Fielding and Bell 1997) and the true skill statistic 
(TSS; Allouche et al. 2006), based on three repeats of three-
fold cross-validation (with random division of the dataset). 
Relative variable importance was then calculated for each 
variable included in each species’ top ranked model, using 
the approach of Niittynen and Luoto (2018). As variable 
importance cannot be determined for random effects, two 
analytical approaches were used when assessing model fit 
and variable importance: transect identity was dropped from 
the model (likely overestimating the relative importance of 
the remaining predictors, and underestimating model fit) or 
was treated as a fixed effect (potentially overestimating its 
importance and overestimating model fit).

All statistical analyses were run in R statistical software 
v 4.2.2 (R Core Team 2022), with additional functions from 
the corrplot (Wei et al. 2022), biomod2 (Thuiller et al. 2023), 
car (Fox and Weisberg 2018), glmmTMB (Brooks et al. 
2017) and modEvA (Márcia Barbosa et al. 2013) libraries.

Model projection

The best-performing models were used to project the occur-
rence of species across the entire study region using the 
function “predict” from the R package “terra” version 1.7-39 
(Hijmans et al. 2022). Since some variables used to model 
the presence of some species were not available for areas 
beyond the sampled plots, we restricted this step to species 
in which the top-performing models included only predic-
tors which could be derived from DEMs: elevation, slope, 
northness, eastness, solar radiation in June, solar radiation 
in December, TWI, and distance to the watershed. For eleva-
tion, we used the same 30 m resolution SRTM-DEM used 
in the previous step. The solar radiation data was obtained 
from the Photovoltaic power potential (PVOUT) raster pub-
lished by the Global Solar Atlas dataset version 2.0 (ESMAP 
2019) under the resolution of 250 m. For the Topographic 
Wetness Index, we used the Africa Soil Information Service 
(AfSIS): Topographic Wetness Index (TWI) (Vagen 2010) 
under 90 m resolution. For topographic eastness and north-
ness, we used the DEM raster and the functions “raster.east” 
and “raster.north” available on the package “red” version 

Fig. 1  a Survey sites in the northern Maloti-Drakensberg mountains 
in South Africa, bordering Lesotho, showing dominant vegetation 
types (Mucina and Rutherford 2006). The photographs below show 
some of the selected species that were recorded in this study: b Glad-
iolus crassifolius, c Cyperus sphaerocephalus, d Helichrysum chiono-
sphaerum, e Ajuga ophrydis 

◂
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1.5.0 (Cardoso 2023). All raster resolutions were resampled 
to 30 m resolution using bilinear interpolation and cropped 
to the extent of the study site using the R package “terra”. 
The predicted suitable area for each species was calculated 
using a threshold based on a fixed sensitivity value of 0.9 
(Liu et al. 2005; Bean et al. 2012). The model sensitivity was 
calculated using the presence and absence values from the 
sampled sites with the function “evaluate” from the pack-
age “dismo” version 1.3-9 (Hijmans et al. 2017). We used 
the calculated thresholds to reclassify the projections into 
presence/absence maps using the function “classify” in the 
R package “terra”. Finally, the extent of the suitable area for 
each species was calculated using the function “expanse” in 
the same package.

Results

Occurrence models varied strongly in performance, with 
mean AUC scores from cross-validation ranging from 
0.68 to 0.94 and mean TSS scores from 0.22 to 0.80 (when 
including Transect as a fixed effect; AUC scores were on 
average 0.03 units lower and TSS scores 0.07 units lower 
when Transect was excluded from models; Table 2). All 
predictor variables (and their associated quadratic terms) 
were included in at least one species’ best fit model, with 
altitude (13 species), distance to watershed (13 species) and 
rock cover (8 species) being included in the most best-fit 
models (Table 2; Fig. 2). None of the predictors that were 
included in more than one best-fit model had consistent signs 

for their coefficients (i.e. the nature of the occurrence-pre-
dictor relationship was not consistent across all of the spe-
cies where that predictor was included in the best-fit model). 
For example, altitude showed positive (3 species), negative 
(4 species), humped-shaped (3 species) and valley-shaped (2 
species) relationships with the occurrence of the modelled 
species.

Variable importance was highest for distance to the water-
shed, soil type, and altitude (Table 3). Northness also had 
a high average variable importance, but this was driven by 
northness being the only variable included in the best-fit 
model for Schistostephium crataegifolium. Repeating the 
variable importance analysis including transect identity as a 
fixed effect did not alter these results (with transect being the 
5th most important variable; Online Appendix Table A1).

Habitat suitability and distribution across the mountain 
region projected by the occurrence models varied consider-
ably across species. Only in the cases where rock cover and 
vegetation height did not play a major role, could spatial 
distributions of species be modelled onto a digital eleva-
tion model (11 species; see Fig. 3). Some species influenced 
by similar combinations of variables (e.g., elevation and 
distance to watershed in Crassula vaginata and Lotononis 
lotononoides) showed similar response curves, and differed 
only in terms of the relative contribution of each variable to 
the overall explanatory power of the model (e.g. the relative 
importance of distance to watershed was 91% for C. vagi-
nata and 46% for L. lotononoides). The response maps also 
show that some species, such as Helichrysum aureum and 
Senecio rhomboideus, were predicted to be approximately 

Table 1  Species selected for 
this study

Species Family Growth form Occurrences

Agapanthus campanulatus Agapanthaceae Geophyte 40
Ajuga ophrydis Lamiaceae Forb 43
Crassula vaginata Crassulaceae Succulent forb 46
Cyperus sphaerocephalus Cyperaceae Graminoid 26
Dianthus basuticus Caryophyllaceae Forb 25
Gladiolus crassifolius Iridaceae Geophyte 23
Helichrysum aureum Asteraceae Forb 156
Helichrysum chionosphaerum Asteraceae Creeper 91
Helichrysum oreophilum Asteraceae Forb 63
Helichrysum pallidum Asteraceae Forb 79
Hermannia gerrardii Malvaceae Creeper 63
Lotononis lotononoides Fabaceae Dwarf shrub 70
Moraea huttonii Iridaceae Geophyte 24
Searsia discolor Anacardiaceae Suffrutex 69
Scabiosa columbaria Dipsacaceae Forb 77
Schistostephium crataegifolium Asteraceae Dwarf shrub 19
Senecio macrocephalus Asteraceae Succulent forb 84
Senecio rhomboideus Asteraceae Succulent forb 32
Zaluzianskya microsiphon Scrophulariaceae Forb 14
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equally common across the study region. Species belonging 
to similar growth forms (Table 1) have yet very different 
distribution patterns.

Projected suitable habitat across the study area varied 
strongly between species, ranging between c. 40 and 100% 
of the area (Fig. 4). Species such as Agapanthus campanula-
tus, Dianthus basuticus and Senecio macrocephalus are pre-
dicted to be relatively range restricted, while Helichrysum 
aureum, Helichrysum pallidum and Senecio rhomboideous 
show large suitable areas.

Discussion

For the majority of species, elevation strongly affected 
species’ occurrence, combined with various other topo-
graphic factors, often including rock cover, distance from 
the watershed, and/or soil type. The impact of altitude on 
species distribution has been highlighted in many studies 
(e.g. Wang et al. 2003), as altitude is linked to temperature 
and often also to orographic rainfall, wind intensity and/or 
cloud cover (Körner 2007). Interestingly, in this study, some 
species seem to have a bimodal distribution with regards to 
altitude. This may indicate a preference for habitats such 
as relatively flat mountain tops or crests that occur at low 
altitude on sandstone and again at high altitude on basalt.

In this system distance from the watershed also correlates 
with the amount of orographic rainfall, as the escarpment 

edge (i.e. the watershed) is where moist air from the Indian 
Ocean is forced up due to the steep incline of the topogra-
phy. Rock cover was an important factor for the occurrence 
of several species, likely reflecting a gradient of decreasing 
soil depth, increasing light availability, and greater micro-
climatic variation. As a result, areas of higher rock cover 
potentially offer, for example, opportunities for species that 
are less competitive in a dense grass layer. The influence 
of soil type is probably predominantly through its effect on 
nutrient status and hydrological properties of soils. Many 
studies have emphasized the importance of soil and other 
edaphic factors in mountain grasslands and, along with 
topography (including slope, aspect, altitude), are the most 
important environmental factors driving species occurrence 
patterns (Pickering and Green 2009; Huo et al. 2015; Buri 
et al. 2020).

While there tends to be pronounced variability in the 
environmental variables that are most strongly related to 
species occurrence patterns, and variation in the nature of 
the effect of those predictors on species occurrence, some 
predictors did show strong trends. For example, both east-
ness and the amount of solar radiation received during 
summer demonstrated predominantly consistent correla-
tions with the occurrence of the species in which they were 
included in the top-ranked models (positive and negative 
correlations respectively). Both of these metrics relate to the 
solar inputs at site, with west-facing slopes in this system 
experiencing more direct incident radiation during warmer 

Fig. 2  Exemplar response curves illustrating contrasting species responses to a altitude, b distance to the watershed, and c rock cover. See 
Online Appendix B for all response curves for all species



1103Plant Ecology (2024) 225:1095–1108 

Ta
bl

e 
3 

 V
ar

ia
bl

e 
im

po
rta

nc
e 

(%
) f

or
 e

ac
h 

fix
ed

 e
ffe

ct
 p

re
di

ct
or

 in
cl

ud
ed

 in
 th

e 
be

st 
m

od
el

 fo
r e

ac
h 

sp
ec

ie
s (

ex
cl

ud
in

g 
Tr

an
se

ct
 a

s a
 p

re
di

ct
or

)

Ea
ch

 ro
w

 su
m

s t
o 

10
0%

, s
o 

th
e 

va
lu

es
 in

 e
ac

h 
ro

w
 re

pr
es

en
t t

he
 re

la
tiv

e 
co

nt
rib

ut
io

n 
to

 th
e 

ex
pl

an
at

or
y 

po
w

er
 o

f t
ha

t m
od

el
 (i

rr
es

pe
ct

iv
e 

w
he

th
er

 th
e 

%
 D

E 
va

lu
es

 a
re

 h
ig

h 
or

 lo
w

; s
ee

 T
ab

le
 1

). 
Va

lu
es

 in
 th

e 
bo

tto
m

 ro
w

 re
pr

es
en

t t
he

 m
ea

n 
va

ria
bl

e 
im

po
rta

nc
e 

ac
ro

ss
 a

ll 
sp

ec
ie

s. 
Fo

r v
ar

ia
bl

e 
im

po
rta

nc
e 

va
lu

es
 w

he
re

 tr
an

se
ct

 w
as

 in
cl

ud
ed

 a
s a

 fi
xe

d 
eff

ec
t, 

se
e 

O
nl

in
e 

A
pp

en
di

x 
Ta

bl
e 

A
2

H
ei

gh
t v

eg
et

at
io

n 
he

ig
ht

, S
lo

pe
 sl

op
e 

ste
ep

ne
ss

, S
ol

ar
 ra

d 
po

te
nt

ia
l d

ire
ct

 in
ci

de
nt

 ra
di

at
io

n,
 T

W
I t

op
og

ra
ph

ic
 w

et
ne

ss
 in

de
x

Sp
ec

ie
s

A
lti

tu
de

H
ei

gh
t

Sl
op

e
N

or
th

ne
ss

Ea
stn

es
s

Ro
ck

 c
ov

er
So

la
r r

ad
: J

un
e

So
la

r r
ad

: 
D

ec
em

be
r

D
ist

an
ce

 to
 

w
at

er
sh

ed
TW

I
So

il 
ty

pe

Ag
ap

an
th

us
 c

am
pa

nu
la

tu
s

13
9

6
14

25
11

23
Aj

ug
a 

op
hr

yd
is

51
10

11
11

16
C

ra
ss

ul
a 

va
gi

na
ta

9
91

C
yp

er
us

 sp
ha

er
oc

ep
ha

lu
s

6
1

 <
 1

 <
 1

4
 <

 1
17

1
11

 <
 1

59
D

ia
nt

hu
s b

as
ut

ic
us

15
19

67
G

la
di

ol
us

 c
ra

ss
ifo

liu
s

30
3

5
8

5
28

20
H

el
ic

hr
ys

um
 a

ur
eu

m
33

7
6

10
24

2
19

H
el

ic
hr

ys
um

 c
hi

on
os

ph
ae

ru
m

48
3

38
10

H
el

ic
hr

ys
um

 o
re

op
hi

lu
m

6
30

64
H

el
ic

hr
ys

um
 p

al
lid

um
47

40
14

H
er

m
an

ni
a 

ge
rr

ar
di

i
67

33
Lo

to
no

ni
s l

ot
on

on
oi

de
s

49
3

2
46

M
or

ae
a 

hu
tto

ni
i

1
17

82
Se

ar
si

a 
di

sc
ol

or
23

18
17

42
Sc

ab
io

sa
 c

ol
um

ba
ri

a
 <

 1
 >

 99
Sc

hi
sto

ste
ph

iu
m

 c
ra

ta
eg

ifo
liu

m
 >

 99
Se

ne
ci

o 
m

ac
ro

ce
ph

al
us

41
20

6
 <

 1
34

Se
ne

ci
o 

rh
om

bo
id

eu
s

6
5

87
2

Za
lu

zi
an

sk
ya

 m
ic

ro
si

ph
on

27
13

61
M

ea
n:

30
%

9%
4%

26
%

9%
10

%
14

%
10

%
47

%
18

%
38

%



1104 Plant Ecology (2024) 225:1095–1108

afternoon times (and with east-facing slopes often having 
reduced solar inputs due to morning mist). This suggests that 
in this system many, but not all, species benefit from cooler, 
less sunny microsites, having a higher probability of occur-
rence in locations with lower solar inputs. This finding is 
in strong contrast to observations from most other systems, 
where warmer, sunnier microsites are typically associated 
with higher plant richness and more complete vegetation 
cover (Kulonen et al. 2018). This depends a lot on the choice 
of species of the study. The ecologically most dominant spe-
cies, the grasses, are not included in the study and in warm 

and sunny sites it is likely them that benefit from becoming 
more dominant. Large forbs and shrubs are typically domi-
nant on scree slopes, drainage lines and rocky areas. There 
were no growth forms that showed similar responses here 
but the sample sizes are too small to make definite state-
ments about that.

Mountain ecosystems are particularly vulnerable to 
climatic changes (Thuiller et al. 2005). It is expected that 
vegetation will generally expand upslope if mountain habi-
tats become warmer and that high-altitude endemic species 
will therefore be under specific threat (i.e. the ‘escalator to 

Fig. 3  Examples of species’ projected occurrence probabilities across the study area. Dark red tones indicate higher predicted probabilities of 
occurrence, while dark blue tones indicate lower probabilities. All projections are in WGS84 and 30 m resolution

Fig. 4  Estimated suitable 
area for each species that had 
explanatory models using only 
topographic variables (i.e. 
excluding rockiness and vegeta-
tion height) across the study 
region (see Fig. 1)
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extinction’ (Dirnböck et al. 2011; Pauli et al. 2012; Urban 
2018). This is particularly relevant in our study system as 
elevation was an important predictor in most of the species’ 
distribution models. Indeed, elevation has always been rec-
ognised as a major influence on vegetation patterns in the 
mountains, and the majority of species are expected to shift 
their range in response to warming temperatures (Vitasse 
et al. 2021; Zu et al. 2021). However, given that a diversity 
of occurrence-elevation patterns were observed (positive 
and negative, linear and non-linear), a community-wide 
upslope range shift is unlikely, and instead a more complex 
reshuffling of grassland composition may occur in response 
to changing temperatures (as observed by e.g. Le Roux and 
McGeoch 2008).

The pronounced topographic variation (and, e.g., the 
associated edaphic heterogeneity) often observed in moun-
tainous areas may, however, also provide some degree of 
buffering against the impacts of climate change (Scher-
rer and Körner 2011; Niskanen et al. 2017). For example, 
aspects of topography, such as solar radiation and rock cover, 
will not be impacted as a result of global climate change, 
even though there is a tendency for more rocky places 
towards higher altitudes. Given that many of the variables 
identified in this study as being important drivers of forb 
occurrence patterns will not be directly impacted by changes 
in rainfall or temperature regimes, these findings suggest 
variation in susceptibility to change across our study species 
(in agreement with, e.g., Moeslund et al. 2013). This differ-
ential susceptibility to changes in climate could, therefore, 
cause large differences in the degree to which species ranges 
shift, potentially leading to a greater mixing of species and 
an overall homogenisation of vegetation across altitudinal 
bands (Savage and Vellend 2015; Cramer et al. 2022).

Importance for conservation

Despite study species being selected on the basis of their 
‘commonness’ in the region’s mountain grasslands, there 
was still a wide range in the predicted range of these species 
within the study region. This variation in species predicted 
occupancy likely reflects the predictor variables selected in 
this study (and their resolution), but also differences in spe-
cies biology. The species that have strong habitat speciali-
sation tend to occur in specific, limited environments. The 
number of variables involved in determining such habitats 
cannot be determined at the scale this study operated on. If 
a species occupies unique or rare environmental conditions, 
it may respond strongly to the arbitrary choice of threshold, 
resulting in a smaller predicted area (Boulangeat et al. 2012; 
Carscadden et al. 2020).

The predicted size of a species occupancy within a 
specific area does not have to correspond with the actual 

frequency with which that a species is encountered in the 
field (Crisfield et al. 2024). The predicted area size indi-
cates the ‘potential’ habitat but because of biotic factors (e.g. 
presence of competition or the absence of mutualists) and 
dispersal constraints, the species may not occur in all the 
places that are indicated as potential habitat. Also, when spe-
cies have a large potential distribution, neutral models apply 
and this may lead to a small actual distribution after a series 
of random dispersal and competition events over several 
generations, despite the equal tolerance for environmental 
conditions among all species (Hubbell 2001). This empha-
sizes why we need to be careful with the interpretation of the 
predicted range sizes as they do not necessarily reflect the 
rarity of species on the ground nor give an understanding of 
the specific threats that a species faces.

When rarity arises due to habitat specialisation and these 
habitats are at risk, it can help in prioritising which species 
inhabiting topographically complex mountainous environ-
ments require most attention for conservation and known 
existing populations of such species need to be monitored. 
Following the procedure outlined in this paper can help in 
setting such conservation priorities as it becomes evident 
which species are occurring in a narrow niche, even while 
they may still be commonly encountered. There are many 
studies that highlight conservation priorities of mountainous 
regions (for example Hou et al. 2010) but none of them focus 
on the landscape-scale of particular mountains and slopes. 
Knowing the distributions of species within mountain areas 
is particularly important when we consider the pressures that 
mountainous regions are subjected to in the face of climatic 
changes.

The method applied in this study offers an approach to 
modelling species distributions in montane regions at a land-
scape level, and can be used to identify species and areas 
for monitoring that may be most strongly impacted by envi-
ronmental change. In this approach, the presence of spe-
cies’ presences and several environmental predictors’ values 
were directly sampled on-site instead of derived from other 
geographic databases. This partially overcomes the limita-
tion of the coarse resolution and the uncertainties associated 
with the low geographic coverage of mountain systems by 
the global climatic databases (Thornton et al. 2022). Even 
though some projections include variables that can be con-
sidered proxies for climate data derived from weather sta-
tions, removing this bias from the model training refines the 
results compared to models trained using spatially biased 
datasets.

Species distribution modelling at an intermediate scale 
can give a good indication of the way in which plant species 
are distributed within a mountain landscape. This reveals 
that different plant species, even if they are equally com-
mon across the mountain range, may have entirely different 
habitat requirements and will therefore respond differently to 
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future changes. How plants respond to a complex of environ-
mental predictors in a mountainous landscape is of crucial 
importance for the conservation of these species.
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Acknowledgements We would like to acknowledge the students who 
helped with the data collection in the field, namely Gullit Maphatlat-
sane and Lungisa Tenza.

Author contributions EJJ Sieben, S Steenhuysen and PC Le Roux 
conceptualized the study. EJJ Sieben and S Steenhuysen carried out 
the fieldwork while supervising several students. PC LeRoux carried 
out the statistical analysis with regards to the linear modelling and 
produced the Tables 1 and 2. JD Vidal and G Martin carried out the 
spatial analysis and produced Figs. 1a and 3. EJJ Sieben and PC Le 
Roux drafted the text. All authors contributed to the editing of the text.

Funding Open access funding provided by University of the Free State. 
No outside funding was used towards this manuscript.

Data availability All data is supplied as supplementary material to this 
manuscript.

Declarations 

Competing interests The authors declare they have no competing 
interests.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of 
species distribution models: prevalence, kappa and the true skill 
statistic (TSS). J Appl Ecol 43:1223–1232

Antonelli A, Kissling WD, Flantua SG, Bermúdez MA, Mulch A, 
Muellner-Riehl AN, Kreft H, Linder HP, Badgley C, Fjeldså J 
(2018) Geological and climatic influences on mountain biodiver-
sity. Nat Geosci 11:718–725

Barry RG (1992) Mountain weather and climate. Psychology Press, 
London

Batjes NH (2004) SOTER-based soil parameter estimates for Southern 
Africa (ver. 1.0). Report 2004/04, ISRIC—World Soil Informa-
tion, Wageningen. https:// isric. org/ sites/ defau lt/ files/ isric_ report_ 
2004_ 04. pdf

Bean WT, Stafford R, Brashares JS (2012) The effects of small sample 
size and sample bias on threshold selection and accuracy assess-
ment of species distribution models. Ecography 35:250–258

Bentley LK, Robertson MP, Barker NP (2019) Range contraction to 
a higher elevation: the likely future of the montane vegetation 
in South Africa and Lesotho. Biodivers Conserv 28(1):131–153. 
https:// doi. org/ 10. 1007/ s10531- 018- 1643-6

Boulangeat I, Lavergne S, Van Es J, Garraud L, Thuiller W (2012) 
Niche breadth, rarity and ecological characteristics within a 
regional flora spanning large environmental gradients. J Bioge-
ogr 39:204–214

Brooks ME, Kristensen K, Van Benthem KJ, Magnusson A, Berg CW, 
Nielsen A, Skaug HJ, Machler M, Bolker BM (2017) glmmTMB 
balances speed and flexibility among packages for zero-inflated 
generalized linear mixed modeling. R J 9:378–400

Buri A, Grand S, Yashiro E, Adatte T, Spangenberg JE, Pinto-Figueroa 
E, Verrecchia E, Guisan A (2020) What are the most crucial 
soil variables for predicting the distribution of mountain plant 
species? A comprehensive study in the Swiss Alps. J Biogeogr 
47:1143–1153

Cardoso P (2023) Package ‘Red’ BAT imports
Carscadden KA, Emery NC, Arnillas CA, Cadotte MW, Afkhami ME, 

Gravel D, Livingstone SW, Wiens JJ (2020) Niche breadth: causes 
and consequences for ecology, evolution, and conservation. Q Rev 
Biol 95:179–214

Clark JL, Neill DA, Asanza M (2006) Floristic checklist of the Mache-
Chindul mountains of Northwestern Ecuador. Contributions from 
the United States National Herbarium, pp 1–180

Cramer MD, Hedding DW, Greve M, Midgley GF, Ripley BS (2022) 
Plant specialisation may limit climate-induced vegetation change 
to within topographic and edaphic niches on a sub-Antarctic 
island. Funct Ecol 36:2636–2648

Crisfield VE, Guillaume Blanchet F, Raudsepp-Hearne C, Gravel D 
(2024) How and why species are rare: towards an understanding 
of the ecological causes of rarity. Ecography 2024(2):e07037

Dadjou F (2021) How to calculate topographic wetness index (TWI), 
in ArcGIS? https:// www. resea rchga te. net/ post/ how_ to_ calcu late_ 
topog raphic_ wetne ss_ index_ TWI_ in_ ArcGIS/ 604b7 30e0a f47c1 
29700 ba71/ citat ion/ downl oad

Dee LE, Cowles J, Isbell F, Pau S, Gaines SD, Reich PB (2019) When 
do ecosystem services depend on rare species? Trends Ecol Evol 
34:746–758

Dirnböck T, Essl F, Rabitsch W (2011) Disproportional risk for habitat 
loss of high-altitude endemic species under climate change. Glob 
Change Biol 17:990–996

Drake JM (2014) Ensemble algorithms for ecological niche modeling 
from presence-background and presence-only data. Ecosphere 
5(6):76. https:// doi. org/ 10. 1890/ ES13- 00202.1

Drusch M, Del Bello U, Carlier S, Colin O, Fernandez V, Gascon F, 
Hoersch B, Isola C, Laberinti P, Martimort P, Meygret A (2012) 
Sentinel-2: ESA’s optical high-resolution mission for GMES 
operational services. Remote Sens Environ 120:25–36

ESMAP (2019) Global Solar Atlas 2.0 technical report. World Bank, 
Washington, DC

ESRI (2023) An overview of the Solar Radiation toolset. https:// pro. 
arcgis. com/ en/ pro- app/ latest/ tool- refer ence/ spati al- analy st/ an- 
overv iew- of- the- solar- radia tion- tools. htm

Fielding AH, Bell JF (1997) A review of methods for the assessment 
of prediction errors in conservation presence/absence models. 
Environ Conserv 24:38–49

Fox J, Weisberg S (2018) An R companion to applied regression. Sage 
Publications, Thousand Oaks

Franklin J, Davis FW, Ikegami M, Syphard AD, Flint LE, Flint AL, 
Hannah L (2013) Modeling plant species distributions under 
future climates: how fine scale do climate projections need to 
be? Glob Change Biol 19(2):473–483. https:// doi. org/ 10. 1111/ 
gcb. 12051

Greve M, Lykke AM, Fagg CW, Gereau RE, Lewis GP, Marchant R, 
Marshall AR, Ndayishimiye J, Bogaert J, Svenning J-C (2016) 

https://doi.org/10.1007/s11258-024-01457-y
http://creativecommons.org/licenses/by/4.0/
https://isric.org/sites/default/files/isric_report_2004_04.pdf
https://isric.org/sites/default/files/isric_report_2004_04.pdf
https://doi.org/10.1007/s10531-018-1643-6
https://www.researchgate.net/post/how_to_calculate_topographic_wetness_index_TWI_in_ArcGIS/604b730e0af47c129700ba71/citation/download
https://www.researchgate.net/post/how_to_calculate_topographic_wetness_index_TWI_in_ArcGIS/604b730e0af47c129700ba71/citation/download
https://www.researchgate.net/post/how_to_calculate_topographic_wetness_index_TWI_in_ArcGIS/604b730e0af47c129700ba71/citation/download
https://doi.org/10.1890/ES13-00202.1
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/an-overview-of-the-solar-radiation-tools.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/an-overview-of-the-solar-radiation-tools.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/an-overview-of-the-solar-radiation-tools.htm
https://doi.org/10.1111/gcb.12051
https://doi.org/10.1111/gcb.12051


1107Plant Ecology (2024) 225:1095–1108 

Realising the potential of herbarium records for conservation biol-
ogy. S Afr J Bot 105:317–323

Guisan A, Weiss SB, Weiss AD (1999) GLM versus CCA spatial mod-
eling of plant species distribution. Plant Ecol 143:107–122

Gwate O, Canavan K, Martin GD, Richardson DM, Clark VR (2023) 
Assessing habitat suitability for selected woody range-expanding 
plant species in African mountains under climate change. Trans 
R Soc S Afr 78(1–2):87–101. https:// doi. org/ 10. 1080/ 00359 19X. 
2023. 22053 68

Hijmans RJ, Phillips S, Leathwick J, Elith J, Hijmans MRJ (2017) 
Package ‘dismo’”. Circles 9:1–68

Hijmans RJ, Bivand R, Forner K, Ooms J, Pebesma E, Sumner MD 
(2022) Package ‘terra.’ Maintainer, Vienna, Austria

Hou M-F, Lopez-Pujol J, Qin H-N, Wang L-S, Liu Y (2010) Dis-
tribution pattern and conservation priorities for vascular plants 
in Southern China: Guangxi Province as a case study. Bot Stud 
51:377–386

Hubbell SP (2001) The unified neutral theory of biodiversity and bio-
geography. Princeton University Press, Princeton

Huo H, Feng Q, Su Y-H (2015) Shrub communities and environmen-
tal variables responsible for species distribution patterns in an 
alpine zone of the Qilian Mountains, northwest China. J Mt Sci 
12:166–176

Kattel DB, Yao T, Yang W, Gao Y, Tian L (2015) Comparison of 
temperature lapse rates from the northern to the southern slopes 
of the Himalayas. Int J Climatol 35:4431–4443

Kearney MR, Gillingham PK, Bramer I, Duffy JP, Maclean IMD (2020) 
A method for computing hourly, historical, terrain-corrected 
microclimate anywhere on earth. Methods Ecol Evol 11:38–43

Körner C (2007) The use of ‘altitude’ in ecological research. Trends 
Ecol Evol 22:569–574

Körner C (2021) Alpine plant life: functional plant ecology of high 
mountain ecosystems. Springer Nature, Cham

Kulonen A, Imboden RA, Rixen C, Maier SB, Wipf S (2018) Enough 
space in a warmer world? Microhabitat diversity and small-scale 
distribution of alpine plants on mountain summits. Divers Distrib 
24:252–261

Le Roux PC, McGeoch MA (2008) Rapid range expansion and com-
munity reorganization in response to warming. Glob Change Biol 
14:2950–2962

Leuschner C (2000) Are high elevations in tropical mountains arid 
environments for plants? Ecology 81:1425–1436

Li R, Dao Z, Li H (2011) Seed plant species diversity and conservation 
in the northern Gaoligong Mountains in western Yunnan, China. 
Mt Res Dev 31:160–165

Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds 
of occurrence in the prediction of species distributions. Ecography 
28:385–393

Márcia Barbosa A, Real R, Muñoz AR, Brown JA (2013) New meas-
ures for assessing model equilibrium and prediction mismatch in 
species distribution models. Divers Distrib 19:1333–1338

McCarthy T, Rubidge BS (2005) The story of earth & life: a south-
ern Africa perspective on a 4.6 billion-year journey. Struik, Cape 
Town

Moeslund JE, Arge L, Bøcher PK, Dalgaard T, Svenning JC (2013) 
Topography as a driver of local terrestrial vascular plant diversity 
patterns. Nord J Bot 31:129–144

Montgomery K (2006) Variation in temperature with altitude and lati-
tude. J Geogr 105:133–135

Mucina L, Rutherford MC (2006) The vegetation of South Africa, 
Lesotho and Swaziland. Strelitzia 19, SANBI, Pretoria

Muellner-Riehl AN, Schnitzler J, Kissling WD, Mosbrugger V, Rijsdijk 
KF, Seijmonsbergen AC, Versteegh H, Favre A (2019) Origins of 
global mountain plant biodiversity: testing the ‘mountain-geobio-
diversity hypothesis.’ J Biogeogr 46:2826–2838

Myers N (2003) Biodiversity hotspots revisited. BioScience 53:916
Neiman PJ, Ralph FM, White A, Kingsmill D, Persson P (2002) The 

statistical relationship between upslope flow and rainfall in Cali-
fornia’s coastal mountains: observations during CALJET. Mon 
Weather Rev 130:1468–1492

Nel W, Reynhardt D, Sumner P (2010) Effect of altitude on erosive 
characteristics of concurrent rainfall events in the KwaZulu-Natal 
Drakensberg. Water SA. https:// doi. org/ 10. 4314/ wsa. v36i4. 58429

Niittynen P, Luoto M (2018) The importance of snow in species dis-
tribution models of arctic vegetation. Ecography 41:1024–1037

Niskanen A, Luoto M, Väre H, Heikkinen RK (2017) Models of Arctic-
alpine refugia highlight importance of climate and local topogra-
phy. Polar Biol 40:489–502

Pauli H, Gottfried M, Dullinger S, Abdaladze O, Akhalkatsi M, Alonso 
JLB, Coldea G, Dick J, Erschbamer B, Calzado RF (2012) Recent 
plant diversity changes on Europe’s mountain summits. Science 
336:353–355

Pearman PB, Guisan A, Broennimann O, Randin CF (2008) Niche 
dynamics in space and time. Trends Ecol Evol 23:149–158

Pickering C, Green K (2009) Vascular plant distribution in relation to 
topography, soils and micro-climate at five GLORIA sites in the 
Snowy Mountains, Australia. Aust J Bot 57:189–199

Punyasena SW, Eshel G, McElwain JC (2008) The influence of climate 
on the spatial patterning of Neotropical plant families. J Biogeogr 
35:117–130

Rahbek C, Borregaard MK, Antonelli A, Colwell RK, Holt BG, 
Nogues-Bravo D, Rasmussen CMØ, Richardson K, Rosing MT, 
Whittaker RJ, Fjeldså J (2019) Building mountain biodiversity: 
geological and evolutionary processes. Science 365:1114–1119

R Core Team (2022) R: a language and environment for statistical 
computing. R Foundation for Statistical Computing, Vienna

Riebesell JF (1982) Arctic-alpine plants on mountaintops: agreement 
with island biogeography theory. Am Nat 119:657–674

Rundel C, Bivand R (2013) Package ‘rgeos’ interface to geometry—
open source. R package version 0.6.2

Sainge MN, Onana J-M, Nchu F, Kenfack D, Peterson AT (2017) 
Botanical sampling gaps across the Cameroon Mountains. Biodi-
vers Inform. https:// doi. org/ 10. 17161/ bi. v12i0. 6707

Savage J, Vellend M (2015) Elevational shifts, biotic homogenization 
and time lags in vegetation change during 40 years of climate 
warming. Ecography 38:546–555

Scherrer D, Körner C (2011) Topographically controlled thermal-hab-
itat differentiation buffers alpine plant diversity against climate 
warming. J Biogeogr 38:406–416

Schmeller DS, Urbach D, Bates K, Catalan J, Cogălniceanu D, Fisher 
MC, Friesen J, Füreder L, Gaube V, Haver M, Jacobsen D, Le 
Roux G, Lin Y-P, Loyau A, Machate O, Mayer A, Palomo I, Plut-
zar C, Sentenac H, Sommaruga R, Tiberti R, Ripple WJ (2022) 
Scientists’ warning of threats to mountains. Sci Total Environ 
853:158611

Schmitt CB, Senbeta F, Woldemariam T, Rudner M, Denich M (2013) 
Importance of regional climates for plant species distribution pat-
terns in moist Afromontane forest. J Veg Sci 24:553–568

Shahgedanova M, Adler C, Gebrekirstos A, Grau HR, Huggel C, 
Marchant R, Pepin N, Vanacker V, Viviroli D, Vuille M (2021) 
Mountain observatories: status and prospects for enhancing and 
connecting a global community. Mt Res Dev 41(2):A1

Silveira FAO, Barbosa M, Beiroz W, Callisto M, Macedo DR, Morel-
lato LPC, Neves FS, Nunes YRF, Solar RR, Fernandes GW 
(2019) Tropical mountains as natural laboratories to study global 
changes: a long-term ecological research project in a megadiverse 
biodiversity hotspot. Perspect Plant Ecol Evol Syst 38:64–73

Sturman AP (1987) Thermal influences on airflow in mountainous ter-
rain. Prog Phys Geogr 11:183–206

https://doi.org/10.1080/0035919X.2023.2205368
https://doi.org/10.1080/0035919X.2023.2205368
https://doi.org/10.4314/wsa.v36i4.58429
https://doi.org/10.17161/bi.v12i0.6707


1108 Plant Ecology (2024) 225:1095–1108

Thornton JM, Pepin N, Shahgedanova M, Adler C (2022) Coverage 
of in situ climatological observations in the world’s mountains. 
Front Clim 4:814181

Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005) 
Climate change threats to plant diversity in Europe. Proc Natl 
Acad Sci 102:8245–8250

Thuiller W, Georges D, Gueguen M, Engler R, Breiner F, Lafourcade 
B, Patin R (2023) biomod2: ensemble platform for species distri-
bution modeling. R package version 4.2-4. https:// CRAN.R- proje 
ct. org/ packa ge= biomo d2

Urban MC (2018) Escalator to extinction. Proc Natl Acad Sci 
115:11871–11873

Vagen TG (2010) Africa soil information service: topographic wet-
ness index (TWI). International Center for Tropical Agriculture - 
Tropical Soil Biology and Fertility Institute (CIAT-TSBF), World 
Agroforestry Centre (ICRAF), Center for International Earth Sci-
ence Information Network (CIESIN), Columbia University, Nai-
robi, Kenya and Palisades, NY. http:// afric asoils. net/

Vitasse Y, Ursenbacher S, Klein G, Bohnenstengel T, Chittaro Y, Dele-
strade A, Monnerat C, Rebetez M, Rixen C, Strebel N (2021) Phe-
nological and elevational shifts of plants, animals and fungi under 
climate change in the European Alps. Biol Rev 96:1816–1835

Wang G, Zhou G, Yang L, Li Z (2003) Distribution, species diversity 
and life-form spectra of plant communities along an altitudinal 

gradient in the northern slopes of Qilianshan Mountains, Gansu, 
China. Plant Ecol 165:169–181

Weber MM, Stevens RD, Diniz-Filho JAF, Grelle CEV (2017) Is there 
a correlation between abundance and environmental suitability 
derived from ecological niche modelling? A meta-analysis. Ecog-
raphy 40:817–828

Wei T, Simko V, Levy M, Xie Y, Jin Y, Zemla J (2022) package 
‘corrplot’: visualization of a correlation matrix (version 0.92). 
2021

Wursten B, Timberlake J, Darbyshire I (2017) The Chimanimani 
Mountains. Kirkia 19(1):70–100

Zu K, Wang Z, Zhu X, Lenoir J, Shrestha N, Lyu T, Luo A, Li Y, Ji C, 
Peng S (2021) Upward shift and elevational range contractions 
of subtropical mountain plants in response to climate change. Sci 
Total Environ 783:146896

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://CRAN.R-project.org/package=biomod2
https://CRAN.R-project.org/package=biomod2
http://africasoils.net/

	Modelling landscape-scale occurrences of common grassland species in a topographically complex mountainous environment
	Abstract
	Introduction
	Methods
	Study area
	Field sampling
	Desktop predictor variables
	Species distribution models
	Model projection

	Results
	Discussion
	Importance for conservation
	Acknowledgements 
	References




